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Department of Physics and Lawrence Radiation Laboratory 
University of California, Berkeley, California 94720 

November 17, 1970 

ABSTRACT 

The hypothesis that the width of a resonance on 

a leading Regge trajectory is proportional to its mass 

is compared to the alternative that high-spin resonances 

become very stable. When the width grows with the mass, 

it is observed that the kinematics allow decay channels 

to have low orbital angular momentum. The dynamical 

implications of this observation are discussed. 
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I. INTRODUCTION 

Taking the limit of zero-width resonances is an Extremely deli-

cate process. In spite of the attractive simplicity of the Veneziano 

1 model,detailed analyses of its predictions always conclude that a 

description of hadronic scattering processes involving, meromorphic 

ampli tudes is strained and artificia1. 2 As an example of the subtle 

nature of the narrow resonance limit, consider a Regge trajectory with 

a small but finite asymptotic phase, 

0(00) ; lim arctan[Im a(t)/Re a(t)]. (1.1) 
t~ 00 

A high-spin particle on such a trajectory can communicate with open 

channels of low angular momentum while, if the asymptotic phase is zero, 

these channels are closed kinematically.3 

It is entirely possible that the dynamics of two cases will be 

completely different. Observations based on coupled-channel unitarity 

approximations suggest strongly that the dynamics are dominated by low-

orbital-angular-momentumchannels. In order to maintain itself, an 

asymptotically real Regge trajectory could require a rich spectrum of 

1 d · . 1 ·t· 4 non ea 1ng s1ngu ar1 ·1es. In contrast, the dynamics of a leading 

trajectory with finite asymptotic phase can be compatible with a model 

proposed by Carruthers5 where a particle of spin J on the leading 

trajectory is primarily a bound state in the system formed by a particle 

of spin J-l on the same trajectory and an arbitrary, low-mass particle. 

In this sort of model, there is no need for all nonleading Regge singu-

larities to rise to high values of J. 
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Experimental evidence on baryon widths is consistent with these 

states lying on trajectories with finite asymptotic phase. There is 

also some indication that this notion is applicable to meson trajectories 

even though it 'implies that the very narrow peaks in the CERN,missing 

6 ! 
mass spectrometer' should not be identified with recurrances Qf the 

p-f trajectory. Instead, these states would represent fine structure 

in the meson spectrum, perhaps connected with the dip in the A2 

peak.? 
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II. PARAMETRIZATION OF A PHYSICAL REGGE TRAJECTORY 

Consider a Regge trajectory which, at t = 0, is the leading 

J-plane singularity in a nonvacuum channel. For simplicity, ignore the 

inessential complications of signature and assume the channel has baryon 

number zero. A parametrization which is particularly convenient for a 

discussion of the asymptotic behavior of the trajectory function is the 

phase representation. 8,9 

Let 

o;(t + iO) = !o;(t) !exp{:tio(t)], 
2 

t :: 4m , (2.1) 

where oCt) is the phase of the Regge trajectory above the physical 

cut beginning at 4 2 
t = m. The phase representation for aCt) is then 

given by 

o;(t) =' p(t) ex .~! f 00 o(x)dx 
p n x(x - t) 

4m2 

(2.2) 

where pet) is a polynomial. The representation (2.2) is valid if:10 

(a) 0;( t) is analytic in t except for a cut along the real 

axis. 

(b) 0;( t) is real in the sense o;*(t) = 0;( t *). 

(c) 0;( t) is bounded as !t! ~ 00 on the physical sheet by a 

finite polynomial in t. 

(d) The phase above the physical cut, o( t), goes to a finite 

limit as t ~oo+iO. 
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The conditions (a) and (b) above are quite generally true for meson 

trajectoriesll if the singularity surface representated by aCt) does 

not collide with any other singularity in the partial wave amplitude. 

For fermion trajectories, the analyticity condition for the trajectory 
1 

function is usually derived in terms of the variable,W = t2, but the 

situation is complicated by the cuts which seem to be present to shield 

the parity partners implied by MacDowell symmetry.12 It is possible 

that, even in meson channels, trajectory functions develop extra cuts 

. t d . th th 11·'· .p d·.p.p t· ul . t .p 13,14 assoc~a e W~ e co ~s~on o~ ~~~eren slng arl y sur Laces. 

