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Abstract

Brain-derived neurotrophic factor (BDNF) gene delivery to the entorhinal cortex is a candidate for 

treatment of Alzheimer’s disease (AD) to reduce neurodegeneration that is associated with 

memory loss. Accurate targeting of the entorhinal cortex in AD is complex due to the deep and 

atrophic state of this brain region. Using MRI-guided methods with convection-enhanced delivery, 

we were able to accurately and consistently target AAV2-BDNF delivery to the entorhinal cortex 

of non-human primates. 86 ± 3% of transduced cells in the targeted regions co-localized with the 

neuronal marker NeuN. The volume of AAV2-BDNF (3×108 vg/μl) infusion linearly correlated 

with the number of BDNF labeled cells and the volume (mm3) of BDNF immunoreactivity in the 

entorhinal cortex. BDNF is normally trafficked to the hippocampus from the entorhinal cortex; in 

these experiments, we also found that BDNF immunoreactivity was elevated in the hippocampus 

following therapeutic BDNF vector delivery to the entorhinal cortex, achieving growth factor 

distribution through key memory circuits. These findings indicate that MRI-guided infusion of 

AAV2-BDNF to the entorhinal cortex of the non-human primate results in safe and accurate 

targeting and distribution of BDNF to both the entorhinal cortex and the hippocampus. These 

methods are adaptable to human clinical trials.

INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and lacks 

effective disease-modifying therapies. The entorhinal cortex is typically the first brain region 

affected in AD1–5, and neuronal degeneration in the entorhinal cortex is associated with 

what is often the first and cardinal symptom of AD, short-term memory loss6, 7. Thus, 
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therapeutic strategies to slow entorhinal/hippocampal neuronal degeneration could be of 

substantial value in the treatment of AD.

Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophic factor in the 

adult brain, and its levels decline in the entorhinal cortex in AD8–10. Previous studies 

indicate that therapeutic BDNF delivery to the entorhinal cortex of amyloid mutant mice, 

aged and lesioned rats, as well as aged and lesioned non-human primates, reduces neuronal 

death, improves synaptic markers, improves molecular signaling and improves hippocampal-

dependent learning and memory 11, 12. Accordingly, BDNF is a candidate for translational 

human clinical trials8.

Central nervous system growth factors are medium sized, moderately charged proteins that 

do not cross the blood brain barrier13. Hence, they must be administered into the CNS 

directly to access degenerating neuronal populations8. However, when growth factors 

broadly spread through the CNS, they elicit intolerable adverse effects including weight loss, 

sensory disturbances and Schwann cell migration into the CNS8. Thus, their testing in 

clinical trials requires delivery methods that achieve both central and restricted delivery 

solely to regions of degenerating neurons. Gene delivery is a potential means of 

accomplishing this goal. We recently reported that gene delivery of another growth factor to 

the basal forebrain region of AD patients, nerve growth factor (NGF), was safe and well 

tolerated, and elicted classic “trophic” responses from degenerating cholinergic neurons14. 

Yet a 49 patient, double blind, sham surgery-controlled Phase 2 trial did not show efficacy in 

reducing cognitive decline (https://clinicaltrials.gov/ct2/show/NCT00876863). However, 

gene delivery was off-target in at least half of the intended sites in these patients based on 

examination of several brains, despite the use of state-of-the-art clinical stereotaxic methods 

and planning software (unpublished observations). This highlights the need to utilize more 

accurate methods for targeting and distributing growth factors in human clinical trials. 

Image-guided vector delivery is a potential method for achieving this important goal.

The entorhinal cortex is located on the ventromedial surface of the temporal lobe. It is an 

elongate structure 30 mm in antero-posterior length, 9–18 mm in width (along the cortical 

surface), and 3 mm thick15. Accordingly, accurately targeting this structure, which becomes 

atrophic in AD16, 17, is a challenge when using conventional stereotaxic approaches.

Recently we developed methods to enhance vector targeting and distribution in intracranial 

regions using MRI-guided infusions together with co-infusions of the safe MR contrast 

agent gadoteridol 18, 19,20, 21. Subjects undergo MRI scans during brain infusions, 

demonstrating real-time vector infusion and distribution. Combining this approach with 

convection-enhanced infusion procedures can further optimize vector distribution in the 

brain 22. This approach has been implemented in clinical trials for brain tumors23, growth 

factor and enzymatic gene therapy for Parkinson’s disease24, and gene replacement in 

aromatic acid decarboxylase (AADC) deficient children25.

