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[ Sleep Original Research ]
Effect of Venlafaxine on Apnea-Hypopnea
Index in Patients With Sleep Apnea

A Randomized, Double-Blind Crossover Study

Christopher N. Schmickl, MD, PhD; Yanru Li, MD; Jeremy E. Orr, MD; Rachel Jen, MD; Scott A. Sands, PhD;

Bradley A. Edwards, PhD; Pamela DeYoung, BA, RPSGT; Robert L. Owens, MD; and Atul Malhotra, MD
ABBREVIATIONS: AHI = apn
threshold; NREM = nonrapid
REM = rapid eye movement

chestjournal.org
BACKGROUND: One of the key mechanisms underlying OSA is reduced pharyngeal muscle
tone during sleep. Data suggest that pharmacologic augmentation of central serotonergic/
adrenergic tone increases pharyngeal muscle tone.

RESEARCH QUESTION: We hypothesized that venlafaxine, a serotonin-norepinephrine reup-
take inhibitor, would improve OSA severity.

STUDYDESIGNANDMETHODS: In this mechanistic, randomized, double-blind, placebo-controlled
crossover trial, 20 patients with OSA underwent two overnight polysomnograms$ 4 days apart,
receiving either 50 mg of immediate-release venlafaxine or placebo before bedtime. Primary
outcomes were the apnea-hypopnea index (AHI) and peripheral oxygen saturation (SpO2) nadir,
and secondary outcomes included sleep parameters and pathophysiologic traits with a view
toward understanding the impact of venlafaxine on mechanisms underlying OSA.

RESULTS: Overall, there was no significant difference between venlafaxine and placebo
regarding AHI (mean reduction, –5.6 events/h [95% CI, –12.0 to 0.9]; P ¼ .09) or SpO2 nadir
(median increase, þ1.0% [–0.5 to 5]; P ¼ .11). Venlafaxine reduced total sleep time, sleep
efficiency, and rapid eye movement (REM) sleep, while increasing non-REM stage 1 sleep
(Pall < .05). On the basis of exploratory post hoc analyses venlafaxine decreased (“improved”)
the ventilatory response to arousal (–30%; P ¼ .049) and lowered (“worsened”) the predicted
arousal threshold (–13%; [P ¼ .02]; ie, more arousable), with no effects on other patho-
physiologic traits (Pall $ .3). Post hoc analyses further suggested effect modification by
arousal threshold (P ¼ .002): AHI improved by 19% in patients with a high arousal threshold
(–10.9 events/h [–3.9 to –17.9]) but tended to increase in patients with a low arousal
threshold (þ7 events/h [–2.0 to 16]). Other predictors of response were elevated AHI and less
collapsible upper airway anatomy at baseline (jrj > 0.5, P # .02).

INTERPRETATION: In unselected patients, venlafaxine simultaneously worsened and improved
various pathophysiologic traits, resulting in a zero net effect. Careful patient selection based
on pathophysiologic traits, or combination therapy with drugs countering its alerting effects,
may produce a more robust response.

TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT02714400; URL: www.clinicaltrials.gov.
CHEST 2020; 158(2):765-775
KEY WORDS: lung; OSA; pharmacotherapy; pharyngeal muscle tone; venlafaxine
ea hypopnea index; ArTH = arousal
eye movement; PSG = polysomnogram;

AFFILIATIONS: From the Division of Pulmonary, Critical Care and
Sleep Medicine (Drs Schmickl, Li, Orr, Owens, and Malhotra; and Ms
DeYoung), University of California, San Diego, San Diego, CA;
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OSA is characterized by a repetitive collapse of the upper
airway at night, which affects at least 10% of the US
population and has been associated with various adverse
health outcomes.1-3 The standard of care is CPAP,4 but
many patients are unable to tolerate this therapy long-
term.5-8 Thus, over the past three decades various
pharmacologic treatments have been evaluated as
alternative options, but so far results have been mixed.9