The representation, (2.2), can be extended to include contributions 

from other cuts but it is a sensible first· step to deal with trajectory 

functions having only the physical threshold cut and a discussion of 

possible complications due to collisions will be deferred to the final 

section. 

Condition (c) seems a reasonable restriction on the asymptotic 

behavior of physically interesting trajectory functions. Although there 

is no ~ priori reason to prohibit exponential growth of the trajectory 

function in certain sections of the t plane, such behavior is unexpected 

from experimental grounds. The phase, oCt), of the trajectory function 

is well defined along the physical cut, except, possibly at those points 

where la(t)1 ='0. The phase can be shown to be piecewise continuous, 

and it makes physical sense to limit the magnitude of discontinuities 

in oCt) to be less than 11, 

iim loCtO - ~) -oCto + ~)I ~ n. 
~O . 

II 

I 
I 
I 
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Consistency with the analytic continuation of the unitarity condition 

requires 

1m ex(t + iO) > 0, t > 4m
2 

(2.4) 

unless at the point where 1m ex = 0 on the physical ,cut, the residue 

function associated with ex(t) also vanishes. In conjunction with the 

requirement that there can be no resonance poles on the physical sheet, 

it is frequently conjectured that (2.4) holds for all t above 

threshold. ll Except at a point where Re ex = 0, this constraint then 

leads to the bound 

o < 6( t) < n:. 

Condition (d) seems a reasonable assumption in view of (2.5). This 

assumption only eliminates the possibility that the phase oscillates 

as t ~oo without approaching a definite limit. 

Using the conditions, (a) - (d), plus the extra assumption that 

the phase is consistent with the usual unitarity conditions at the 

elastic threshold,15 Childers8 was able to show that the polynomial, 

p(t), in (2.2) has one and only one zero so that it must be of order 

one, 

p( t) = a + bt. (b ~ 0) (2.6) 

Except for possible logarithmic factors, the asymptotic behavior of the 

exponential in (2.2) is determined by a single parameter, 6(00), the 

asymptotic limit of the phase. 9 Making use of the result (2.6), the 

asymptotic behavior of the trajectory function in (2~2) is given by 
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lim aCt) = bei5(00) t l - 5(00)/rr 
It I~ 00 

uniformly on the first sheet. This means, for example, that if the 

trajectory rises indefinitely (Re a ~ +00 as t ~ +00) faster than a 

power of a logarithm, then it also falls indefinitely (Re a ~ -00 as 

t ~ -00). 

Dynamical trajectory fUnctions found in potential scattering16 

and in those approaches such as the N/D model17 which attempt to satur-

ate the unitarity condition with a small number of internal channels 

are consistent with the prediction (2.7) in that they have 

5(00) - rr 

and they approach negative integers as I t I ~,oo. The strictly real, 

linear trajectory , fUnctions used as input in the Veneziano model are 

also trivially consistent with (2.7). The convenience of the phase 

represent~tion for aCt) is seen in the fact that a wide class of 

possibilities are covered by the single formula, (2.2). This contrasts 

to the parametrization of 'aCt) in terms of a dispersion relation18,19 

such as 

aCt) = a(O) +tfd +!J.OO dxIm(X(Xl] 
, rr ' x(x - t) 

2 , 4m 

with a(O), d real and d>O - , where the form changes according to 

whether or not d = O. The conditions under which d can be nonzero 

are expressed in terms of Im(a) and are quite complicated. 20 
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Figure 1 shows a plot of the phase of the 6.. trajectory 

against t. The points are determined from the resonance parameters 

given in the Particle Data Group21 compilations. The plot is consistent 

with a phase which quickly approaches a small constant although, on the 

basis of the data, it is not possible to eliminate the situation where 

the phase continues to rise so that the trajectory eventually turns 

over. The linear extrapolation included on this graph gives an approxi-

22 
mate lower bound on the energy where such a turnover could occur. In 

view of the fact that the analyticity properties of fermion trajectories 

are expected to be more complicated than those assumed in (2.2), the 

relation between the phase of the 6. trajectory and the asymptotic 

behavior implied by (2.7) should not betaken too seriously. 