We adapted these previously described methods in an effort to accurately target the 

entorhinal cortex in non-human primates as part of a translational program of AAV2-BDNF 

gene therapy for AD. We now report improved targeting and distribution of AAV2-BDNF in 
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the non-human primate brain using MRI-guided convection-enhanced vector delivery with 

co-infusion of gadoteridol. The distribution of gadoteridol on initial MRI scan correlated 

highly with actual vector distribution by BDNF immunolabeling of brains. BDNF protein is 

effectively anterogradely distributed to the hippocampus after entorhinal cortex delivery. 

Accordingly, these findings support the use of this improved method for therapeutic growth 

factor gene delivery in upcoming clinical trials of AAV2-BDNF gene delivery in AD.

RESULTS

A total of 18 adult monkeys of both genders underwent infusion of AAV2-BDNF into the 

entorhinal cortex (detailed in Methods), including five cynomologus macaques and 13 

rhesus macaques. An MR-compatible stereotaxic frame was attached to the skull that guided 

passage of an MR-compatible infusion needle fabricated from ceramic26. Deeply sedated 

subjects were placed in a 3 Tesla General Electric MR scanner, and needle targeting to the 

medial entorhinal cortex was assisted by MR guidance (see Methods). The medial entorhinal 

cortex is located in the most ventral and medial aspect of the frontal lobe (Figs. 1–3). Upon 

needle positioning, subjects received infusions of AAV2-BDNF (0.3 ×1012 vg/ml) mixed 

with the MR-dense substance, gadoteridol 2 mM. Subjects received 1–3 infusions per side in 

volumes ranging from 15–130 μl/site; a range of volumes and sites was used because we 

continued infusions until the targeted brain region was filled; for example, if some vector 

was initially infused into a subcortical white matter region instead of the intended target, the 

needle was re-positioned and additional vector was infused. There was no effort to infuse a 

pre-planned volume of vector; instead, we continued infusions until the target brain region 

received vector, regardless of total volume infused. After pre-planned survival periods of 1–6 

months, brains were examined for accuracy of BDNF targeting to the entorhinal cortex and 

cell type infected with AAV2. Vector spread as measured by gadoteridol diffusion was 

compared to distribution of the intended gene product by tissue labeling using BDNF 

immunoabeling. We then correlated the total volume of vector infused per site to volume of 

brain transduced by BDNF immunolabeling (see Methods).

Targeting the Entorhinal Cortex

In the monkey, the entorhinal cortex is located, as in the human, in the medial temporal lobe 

(Fig. 1). This brain region receives inputs from broad regions of the cortex, and in turn 

directly projects to the dentate gyrus of the hippocampus27–29. Outputs from the 

hippocampus then return to the entorhinal cortex, which sends projections to other cortical 

regions that are sites of long term memory storage, as well as the parahippocampus gyrus 

and perihinal cortex30, 31. This neural circuitry is essential for learning and memory31–33. In 

the rhesus monkey, the entorhinal cortex is about 15mm in total rostral-to-caudal extent, 5–9 

mm wide, and 2–3mm in depth from the cortical surface, with an estimated volume of 255 

mm34. Grossly, this brain region is located on the ventral most aspect of the medial temporal 

lobe, and its most ventrolateral component is demarcated by the rhinal fissure (Fig. 2). It’s 

more dorsal extent reaches the amygdala (rostral half) and subicular region (caudal half). 

Both the rhinal fissue and subicular region can be recognized on MRI scans (Fig. 2). The 

midpoint of the antero-poster range of the entorhinal cortex (e.g., coordinate 0.75 cm relative 

to either end of the 1.5 cm length of the entorhinal cortex) is recognizable on MRI scans as 
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the point at which the hippocampus first becomes evident on coronal brain sections. The 

cortical surface is also visible on MRI scans, and these infusions aim to be centered 1mm 

below this surface. Thus, for all three dimensions of the entorhinal cortex, there are fiducial 

markings that are recognizable on MRI scans: 1) in the antero-posterior plane, the first 

appearance of the hippocampus on coronal brain sections (1mm thick slices); 2) in the 

medio-lateral plane, the shape of the amygdala/subiculum (dorsal) and the rhinal fissure 

(lateral); and 3) in the ventro-medial plane, the cortical surface (Fig. 2). We used these MRI 

landmarks to target vector infusions. Animals received from one to three vector infusions per 

side of the brain. The present study focused on the question of whether we are able to use 

MRI guidance with gadoteridol infusion to reliably infuse AAV2-BDNF into this small brain 

region.