One of the key goals of pharmacologic interventions for
OSA has been to augment pharyngeal muscle tone
during sleep: during wakefulness patients with OSA
maintain airway patency via increased pharyngeal
muscle tone compared with control subjects.10 However,
central activation of the pharyngeal muscles is state-
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specific, and in patients with OSA muscle tone drops
both rapidly and substantially during the wake-sleep
transition; this can contribute to the development of
apneas and hypopneas.11 Initially it was thought that
this change in activity was due primarily to a drop in
serotoninergic input to the hypoglossal
motoneurons.12,13 Therefore, several studies tried to
mitigate OSA by raising serotonin levels (eg, with
selective serotonin reuptake inhibitors),14-16 but overall
success has been limited. More recent data suggest that a
drop in noradrenaline levels may play a key role as
well.17-19 Therefore, we tested the hypothesis that
venlafaxine (a serotonin-norepinephrine reuptake
inhibitor) improves OSA severity.
Methods
Study Design

We conducted a mechanistic, randomized, double-blind, placebo-
controlled crossover study.20 All participants underwent two in-
laboratory overnight polysomnograms (PSGs) at least 4 days apart,
based on the pharmacologic half-lives of venlafaxine and O-
desmethylvenlafaxine (the only major active metabolite; t1/2 ¼ 5 � 2
and 11 � 2 h, respectively).21,22 Given the lack of prior data on
venlafaxine in patients with OSA and consistent with other
studies18,23 we chose a priori a single-night design to increase
feasibility and to minimize risks to participants. This single-night
design precluded gradual up-titration of venlafaxine. Thus, during
the two study visits subjects received either 50 mg of venlafaxine
(based on the usual adult starting dose range of 37.5-75 mg21) or an
indistinguishable placebo 1 h before sleep. The allocation sequence
was generated by one investigator (R. J.), using an online random
sequence generator (random.org). All subjects, investigators
interacting with participants, and outcome assessors were blinded to
subjects’ allocation sequence until the analysis stage.
Power Calculation

We estimated that a sample size of 20 subjects will provide a power >
0.8 to detect a change in apnea-hypopnea index (AHI) of 10 (� 15)
events/h with an a level of 0.05.

Participants

Patients were eligible for the study if they were 18 to 70 years of age. All
subjects had a history of untreated OSA with an AHI greater than 5
events/h and were recruited from the University of California San
Diego sleep clinic. Exclusion criteria included the presence of
pulmonary, cardiac, neurologic, or other active severe medical or
psychiatric diseases; or current use of CPAP therapy. No drugs that
might interact with the investigational medication or known to affect
sleep were taken during the trial or 1 month before the study. We
also excluded patients with known allergy to venlafaxine, currently
smoking, or taking alcohol (> 3 oz/d). Written informed consent
was provided by each subject before participation in the study, and
the study protocol was approved by the Human Research
Committee, University of California San Diego (IRB#141272).

Polysomnograms

EEGs, electro-oculograms, and surface electromyograms were applied
to score arousals, leg movements, and sleep stage. Abdominal and
chest movements (magnetometers), pulse oxygen saturation, and oral
and nasal flow were recorded to detect respiratory events.
Participants were instructed to sleep supine as much as possible
throughout the duration of the night, and position was recorded on
the basis of visual inspection via an infrared camera system. A
registered polysomnographic technologist, who was blinded to the
allocation sequence, scored the PSGs according to the Chicago
criteria (ie, hypopneas were defined as a > 50% decrease in airflow,
or a # 50% reduction in airflow associated with an oxygen
desaturation of $ 3% or arousal).24

Endotype Measurements

OSA is a multifactorial disease caused by the interplay of an anatomical
predisposition and several nonanatomical physiologic traits or
endotypes.25-27 A detailed discussion of these endotypes and their
various implications can be found in the literature,28 and e-
Appendix 1 and e-Figures 1 and 2 in the online article provide
details of how endotypes can be quantified. In brief, based on a
validated custom algorithm analyzing routine PSG data (MATLAB;
MathWorks)27,29 we quantified the following traits for each subject
[ 1 5 8 # 2 CHES T A UGU S T 2 0 2 0 ]
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off CPAP during the venlafaxine vs placebo night as a percentage of
eupneic ventilation/drive (Veupnea):

� Anatomical upper airway collapsibility (Vpassive: Ventilation when
upper airway dilator muscles are hypotonic/passive; higher %
Veupnea values correspond with a stiffer airway).