Figure 2 shows a plot of the phase of an exchange-degenerate 

p-f trajectory with the points again determined from the Particle Data 

·1· t· 21 f th k th T(2200) d th Group comp~ a ~ons. I e very narrow pea s, e an e 

U(2375), foUnd by the CERN missing mass spectrometer,6 are identified 

as recurrances of this trajectory then the data suggests the phase may 

go to zero. However, there is some reason to doubt that a missing mass 

spectrometer could discriminate peaks with widths 190 - 220 MeV from 

the background in this region so the evidence is not conclusive that 

there are not wide resonances in the T and 
2 U regions. 3 In fact, 

the p(2275), the NNI=l (2345), and the NNI=o(2380) are candidates. 

The question then becomes one of understanding what the narrow peaks 

are. In view of present models for the A2 fine structure, it seems 

plausible that there should exist many narrow "doorway" states in the meson 
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spectrum which coexist with wide resonances. 7,23 Perhaps these are 

what the CERN spectrometer is seeing. It would certainly be an 

unattractive theoretical situation if the A2 were unique, but the 

question has ultimately to be resolved experimentally. What is impor-

tant here is that there may be two alternatives for the asymptotic 

phase of the p-ftrajectory. If 

o(oo)/n = E« 1 (2.10) 

the states on this trajectory would grow to be very wide. If 

o(60)/n = o (2.11) 

then the large widths of the low-spin resonances such as the p, f, 

and g areanomolous and the high-spin recurrences will become very 

stable. The physical consequences of the two alternatives, (2.10) and 

(2.11),are quite distinct. In particular, a high-spin state on a 

trajectory with a finite phase can decay into open channels with low 

orbital angular momentum while in the case (2.11), a theorem due to 

Brower and Harte3 shows that such decays are kinematically forbiddert. 

This brings up one of the anomalies of the Veneziano mode1l ,2 

which may give a hint that the concept of an asymptotic phase has 

physical relevance. Although the model requires strictly real, non-

physical trajectories, it only has Regge asymptotic behavior in a 

region excluding a wedge of finite axis along the real axis of the 

t plane where there is a line of poles. 24 There may be some confusion 

on this point since Roskies,24 who bases his argument on the requirement 
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that the Beta function B[ -aC t), -CXC u) ] decreases exponentially at 

fixed s, has quoted this requirement in the form 

Im aC t )/1 t Il+1l all Il > 0 (2.12) 

which depends on the fact that he used the dispersion relation (2.9), 

for aCt) so that Re a rv ct. Since the argument of the Beta function 

depends on t only parametrically on t through aCt), it is obvious 

that the bound 

Im a(t)/IRe aCt) Il+1l ~OO, all Il > 0 (2.13) 

would satisfy Roskies' constraint. Equation (2.12) is essentially the 

condition that the trajectory phase be finite asymptotically or fall 

no faster than an inverse power of a logarithm. 

In terms of the interpretation of the role of small parameters 

in physics presented by Chew,25 it is the smallness of E which 

justifies the use of the Veneziano model. It is not surprising that 

the physics of the two cases (2.10) and (2.11) should be quite different 

so that a simple extrapolation procedure should fail. 
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III. THE KINEMATICS OF A DECAY 

Assume that. the behavior of the Regge trajectory is given 

asymptoti~ally by (2.7) and (2.9). This then gives the expression 

for the mass of the particle of spin J 

lim 
J~ 00 

= 
[
b J ]1/(2-2E) 

cos(nE) 

Because the phase, nE = 5(00), of the trajectory is assumed to be small 

so that 

(rm cx)2/ (Re cx)2 « 1, 

the relation between the width of the resonance and the imaginary part 

of the trajectory is given by 

= 

2 
1m CX(M

J 
) 

The reader may wonder about the validity of an expression such as (3.3) 

which is based on the Breit-Wigner formUla when it is used in a situation 

where the width it gives is large compared to the spacing of singular-

ities. A discussion of overlapping resonances which relies on simple 

quasi-two body unitarity has been presented by Coleman. 26 The situation 

for the case of many body unitarity may be more complicated but it 

remains plausible that (3.3) should give approximately the imaginary 

part of the pole in the complex energy plane in spite of the spacing 

of nearby singularities. Of course,· as the "lifetime" predicted by 
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(3.3) becomes shorter, it becomes harder and harder to design an experi-

ment which would measure the quantum numbers of the resonance so that 

the "par1;icle" connection of the pole is gradually lost and it becomes 

indistinguishable from "nonresonant background." 