MRI-Guided Infusions Enable Precise, Accurate Gene Delivery to the Entorhinal Cortex

The injection needle could be readily visualized on MRI scans of the brain, as expected (Fig. 

3A). This allowed confirmation of the accuracy of stereotaxic targeting. Typically, 1–2 

adjustments of needle depth were required to accurately infuse the brain region of interest, 

but medio-lateral and rostral-caudal trajectories were in nearly all cases accurate without 

requiring needle withdrawal and repositioning.

With positioning of the infusion needle in the entorhinal cortex at a depth of 1mm from the 

cortical surface, infusion of the AAV2-BDNF / gadoteridol solution resulted in vector spread 

in cortical layers I–II over a rostral-to-caudal distance of 5–8mm (green arrows in Fig. 3E–

F). Occasionally, the tip of the infusion needle appeared to exit the ventral surface of the 

brain with resulting gadoteridol spread in the subarachnoid space; in these cases, the MRI 

tracer signal rapidly dissipated (within 10 min). When infusions were located 

intraparenchymally, gadoteridol signal was persistently detectable over at least 30 min on 

MRI.

Correlation of Gadoteridol Diffusion with BDNF Transduction

Anatomical examination of infused brains using BDNF immunolabeling demonstrated that 

vector spread assessed by gadoteridol on MRI scans during infusions closely matched in 

vivo BDNF gene expression (Fig. 3). Thus, gadoteridol spread at the time of vector infusion 

accurately reflected vector spread on histological examination.

AAV2- Primarily Infects Neurons of the Entorhinal Cortex

Quantification of BDNF or GFP co-labeling with the neuronal marker NeuN indicated that 

AAV2 primarily infected neurons in the entorhinal cortex. Among the subjects that received 

AAV2-GFP, 88.2 ± 3.8% of cells expressing GFP were neurons, as assessed by double 

labeling with NeuN. Among BDNF labeled cells, 85.9 ± 3.5% were co-labeled with NeuN 

(Fig. 4). As expected, cell transduction in white matter regions such as the angular bundle 

was low due to the absence of neurons in these regions.

Entorhinal Cortex BDNF Expression Correlates with Vector Infusion Volume

The volume of vector distribution of BDNF and GFP in the entorhinal cortex was measured 

in BDNF- and GFP-immunolabeled sections (Fig. 5). The volume of infused vector 
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correlated significantly with the volume of transduced entorhinal cortex (r(24)=0.73, 

p<0.0001; Fig. 5D). Overall, across all animals with accurate vector targeting to the 

entorhinal cortex, the proportionate volume of transduced entorhinal cortex was 59.9 

± 6.7%. The total volume of vector infused among these subjects ranged from 15–184 μl per 

entorhinal cortex, spread over 1–3 infusions sites. Subjects with the greatest volume of 

BDNF expression in the entorhinal cortex generally received the highest number of 

infusions, reliably exhibiting >50% transduction of the entorhinal cortex with BDNF. A 

significant correlation also existed between the volume of the infused vector and the number 

of neurons expressing BDNF in the entorhinal cortex (r(22)=0.82, p<0.0001; Fig 5E). While 

the total volume of vector infusion was an important consideration in maximizing the 

volume of entorhinal cortex transduction, accurate positioning of the infusion needle to a 

depth of approximately 1mm from the ventral surface of the entorhinal cortex most 

consistently assured distribution within the target region.

BDNF Trafficking to Hippocampus

AAV2-BDNF vector Infusion into the entorhinal cortex has previously been reported to 

result in anterograde trafficking of BDNF protein into the hippocampus11, 12. We also found 

this to be the case in the present study (Fig 6A–D). Even relatively small volumes of BDNF 

transduction of the entorhinal cortex (e.g., 15μl), when accurately targeted, resulted in 

widespread increases in BDNF labeling in the hippocampal dentate gyrus.

DISCUSSION

BDNF gene delivery to the entorhinal cortex offers the potential to slow the degeneration 

and death, and stimulate the function, of cortical neurons that are affected in AD8, 11, 12. 

Findings of the present study indicate that the ability to accurately target this deep brain 

structure is substantially improved using real-time MRI targeting and co-infusion of 

gadoteridol. In previous experiments we targeted vector injections into the non-human 

primate entorhinal cortex using stereotaxic coordinates only, without MRI guidance; these 

efforts resulted in accurate vector delivery into the entorhinal cortex in less than 50% of sites 

(data now shown). Injections were often off-target, located more frequently in the angular 

gyrus (subcortical white matter) and resulted in vector loss through white matter tracks with 

little transduction of gray matter. Using methods described in this study, we accurately target 

the entorhinal cortex in more than 95% of monkeys, and can distribute vector over at least 

50% of the volume of the target. These methods are safe and well-tolerated, and to date there 

have been no peri-operative complications after infusing a total of 18 monkeys.

