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Zika virus (ZIKV) infection in humans has been associated with severe congenital defects (i.e. 

microcephaly) and pregnancy loss. Here we show that 26% of nonhuman primates infected with 

Asian/American ZIKV in early gestation experienced fetal demise later in pregnancy despite few 

clinical signs of infection. Pregnancy loss due to asymptomatic ZIKV infection may therefore be a 

common but under-recognized adverse outcome related to maternal ZIKV infection.

Zika virus (ZIKV) infection during pregnancy can lead to severe congenital defects 

collectively known as Congenital Zika Syndrome (CZS) 1,2. The spectrum of adverse 

outcomes ranges from hearing and ocular defects to fetal brain malformations (with and 

without microcephaly) and spontaneous pregnancy loss (miscarriage and stillbirth) 3. Early 

pregnancy losses may be clinically under-recognized as linked to ZIKV infection because 

miscarriages are common and ZIKV infections are often asymptomatic. Although stillbirths 

in late pregnancy are easily clinically recognized, they may not be counted or reported as an 

important public health outcome 4.

Background rates of pregnancy loss in women change as gestational age advances, with a 

rate of ∼25% at 4-5 weeks, 2% at 20 weeks and 0.1% after 20 weeks' gestation 5. There is 

limited evidence that symptomatic Zika virus infection is associated with miscarriage and 

stillbirth 1,3,6,7. In 2016, birth rates throughout Brazil dropped 5% with the greatest 

reduction in birth rates in Pernambuco, where there were 10% fewer live births in 2016 than 

in 2015 8. Though some of this drop can be attributed to behavioral modification, we 

hypothesize this could also be due in part to underreported fetal losses caused by Zika virus 

in hard-hit areas.

Among the experimental animal models that have been described for studying ZIKV in 

pregnancy, nonhuman primates (NHP) are the most physiologically similar to humans, have 

extensive parallels in the histology and immunology of the maternal-fetal interface 9, and 

recapitulate the clinical course of human ZIKV infection 10–15. In experimentally infected 

NHP, pregnancy loss can be assessed rigorously, as the timing, dose, route and strain of 

ZIKV infection is known and ultrasound frequency can be greater. Critically, many Zika 

virus-infected NHP do not exhibit significant clinical signs and therefore closely resemble 

asymptomatic human ZIKV infections.

We aggregated fetal loss data from six National Primate Research Centers collected from 

ZIKV-infected pregnant nonhuman primates (rhesus macaques, pigtail macaques and 

common marmosets) to assess the rate of fetal demise (Table 1 and Supplementary Table 1), 

which includes some data from previously published studies 11,12,15–18. The studies differed 

in viral strain, route, dose, and gestational age at infection. Data from experimental infection 

using five different viral isolates are included, used alone or in combination (Table 1 and 

Supplementary Table 1). All strains used in these studies, except one originating from 

Cambodia, contained the S139N substitution in the pre-membrane (prM) ZIKV gene 

associated with increased virulence in mice (Table 1) 19. The dose of viral inoculum in these 

experiments ranged from 103 to 107 plaque forming units (PFU) (Supplementary Table 1), 

comparable to the wide range of estimates of infectious flavivirus doses delivered by 

mosquito bite, from 101 to 107 PFU.
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Overall, fetal death was observed in 13 of 50 animals (26.0%), and early neonatal death in 

an additional 3 animals (Table 1 and Supplementary Table 1), with frequent fetal loss in 

animals infected with ZIKV isolated from Brazil and/or Puerto Rico (46.7% and 28.6% 

respectively). The average rates of fetal demise among comparably-housed healthy, ZIKV-

unexposed pregnant macaques ranged from 4%-10.9% (Table 2). The numbers of 

pregnancies ending with fetal demise (defined here as fetal death in utero, i.e. spontaneous 

abortion before planned termination, or stillbirth discovered at planned termination) among 

healthy breeding colony rhesus macaques were collected from the California National 

Primate Research Center (CNPRC), Oregon National Primate Research Center (ONPRC), 

and Wisconsin National Primate Research Center (WNPRC) (n=2,823 pregnancies, Table 2). 