Combining (3.3) With (2.7) gives 

= 
tan(rrE)· [. J ]1/(2-2E) 
1 - E b cos(rrE) . 

Under the assumption that (3.4) does not hold, but instead the 

trajectory is asymptotically real in the sense 

lim 
J~ 0Cl 

= 0, 

Brower and Harte3 showed that kinematic constraints decouple a high 

spin resonance from all available channels with. low orbital angular 

momentum unless 

1 
lim Re aCt) = 0(t2 ). 

t~ oo+iO 

Of course, the behavior implied by (3.5) and (3.6) is inconsistent 

with the asymptotic behavior implied by the phase representation (2.2) 

or the dispersion relation (2.9) and so, in the absence of left-hand 

cuts in the trajectory function, the bound (3.6) will not be considered 

further. 

Consider the decay of a particle of spin J on the trajectory 

given by (2.7). Suppose it decays into two particles of spin jl 

and j2 on the same trajectory where 
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'I).J 

and 

Conservation of energy permits the decay if 

r J ]1/(2-2E) 
(1 + Y)lb cos(:n:E) 

~ (1 _ Y)['I)l/(2-2E) + (1 _ 1/(2-2E) [ J. 11
/(2-2E) 

'I) ] b cos(n E)] 
(3.9) 

(1 + Y)/(l _ y) > ['I)l/(2-2E) + (1 _ Tj)1/(2-2E)J. - . 

The inequality (3.10) is interesting in that it gives an idea of what 

size E must be in order to have a "fission" decay27 where 

,,-,1 
'I) = 2' 

so that (3.10) and (3.4) become 

1 - E + tan :n:E > 2(1-2E)/(2-2E) • 
1 - E - tan nE - . 

This inequality has the solution 

E > 0.049, 

Y > 0.16, 

(3. 11a) 



.,. 

' .. 

-13-

. so that a "fission" decay appears impossible for a high spin particle 

on the p-ftrajectory given in Fig. 2 which has approximately 

,.,; 

E 0.025 
p 

y = 0.08l. 
p 

Going back to (3.10) and assuming E~ . Y and 1) are all small~ the 

decay is permitted if 

1 1 
Y > '2 1)2 

Assuming that the asymptotic form (2.7) is adequate at low values of 

J, the constraint that J -? (J. - 1) + 1[p(765)] is permitted can be 

found by putting 1) = l/J in (3.15) and using (3.14b ) 

0.08 > ! J 1 
2 ' 

J > 40. 

Requiring very low orbital angular momentum in the final state therefore 

implies the decay into two particles on the ~. trajectory does not 

begin to take place until quite high values of spin. 

At intermediate values of spin a "cascade" decay27 into a high 

mass meson of opposite G parity plus a pion is possible. Assuming 

the asymptotic form (2.7) holds for the leading meson trajectory of 

both G...;parities. Conservation of energy permits the "cascade" decay 

J -? (J - 1) +:rr if 

m , 
1( 
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[ 

J Ji /(2-2E) 
(1 + r) cos(rt E) . 

r. J - 1.ll/(2-2E) 
> (1 - r)LCOS(rtE)J + mrt . (3. 1 8) 

To see how the theorem of Brower and Harte depends on the assumption 

(3.5), notice that this decay is prohibited if r = 0, 

[ 

J ]1/ (2-2€)· [J _ 1 J 1/(2-2E) 

cos(rt E) - fOS(rtE)J 
O"[J- (1-2e)/ (2-2E)] . 

(3. 19) 

A more thorough discussion of the theorem of Brower and Harte is given 

in the appendix. 