Consistent with infusions of vector into other brain regions21, 25, 35, 36, the volume of 

entorhinal cortex transduction with AAV2-BDNF correlated with the volume of vector 

infusion when infusions were accurately targeted into the entorhinal cortex. However, when 

the infusion needle tip was located in subcortical white matter, vector rapidly diffused 

through white matter and did not efficiently transduce the entorhinal cortex. In this small 

gray matter region, it appears that accuracy of needle placement is the most important 

consideration in effectively distributing AAV2-BDNF. Without real-time imaging and 

gadoteridol co-infusion, the entorhinal cortex was not consistently engaged in non-human 
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primates, and likely would not be in a human clinical trial. Indeed, preliminary observations 

from our recent experience targeting another small brain region in AD patients with NGF 

gene delivery, the Nucleus Basalis of Meynert, showed mis-targeting of several injections, 

despite the fact that the trial used state-of the-art stereotaxic methods and experienced 

neurosurgeons (clinicaltrials.gov). These observations indicate that the development of more 

accurate, real-time MRI guided methods for gene delivery to smaller brain targets will be 

important for advancing future programs to human trials.

An important observation in this study was that BDNF is consistently trafficked into the 

hippocampus when AAV2-BDNF is accurately delivered to the entorhinal cortex. BDNF 

transport to the hippocampus could extend the distribution of BDNF in the AD brain, 

thereby accessing the brain regions that are affected the earliest and most extensively in 

AD11, 12. By the time that AD is first diagnosed in humans, up to 50% of neurons in the 

entorhinal cortex have already degenerated7. Notably, pathology in the AD brain typically 

spreads from the entorhinal cortex to more distant brain regions; indeed recent findings 

suggest that spread of toxic protein species from the entorhinal cortex may propagate AD 

pathology to other brain regions4, 5, 37, 38. If this is true, then early reduction or arrest of cell 

degeneration in the entorhinal cortex and hippocampus could reduce the progression of AD. 

Targeting the entorhinal cortex and hippocampus with BDNF could therefore extend 

neuroprotection to broader cortical regions. And as the ability to detect AD risk at pre-

symptomatic stages of the disease advances39, 40, there is potential to begin intervention with 

BDNF in patients at early time points, before cell loss is extensive.

SUMMARY

MRI guidance with co-infusion of gadoteridol permits accurate delivery of AAV2-BDNF to 

the non-human primate entorhinal cortex. The establishment of these methods enables 

potentially more effective clinical translation of this approach in an effort to prevent 

neuronal loss and stimulate neuronal function in AD.

METHODS

Subjects

Subjects were 5 adult cynomologus macaques (Macaca fascicularis; 5.9–10.0 kg; 4 males, 1 

female; age range 3–14 years) and 13 adult rhesus macaques (Macaca Mulatta; 6.0–18.7 kg; 

9 males, 4 females; age range 5–21 years). Animals were housed in a temperature-controlled 

environment with 12-hour light/dark cycle. All subjects were seronegative for the presences 

of anti-AAV antibodies with antibody titers of <1:100, using previously described protols41. 

All procedures were carried out in accordance with the Institutional Animal Care and USE 

Committee at UCSF and UC Davis.

Vector Production and Preparation

AAV2-BDNF vector was produced by UNC Vector Core (University of North Carolina) The 

vector genome consist of the human BDNF cDNA with a CAG promoter consisting of 

human cytomegalovirus (CMV) enhancer, chicken β-actin promoter and splice donor, intron, 

an rabbit β-globin splice acceptor. The vector is similarly designed to AAV2 vector used in 
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Phase 1 and 2 gene therapy trials14, 42, 43. Briefly, vector particles were prepared by transient 

transfection of plasmid DNA into 293 cells and purified by CsCl2 centrifugation, FPLC and 

sterile filtration. AAV2-BDNF vector was delivered at a titer of 3×1012 vg/ml and aliquotted 

into 100 μl volumes. For infusions, AAV2-BDNF was infused at a concentration of 3 ×1011 

vg/ml. The MR contrast agent Gadoteridol (Prohance, Bracco Diagnostic, Princeton, NJ) 

was mixed into the vector at a final concentration of 1 mM. A subset of subjects (N=9) also 

received AAV2-GFP at 0.03 ×1012 vg/ml titer to confirm the spread of the viral vector in the 

transduction of cells.

