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ZERO MASS BOSONS IN S-MATRIX THEORY* 

Farzam Arbabt and Richard C. Brower 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

August 29, 1968 

ABSTRACT 

Here we describe the soft coupling of zero mass bosons to other 

particles, by considering the limit of a theory with a massive boson. 

With the standard S-matrix assumptions of analyticity and crossing for 

four body helicity amplitudes, we demonstrate generally that in the 

limit of zero mass, a vector boson (1-) couples to a conserved charge 

and a 2+ boson couples to the inertial mass. Bosons of other spin-

parity combinations (with the exception of zero spin) have no zero 

mass,soft coupling. With this technique, we not only give a pedagogi-

cally interesting solution to gauge invariance and kinematics of zero 

mass particles, but suggest new applications to small mass integral 

spin systems. We speculate on the application of this technique to 

such problems as p universality, the Adler-Weisberger relation and 

the universality of leptonic couplings in a vector or axial vector 

state. 

t Permanent Address: Brookhaven National Laboratory, Upton,Long 

Island, New York 11973 
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INTRODUCTION 

1 .. 
Recently several authors have studied the question of gauge _ 

invariance and zero-mass particles in S-matrix theory, and the related 

. 2 
subject of small-mass mesons has also attracted some attention. There 

exist two essentially distinct methods for the examination of the 

S~matrix theory of massless particles. One approach uses zefo mass 

particles from the beginning and entails the construction of certai~ 

amplitudes with the aid of the polarization four vector of the zero mass 

particle. The assumptions of Lorentz invariance, analyticity and 

crossing are then introduced for these amplitudes. In this approach the 

principle of gauge invariance,; invariance under the addition or-the 

light-like momentum vector to the polarization four vector, is explicitly 

utilized. However, since it has been shown by Weinberg and Zwanziger 

that gauge invariance is a consequence of Lorentz invarianceforzero 

mass particles,3 no new principle has in fact been introduced. This 

method has further been used by Weinberg to prove certain properties of 

the couplings of zero mass particles, such as conservation of charge 

and the equivalence principle. 

In the second approach, which is the approach of this paper, 

one begins with the helicity amplitudes for massive particles and 

derives the zero mass results by studying the limit of the amplitu<i~s 

as one of the external masses is taken to zero. As we will show in 

this paper, this limiting process leads to all the results derived from 

gauge invariance. Furthermore, this approach may have the advantage of 

being more readily extended to the study of small-mass particles, 'or 
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pairs of particles in a state of integer' spin and low mass ,such as the 

J = 1 11:l,{ state or the lepton pairs:ev ::: and '":!-lil. ,'As far as" the 

zero-mass limit of 'helicity amplitudes is concerned three points have 

to be considered. We may demonstrate these points for the photon in 

the following way. 

For a zero-mass vector particle, the states with he,1:ici ty ':1;1 

are completely decoupled from the zero-helicity state.Tnat is, tnere 

is no Lorentz transformation (parity included) which mixes tQe 

two types of states. The photon occurs in the states with helicity . ±l. 

However, there are as yet no proofs which would rule out the existence 

of a zero-helici ty, zero-mass particle. If such a particl'e exist~d in 

nature, it would behave like a spin zero particle and would not have to 

be connected with the photon. Therefore, when the theory of photons is ' 

derived as the limit of a theory of massive vector particles nothing 

needs to be proved about the final behavior of the zero-helicity affipli-

tude (denoted by Me)' Although Me. plays an important rQle before 

the final limit is taken, at the end we are interested in the behavior 

of the amplitudes M±l' 

The second question to be considered is the final ·form of the' 

pole terms corresponding, to the external particles (hereafter simply 

referred to as pole terms) for the helicity ±l amplituaes. AlthougQ 

this question is well answered in the framework of perturbation theory, 

,i t has caused some confusion in the S-matrix approach. If one wor~s 

with zero -mass particles to begin with, then the pole terms from the 

three channels of a four-body amplitude with one zero~mass particle all 

r 
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occur at the same point. Without the.use of perturbation theory, it 

is not clear how these three poles should be represented. . On the 

other hand, if one starts with the massive case, the t-channel nonsenseampli-

tudes do not contain a t-channel pole. However, there is a kinematic 

singularity which in the limit of zero mass becomes a pole denominator. 