� Pharyngeal muscle recruitment (Vactive: Ventilation when upper
airway dilator muscles are maximally activated; higher %Veupnea
values indicate more muscle recruitment in response to accumu-
lating respiratory stimuli during partial airway collapse).

� Ventilatory instability (loop gain in response to 1 disturbance/min
[LG1]: this metric is dimensionless; larger values reflect greater
instability, and values > 1 correspond with periodic breathing/
central sleep apnea).

� Respiratory arousal threshold (ArTH: respiratory drive that causes
arousal from sleep; when the airway narrows then ventilation drops
while ventilatory drive rises; thus, larger %Veupnea values corre-
spond with greater drops in ventilation that can be sustained before
arousal from sleep occurs).

� Ventilatory response to arousal (amount of ventilatory overshoot
during an arousal that is not explained by the respiratory drive at
the time of arousal; greater values reflect a greater ventilatory
overshoot, which can exacerbate ventilatory instability; see
Discussion).26

Furthermore, we calculated the upper airway gain, which is a function
of both pharyngeal muscle recruitment and the ArTH (dimensionless;
larger values indicate a greater ability to dilate pharyngeal muscles
before respiratory arousals).
chestjournal.org
In addition to quantifying the ArTH on the basis of analysis of the raw
PSG data (“measured” ArTH), we also calculated the “predicted” ArTH
on the basis of a validated clinical score incorporating age, sex,
BMI, AHI, peripheral oxygen saturation (SpO2) nadir, and the
percentage of hypopneas.30,31 The predicted ArTH provides an
estimate of the negative epiglottic pressure swing preceding arousal
in –cm H2O; for simplicity we used the absolute value (cm H2O) for
all analyses.

Statistical Analysis
Statistical analyses were performed with R (version 3.6.1).32 In
preparation for each analysis we assessed normality, using a Shapiro-
Wilk test in combination with histogram inspection to determine the
need for nonparametric testing. Thus, as appropriate, we compared
outcome data on venlafaxine vs placebo using paired t tests or
Wilcoxon signed ranks tests, explored correlations between baseline
characteristics and changes in AHI using Pearson or Spearman
correlation coefficients, performed exploratory subgroup analyses
(comparing AHI changes stratified by OSA severity and low vs high
ArTH), and compared responder (arbitrarily defined as AHI-
reduction by > 10 events/h) vs nonresponder characteristics using
two-sample t tests. Data were summarized accordingly as mean (SD)
or median (interquartile range). Statistical significance was set at P <

.05. Comparisons of AHI, SpO2 nadir, loop gain, ArTH, and sleep
parameters were prespecified; all other analyses were performed post
hoc and considered exploratory (ie, no adjustment for multiple
comparisons).
Results
Six of the 26 subjects screened did not meet inclusion
criteria; 20 patients were randomized and completed the
study (Fig 133). Two subjects reported mild nausea
shortly after venlafaxine administration, which resolved
within 1 h. In addition, one subject complained of
nausea in the morning after placebo administration. No
serious or unanticipated problems related to venlafaxine
were observed during the study.

As shown in Table 1, subjects were middle-aged,
overweight to obese, with Epworth Sleepiness Scale
scores ranging clinically from no to severe sleepiness.
Thirty percent of the subjects were women and
25% were nonwhite. Of note, there was no difference in
BMI, percentage of time slept supine, or percentage of
“first night” in the laboratory between the venlafaxine
vs placebo nights (Pall > .2; e-Table 1).

Effect of Venlafaxine on Sleep

Venlafaxine vs placebo significantly decreased total sleep
time, sleep efficiency, and percentage of rapid eye
movement (REM) sleep but increased the percentage of
non-REM (NREM) stage 1 sleep (Table 2). REM sleep
was absent in seven subjects (35%) receiving venlafaxine
and two subjects receiving placebo (10%).
Effect of Venlafaxine on OSA Severity

Overall, there was no significant difference between
venlafaxine and placebo regarding AHI (mean
reduction, –5.6 events/h [95% CI, –12.0 to 0.9]; P ¼ .09)
or SpO2 nadir (median increase, þ1.0% [–0.5 to 5]; P ¼
.11) (e-Fig 3). However, individual response to
venlafaxine appeared to be heterogeneous: the AHI
decreased by > 10 events/h in one-third of subjects (n ¼
7; 35%), whereas in one subject (5%) the AHI increased
by > 10 events/h (Fig 2). Thus, we sought to explore
potential subgroups of patients who may respond to
venlafaxine.