At these three centers, a four-fold increased odds of fetal loss was observed for ZIKV-

exposed rhesus macaques (11 losses out of 40 pregnancies) compared with unexposed 

animals (250 losses out of 2,823 pregnancies) (Chi-squared OR=3.9; 95% CI=1.9-7.9; 

p<0.0001). Note that the pregnant animals included in this statistic from ONPRC were 

delivered by cesarean section earlier than animals from other primate centers (typically 

between GD 135 and 155). This is ∼30 days before the due date and therefore stillbirth that 

would occur in the last month of pregnancy is missed in ONPRC animals. The mean 

gestational age at the time of the fetal death was 96 days (range 35-166 days) 

(Supplementary Table 1). It is striking that more than half of the fetal loss cases occurred 

after mid-gestion (>GD 83), when the ratesof pregnancy loss that late in human pregnancies 

are very low at 0.1% (Supplementary Table 1) 5,20.

Survival analysis was performed to compare outcomes in animals infected under different 

circumstances. Survival analyses of fetuses exposed to ZIKV isolates originating from 

Brazil or Puerto Rico were not statistically different based on comparison of Kaplan-Meier 

curves (Hazard ratio=1.17; 95% CI=0.38-3.61; log-rank test p=0.79) (Figure 1a). On the 

other hand, timing of infection was one of the most important predictors of fetal demise in 

these studies. Among the macaques studied, no (0/11) cases of fetal or neonatal death was 

observed in animals inoculated after GD 55 (approximately during first trimester) with any 

ZIKV isolate. This was less than the rate of fetal/neonatal demise among macaques 

inoculated on or before GD 55, which was 37.8% (n=37) (Fisher's exact test p=0.02). 

Survival analysis (Figure 1b) also showed a significant difference betweensurvival of fetuses 

whose dams were infected at ≤GD 55 compared to dams infected >GD 55 (log-rank test 

p=0.03), even though a hazard ratio could not be calculated because there were zero deaths 

in the >GD 55 group. This parallels human reports of more significant adverse outcomes in 

babies exposed to ZIKV during the first trimester 1,21.Sex of the fetus did not correlate with 

fetal demise; sex was evenly distributed in both fetal loss (5 males, 6 females) and survival 

cases (17 males, 17 females) (Supplementary Table 1).

All but one animal challenged with ZIKV had detectable plasma viremia after infection 

(Supplementary Table 1). Maternal plasma viremia was detectable in many pregnant animals 

beyond the typical 10-14 days seen in non-pregnant macaques (Supplementary Table 1) 
10,14,22. In animals from WNPRC and CNPRC, survival of fetuses or neonates was 

marginally, but not significantly, better if the duration of viremia was ≤14 days than if the 

duration of maternal viremia was >14 days (Figure 1c) (HR=1.97, 95% CI=0.42-9.38, log-

rank test p=0.39). Lastly, route of infection was compared between subcutaneous (SC) 
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inoculation and intra-amniotic/intravenous (IA/IV) inoculation in macaques (Figure 1d). 

While the hazard ratio of IA/IV inoculation was 3.75 (95% CI=0.85-16.55; log-rank test 

p=0.08) the difference in survival among animals infected IA/IV and SC was not statistically 

significant.

At the time of cesarean section, comprehensive necropsies were performed on maternal 

reproductive/fetal extraembryonic (MR/FE) tissues and fetal tissues. All fetal and neonatal 

loss cases tested at the time of this writing had detectable ZIKV RNA in the MR/FE tissues 

and/or in multiple fetal tissues (Supplementary Table 2). All but one fetal and neonatal loss 

cases with available data also showed evidence of inflammation in one or more MR/FE 

tissues with other pathologies including frequent placentitis, trophoblastic necrosis and 

infarction in the placenta and villi as described in Supplementary Table 3. It should be noted 

that necrosis may be the result of fetal death hours or days prior to tissue collection and may 

not be part of the etiology caused directly by ZIKV infection. While many of the fetal 

tissues were autolyzed due to death of the fetus hours or days prior to cesarean section, 

tissues that could be assessed for histopathology revealed major ocular pathologies (i.e. 

choroidal coloboma, retinal dysplasia, hemorrhage in retina), lung pathologies (i.e. 

neutrophil, lymphocyte, and erythrocyte infiltration, amniotic fluid aspiration), and, in one 

animal, a mild ventricular hemorrhage and mild loss of ependyma in the lateral ventricle of 

the brain (Supplementary Table 3). Two fetal demise cases were associated with preterm 

premature rupture of membranes (PPROM) and one case of neonatal death was associated 

with preterm cervical dilation (Supplementary Table 1). Altogether, this data provides 

evidence that ZIKV was present at the MR/FE tissues and in many of the fetuses with 

adverse outcomes. Fetal demise cases also have evidence of histopathology in the MR/FE 

tissues that may have contributed to their demise, though histopathology does not 

necessarily mean dysfunction. A recently published paper characterized placental 

dysfunction following ZIKV infection in rhesus macaques 17, and while this has not been 

found in the few human case reports with extensive placental characterization 23, that study 

along with the histopathology shown here suggests that the role of placental dysfunction in 

ZIKV-related fetal loss should be carefully studied.