The problem of gauge invariance involves the normalization of the 

residue of this pole. Moreover, one has tb show that in the' limit of 

zero mass, this kinematic singularity has the characteristics of a 

dynamical pole. This means that the pole only occur~ when the quantum 

numbers of the t-channel agree with those of the particle under consid-\ 

eration. For example, if one uses the Regge language, one has to show 

that the pole denominator multiplies only the Regge pole corresponding 

to the particle in question and does not occur in the other Regge 

contributions. 4 (As a kinematic singularity, before the m~ss is taken 

to zero, this factor does multiply the entire amplitude.) The problem 

of kinematic singularities has already been studied by otherauthors. I ,5 

The next property of zero mass particles to be considered is 

the conditions on their couplings to other particles. These are the 

conditions we will be mostly concerned with in this paper.' Using the 

properties of helicity amplitudes in the massive case and the extra 

assumption of the smoothness in the external mass (discussed ..:; 

in detail in Section I), we will demonstrate how, to zeroth order in its 

mass, a soft vector particle couples to a conserved quantity. We will 

also show that a soft, zero mass 2+ particle has to couple to the 

inertial mass, and that massless particles of spin higher than 2, or a 
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massless axial vector particle, have no soft coupling~ We have not 

been able to prove any results for the coupling of zero mass spinless 

particles, except the existence of only one soft, c'oupling (:i,ndependent . 

of helicities)to particles with spin. 

In the case of the coupling of a vector particle, we ;prove 

conservation of charge for a strong three particle vertex." Conser.vation 

of charge for any amplitude can then be proved by induct:i,on if we 

assume that for an n-:-body reaction there exists an n-l _,body reaction 

which is obtained from it by replacing two of the particles with some 

other communicating particle. 
, . , 

The method we use here, namely the limiting procedure from the. 

massive to the massless case, besides offering a clear pr~of of cl;large 

conservation, opens the possibility of other applications. For example, 

once we know that conservation of charge is not a peculiarity of the 

soft coupling of particles with exactly zero mass, but a result that is 

almost true for small mass particles, we may ask if the approximate;. 

universality of the p-meson is somehow connected with the smallness 

of its mass. The scale of mass, of course, has to be somehow 

established. As indicated in Section IV, we are also considering the 

possible extension of these techniques to diparticle states to discuss 

such problems as the Adler-Weisberger relation for the antisymmetric 

part of amplitudes involving two pions or problems involving lepton 

pairs or currents (eve and PCAC results). In a forthcominglette:r; 

we will present our application of this method to the nonsense coupling 

of two photons to the Pomeranchuck trajectory in Compton scattering. 

.. 

'1 
I 

, . 
! 
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In Section I we consider the problem of charge conservation for 

a strong vertex with spinless particles. In Section II we discuss the 

coupling of zero mass particles of other. spin parity combinations. In 

section III we generalize the proof of the conservation of charge to 

a vertex containing particles with arbitrary spin. Of course in the 

process of the proof we will also give the correct expression for the 

pole terms in the final amplitudes. Also included in this section is 

a discussion of the kinematic singularities and constraints for photo­

production amplitudes in terms of the known results for the p meson. 

These kinematical results have already been discussed by other authors. 

The proof of Section III involves a knowledge of the crossing 

properties of the helicities of a vertex function., Note that in S-matrix 

theory this vertex function is a number (the coupling constant) which 

depends on the external helicities. We discuss this crossing property 

which,besides its importance for our proof, is also useful in comparing 

coupling constants in factorized Reggeresidues which are related by 

the interchange of an internal pole with an external particle. 
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I~ THE ZERO MASS VECTOR'PARTICLE 

In this section we will prove Universality for the couplingof 

a soft vector particle to zeroth order in the mass of that particle. 

Conservation of charge, with charge defined as the cOUplingofa soft 

zero mass photon,' is then a rigorous consequence of ouranalysis~ Since 
, \ 

we always begin With a massive particle and take .the limit of zero ma$S, 

at the last stage of our proof, the main set of ass~tions used here, 

are the analyticity, crossing, and Lorentz invariance conditions usually 

assumed for massive particles. The only extra condition fs an assump-

tion of smoothness as 'the mass of the internal particle is taken to' 

zero. The details of this assumption will be discussed i,n the process 

of the proof. 