Surgical Exposure

After induction of anesthesia, the animal’s head was placed in a stereotactic frame and 

flexed in a prone position. The head was shaved and cleaned using Nolvasan solution and 

alcohol. A sterile field was created and a midline incision performed through the skin, 

muscle and fascia by electrocautery (Surgistat Electrosurgery, Valleylab Inc., Boulder, CO). 

Gentle retraction of fascia and muscle allowed for cranial exposure over cortical entry sites. 

Small burr-holes were performed according stereotactic coordinates to expose dura over 

each of the intended infusion sites. The infusion system included i) a “ball-joint” style array 

(Hayes Manufacturing Services Inc., USA) that was secured to the skull by titanium screws 

over the craniotomies, and ii) a custom-designed cannula (Richardson et at 2011). The 

custom-designed, ceramic, fused silica reflux-resistant cannula (Fiandaca et al, 2008) consist 

of an 8 to 25-cm ceramic section [1.68 mm outer diameter (OD)] in the main portion of the 

shaft, and an 18-mm fused silica section that tapers down to 0.7 mm OD. The final 3-mm 

section is a fine fused silica tip (0.36 mm OD). Briefly, the cannula is connected to a loading 

line containing the infusate, and flow is regulated with a 1-mL syringe mounted onto a MRI-

compatible infusion pump. Target is selected and optimal trajectory is established using 

neuronavigation software on baseline MRI images of the animal. Then, distance from the 

target to the top of the guide-stem is determined in silico, and a depth-stop is secured at the 

insertion distance in the cannula. After optima infusion parameters are determined, cannulas 

are manually inserted though the guiding stem of the array to the target.

MRI-Guided Infusion Procedure

We used a 3 Tesla Siemens Magnetom Avanto scanner (Siemens Medical Solutions, 

Erlangen, Germany) with Siemens resident software. Vector infusion procedures were done 

using three types of scanning protocols that were varied throughout the gene delivery 

procedure: a T1 protocol to optimize visualization of brain structures for the purpose of 

needle targeting, and modified T2 protocol to obtain a rapid scan to assess vector spread, and 

an MP-RAGE protocol to optimize visualization of white matter structure and vector spread 

(Repetition time: 2110 ms; echo time: 3.6 ms; flip angle: 15°; number of excitations: 1 

(repeated three times); matrix: 240 × 240; field of view: 240 × 240 × 240).

Animals were sedated with an intramuscular injection of ketamine (10 mg/kg IM) and 

medetomidine (0.015 mg/kg IM), intubated, and a venous line established with a 22–24-

gauge catheter positioned in the cephalic or saphenous vein to deliver isotonic fluids at a rate 

of 5–10 mL/kg/hr. Isoflurane inhalation anesthesia (Aerrane, Omeda PPD Inc., Liberty, NJ) 

was delivered at 1–3% to maintain a stable plane of anesthesia. Then, after placement into an 
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MRI-compatible stereotaxic frame in a supine position, two burr holes were placed for 

implantation of ball-joint arrays that consist of a base (attached to the skull) and a guide tube 

array (cylinder with three holes)44. The monkeys were then transferred to the MRI scanner 

suite. The infusion needle consisted of a ceramic silica reflux-resistant cannula with a 1-mm 

step at the distal end to prevent vector reflux up the cannula (MRI Intervention, Irvine).25 

Then a 36-inch high-pressure intravenous tubing connected the infusion needle to a 1-ml 

syringe pump (Medfusion 3500 syringe pump, Medfusion, St Paul, MN). Prior to loading 

into the infusion system, vector was adjusted to a final concentration of 3.0 × 1011 vg/ml. In 

nine subjects, one-tenth of the vector infusate volume consisted of AAV2-GFP (3×1011 

vp/ml) and 90% of the vector consisted of AAV2-BDNF (3×1011 vg/ml); these monkeys 

enabled analysis of the type of cells in the brain that were transduced by the virus. In initial 

subjects, the infusion needle was placed into the skull-based stereotaxic frame and advanced 

into the brain to a point calculated to be located in the mid-striatum; the accuracy of needle 

trajectory and depth were then confirmed with a T2 scan. Because none of these mid-

trajectory scans required correction of needle trajectory, all subsequent subjects underwent 

lowering of the infusion needle into the entorhinal cortex itself, stopping at a point 

calculated on initial MRI scans to be located 1 mm dorsal to the intended target region. 

