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ABSTRACT 

Modulus reduction and damping curves are commonly used as input parameters in site response 
analyses. Until very recently, constitutive models for nonlinear site response analysis could not 
accurately capture both the desired modulus reduction and damping behavior due to flaws in the 
assumed functional form for the backbone curve, and/or flaws in the unload-reload relationship. 
New relationships that solve these issues have recently been proposed, however, they are 
restricted to defining the in-plane stress-strain relationship for a single plane of shear, and are 
therefore only appropriate for 1D site response. This paper presents a multi-axial generalization 
of one of these 1D models, enabling its use in 2D and 3D site response. The 1D model is first 
briefly described, followed by the multi-axial generalization in terms of stress and strain 
invariants. The modulus reduction and damping curves are defined in terms of stress ratios rather 
than shear strains, which allows the model to better capture changes in confining pressure during 
undrained loading. An example is presented to illustrate fundamental differences in multi-axial 
versus 1D loading. 

INTRODUCTION 

Constitutive models for 1D ground response analysis use a set of loading/unloading rules defined 
based on input modulus reduction and damping curves (MRD). Advanced bounding surface 
plasticity soil models for 2D and 3D dynamic simulations are often formulated in a stress-ratio 
space, where the plastic modulus is a function of the distance between the current stress ratio and 
the stress ratio of an image point on the bounding surface (e.g. Dafalias and Manzari (2004), 
Boulanger and Ziotopoulou (2015)). These models can be adjusted to provide desired G/Gmax and 
D versus γc behavior, but it is a complex and difficult task. Other models use multiple nested 
yield surfaces defined based on a backbone curve calculated from an input modulus reduction 
curve (e.g., Prevost 1985, Elgamal et al. 2003), without offering the possibility of controlling the 
damping behavior. The inclusion of MRD curves in a multidimensional plasticity framework is 
further complicated by the pressure-dependence of the curves, because changes in effective 
stress during loading should result in a modification of the dynamic curves. 

This is the authors' final version. The official version can be found at 
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This paper focuses on the extension of a 1D model using MRD curves as input 
parameters to a full 3D model. The 3D model uses the MRD curves formulated in terms of stress 
ratios to integrate them into a multidimensional framework. The model provides an exact match 
to the input modulus reduction and damping curves, whereas other models do not provide a 
perfect match. The complete formulation of the 3D model is not presented here for the sake of 
brevity, but all the equations are available in Yniesta (2016).  
 
FORMULATION OF THE 1D CONSTITUTIVE MODEL 

 
The constitutive model presented herein is based on a 1D constitutive model that uses a 
coordinate transformation technique to match input MRD curves. All the constitutive equations 
of the 1D model are published in Yniesta et al. (2017), and only the most important are repeated 
here.  

The model is formulated in terms of shear stress (τ) and shear strain (γ), and is composed 
of a constitutive law for initial loading, and a set of rules for unloading-reloading. The initial 
loading is controlled by the modulus reduction curve. Discrete points of the backbone curve are 
defined based on the modulus reduction curve, and a cubic spline fit is used to ensure that the 
functional form of the backbone curve goes through all the discrete points. Any modulus 
reduction curve can be modified to match a shear strength by using the Yee et al (2013) method. 

Upon unloading the model uses a rotation and a translation of the τ-γ coordinate system, 
to control the shape of the stress-strain curve (Figure 1a). The new coordinate system is defined 
by the coordinate of the target reversal point (τR-γR) and previous reversal points (τL-γL). The 
later are picked among the previous reversal points based on loading history and are used to 
define the rotation (θ) and the translation (γ0,τ0) of the coordinate system: 

𝜃𝜃 = tan−1
𝜏𝜏𝑅𝑅 − 𝜏𝜏𝐿𝐿
𝛾𝛾𝑅𝑅 − 𝛾𝛾𝐿𝐿

 

𝛾𝛾0 =
𝛾𝛾𝑅𝑅 + 𝛾𝛾𝐿𝐿

2
  

𝜏𝜏0 =
𝜏𝜏𝑅𝑅 + 𝜏𝜏𝐿𝐿

2
  

In the τ’-γ’ transformed coordinate system, the new coordinate can be calculated based 
on the following equations: 

�
𝛾𝛾′
𝜏𝜏′
� = �

(𝛾𝛾 − 𝛾𝛾0) cos 𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0) sin 𝜃𝜃
−(𝛾𝛾 − 𝛾𝛾0 )sin𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0 )cos𝜃𝜃

� Eq. 1 
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In the τ’-γ’ transformed coordinate system the stress-strain curve follows a biquadratic 
equation (figure 1b) which is defined to satisfy the three following conditions: 

- loops close and repeat, and the model exhibits no cyclic degradation. This implies 
that cycles of same strain amplitude have the same starting and ending stress-strain 
points, and the shape of each loop is identical. 