We consider a four particle amplitude and defirieour c,hannels 

as 

s vs ~tu' , 

t vt ~su 

u v'll ~ ts 
We have denoted the particles in the initial states and ~he channels 

by the same symbol. We denote the masses of these particles by m.y, 

m. 
u In this section we consider spinless , s,t, ,and u 

particles', so that the physical arguments of our proof are not confuse.d 

with spin complications. In Section III we give the outline of tpe 

proof in the general case. We define the t-channel helicity amplitudes 

~ t and , Met, by 

v 
i 
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and similarly we>.·define , the s- and u-channel amplitudes.5 

Our proof consists of essentially.two parts. For nonzero 

my, the nonsense amplitude M:t.t has no poles att = mt
2• However, 

it does contain the s· and the upoles at s = m s 
2 and u- 2 m , 

u 

through crossing from the s- andu-channel sense' amplitudes. The first 

step of the proof simply consists of writing a representation for the 

kinematic-singularity-free amplitude, ~t, in terms of the s- and 

, u-channel poles. The residues of the poles are normalized, through thEf 

crossing matrix, by the charges of the particles .. sand: .'1' defined 

in the s- and u-channel sense amplitudes. Actually immediately after 

this step we can set my equal to zero and give a simple proof of 

t ·· f h b . 1L t WJ.' th 1L s. conserva ~on 0 c arge y comparlng -l -l We will present 

this simple argument and then proceed to the second step of our originai 

proof. . -t 
This step involves a careful study of the behavior of 1\ as 

my . goes to zero, and besides adding rigour to the discussion may lead 

to insights into such problems as the universality_of the p-meson. 

Our procedure consists of using Lorentz invariance in the form 9f 

threshold and pseudothreshold relations6 (TP relations) to normalize 

- t 2 t Ml near t = fit in terms of the t charge defined in Me. By 

comparing this with the representation of step I we will prove that the 
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sum of the s, t', and u charges (denoted by ,es ' et,ande):: is of 

order ny:, It is important to point out that the comparison o'f the 

charges is made in the nonsense kinematic singularity free amplitude 

- t Ml which does not contain a t-channel pole. Therefore, we never write 

an amplitude as a sum of three poles in all three channels, ~.othat we, 

do not commit any double counting. 

step I 

We define the kinematic factors,~ and :{' e~ 

;1 2 = 2 ' ' '. 2 
[t - (mt + ny) J[t - (mt - nv) ] ' 

(1.1) 
,2 

;;; r t -: (m~ + ~)2][t - (ms - mu)2] , 

and a similar definition of ~, and' ~ '. In Yiriting crossing matrices 

we will use the conventions of Ref. (5) 

The angle Xy is given by, 

cos 

where 

PV(t,s) 
Xy= ;J:J; sin 

, 22' 2 '2 
(s + mv - ms )(t + mv - mt ) 

222 
+ m - mt - m ,) u ' s 

(1.2) 

" • i 

,....,;' 

I 
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1 
and \tI is the Kibble function, with (\tI)"2 defined to be positive in 

'. , 

the. s physical region. The kinematic-singularity-free amplitudes are 

given by 

1 

f\t = (~2 i\t M 
t 1 - t 

o =:J.MO ' (1.4) 

and by,a similar relation ,for thes",:,channelamplitudes;. ' Substituting 

these results in Eq. (1.2) we have, 

= 

The charge of the particle s is defined by 

(1.6) 

where g is the coupling of the s, t, 

vertex (g has the units of mass). The 

and u particles at the other 
221 

constant factor,-i(4ms ," Irly )?, is 

inserted to make our definition of charge the same as .the conventional 

-t one. With the aid of Eq. (1. 5), we obtain the residue of ~ : .. 

2-t ... r:: lim (s - m)M.. = + V 2 g e 
s-"+ m 2 s -l s 

s 

Similarly, from the crossing relation from the u-channel we find7 

For s 

( 
2 - t 

lim u - m )~ 
u-,,+ m 2 . u 

2 near m 
s 

u 

and values of t 

we can write 

such that u is also near 

(1.8) 
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-t 
.1\ = 

s -m s u - m u 

B t 
1 

For the simple version of the proof we set .m" equal to zero at this· 

point and use the same crossing matrix again. In this limit, for 

general sand t, the crossing matrix becomes diagon~l arid we have 

= -(s - m 2)M.. t . s -~ 

We can write a representation similar to that of Eq. (1.9) for the 

s-channel amplitude 

- s 
1\ = 

- s 1\: 

u .- m u 
2 

+ B s 
1 . 