Then, a T1, MP-RAGE and T2 weighted set of images were obtained. Based on these 

images, we then advanced the infusion needle the distance required to reach a point within 

the entorhinal cortex that was located 1 mm from the ventral brain surface (Fig. 2).

Monkeys received 1 to 3 infusion sites into the entorhinal cortex per side of the brain. For a 

single infusion per side, the injection was placed approximately at the mid-point of the 

antero-posterior length of the hippocampus. For entorhinal cortex that received 2–3 

infusions, attempts were made to spread vector through the majority of the volume of the 

entorhinal cortex. For this study, 34 entorhinal cortices were infused with AAV2-BDNF 

(3×1011 vg/mL): 18 received a single infusion site per side of the brain, 9 received two 

infusions, and 7 receiving three infusions

At the point that infusion needles were going to penetrate the brain, infusions pumps were 

turned on at a rate of 3 μl/min to maintain positive pressure and prevent needle blockade as 

the needle was advanced through the brain to the target. Once the final target was confirmed 

on MRI, infusion rate was adjusted ramping from 1 up to 3 μl/min to achieve vector spread 

through the entorhinal cortex region located in the 1mm-thick MRI slice containing the 

infusion needle. Rather than infuse a pre-set volume of vector, we continued infusions until 

the target region of interest (about 5 mm of the rostral-cadual extent of the entorhinal cortex) 

was covered by gadoteridol. Scans were continuously obtained through the infusion 

procedure, as previously described21, 25. The range of vector volume infused per site was 15 

– 160 μl. Vital signs were monitored continuously during surgery.

After completion of infusions, subjects were returned to the surgical suite for removal of the 

skull-based stereotaxic frame. Then, animals received an intramuscular injection of NSAID 

(Meloxicam) and buprenorphine (Buprenex) the day after the CED infusion as part of the 

post-procedural analgesia management. Once the animal returned to its cage, it was 

evaluated twice daily for 5 days by veterinary staff. Detailed, standardized forms were 

completed for each animal that included evaluations of the surgical-site integrity, edema, 
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infection, balance, locomotion, attitude, food intake, and fecal and urine output. No 

abnormalities or signs of discomfort were reported.

Histology

Subjects were euthanized 1–6 months following MRI-guided infusions. Subjects were 

anesthetized as described previously using an intravenous overdose of sodium pentobarbital 

solution (B-euthanasia solution, 390 mg/ml). Death was confirmed by loss of heartbeat, 

respiration, pupil reflex and/or toe pinch reflex. Then, animals were transcardially perfused 

with cold 0.9% Phosphate-buffered saline (PBS) followed by 4% paraformaldehyde (PFA). 

Brains were harvested and placed in a 10% glycerol solution for one night then transferred 

to 20% glycerol. Histology was performed at UCSD. The brain was sectioned into 3 blocks, 

with the most caudal block containing the entorhinal cortex and hippocampus. Blocks were 

frozen in 99% isopentane and stored at −80°C until sectioning. Sectioning was performed on 

a sliding microtone set at 40 μm thickness and each section was placed in 96-well 

polyethylene plates containing cryoprotectant. Tissue was stored at −20°C.

Nissl Staining and Immunohistochemistry

A series of 1-in-12 sections were processed for Nissl staining used standard protocols. 

Another series of 1-in-24 sections were used for light level immunolabeling of BDNF using 

antigen retrieval method to enhance labeling. Antigen retrieval procedure involved sections 

in 0.01 M Tris-HCL (pH 9.0, at 80°C) for 50 min and post-fixation in 2% paraformaldehyde:

0.2% para-benzoquinone for 5 min. Sections were incubated in primary rabbit anti-BDNF 

antibody (Chicago Proteintech; made for Tuszynski laboratory) at 1:2000 dilution for 4 

nights at 4°C. Sections were then incubated in secondary antibody (donkey anti-rabbit 

biotin, Jackson Immunoresearch Laboratory 711-065-152) using the ABC Reagent kit 

(Vectastain, Vector Laboratories; PK-6100), and were subsequently developed in 3,3′-
diamaniobenzidine. Additional series of 1-in-24 sections were also processed for fluorescent 

labeling using rabbit anti-BDNF antibody (1:1500, Chicago Proteintech), mouse anti-NeuN 

(1:2000, clone 1B7, Abcam; AB104224), and chicken anti-GFAP (1:500, Aves Lab; Cat# 

GFAP) for 4 nights and developed with Alexa Fluor secondary antibodies (1:200, Jackson 

ImmunoResearch Laboratories; Donkey Anti-Rabbit Alexa594 #711-585-152; Donkey Anti-

Mouse #715-605-150; Donkey Anti-Chicken Alex 647 #703-605-152) and 1:1000 DAPI 

(Sigma D9542). Sections were mounted onto gelled slides and coverslip using Fluoromount-

G (Southern Biotech).