- the area of the loop satisfies the damping curve. A cyclic strain amplitude (γc) for the 
current loop is defined based on the target and previous reversal points (𝛾𝛾𝑐𝑐 =
|𝛾𝛾𝑅𝑅 − 𝛾𝛾𝐿𝐿|/2), and the equation of the stress strain curve satisfies the damping ratio at 
said cyclic strain amplitude, by controlling the area A under the curve (figure 1b). 

- the curve is concave, so that the shape of the loops is realistic. This condition is 
related to the functional form of the stress strain curve which could create an 
unrealistic convex curve.  

The new stress is found by solving the following equation with the Ridder’s method, 
which is derived by combining the equation of the stress-strain curve in the τ’-γ’ system, and 
equation 1. 
 
𝜏𝜏 = [(𝛾𝛾 − 𝛾𝛾0) cos 𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0) sin𝜃𝜃] sin 𝜃𝜃 + [𝑎𝑎((𝛾𝛾 − 𝛾𝛾0) cos 𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0) sin𝜃𝜃)4 + 𝑏𝑏((𝛾𝛾 − 𝛾𝛾0) cos 𝜃𝜃 + (𝜏𝜏 −
𝜏𝜏0) sin𝜃𝜃)2 + 𝑐𝑐] cos𝜃𝜃 + 𝜏𝜏0  

 

 
Figure 1 Rotation and translation of the coordinate system (a), and loop in the 

coordinate system (b) from Yniesta et al. (2017) 
 

DYNAMIC CURVES AS A FUNCTION OF STRESS RATIOS 
 
Dynamic curves (i.e. MRD curves) are formulated in terms of shear strains because they are 
derived from cyclic laboratory testing equipment where shear strains are directly measured. 
Research has shown that MRD curves depend on soil type, effective stress (e.g. Darendeli 2001), 
number of cycles (Matasovic and Vucetic 1995) and strain rate (Matesic and Vucetic 2003). By 
contrast, advanced constitutive models are commonly formulated in stress-ratio space (e.g., 

𝜏𝜏′ = 𝑎𝑎 𝛾𝛾′4 + 𝑏𝑏 𝛾𝛾′2 + 𝑐𝑐 
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Dafalias and Manzari 2004). Modeling the modulus reduction behavior in stress-ratio space is 
therefore attractive for multi-axial models because it would be consistent with convention. 

Figure 2 (Yniesta and Brandenberg 2016) presents MRD curves calculated from three 
different empirical relationships for sand, clay, and peat, at different confining pressure (i.e. 
effective stress). When plotted against shear strain the curves are strongly pressure-dependent 
(Figure 2a, b and c), and the influence is more pronounced for sand. At every strain level, a 
corresponding shear stress (τ) can be calculated from the modulus reduction curve and the 
maximum shear modulus. A stress ratio (η) can then be calculated by dividing τ by the mean 
confining pressure (p’). When the G/Gmax and D-Dmin curves are plotted against the stress ratios, 
they become essentially independent of the confining pressure. Note that Dmin is subtracted from 
the strain dependent damping because D-Dmin vs. η is independent of the confining pressure, but 
D vs. η is not. This concept has proven to be true for the three studied relationships, with a wide 
range of input parameters, consistent with each model’s database. 

 

 

 
Figure 2 MRD curves for different soils at different confining stresses, in terms of 

shear strain (a, b and c) and stress ratio (d, e, and f) from Yniesta and Brandenberg (2016) 
 
FORMULATION OF THE 3D MODEL AND INTEGRATION OF MRD CURVES 
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The 3D model presented here defines modulus reduction and damping curves in terms of 

stress ratios and uses similar unloading/reloading rules as the 1D model to control damping 
behavior. The multi-axial generalization is achieved by formulating the model in terms of 
deviatoric stress and strain invariants (q and εq, respectively) and the stress ratios (η=q/p’), 
calculated from the full stress (σ) and strain (ε) tensors, rather than the shear stress and strain, 
according to the following equations: 
𝒔𝒔 = 𝝈𝝈 − 𝑝𝑝′𝑰𝑰 ; 𝐽𝐽2 = 1