On the basis of post hoc analyses, there was no change
in REM-sleep AHI (þ1.9 events/h, n ¼ 11; P ¼ .8), and
thus any improvement in total AHI appeared to be due
primarily to changes in NREM-sleep AHI (–5.0 events/
h; P ¼ .14) (Table 3). Allocation order did not modify
the effect of venlafaxine on the AHI (P ¼ .3) (e-Table 2).

Effect of Venlafaxine on Pathophysiologic Traits

As shown in Table 4, venlafaxine vs placebo decreased
the ventilatory response to arousal by 30% (–
6.9% Veupnea; P ¼ .049) and lowered the predicted
ArTH by 13% (–2.4 cm H2O; P ¼ .02). There was no
significant change in any of the other traits including
767
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Figure 1 – CONSORT flow diagram (for crossover trials). CONSORT ¼ Consolidating Standards of Reporting Trials. (Reprinted with permission from
Dwan et al.33)
measures of pharyngeal muscle response, loop gain, or
the ArTH quantified from raw PSG signals.

Both reductions in ventilatory response to arousal (rS ¼
0.47, P ¼ .045) (e-Table 3) and reductions in ArTH
correlated with improvements in AHI (measured ArTH:
rS ¼ 0.68, P ¼ .002; predicted ArTH: rP ¼ 0.75, P <

.001) (e-Table 3).
768 Original Research
Baseline Characteristics Predicting Response

Elevated AHI, higher respiratory ArTH (ie, harder to
arouse), and higher Vpassive (less collapsible upper
airway) at baseline correlated with greater
improvements in AHI on venlafaxine vs placebo
(jrj > 0.48, P < .05) (Table 5). Similarly, responders
(AHI improvement > 10 events/h) vs nonresponders
[ 1 5 8 # 2 CHES T A UGU S T 2 0 2 0 ]



TABLE 1 ] Baseline Demographics

Demographic
Mean/Median (SD/IQR)

or Percent (No.) Range

Age, y 53.8 (8.1) 35-64

Sex, female 30 (6) .

Race

White 75 (15) .

Black 10 (2) .

Asian 15 (3) .

Epworth Sleepiness
Scale

8 (6-15) 4-22

Pittsburgh Sleep
Quality Index

8.6 (3.3) 4-15

BMI, kg/m2 30.9 (3.9) 24.8-39.5

Neck
circumference,
cm

42.3 (7.5) 34.5-63

Time between
studies, d

7 (7-15) 4-22

IQR ¼ interquartile range.
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Figure 2 – Changes in apnea-hypopnea index (AHI, events/h) with
venlafaxine vs placebo. Diamonds and bars show mean and SD for each
condition (red, placebo; blue, venlafaxine). Circles denote individuals’
AHI.
had a higher baseline AHI (P ¼ .04) and tended to have
a higher ArTH (P ¼ .07) (e-Table 4).

Baseline AHI and predicted ArTH were highly collinear
(rS ¼ 0.78, P ¼ 10–4), precluding a meaningful
comparison of their relative predictive value via
multivariable regression. On the basis of exploratory
post hoc subgroup analyses (using standard cutoffs),
venlafaxine improved the AHI in subjects with a high
ArTH ($ 15 cm H2O, ie, hard to arouse) but tended to
worsen the AHI in those with a low ArTH (Fig 3).
Similarly, venlafaxine vs placebo improved the AHI in
those with severe OSA (AHI $ 30 events/h) but tended
TABLE 2 ] Sleep Parameters During Placebo vs Venlafaxine

Sleep Parameter

Placebo

[Mean (SD) or Median (IQR)] [M

TST, min 334.6 (79.9)

Sleep efficiency, % 72.5 (15.5)