To monitor the health and growth of the fetuses, many animals underwent weekly 

ultrasounds. Of animals with complete analysis of ultrasound data (Supplementary Table 3), 

the most common finding was increased placental calcification. One animal showed a 

slightly lower biparietal diameter and head circumference measurement (Supplementary 

Table 3), however few other significant ultrasound findings shedding light on fetal loss were 

observed by the ultrasound imaging.

Fetal death also occurred in common marmosets. The average rate of late term (88-142 days 

of gestation) fetal loss in healthy marmosets has been reported to be 4.4% (26 of 596)24, 

whereas 2 of 2 ZIKV-infected marmoset pregnancies ended in fetal demise. In these cases, 

ZIKV RNA was detectable in both MR/FE and fetal tissues (Supplementary Table 2). 

Minimal histopathology was noted in the MR/FE or fetal tissues, but one fetus showed 

evidence of disorganization of the cortical neurons which may signal a disruption of 

development and neuronal migration patterns of the cerebral cortex (Supplementary Table 3) 
18.
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A limitation of our study is the modest number of experiments associated with each species 

and experimental condition. In addition, given the urgency of understanding ZIKV impact 

during pregnancy in a relevant animal model and the need to identify both common and rare 

outcomes, resources were devoted to infecting pregnant macaques and using historical 

controls rather than mock-infecting pregnant animals. However, mock-infected animals are 

critical and it is important to note that 9/9 mock infected pregnant rhesus macaques (3 from 

ONPRC, 3 from CNPRC, and 3 from WaNPRC) did not show any adverse fetal outcomes, 

suggesting that experimental procedures, (i.e., frequent blood draws under sedation, weekly 

ultrasound imaging; regular amniocentesis) or the stress associated with them, were not 

sufficient to lead to the fetal loss rate seen in the ZIKV-exposed animals (Supplementary 

Table 1). As shown in Supplementary Table 1, the frequency of blood draws and ultrasounds 

for the mock-infected animals was comparable or identical to the frequencies of procedures 

used in fetal loss cases, suggesting that factors beyond the experimental procedures are 

contributing to increased rates of fetal demise. Amniocentesis was performed in some 

studies to detect infection in the fetal compartment (Supplementary Table 1). Although 

amniocentesis is known to carry a small risk for fetal loss (miscarriage or stillbirth), fetal 

loss occurred in animals that did (7/29=24.1%) and did not receive amniocentesis 

(6/21=28.6%) with no statistical difference in the number of fetal losses between these two 

groups (Fisher's exact test; p=0.75) (Supplementary Table 1). Of animals with 

amniocentesis, animals that survived to term had more weekly amniocentesis (ave.= 11, 

range 1-18, n=22) than those that ended with a fetal demise (ave.=6, range 2-18, n=7), 

further suggesting that the amniocentesis procedure did not contribute to the observed 

increased fetal demise.

The reported 6% rate of stillbirth in the Rio de Janeiro cohort of women with symptomatic 

ZIKV infection is among the highest known for any teratogenic virus. The actual incidence 

of miscarriage and stillbirth in women infected with ZIKV during pregnancy is unknown 

and likely dependent upon a number of factors, including gestational age at time of 

infection, inoculum, viral strain, maternal age and other non-ZIKV coinfections/

comorbidities 1. The high rates of fetal loss among ZIKV infected nonhuman primate 

pregnancies reported here (26%) raises concern that ZIKV-associated pregnancy loss in 

humans may be more frequent than currently thought. In nonhuman primates, there was 

evidence of vertical transmission in all fetal demise cases including vRNA and/or 

histopathology found in fetal and MR/FE tissues. Importantly, fetal demise was more 

common in animals infected during the first trimester and in animals with a longer duration 

of detectable maternal plasma viremia. That fetal demise occurred across multiple centers, 

multiple ZIKV isolates, and multiple ZIKV doses, suggests that the observation of fetal loss 

is robust and that ZIKV may contribute to fetal loss under a variety of conditions seen in 

nature.