(1.10) 

(1.11) 

By putting Eqs. (1.9), (1.10), and (1.11) together, we find that if g 

is not zero, and as long as the backgrounds are not as singular asa 

pole, we must have 

= 0 

and 

.~, 1: (1.13) 

. 8 
This proves the conservation of charge for a strong vertex,but in 

order to examine the behavior of our amplitudes more carefully we will 

.. 
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now proceed to the second step of our original proof (this latter· 

technique is the one we generalize to the discussion of the conservation 

of charge for vertices with arbitrary spin). 

step II 

For the purposes of this discussion it is best to derive the 

TP relations from s,t crossing. From the . inverse of Eq. (1.2) we 

can write 

- s +1 . ( - t ... r:.- t . 
~ = ~? [p V s, t ) ~ - 2 V 2 ~ .. 4l 1\ ] 

(1.15) 

- s 
1\ 

t t [ . (. )2 +] ..-1. 2 A hreshold and pseudothreshold t = mt ± ~ = t- , vel becomes 

infinite and we must have 

= (L16) \ 

The identity 

(1.17) 

ensures that both relations in Eq. (1.15) lead to ,Eq. (1.16). The 

charge of t is defined in the same way as the sand u charges 

11m (t - m 2) M t 
2 t 0 

t~m 
t 

= 2·2J~ -
- i ( 4m ~ m.. )2 g e 

t v t 
(1.18) 
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Using the definition of the kinematic singularity freeamplHudes, . 

Eq. (1.4), we have, 

= (1.19) 

- t . 2 
In order to normalize the value of Mi· (s,mt ) in terms of et and 

then compare the result with the representation of step I, we substi-

tute Eq. (1.19) in the TP relations of Eq. (-1.16). We will be concerned' 

with the region of t between t + and t . . This interval is of 

order my. Our smoothness conditions consist of assuming that as my 

. goes to zero, et is bounded.and that the quantities 

BO(S,t+) - BO(S,t-) . and ~(s,t+) - ~(s,t-) are of order €(my), 

where €(my) denotes any quantity that goes to zero as .' my is taken 

to zero.9 Note that although these assumptions may seem plausible, a 

rigorous proof of them in S-matrix theory would entail a close examina-

tion of the unitarity condition. We have not addressed ourselves to 

such a problem in this paper.' 

Substituting Eq. 

= 

= 

(1.19) in Eq. (1.16), and using 
/ 

ms
2 ) + o(m,/), we obtain 

By adding and subtracting the relations at + t and t 

. aid of the assumptions mentioned above. wlefirid'that.'for 

the fact that 

.(1. 20) 

and with the It 

I 
I 
, 
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, (1.21) 

and 

. 2 - t ... r;:; ( ) (s - mS ). ~ (S, t) = - V 2 et g +€ ~ .• (1.22) 

- t . 2 
Note that ~ (s,t) . and BO(S,t) have poles at s == ms and 

u = m 2, hence it is convenient to consider a function f(s,t) 
u 

defined by 

f(s,t) = 

In terms of this function Eq.(1.22) at t = mt 
2

, with the help of 

2 222 
the identity (u - mu ) = -(s - ms ) - (t -mt )- ~ )' now becomes 

This expression is a partial expansion in (s- ms
2

) and ~ 
2 

that can be continued to any value of 5, inc.luding s = ms and 

2 
u = m . A fuller expansion would explicitly introduce the s 

u 

dependence in E(~), 

Illy dependence in . e
t

. 

From the representation of , step I, Eq. (1.9), we obtain 

another expansion 

. 2 
f(s ,mt ) . ,= -V2 g e (s - m 2) ~ -{2 g e (s _ m 2) 

u s s s· 
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Comparing Eqso (1.24) and (1.25) we conclude that if' g is nonzero, 

the quantity (es + et + e)' is of' order e(nv) so that the small 

mass vector particle couples approximately to a conserved quantity. 