Sleep onset latency, min 4.2 (1.5-11.2)

Total arousal index, h–1 39.3 (17.8)

NREM stage 1 sleep, % TST 23.9 (16.6-29.4)

NREM stage 2 sleep, % TST 54.4 (13.3)

NREM stage 3 sleep, % TST 7.5 (7.2)

REM sleep, % TST 10.8 (7.8)

D ¼ change; MD ¼ mean or median of differences for normally or nonnorma
REM ¼ rapid eye movement; TST ¼ total sleep time. See Table 1 legend for e
aThe median of differences is mathematically not necessarily the same as the dif
measure as it takes into account the paired nature of the data shown.
bP < .05.

chestjournal.org
to worsen the AHI in patients with mild/moderate OSA.
This finding may reflect the low ArTH in most patients
with mild/moderate OSA; however, the number of
subjects with mild/moderate OSA was small, precluding
firm conclusions. Results were similar when
dichotomizing baseline ArTH and AHI using the mean
of treatment and placebo values (e-Fig 4), and thus these
findings were not explained by regression to the mean.
Night: n ¼ 20

Venlafaxine D Venlafaxine-Placebo

P Valueean (SD) or Median (IQR)] [MDa (95% CI)]

284.4 (81.5) –50.0 (–91.4 to –8.6) .02b

63.1 (16.7) –9.4 (–17.9 to –1) .03b

5.0 (3.0-18.1) 1.5 (–0.7 to 21.5) .09

44.2 (16.5) 4.9 (–3.8 to 13.6) .3

39.0 (29.6-45.2) 12.1 (2.4 to 20.6) .02b

53.2 (11.8) –1.2 (–8.3 to 5.9) .7

5.2 (7.0) –2.3 (–5.6 to 0.9) .2

4.2 (5.9) –6.6 (–11.6 to –1.6) .01b

lly distributed differences, respectively; NREM ¼ nonrapid eye movement;
xpansion of other abbreviation.
ference of medians; here the median of differences is the more informative
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TABLE 3 ] Sleep Apnea Severity on Venlafaxine vs Placebo

Sleep Apnea Measure

Placebo Venlafaxine D Venlafaxine-Placebo

No.a P Value
[Mean (SD) or Median

(IQR)]
[Mean (SD) or Median

(IQR)] [MD (95% CI)]

AHI, events/h

Total 46.1 (21.9) 40.5 (16.5) –5.6 (–12.0 to 0.9) . .09

By sleep stage

NREM 45.1 (22.7) 40.1 (16.3) –5.0 (–11.8 to 1.8) . .14

REM 47.1 (17.2) 48.9 (22.2) 1.9 (–15.9 to 19.6) 11 .8

By time of night

NREM AHI, first half of night 44.4 (26.2) 35.6 (21.1) –8.8 (–18.7 to 1.1) . .08

NREM AHI, second half of
night

45.7 (21.5) 44.6 (14.7) –1.1 (–8.7 to 6.5) . .8

By event type

Obstructive apnea index 17.7 (12.7) 15.3 (13.1) –2.5 (–6.9 to 2.0) . .3

Central apnea index 1.1 (0.3 to 2.4) 0.3 (0 to 2.8) –0.6 (–3.3 to –0.1) . .02b

Mixed apnea index 0.2 (0 to 3.7) 0.2 (0 to 1.3) 0 (–3.8 to 0.6) . 1

Hypopnea index 21.2 (9.7) 20.6 (11.2) –0.5 (–4.5 to 3.4) . .8

O2 Saturation, %

Nadir 81.5 (75.8 to 84.2) 82.0 (80.0 to 84.0) 1.0 (–0.5 to 5) . .11

Mean 92.7 (1.6) 92.5 (1.4) –0.2 (–0.9 to 0.5) . .6

AHI ¼ apnea-hypopnea index. See Table 1 and 2 legends for expansion of other abbreviations.
an ¼ 20 unless stated otherwise.
bP < .05.
Discussion
We note three key findings: (1) Overall, a single 50-mg
dose of venlafaxine did not significantly improve the
AHI, but individual responses appeared variable; (2)
baseline ArTH and AHI predicted treatment response;
and (3) counter to our expectation, we failed to detect an
improvement in muscle recruitment. Instead,
TABLE 4 ] Changes in Endotypes With Venlafaxine vs Place