These results, along with recent reports of increased fetal loss in human studies and reduced 

live birth rates in Brazil, suggests that careful monitoring of fetal loss and stillbirth are 

warranted. Specifically, nucleic acid testing of samples from pregnancy loss in women from 

ZIKV-endemic areas, those who may have had travel-related or sexual exposure, or those 

enrolled in ongoing cohort studies looking at Congenital Zika Syndrome, is an important 

step to understanding this important outcome.
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Methods

Care and use of nonhuman primates

All macaque monkeys used in this study were cared for by staff at their respective primate 

centers in accordance with the regulations and guidelines outlined in the Animal Welfare Act 

and the Guide for the Care and Use of Laboratory Animals. Each study received approval by 

their institution's Animal Care and Use Committee:

WNPRC—University of Wisconsin-Madison College of Letters and Sciences and Vice 

Chancellor for Research and Graduate Education CentersInstitutional Animal Care and Use 

Committee (Animal Care and Use Protocol Numbers G005401 and G005246).

CNPRC—University of California-Davis IACUC protocol numbers 19211 and 19695.

ONPRC—Oregon National Primate Research Center Institutional Animal Care and Use 

Committee (IACUC #0887-05 and #0300).

TNPRC—Tulane National Primate Research Center Institutional Animal Care and Use 

Committee (IACUC #P0336)

WaNPRC—University of Washington Institutional Animal Care and Use Committee 

(4165-02 and 4202-02).

SNPRC—Texas Biomedical Research Institute Animal Care and Use Committee (protocol 

1528CJ)

Additional details on the animals in this study are summarized in Supplementary Table 1.

Zika virus infections

WNPRC—ZIKV strain H/PF/2013 (GenBank: KJ776791), originally isolated from a 51-

year-old female in France returning from French Polynesia with a single round of 

amplification on Vero cells, was obtained from Xavier de Lamballerie (European Virus 

Archive, Marseille France). ZIKV strain PRVABC59 (ZIKV-PR; GenBank:KU501215), 

originally isolated from a traveler to Puerto Rico with three rounds of amplification on Vero 

cells, was obtained from Brandy Russell (CDC, Ft. Collins, CO). For each inoculation, the 

stock was thawed, diluted in PBS to the appropriate concentration for each challenge, and 

loaded into a 1 mL syringe that was kept on ice until challenge. 1 mL of inocula was 

administered subcutaneously over the cranial dorsum. At the conclusion of the procedure, 

animals were closely monitored by veterinary and animal care staff for adverse reactions and 

signs of disease.

CNPRC—ZIKV strain Zika virus/H.sapiens-tc/BRA/2015/Brazil_SPH2015 was isolated 

from Brazil in 2015; (GenBank accession number KU321639.1), as described earlier 22. 

ZIKV strain PRVABC59 was obtained from WNPRC. Aliquots were stored in liquid 

nitrogen thawed right before each inoculation procedure. The inoculum was adjusted to the 

proper PFU with RPMI1640 medium to 0.5 to 1 ml of final volume for administration to the 

Dudley et al. Page 7

Nat Med. Author manuscript; available in PMC 2019 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pregnant dam by IA, IV or SC route. For animals that received both IA and IV, the PFU 

value listed in Table 1 represents the total dose, divided in half for each route; when viral 

mixtures were used, equal amounts of each virus (in PFU) were used.

ONPRC—Viral preparation and inoculation was the same as previously described 14,14: 

ZIKV PRVABC59 was obtained from the CDC, and passaged twice in C6/36 cells 

(American Type Culture Collection, ATCC). Infected C6/36 tissue culture supernatant was 

concentrated through a 20% sorbitol cushion and titrated in Vero cells (ATCC) through a 

focus-formation assay. Animals were subcutaneously inoculated in the hand, wrist and 

forearm. Each animal received a total inoculum of 1×105 PFU diluted in PBS to a volume of 

1 mL.

TNPRC—ZIKV PRVABC59 was obtained from WNPRC and was prepared as described 

above. All animals were challenged via subcutaneous inoculation with 10,000 PFU of virus.

WaNPRC—We used the following isolates: ZIKV strain isolated in Cambodia (FSS13025, 

2010, GenBank Accession Number: KU955593) and ZIKV strain isolated in Fortaleza 

Brazil (Brazil 2015 (Fortaleza), GenBank Accession Number: KX811222. ZIKV was 

inoculated subcutaneously at five separate locations on the forearms, each with 107 plaque-

forming units (PFU).