27 H. Goldberg has also examined the kinematics of decays under 

the assumption (3.5) and has found that the "cascade" decay, 

J ~ (J -L) + rt dominates all other modes. It cart take place provided 

the orbital angular momentum, L, is bounded by 

1 

L > 2m J2 . 
rt 

The part~al decay width of this mode then behaves like 

1 
. 2m J2 [J .en J] rt 

(3. 20) 

(3. 21) 

and resonances become very stable unless there is a vast number of other 

states into which they can decay. This contrasts with the alternative 

(3.4) . which does not involve the orbital angular momentum of the decay 

products growing large at any stage. 
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IV. IMPLICATIONS FOR DYNAMICAL MODELS 

To this point, the discussion has been remarkably innocent of 

dynamics. The reduced residue functions associated with cx(t) have 

nowhere appeared. Crossing has been ignored in order to discuss poles 

in one channel and unitarity has only been invoked to obtain the analytic 

structure of cx(t) and to obtain the bound (2.5) on the phase along 

the physical cut. 

Given the perverse, nonlinear character of the unitarity 

equation, it may be that a good understanding of its implications can 

only be obtained after the approximate nature of the resonance spectrum 

is known. However it is. instructive to examine a crude dynamic model 

based on coupled-channel unitarity which might be expected to produce 

a leading Regge trajectory corresponding to that given asymptotically 

by (2.7) and (2.10). 

First, consider a simple N/D model for a system of two coupled 

channels each consisting of two natural parity mesons. One channel 

has spin zero and the other has spin one. Using a simple, one-pole 

approximation for the left-hand cut, the N/D model gives the output 

trajectory functions both in the absence and the presence of coupling. 

In the absence of coupling, the leading singularity in ea.ch cha.nnel 

is a pole trajectory which turns over shortly above threshold before 

reaching a high value of orbital angular momentum. In the example . 

considered, tlle potentials were adjusted so that a P-wave resonance was 

formed a short distance above threshold in each channel. When the 

coupling vlaS turned on, the two output trajectories "exchanged. tails" 
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to form a leading trajectory which rises above J = 2 (L = 1 in the 

1- - 0+ channel) and a nonleading trajectory which turns over before 

reaching J= 1. Figure 3 gives the phase of the two trajectory 

functions in both the coupled and uncoupled cases. 

The suggestion that an extension of·this simple two-channel 

model which included an infinite number of channels of increasing spin 

could account for a leading Regge trajectory which is indefinitely 

rising has been frequently discussed. 5 ,28 Since the model at this 

stage ignores crossing, it is not a bootstrap attempt. The difficulties 

in bootstrapping the scheme by getting a self-consistent set of trajec-

tories which provide the forces on the left-hand cut as well as 

containing the particles on the right will not be discussed here. 29 

The goals of this discussion are more modest. The idea is that connec-

ting the existence of high-spin resonances with the simultaneous 

existence of high-spin channels may have some merit whether or not it 

can lead immediately to a successful bootstrap. The two-channel N/D 

model illustrated in Fig. 3 gives some indication already that the 

dynamics of a trajectory is dominated by channels coupled to it with 

low orbital angular momentum and it seems plausible that this would be 

true quite generally. 

Two points must be made about the possibility that a mechanism 

involving coupled-channel unitarity supports a leading singularity 

which rises indefinitely. First, it seems unlikely that such a mechan-

ism could produce high-spin resonances which are very stable since once 

the imaginary part of the 'output trajectory function has become 

~ 

I 
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substantial the "cascade" decay mode becomes available so that there 

is at least one decay channel with no orbital angular momentum barrier 

as well as an increasing number of other decay channels open as the 

spin is increased. From the point ~f view of the N/D model just 

discussed, the high-spin channels which keep the real part of a: 

growing also keep the imaginary part growing and there appears to be 

no mechanism which would turn over the phase plotted in Fig. 4. If this 

type of dynamics is relevant, it provides an argument against the 

identification of the U(2375) as a recurrence of the rho-trajectory.18 

Quite simply, the model says that if there are open decay channels of 

low orbital angular momentum, then resonances should have large widths. 