Endotype

Placebo

[Mean (SD) or Median (IQR)] [Mean (

Vpassive, %Veupnea 95.0 (86.1 to 97.3) 97.2

Vactive, %Veupnea 96.1 (82.4 to 102.5) 101.7

UAG, dimensionless 0.02 (–0.12 to 0.69) 0.4

Loop gain 1,
dimensionless

0.56 (0.14)

Loop gain n,
dimensionless

0.39 (0.12)

Arousal threshold
(ArTH), %Veupnea

118.6 (113.4 to 137.9) 115.6

Predicted ArTH, cm H2O 18.4 (6.5)

VRA, %Veupnea 23.2 (14.0 to 32.9) 14.

ArTH ¼ respiratory arousal threshold; UAG ¼ upper airway gain; Vactive ¼
Veupnea ¼ eupneic ventilation; Vpassive ¼ ventilation when upper airway dila
See Table 1 and 2 legends for expansion of other abbreviations.
aP < .05.

770 Original Research
exploratory analyses suggest that venlafaxine lowered
the ventilatory response to arousal and the ArTH. On
the basis of the current pathophysiologic model of OSA
these changes are expected to improve and worsen OSA
severity, respectively, potentially explaining the zero net
effect on the AHI overall and the differential response
based on subjects’ baseline ArTH.
bo

Venlafaxine D Venlafaxine-Placebo

n P ValueSD) or Median (IQR)] [MD (95% CI)]

(91.6 to 98.1) 0.5 (–3.5 to 6.3) 19 .4

(92.0 to 103.8) –0.9 (–16.6 to 4.9) 19 .7

3 (0.06 to 0.6) 0.25 (–0.14 to 0.58) 19 .3

0.58 (0.15) 0.01 (–0.05 to 0.07) 19 .7

0.37 (0.09) –0.02 (–0.07 to 0.03) 19 .4

(108.2 to 130.8) –3.1 (–10.7 to 6.5) 19 .6

16.0 (5.8) –2.4 (–4.3 to –0.5) 20 .02a

2 (3.6 to 19.6) –6.9 (–14.6 to –0.1) 19 .049a

ventilation when upper airway dilator muscles are maximally activated;
tor muscles are hypotonic/passive; VRA ¼ ventilatory response to arousal.
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TABLE 5 ] Predictors of Response: Correlations Between Baseline Characteristics and Change in Apnea-Hypopnea
Indexa

Baseline Characteristic (ie, Measured on Placebo) rP/rS (95% CI) Typeb n P Value

Age, y –0.23 (–0.6 to 0.2) P 20 .3

Epworth Sleepiness Scale score 0.07 (–0.4 to 0.5) S 20 .8

AHI, events/h –0.66 (–0.9 to –0.3) P 20 .002c

Vpassive, %Veupnea 0.52 (0.1 to 0.8) S 19 .02c

Vactive, %Veupnea 0.16 (–0.3 to 0.6) S 19 .5

UAG, dimensionless 0.02 (–0.4 to 0.5) P 19 1

Loop gain 1, dimensionless –0.28 (–0.7 to 0.2) P 19 .2

ArTH, %Veupnea –0.48 (–0.8 to –0.03) S 19 .04c

Predicted ArTH, cm H2O –0.53 (–0.8 to –0.1) P 20 .02c

VRA, %Veupnea –0.14 (–0.6 to 0.3) S 19 .6

See Table 1, 2, and 4 legends for expansion of abbreviations.
aMore negative AHIvenlafaxine-placebo values reflect greater improvement in AHI. Higher baseline AHI and higher baseline ArTH (ie, being hard to arouse) were
significantly correlated with more pronounced improvements in AHI on venlafaxine.
bType denotes Pearson (P) vs Spearman (S) for normally vs nonnormally distributed variables, respectively.
cP < .05.
After a mechanical collapse of the upper airway,
accumulation of respiratory stimuli (ie, rise in
intrapharyngeal negative pressure plus CO2) leads to a
gradual activation of pharyngeal muscles; if sleep is
maintained until airway patency is restored (high ArTH)
then the result is stable breathing, but if the person
arouses before airway opening (low ArTH) then
repetitive cycles of airway collapse and arousals (ie,
OSA) are expected.34,35 On the basis of indirect evidence
from other studies, we expected that serotonergic/
OSA
Severity