AAV2-BDNF and AAV2-GFP Targeting of Neurons

Infusion of AAV2-BDNF and AAV2-GFP resulted in increased expression of the construct 

in cells at the infusion site. To determine the percentage of cells with elevated BDNF or GFP 

in neurons, sections were tripled labeled for BDNF, GFP, and NeuN. Quantification was 

performed at individual infusion sites with selected samples taken across all layers of 

entorhinal cortex, including the angular bundle (white matter adjacent to entorhinal cortex). 

The percentage of cells co-labeled for BDNF or GFP with the neuronal marker NeuN was 

calculated.
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Distribution of Vector Expression in Entorhinal Cortex

To determine the spread of the vector at entorhinal cortex infusion sites, BDNF 

immunolabeled cells were mapped using using Stereoinvestigator (Microbrightfield 

Bioscience). Sections labeled for BDNF at both fluorescence and light levels were used to 

enhance accuracy. Regions were sampled at section intervals of 1-in-12 to 1-in-48 sections. 

For each section, the entorhinal cortex was outlined based on anatomical features (e.g., 

rhinal fissure) and cytoarchitectural structures of the entorhinal cortex as viewed with NeuN 

labeling or adjacent Nissl stained sections45. A total of 25 entorhinal cortex infusion sites 

were mapped for the distribution of the BDNF immunolabeled cells and over 100,000 

individual cells were mapped. The each BDNF cell was marked as neuronal or non-neuronal 

based on NeuN labeling.

The StereoInvestigator software provides the X-Y location of the cells. Using a protocol 

developed by A. Nagahara, Excel (Microsoft) templates were used to map the area of 

elevated BDNF expression. Briefly, using 300-um bins for both y-axis and x-axis (e.g., 0–

300, 301–600), the lowest and highest values were used as the border for each bin, and the 

area of BDNF expression was calculated in each anatomical section. To confirm this 

analysis, a Matlab program was written (I. Ivasyk) that utilized the BDNF location data to 

outline and measure the area of BDNF expression in each anatomical section. Based on 

these analyses, the total volume of BDNF protein expression was calculated by multiplying 

area per section by the sampling frequency of 1-in-12 sections and the thickness of each 

section. The estimated number of neurons that were labeled for BDNF cells was also 

quantified in 1-in-12 sections, with total neuron numbers estimated based on section 

sampling frequency (1-in-12). The volume of tissue expressing BDNF was correlated to 

BDNF-expressing cell numbers.

BDNF Elevation in Entorhinal Cortex and Hippocampus

BDNF protein can be trafficked anterogradely through axonal transport from neurons in the 

entorhinal cortex to the hippocampus12, providing a potential means of distributing BDNF 

throughout entorhinal cortex and into hippocampus following gene delivery to the entorhinal 

cortex11, 12. Previously we reported that co-infusion of AAV2-GFP with AAV2-BDNF into 

the entorhinal cortex of rhesus macaques did not result in anterograde transport of the 

AAV2-GFP vector itself into the hippocampus11, indicating that all BDNF protein that is 

present in the hippocampus results from anterograde transport of the protein, and not the 

AAV2-BDNF vector. To examine the extent of BDNF distribution into the hippocampus, we 

quantified regions of BDNF immunoreactivity in the hippocampal dentate gyrus 1-in-24 

sections were scanned with a 2× objective lens on a Keyence (BZ-X700) microscope. The 

outer molecular layer of dentate gyrus was outlined in Adobe Photoshop software. 

Threshold analysis was used to determine the area with elevated BDNF levels in the 

entorhinal cortex and hippocampus. The threshold was based on the BDNF immunolabeling 

in control cortical brain regions (parietal or temporal cortex). The threshold was calculated 

from control cortical sample (15,000 pixels) and set at three times the standard deviation 

above the mean value. A standard threshold value was not used due to the variation of 

BDNF immunolabeling from subject to subject. Images were imported into ImageJ software 

and the percent of the region above the threshold value was calculated. Similar measures of 
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fiber density were made in a series of 1-in-48 sections through the full rostral-to-caudal 

extent of the hippocampus.