A second point about this mechanism for producing an indef-

initely rising trajectory involves the nature of the nonleading 

singularities. The mechanism seems to require an infinite number of 

nonleading singularities. The model implies the 

collision or near collision of the various singularity surfaces with 

the leading trajectory. The analytic form of the leading trajectory 

given by (2.2) is based on the assumption of the absence of such 

collisions since the collisions can introduce extra branch cuts into 

the function a:(t). The existence of left-hand branch cuts destroys 

the relation between the asymptotic phase and the asymptotic behavior, 

(2.7), and changes it to (again ignoring possible logarithmic factors) 

lim a:(t) = (4.1) 
t~ 00 
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where 0(-00) is the asymptotic phase- on the left-hand cut. The 

problem is that the phase on the left-hand cut is not directly rneasur-

able and there is no way to put a bound on it. Notice that if 

o Coo) = 0 C -00 ) (4.2) 

it is possible for both the real and imaginary parts of the trajectory 

function to be asymptotically linear.14 The behavior of the phase 

along the left-hand cuts depends crucially on the dynamic mechanism 

which generates the pole surfaces, aCt). The important thing is that 

the existence of open, low angular momentum decay channels depends on 

the width growing with the mass, 

= 

which holds for (4.1) as well as for (2.7). The credibility of the 

coupled channel mechanism for producing rising trajectories is not 
. . , . 

destroyed. Of course, understanding the nature .of all of the singu-

larities produced by such a model, cuts as well as poles, is crucial 

to understanding questions such as the existence of superconvergence 

relations. 29 

An alternative dynamical model for indefinitely rising trajec-

tories which has been recently discussed is the energy~dependent 

potential approach)O, 31 Since the output traj ectories in such an 

approach would have the cut structure implied by potential theory, much 

of what has been said is immediately applicable to them. However, 

since the mechanism which forced the trajectories to rise is at least 
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~ priori independent of the existence of inelastic channels it seems 

that such an approach could produce a finite asymptotic phase or a 

zero asymptotic phase equally well. This approach does have an advantage 

in that it can be constrained to produce a crossing-symmetric amplitude30 

while crossing can be put into the coupled channel approach only by a 

generalization of the strip-model. 29 

. Finally, consider the problem of interpreting Veneziano model 

results and extrapolating away from the limit Im aCt) = 0 (often 

optimistically referred to as unitarizing the Veneziano model). The 

only internally consistent approach has been to treat the O-width model 

as a Born term and construct a field theory based upon its particle 

spectrum. 32 If this scheme can be carried out, it will answer a lot 

of questions concerning the role of quarks, internal symmetries and 

spin in hadron scattering. It may also provide a counterexample to 

,quash the controversial idea of the bootstrap. Without trying to 

anticipate the results of such a complicated endeavor involving such a 

large number of physicists, it might be worthwhile to speculate on the 

basis of the previous discussion about the two options (2.11) and. (2.10) 

for the phase of the renormalized trajectory. If, after renormalization, 

the leading trajectory has. a finite phase then the output particle 

spectrum may look consid.erably different than the input "bare" spectrum. 

Conversely, if the renormalized trajectory has zero phase then it seems 

unlikely that the degeneracy of the daughter singularities will be 

grossly broken. 
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One argument for the existence of an exponentially growing 

number of states is that, because of the kinematics of the angular 

momentum barrier, states on rising trajectories find it increasingly 

difficult to decay into any particular state. 33 If the output trajec-

tory has a finite phase, this argument fails and the leading trajectory 

can be largely self-supporting. Instead of requiringnonleading trajec-: 

tories which are parallel to the leading one, this suggests the possi-

bility that nonleading singularities have a completely different 

behavior. 

The fact that this kind of behavior might have physical signif­

icance is suggested by the large width of the €(700,0+) and the 

absence of p' (1250,1-) predicted by the Veneziano model. A careful 

analysis of the data ofCrennel et al., Fig. 4, shows no evidence of 

the p' .34 This is inconsistent with the predictions of the Veneziano 

model unless the width of this resonance is greater than 1 GeV. This 

suggests that the phase of the first daughter trajectory predicted by 

the Veneziano model behaves something like that shown in Fig. 5 much 

like the behavior of the honleading pole in the coupled channel N/D 

problem in Fig. 3 so that the trajectory turns over. If daughter tra-

j ectoriesdo turn over shortly above threshold this would reconcile 

some of the qualitative success of the Veneziano model with the 

nonappearance of those daughter states it predicts. 