Arousal
Threshold

Severe

Mild/ Mod

High

Low

Change in AHIvenlafaxine-Placebo

−

Favors
Placebo

Favors
Venlafaxine

020

Figure 3 – Change in AHI with venlafaxine vs placebo stratified by OSA severi
and bars show mean and 95% CI for each group; red circles denote individu
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noradrenergic augmentation by venlafaxine would
increase pharyngeal muscle activity14,23,36 while lowering
the ArTH.18,23 As expected, venlafaxine lowered the
ArTH predicted on the basis of a clinical score (and
shifted sleep toward lighter stages); however, for unclear
reasons we failed to detect a change in the ArTH
estimated from PSG data using a custom algorithm, and
did not find a change in pharyngeal muscle recruitment
using the same methodology. Interestingly, exploratory
analyses suggested that venlafaxine blunts the
−9.3 (−1.7 to −17.0)

5.8 (11.9 to −0.4)

P = .002

P = .002

Mean (95%-CI) P-Value

−10.9 (−3.9 to −17.9)

 (events per h)

−4020

7.0 (16.0 to −2.0)

ty and the predicted arousal threshold, using standard cutoffs. Diamonds
als’ change in AHI. See Figure 2 legend for expansion of abbreviation.
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ventilatory response to arousal. During partial airway
obstruction accumulation of respiratory stimuli
gradually increases respiratory drive. Thus, when
pharyngeal dilators restore airway patency, ventilation
rises temporarily to levels in excess of baseline
ventilation. This excess ventilation is greatly increased
when the airway reopening is associated with a cortical
arousal (267% vs 180% prehypopnea baseline; P < 10–
10), which may exacerbate the subsequent drop in
respiratory drive and pharyngeal muscle activation, thus
potentially triggering repetitive cycles of airway collapse
and arousals (ie, OSA).34 Our findings are intriguing for
two reasons: First, whereas results from previous studies
have been mixed,26,37,38 our findings provide further
support for ventilatory response to arousal being an
independent and important pathophysiologic
mechanism underlying OSA in some patients. Second,
aside from acetazolamide,26 venlafaxine is the only drug
that has been shown to lower ventilatory response to
arousal, which may have important implications for a
personalized, multimodal therapy approach in the
future.39

To our knowledge this is the first study assessing the
effect of venlafaxine on OSA. However, several studies
evaluated pharmacodynamically similar medications:
two small randomized controlled trials assessed
protriptyline, a tricyclic antidepressant with
noradrenergic, serotonergic, and some anticholinergic
effects. One of these studies found no overall effect on
the AHI but noted substantial interindividual
variability,40 and the other reported a small reduction in
OSA severity due to a reduction in REM sleep.41 Neither
of these studies assessed effects on the pathophysiologic
traits, making comparisons difficult. Similarly, a study of
clonidine (a2-agonist with sympatholytic effects)
reported minor improvements in OSA severity primarily
due to a reduction in REM sleep.42 In addition, in a
study of healthy subjects,43 clonidine reduced (central)
hypocapnic ventilatory response (a component of loop
gain), thus lowering the propensity to central apneas
(lower apnea threshold, higher CO2 reserve). In contrast,
in our study venlafaxine did not affect loop gain,
suggesting that these two drugs have different effects on
control of breathing. Further, in a small crossover trial
the potent noradrenaline-reuptake inhibitor
atomoxetine alone lowered the ArTH with a zero net
effect on the AHI, but coadministration of the
anticholinergic oxybutynin mitigated its effect on the
ArTH44 (and possibly augmented pharyngeal muscle
tone in REM),45-48 resulting in a large improvement in
772 Original Research
OSA severity by ?70%.18 Moreover, a crossover trial
testing the effect of single-dose desipramine (a tricyclic
antidepressant with potent noradrenergic, some
serotonergic and mild anticholinergic properties) in 14
patients with OSA showed many similar findings as in
our study, including a shift toward lighter sleep stages,
significant lowering of the ArTH, and a nonsignificant
reduction of overall AHI by 18%, with about one-third
of patients being classified as responders (drop in AHI
by >20 events/h).23 Unfortunately, neither of these trials
measured ventilatory response to arousal. However,
these data support the notion that drugs increasing
noradrenergic tone have opposing effects on the
underlying OSA traits, resulting in a small to zero net
effect (and high interindividual variability) when used
alone, but combination with agents increasing the ArTH
(eg, eszopiclone35) may produce synergistic effects that
may result in more robust responses and substantially
improved OSA severity.
Strengths and Limitations