Note that by comparing the coef'f'icients of' (s - m 2)2 in the , s, 

two representations we have shown that 2 = mt ) goes to zero as 

nv goes to zero. Theref'ore in this limit, 

-t t 2 2 
Bl (s,t) iii Bl (s,t)/(t- mt ) has no pole at t = mt . The full 

helicity amplitude M:J. can then be written as 

M:J.t = -y; (f g es ....f2 g eu) - t ' , 
2 2 - ,2 + "Vi Bl ( s J t ) 

t - m s - m , u - m t ,'s u , " 

(1.26) 

Using charge conservation we f'ind the residue of' the t-pole is" 

il/2 mt g 'eto Hence the existence of the pole now depends on whether 

the quantum numbers of' the t-channel allow the 'existence of' the t-pole 

in the sense amP~itude before nv is taken to zero. In this sense the 

t Born term of M:J. now has the charact,eristics ofa dynamical pole; 

• i 
I 

r~l: 

I 
I 

I 

, i 
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II. MASSLESS PARTICLE OF GENERAL SPIN AND PARITY 

In this section we will prove that the coupling of a soft 

massless 2+ particle, denoted ~y G, to a spin zero particle is 

proportional to the rest mass of that particle. We will also discuss 

the case of other spin parity combinations. We define our channels 

and the kinematic factors in the same way as in Section I. We still. 

confine ourselves to spinless s, t, u particles. The proof we will 

discuss here will be analogous to the one at the end of step I of 

the previous section. The amplitudes under consideration are ~, 

where A refers to the helici ty of the 2+ particle and parity gives, ' 

M_>-.. = (_l)A~, The kinematic':"singularity-free amplitudes are given ,­

by 

~t = (2.1) 

and by lsimilar:: definitions. for ,the;, s and u-channels. The -couplings of 

the 
+. , -

2 particle are again defined in the sense amplitudes of the 

respective channels by 

(2.2) 

As in the previous section, the bar denotes :,the:coupling' to the 

antiparticle. After definingfand f in a similar way, we can s u 

use the crossing matrix to obtain the residue of the sand u poles 
;;;,..t 

of M2 . We find 
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1 f g . 2 - t -¥- s 
(s - mS ) ~ . = m 

''''I s 
I 

(2.3) f 

1 IJ 
2 - t -¥- f g 

u I . (u - m ) ~ = u m u 

We can 'thus write the following representation for -t 
~ when s and 

2 2 (t 2 u are near m and m respectively is near mt ) 
s U 

: 1 f g . 1-

- t ;~ s 1 (6t~ :sg 1 t· '(2'~4) ~ = 2 2 + B . 
m s s· - m u u - m s u 

Repeating the same procedure for - s 
~ we find 

1 ftg' 1 f g - s _ (6)'2 1. ¥ u 1 BS (2.5) ~ = + . 4 rnt t - m 
2 m ,2 

u u -m. .. t u 

If we now put ,rnG = 0 . the crossing relation reduces to 

. (2.6) . 

substituting Eqs. (2.4) and (2.5) in Eq. (2.6) we find for the pole terms 

(2.7) 



This equation is satisfied if 

f s 
m 
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(2.8) 

Note that we have found the same sign for the coupling of the 2+ 

to spinless particles and antiparticles. If the zero mass particle 

has spin higher than 2, and natural J-parity,the kinematic singu-

larities are given by (s,t,u spinless) 

:::;: 
-t 
~ 

In the equation analogous to Eq. (2.7) there Will be .terms proportionai 

to 2 J-I· 2 
f (s - m) (t - mt ) s s 

- (. 2)J-I ( 2 and f't t - fit s - ms) which can 

not be matched. Therefore, the soft couplings of zero mass particles 

with spin higher than 2 must vanish. 

If' the zero mass particle has unnatural parity then its coupling 

to spinless particles is zero due to conservation of angular momentum 

and parity. We studied these couplings to particles with spin with 

the techniques introduced in Section III. One can prove,f'or ~xample, 

that all the soft couplings of an axial vector zero mass particle must 

vanish. We can extend this result to all unnatural parity particles 

except the 0-. 
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. III. CHARGE CONSERVATION FOR ARBITRARY SPIN 

Here we generalize the discussion of charge conservation to . 

particles of arbitrary spin and parity at the strong vertex. Only an 

outline of the proof is given, since it closely parallels the discussion 

of Section I for spinless particles. However, enough of the formalism 

is given to indicate the essential differences. In addition to the 

proof, this formalism provides a complete solution to the problem of 

kinematic singularities and gauge invariance for the.four particle photo-

production amplitudes in terms of the known results for massive 

particles~,6 With this fo~malixm it is easy to translate the standard 

kinematic singularities, conspiracy relations and TP relations for 

helicity amplitudes with a massive rho into results for the helicity 

1 
amplitudes of photoproduction. Also we note a useful crossing rela- , 

tion between coupling constants for helicity amplitudes. This relates 

the sense couplings at a vertex to the sense couplings resulting from 

the interchange of the internal pole with one external particle •. 