The possibility that daughter trajectories turn over could upset 

the prediction of a number of resonances which increases exponentially 

with mass. 4 Since Hagedorn35 is careful to includ.e nonresonant states 

in his prediction for the thermodynamic model, this type of model is 

not necessarily inconsistent with his predictions. 
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APPENDIX A: THE THEOREM OF BROWER AND HARTE 

Consider the kinematics for the decay of a high-spin resonance 

on the leading Regge trajectory in a particular channel. The mass of 

the initial resonance is M, its width rand its spin is Re CXo (~). 

It can decay into a multiparticle channel consisting of nf particles 

on each of N trajectories, CXf" The ~th particle on the fth 

trajectory then has mass mvf , width rvf and spin Re cxf [(m
v
f

)2 J• 

Conservation of energy for the decay process can then be written 

M + r > (m f _ r f). 
v v 

(A.l) 

If L is the total orbital angular momentum of the decay channel, 

conservation of angular momentum gives 

f=l v=l 

(A.2) 

Assuming that the asymptotic behavior of the real parts of the trajec.,. 

tory functions are given by 

and 

(A.4) 
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with 

f = (1,··· ,N) 

then the theorem of Brower and Harte3 generalized to include the effects 

of resonance widths can be stated in the following form. 

Theorem: If 1 aO > 2 then the decay process defined by (A.l) 

and (A.2) above must fail to satisfy one of the following conditions as 

M ~ 00: 

(i) 

(ii) 

(iii) 

L 

O:O(M2) 
~ 

Re 

(+b 
n

f 

L 
v=l 

f 
m 1M < l. 

v 

0 

rv,/M ~ 0 

It is apparent that.if the asymptotic phase of the trajectory 

is not zero, condition (ii) does not hold for simple decay channels. 

Also, it is possible for condition (iii) to be violated so that one of 

the "decay products" has mass equal to or greater than the original 

resonance without violating (A.l). On the other hand, if the asymptotic 

phase of the trajectories is zero, so that 

and 

1 

r ~ 0 
M 

(A.6) 
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condition (ii) is forced to hold. If condition (i) fails and the 

orbital angular momentum grows with cxoctl) cc tl then the result of 

Jones and Teplitz36 forces the partial width of the resonance to this 

particular decay channel to decrease exponentially with if. If the 

total width is not to decrease exponentially, then there must be an 

exponentially growing number of available decay channels. 



~ 
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FIGUP.E CAPTIONS 

The phase of the 6 trajectory calculated from the masses and 

widths of the 'I 3 = '2 
21, ·1 t'· ' Group compl a lons. 

baryons listed in the. Particle Data 

A linear extrapolation of the phase 

gives an approximate lower limit of the energy at which this 

trajectory might turn over to be S = 160 GeV2 but the data 

are perfectly consistent with an indefinitely rising trajectory. 
" 

Fig. 2. The phase of an exchange-degenerate trajectory containing the 

+ - ' 1 1 , and the r(1260) , The g(1660) 

and the p(1710) are listed separately by dashed lines and 

as a single g(1690) state by a solid bar. The I = 0 

enhancement degenerate with the I = 1, p(1900) is chosen 

to be' the recurrance of the f. The solid, straight line 

extrapolation predicts wide resonances in the T and U 

regions with r = 190-220 MeV while the dashed extrapolation 

goes through the CERN missing mass spectrometer peaks. 

Fig. 3. The phases of output trajectories in the two-channel N/D 

model. In the absence of coupling, trajectory 1 is associated 

with the 0+0+ channel and trajectory 2 with the 1-0+ 

channel. When the coupling is turned on trajectory 3 is the 

l~ading singularity while trajectory 4 turns over quickly. 

Fig. 4. The data of Crennel et al. on pion mass distributions for 

+- -0 + ++' 
J1 P -7 J1 J1 n, J1 p -7 J1 J1 p, and J1 p -711: 11: n. This data gives 

a lower bound,on the elasticity of the p" meson predicted 

by the Venezi'ano model. 
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Fig. 5. The phase of the E-p' trajectory compared. to the phase of 

the p-f indicating the possibility that nonleading singulari­

ties are very wide and turn over quickly. For convenience in 

plotting, the real part ·of the E-p' trajectory was moved. by 

one unit to coincide with the· p-f. 
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