SNPRC—Pregnant marmoset dams were infected intramuscularly with 2 inoculums of 

ZIKV strain Zika virus/H.sapiens-tc/BRA/2015/Brazil_SPH2015 (GenBank accession 

number KU321639.1) (Cunha, 2016, Genome Announcements), each inoculum containing 

2.5×105 PFU of P3 (passage 3 in Vero cells) virus diluted in PBS to a volume of 1 mL. The 

2 inoculums were administered on gestational days 79 and 83 for dam 1 (human equivalent 

= 14 weeks) or days 68 and 72 days for dam 2 (human equivalent=9 weeks). The P3 viral 

inoculum was deep sequenced to >100X coverage on an Illumina MiSeq instrument and the 

assembled consensus sequence was identical to the reference sequence in GenBank.

Details on Zika virus infections are also summarized in Supplementary Table 1.

Statistics

Baseline fetal loss data was collected from multiple primate centers based on time-mated 

breeding colony data. Chi-squared and Fisher's Exact Test statistics with additional odds 

ratios for fetal loss, as well as Kaplan-Meier curves with hazard ratios and log-rank tests to 

compare survival curves were calculated using Graphpad Prism 5 software for Mac OS X 

(Version 5.0a), Graphpad Software, La Jolla California USA and reported along with the 

corresponding 95% confidence intervals. All reported P-values are two-sided and P<0.05 

was used to define statistical significance.

Data availability

The authors declare that all data supporting the findings in this study are available within the 

article or from the corresponding authors upon request.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Kaplan-Meier curves comparing survival rates between macaques exposed to Zika virus 

under different conditions. a. Macaques exposed to Zika virus originating from Brazil (BR) 

(red) or Puerto Rico (PR) (black). b. Macaques exposed to Zika virus on or before 

gestational day 55 (red) or after gestational day 55 (black). NE-not estimable due to zero 

events in one group. c. Macaques exposed to Zika virus with a duration of maternal plasma 

viremia less than or equal to 14 days post-infection (black) or duration of viremia greater 

than 14 days post-infection (red) (WNPRC and CNPRC only). d. Macaques exposed to Zika 

virus by intraamniotic (IA) and intravenous injection (IV) (red) or subcutaneous injection 

(SC) (black). Hazard ratio (HR) and p-value based on log-rank test are reported.
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Table 2
Rates of spontaneous abortion or stillbirth in healthy breeding colony rhesus (CNPRC, 
ONPRC, WNPRC) and pigtail (WaNPRC) macaques

Institution Breeding season Spontaneous loss Total pregnancies Percent losses (%)

WNPRC 2012 20 114 17.5

2013 11 113 9.7

2014 10 142 7.0

2015 10 103 9.7

2016 12 124 9.7

2017 (partial) 15 117 12.8

Weighted average 10.9

CNPRC 2008-2009 19 235 8.1

2009-2010 23 242 9.5

2010-2011 15 210 7.14

2011-2012 23 230 10.0

2012-2013 24 173 13.9

2013-2014 15 165 9.1

2014-2015 18 128 14.1

2015-2016 10 187 5.4

2016-2017 (partial) 11 192 5.7

Weighted average 9.0

ONPRC* 2007 6 47 12.8

2008 3 36 8.3

2009 0 37 0.0

2010 1 18 5.6

2011 1 11 9.1

2012 0 9 0.0

2013 0 6 0.0

2014 0 20 0.0

2015 1 39 2.6

2016 1 75 1.3

2017 (partial) 1 50 2.0

Weighted average 4.0

WaNPRC 2014 13 114 11.4

2015 7 91 7.7

2016 15 122 12.3

2017 (partial) 7 58 12.1

Weighted average 10.9

*
Included pregnancies were confirmed >GD 30 and delivered by cesarean section <GD 155, and therefore the risk of very early or late-term 

abortion in healthy pregnant animals is not captured in these statistics from ONPRC.

Nat Med. Author manuscript; available in PMC 2019 January 02.


	Abstract
	Methods
	Care and use of nonhuman primates
	WNPRC
	CNPRC
	ONPRC
	TNPRC
	WaNPRC
	SNPRC

	Zika virus infections
	WNPRC
	CNPRC
	ONPRC
	TNPRC
	WaNPRC
	SNPRC


	Statistics
	Data availability
	References
	Figure 1
	Table 1
	Table 2