To the particles s,t and u of Section I, we now assign the 
/ 

. spins J s ' J t and Ju and the parities 'l) , 'l)t and 'l) . s .u The t-channel . 

helicity amplitudes are related to the kinematical singularity free 

amplitude~ 

(1 -z ) t 

IA.-I.d 
2 

+ K-(t) F'A- A. .A. 'A-_(s,t)} , 
. :\.1 s' t·-V 
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where, for nonzero my, the kinematic singularities are 

2 p-t . 2 q± 
[t - (m + m ) ] .. [t - (m - m ) ] u sus 

In the case of all unequal masses I- = IAI + III I, .,', 

+ q- = [1 

€ = (m - m ) / Im- m I, and ~ su u sus 

. € (J -J )-v 
- ( ) su us· + ~~ ~ - ]/2 s u 

= ~t (-) 
J -v t 

(3. 2 ) . 

with 

The rule for modifying the kinematics in the limit my ~O is very 
1 

simple. The half angle factors . (1 ± Zt)' the factors of (t)2 and 

2 I 

[t - (m ± m ) ] are not affected at all by the limit. Als~ the u s 

conspiracy relations at t = 0, and the TP relations at the massive 

particle vertex at t = (m ± m)2 carryover without any changes, us· 

since they only relate amplitudes with the same value of ~. and Av' 
As we will see,in the process of the proof, all the factors of l/~ 

2 go over into kinematical factors of l/(t - mt ),except one factor of 

l/fj, in '·K~ (t),; .. which. becomes a dynamical pole if such a pole is 

permitted.by the conservation laws. ,The ... resultant TP: relations 

at t = mt
2 will be indicated at the end of this section. 

As in Section I, we must first define the charges in all the 

sense ampl'itudes. 

appropriate parity 

We do this through the partial wave amplitudes of 
Jt-v 

~ = ~t(-) (v = ~ forfermions) by the limit: 

1 
" , I 
t 
~ 
!. 
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k 
The phase (-i) t is chosen so that the pole's contribution is in 

-+ 
accord with the real analyticity of F-. From the partial wave expression . 

'. k +1· . 

) 
t . 

we see that the phase of (-i. must be the phase of 

2 
at t = ~ . With the above definition of charge, 

we can write the sense helici ty amplitudes as a pole plus a smooth 

background in the neighborhood of 

. If...-ul ~ 
(1 - Zt)~(l + Zt) . _ . . . 

-. C!n ·Jt+l-m BA f... t.. ~_(s,t) • 
(<,I ) "U s; t· -y . 

+ .... 

Similar expressions hold in the s and u-channel. Note that as 

t -.t.±, Zt -. [2 ~2(s -ms
2

) + o(m./)J/:J::J', so that both the pole 

term and the background have explicitly exhibited the proper kinematical 

J +1 + 
singulari ty of 1/(-:;)) t at t = t~. The more distant singularities 

in t have not been ma~e explicit, since they do not affect our 
\ . 

. , 

~": 
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discussion. It will be useful to express the function dA.Jl(Z) by 

the equation, 

T 

so that expansions can be made when t -+ t ±' The u-matrices are the 

uni tary, symmetric;> transformations from helici ty to transversi ty given 

by 

= 
-iA.~ n 

e 2 dJ (~) h-
A.'t" 2 e 2 (3.8) 

As in step,<.IL.of. the·;spinless~, .. casei:.':we '~find :!the value. of :the,nonsense 

amplitude ~ , in terms of the charges for the sense amplitude 
"uA.s ;Jt,-l 

by the use of TP relations. With the help of Eq. (3.7), we rewrite 

the crossing relation of Ref":5 in the'form ~", " 
", "0 • 

, 

where all the factors that are not singular at t' = t± are in 

F (S,t;A A. ) 
't"t'"'V ''U s . 

= >-V * . * (-) uA! ux-'_ 
. '''C'"'t '-y't"V 

x ·(3;10) 
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. +iXt't't 
By expressing the singular terms e 

neighborhood of 
+ 

t '" t-:, - . 

2 and s = m s 

we can easily derive the TP relations, 

as 

and 

, 

.. (,,;tn
t
2(s- ms 2)'{t 

= u~-Jt u\r±l \.. J<::5 I -; (4'\r)F_Jt±l 

(3·12) 

By taking ratios of the above relations for various values of ~ and 

Av' and substituting for the sense amplitudes their expression in terms 

of the pole plus ba'ckground tEq. (3.6)], several important results are 

obtained. We show (a) that the ~ackground for the helicity zero ampli-

tudes goes to zero as we take '\r to zero and also (b) that there is 

only one soft photon coupling et in the limit '\r~o. 