2
(𝒔𝒔: 𝒔𝒔) ; 𝑞𝑞 = [3𝐽𝐽2]1/2 

𝛆𝛆𝒅𝒅 = 𝛆𝛆 − 1
3

tr(𝛆𝛆)𝑰𝑰 ; 𝜀𝜀𝑞𝑞 = �2
3

(𝜺𝜺𝒅𝒅: 𝜺𝜺𝒅𝒅)�
1/2

 
 Where I is the first invariant of the Cauchy stress tensor, J2 is the second invariant of the 
deviatoric stress tensor, and a bold font indicates a tensor. Based on the previous definitions, an 
equivalent shear stress (τ) and shear strain (γ) can be calculated from the deviatoric stress (q) and 
strain (εq) representing the stress-strain conditions in a simple shear test. By definition, q and εq 
are positive but τ and γ are not (figure 3), so a sign needs to be assigned to q (signτ) and εq 
(signγ) so that the unloading/reloading rules can be used. Both variables are initially equal to 1, 
and they can only be equal to 1 or -1. signτ changes when only the sign of 𝑞̇𝑞 changes (point B on 
the figure 3), and signγ changes when only the sign of 𝜀𝜀𝑞̇𝑞 changes (point C on the figure). An 
overall change of loading direction is detected when both 𝑞̇𝑞 and 𝜀𝜀𝑞̇𝑞 change signs (point A on the 
figure). The following equations are used to relate the one-dimensional stress and strain 
quantities to the stress and strain invariants: 𝜏𝜏 = 𝑞𝑞 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/√3 and 𝛾𝛾 = √3 ∙ 𝜀𝜀𝑞𝑞 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Note that 
since signτ and signγ evolve based on 𝑞̇𝑞 and 𝜀𝜀𝑞̇𝑞 respectively, prior knowledge of τ and γ is not 
necessary. These variables are subsequently used to assign a sign to q and εq without having to 
compute τ and γ. 

 

 
Figure 3 Evolution of the signs of q and εq during cyclic loading 
 
Upon unloading the stress-strain curve is controlled in a modified coordinate system. 

When a change of loading direction is detected, the original coordinate system q-εq is rotated and 
translated based on the previous and target reversal points (figure 4). The later are selected based 
on rules similar to the 1D case, except that reversal points are tracked in terms of stress ratios η 
and deviatoric strains εq rather than shear stress and strain τ-γ. Note that in this 3D formulation, τ 
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and γ are never computed because the entire model is entirely formulated in terms of  q-εq that 
have been assigned a sign. The translation (𝜀𝜀𝑞𝑞0, 𝑞𝑞0) and rotation (θ) of the system are calculated 
as follow: 

𝜀𝜀𝑞𝑞0 =
𝜀𝜀𝑞𝑞.𝑅𝑅 + 𝜀𝜀𝑞𝑞.𝐿𝐿

2
  

𝑞𝑞0 =
𝜂𝜂𝑅𝑅 ∙ 𝑝𝑝′ + 𝜂𝜂𝐿𝐿 ∙ 𝑝𝑝′

2
  

𝜃𝜃 = tan−1
𝜂𝜂𝑅𝑅 ∙ 𝑝𝑝′ − 𝜂𝜂𝐿𝐿 ∙ 𝑝𝑝′
�𝜀𝜀𝑞𝑞.𝑅𝑅 − 𝜀𝜀𝑞𝑞.𝐿𝐿�

  𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1  

The coordinate in both systems are linked by the following relationships: 

�
𝜀𝜀𝑞𝑞′
𝑞𝑞′
� = �

(𝜀𝜀𝑞𝑞 − 𝜀𝜀𝑞𝑞0) cos 𝜃𝜃 + (𝑞𝑞 − 𝑞𝑞0) sin𝜃𝜃
−(𝜀𝜀𝑞𝑞 − 𝜀𝜀𝑞𝑞0 )sin𝜃𝜃 + (𝑞𝑞 − 𝑞𝑞0 )cos𝜃𝜃

� Eq. 2 

In the modified q'-ε'q coordinate system the stress-strain curve follows a biquadratic 
equation (𝑞𝑞′ = 𝑎𝑎 𝜀𝜀𝑞𝑞′

4 + 𝑏𝑏 𝜀𝜀𝑞𝑞′
2 + 𝑐𝑐), and the parameters a, b and c are calculated based on three 

conditions as in the 1D model, except that the damping value to match is picked from the D-Dmin 

curve and depends on a cyclic stress ratio amplitude (𝜂𝜂𝑒𝑒𝑒𝑒 = |𝜂𝜂𝑅𝑅 − 𝜂𝜂𝐿𝐿|/2). The small strain 
damping Dmin can be added using a viscous damping formulation (e.g. Rayleigh 1945), or by 
using an empirical relationship defining Dmin as a function of p’.  