Statistical Analyses

Pearson correlational analyses were performed between the volume of AAV2-BDNF infused 

and the volume of tissue with BDNF labeled neurons or the estimated number of BDNF-

labeled neurons (JMP software from SAS). The sample size of the subjects for this study 

(N=18) was based on a power analysis using a large effect size for correlational analyses 

(0.50), a power of .85, and the assumption of 90% accuracy of targeting (inclusion criteria). 

Only Infusion sites that accurately targeted the entorhinal cortex were included for these 

analyses. Since group differences were not examined, randomization was not used in the 

present study. The experimenters were blinded for data collection. The Pearson correlational 

analysis was determined to be the appropriate analyses that meet the basic assumptions of 

this statistical test. Since there are no group comparisons, variance data are not presented.
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Figure 1. Schematic of entorhinal cortex and its major afferent and efferent connections with the 
hippocampus and the cerebral cortex
The major projections from the entorhinal cortex (layers II–III) are to the outer molecular 

layer of the dentate gyrus (DG) and CA3 region of the hippocampus. The CA1 region 

projects back to the deeper layers of the entorhinal cortex. The entorhinal cortex also 

directly projects to cortical regions that are sites of long-term memory storage31.
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Figure 2. Location of entorhinal cortex (EC) in rhesus monkey with corresponding MR images
Schematic diagrams (adopted from Paxinos et al., 1989) of entorhinal cortex across four 

coronal planes from −2.7 to −14.85 mm relative to bregma (A, C–E). The entorhinal cortex 

is located on the ventral and medial surface of the temporal lobe, with local landmarks that 

include the rhinal fissure (RF), perirhinal cortex (PR), amygdala (Am), subicular area (S), 

and hippocampus (Hp). T1 and T2 MRI scans (B, F–H) with the visible landmark of the 

rhinal fissure (RF) indicated on the T2 image (arrows in A,B,D,G).
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Figure 3. Real-time MRI scans of AAV2-BDNF delivery into the entorhinal cortex (entorhinal 
cortex) of non-human primate (A–C) result in accurately targeted BDNF delivery (D–F)
(A) An MR-compatible needle is present passing through the cortex and striatum 

(arrowhead) to reach the ventral and medial entorhinal cortex (arrow). The spread of 

gadoteridol in the infusion site is visible (arrow). Inset show gadoteridol signal at higher 

magnification. (B) A matching histological section from the same animal shows the spread 

of BDNF by immunolabeling in the same region predicted by MR imaging. (C) Pattern of 

gadolinium spread in a different subject within the entorhinal cortex on MR, and (D) the 

matching histological section. (E) Vector spread on MR in a 3rd subject, with gadolinium 

spread along cortical surface (green arrows), and (F) the matching BDNF immunolabeled 

section. Green arrows indicate a band of BDNF-containing, layer II entorhinal cells. Hp, 

hippocampus. Scale Bar, D = 0.5 mm, E–F = 1 mm.
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Figure 4. AAV2-BDNF and AAV2-GFP primarily transduce neurons
At the infusion site, (A) BDNF immunolabeling and (B) GFP immunolabeling are 

predominantly observed in neurons labeled with (C) NeuN. (D), overlay. On quantification, 

88.2 ± 3.8% of GFP-expressing cells co-label for NeuN. Scale bar = 50 μm.
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Figure 5. Distribution of BDNF-labeled neurons in entorhinal infusion sites
(A) BDNF immunolabeling in an AAV2-BDNF infusion site in the entorhinal cortex. (B) 

Map of individual cells immunolabeled for BDNF, and (C) zone of BDNF-containing cells 

used to quantify volume of vector distribution. (D–E) The volume of AAV2-BDNF vector 

infused significantly correlates with volume of tissue containing BDNF-labeled neurons 

(p<0.001) and with number of BDNF labeled neurons (p<0.001).
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Figure 6. BDNF Spread to Hippocampus
(A) BDNF immunoreactivity in hippocampus of control subject shows endogenous 

expression of BDNF in the mossy fiber terminal fields of the CA3 lucidum and hilus region. 

(B) Following AAV2-BDNF infusion into entorhinal cortex, BDNF immunoreactivity is 

visible in the hippocampal outer molecular layers (arrowheads). (C) Fluorescent labeling 

illustrates BDNF immunoreactive fibers in the outer molecular layer (OML) and not in the 

inner molecular layer (IML) or granule cell layer (GC) of hippocampus. (D) Scatterplot 

showed that even smaller volumes of AAV2-BDNF infused into the entorhinal cortex can 

lead to a widespread (~70%) increase of BDNF expression in the OML of dentate gyrus. 

Scale bar A, B 1 mm; C, 200 μm.
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