Strengths of our study include the use of a randomized,
double-blind, placebo-controlled trial design, which
makes selection or measurement biases unlikely, and
detailed physiologic assessments providing mechanistic
insights. Limitations include the lack of “gold standard”
assessment of pathophysiologic traits, which may have
reduced our ability to detect changes in muscle tone.
Also, although the predicted ArTH has been validated as
a measure of interindividual baseline ArTHs, it has not
been validated as a way to estimate changes in
intraindividual ArTHs. Further, given the risk of chance
findings, the results from our post hoc analyses do not
allow firm conclusions but may be valuable for
hypothesis generation guiding future research: for
example, any potential beneficial effects of venlafaxine
on the NREM-AHI tended to occur only during the first
half of the night, which may be due to sleep stage effects
(more deep sleep with high ArTH during the first
vs second half of the night) or pharmacokinetic reasons
(ie, drop in concentration below therapeutic levels over
time). Thus, future research should consider use of
extended-release formulations, longer durations of
administration, and/or higher doses. Such research will
also help address another important limitation of our
study: the pharmacokinetic effects of a single 50-mg
dose of immediate-release venlafaxine on serotonergic/
noradrenergic tone are difficult to predict and were not
measured: chronic administration of low-dose
venlafaxine (50-75 mg) is sufficient to achieve in vivo the
[ 1 5 8 # 2 CHES T A UGU S T 2 0 2 0 ]



same level of serotonin transporter occupancy (?80%) as
with high-dose venlafaxine,49,50 but blocks only about
10% to 30% of norepinephrine transporters vs 30% to
60% with doses > 150 mg.51 This dose-dependent effect
has also been corroborated by studies using functional
assessments.52,53 Moreover, many effects of
antidepressants are mediated by adaptive changes
related to chronic (> 2-6 weeks) administration.54 Thus,
our results may reflect more changes in serotonergic
than noradrenergic tone, and the effects of venlafaxine
on OSA may be quite different when administered in
higher doses and/or long-term. Another limitation is
that that some of the changes in AHI as well as changes
in endotypes were likely mediated by shifts in sleep
stages. Moreover, in this study reductions in ArTH
correlated with improvements in AHI (e-Table 3); this is
in contrast to the current pathophysiologic model of
OSA, which predicts that lowering the ArTH causes
worsening OSA (e-Appendix 1, e-Figs 1, 2). This
association may be explained by the observation that
only subjects with a high baseline ArTH (hard to wake)
were able to “tolerate” the alerting effects of venlafaxine
chestjournal.org
and benefit from its effect on ventilatory response to
arousal (ie, had improvements in AHI despite
reductions in ArTH); conversely, in subjects with a low
baseline ArTH (easy to wake) the potential magnitude of
ArTH reductions is relatively limited, but the effects on
the ArTH likely outweighed any beneficial effects on the
ventilatory response to arousal, resulting in the observed
zero effect on AHI in this subgroup. To test this
hypothesis future studies combining venlafaxine with
drugs that increase the ArTH are warranted.
Interpretation
Overall, a single dose of venlafaxine had no significant
effect on the AHI, but worsened sleep architecture.
There may be subgroups of patients defined by
physiologic traits in whom venlafaxine may have future
clinical value, and combination with drugs improving
sleep continuity may result in synergistic effects.
Pharmacotherapy for OSA may be achievable, but
patient-centered outcomes (eg, sleepiness) will need to
be assessed in rigorous multicenter trials.
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