 
Figure 4 Transformed coordinate system upon unloading/unloading 

The new deviatoric stress is calculated based on the following equation obtained by 
combining the biquadratic equation in the q'-ε'q and equation 2: 
𝑞𝑞 = ��𝜀𝜀𝑞𝑞 − 𝜀𝜀𝑞𝑞0� cos𝜃𝜃 + (𝑞𝑞 − 𝑞𝑞0) sin𝜃𝜃� sin𝜃𝜃

+ �𝑎𝑎 �(𝜀𝜀𝑞𝑞 − 𝜀𝜀𝑞𝑞0) cos𝜃𝜃 + (𝑞𝑞 − 𝑞𝑞0) sin𝜃𝜃�
4

+ 𝑏𝑏 �(𝜀𝜀𝑞𝑞 − 𝜀𝜀𝑞𝑞0) cos 𝜃𝜃 + (𝑞𝑞 − 𝑞𝑞0) sin𝜃𝜃�
2

+ 𝑐𝑐� cos𝜃𝜃 + 𝑞𝑞0 
The unloading-reloading rules are used whenever the current stress ratio is lower than the 

maximum stress ratio ever attained, otherwise the model is considered in an initial loading phase. 
During initial loading, the model uses a hybrid formulation where it follows the modulus 
reduction curve formulated in terms of stress ratios up to a limit stress ratio, and then follow a 
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bounding surface algorithm similarly to the formulation by Dafalias and Manzari (2004). The 
volumetric response is coupled with the deviatoric response based on the formulation similar to 
Dafalias and Manzari (2004), although other flow rules could be used. The theoretical 
framework of bounding surface plasticity is formulated based on a decomposition of the strain 
increment between elastic and plastic strain increments. The work presented herein is based on 
total strain, but it is a simple matter to compute the elastic deviatoric strain increment based on 
the deviatoric stress increment and the shear modulus to obtain the plastic strain increment. 

In a numerical modeling software constitutive laws are implemented to establish a 
relationship between stress tensor and strain increment tensor. The equations presented herein 
are used to calculate the new deviatoric stress from the deviatoric strain increment and derive an 
equivalent plastic modulus that is then used to relate deviatoric stress tensor and deviatoric strain 
tensor. The full stress tensor can then be reconstructed by adding back the mean pressure p’ to 
the deviatoric stress tensor. 

 
EXAMPLE 

 
This section presents a numerical simulation involving a bidirectional drained direct simple shear 
stress path under a vertical effective stress of 100 kPa. A harmonic strain history was imposed in 
one direction, while a linear strain history was imposed in an orthogonal direction, as indicated 
in Fig. 6a. In addition to running the model in three dimensions, the 1D model was run in each 
orthogonal direction. The in-plane shear stress versus shear strain for the 3D and 1D simulations 
are shown in Fig. 6b and d. The stress-strain curves in these planes are more complicated for 3D 
loading because loading in the out-of-plane direction influences the response of the material 
model in the plane being plotted. In the 1D simulations, shearing occurs only in a single plane, 
and the material response is more traditional. The resulting stress and strain values from the pair 
of 1D simulations were combined, and invariants q and εq were computed from the combined 
stress paths. These were plotted with the invariants from the 3D simulation in Fig. 6c. The 
material response is a bit stiffer for the 1D models than for the 3D model because the out-of-
plane strain softens the material response in the plane of interest in the 3D model. 
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Figure 5 Bidirectional strain loading (a), stress-strain curve in the xz direction (b), 

in the xy direction (d), and stress strain curve of the combined response (c). 
 
CONCLUSION 

 
This paper presented a multi-axial generalization of a 1D constitutive model that permits perfect 
matching of a desired modulus reduction and damping curve. Such models only recently were 
formulated in one-dimension, and we believe this is the first multi-axial model that accepts MRD 
curves as user-specified input parameters. Other multi-axial models have been adjusted to 
reasonably match specific MRD relationships, but do not permit users to input their own desired 
MRD curves. A simulation involving a two-dimensional strain history was compared with the 
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uniaxial response in two orthogonal directions. The multi-axial model was significantly different 
from the uniaxial model, illustrating the importance of considering multi-axial loading for such 
problems. 

The simulation presented herein involved drained loading conditions with constant mean 
effective stress. The model can be easily extended to undrained loading behavior by adopting an 
appropriate flow rule into the plasticity formulation. Yniesta (2016) provided such a formulation, 
but the flow rule was excluded here for simplicity.  
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