(a) B)., f,. 'f,. o(s,t :.: int
2 ) re €('\r): This is proved by taking 

'u s' t 

the ratio of to the nonsense amplitude 

Jt+l t. + .... r:: -:J ~ f,. 'J -1 at t = t-:-, Using .,theaelation _ UO±lJuifl = ±i V 2 , 
u s' t 

we eliminate the pole/term; ·as::in the spin·less. examp'le,·:toobtain: 

-. ,: ,',' 

\Ii 
I 

I 
I 
1 
I 
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J +1 ' 
(+)' (t-) , ~ t M ", 'I BXUA.

s 
' A.tot, ,,+ BA.UA.s' ,A.tO ",' oc , -A A. ; J t , -1 

, ' , '. " us" t+ 

Jt+l ',' ' , 

:1 M).. A. 'J -11 ' u s' t! -t. 

The ass,ump;tion qfsmoo'jjhness for:;tpe',nonsense amplitude gives our result . 

(b) 

.. ",\.) ,; ... ' ,', 

By using the ratio of 

t = t± and result (a), one 

shows that all zero helicity photon couplings are the same. For 

A..y' = ±l one t,akes the ratio of to 

for threshold and pseudothreshold. Between these equations 

B (s t) can be eliminated to z,eroth order in ~_ to obtain 
A A. 'A. ±l ' V 
'1.1. s' t 

at 

Finally, we can normalize the nonsense amplitude 

-t 
~ Ii. ;Jt,-l u s 

t = t ± by taking its ratio to a sense amplitude '~ , and 
"'uA.s ;A.tO 

using the above results. To zeroth order in ny, we obtain 
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= -

which for the spinless case reduces exactly to the result of Section I, 

Eq. (1. 20). 

To complete the proof we use a representation for the nonsense 

aMplitude similar to the one of Step:I:; :'-, Eq. (1.9), for thespinless 

case: 

-:t 
~- A'J _l(s,t) 
"us't' ',' 

r (t) 
= ---.;s;:;"-'-:::"2 + 

S - m s 

The residues r (t) s 
are determined through crossing. Since 

rs(t) and ru(t) are analytic for t ~ mt
2

, they can be expanded, 

and r (t) , u 

2' 2 
and only the first term rs(mt ) and rt(mt ,) 'enter into the proof. 

To demonstrate the procedure,we will find r s (nit
2

). 

By looking at the residues of the s-pole at 2 
t = mt ' the 

crossing matrix becomes especially simple. Furthermore, Zt and Zs 

go to zero at this point. Hence we have 

1 2 2 ks J ' 
d

AV
-l [-)C(ms ,mt ,)] -21ms (-1) gS eS d S (_21) 

V A'A ' A'~~ A'-A' A'~~' 2 u t S'-V S V"-Ut 

. , 

fl 
I 
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Now using TP relations in the s-channel we obtain 

= 0. '0 e + E(~.). This .relation and the special properties 
~ s v 

of the d-function at . 0 and n/2 allow all the sums to be done and 

lead to the following equation, 

itJ +Jt-J 
(-i) s (_) s u 

k k 
With the obeservation that (-i) t/(_i) s is real and that 

= 
J -A 

( ) 
u u s 

± - . gA A-A 
. 11' u s 

, 

we have the desired result up to an undetermined sign. 

The last ingredient to this outline [Eq. (3.18)] can easily be 

understood by considering the coupling constant ·t 
gAt. A' 

. 11' S 
as the on-

mass shell vertex function (~p~'A~P~ I AiP,P, (pi = P~ + p~, Ai = ~ - A~)' 

The coupling constant t 

g'\i"~ 
is defined in the rest frame of particle 

't, or equivalently the center-of-mass frame of u and s,if t is 

a resonance. With p' taken along the positive z-axis, A' is the ",u .""t 

z-component of spin for particle t. To cross this function, we first 

boost all particles along the positive z-axis until we get to the 
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rest frame of particle "s(laboratory frame} . The z-component of spin 

is not effected by the boost,- so in the new frame (d~noted by double 

prime) x." = ;>...' 
"11 u' ;>"'t = A..t, and the z:,"componentbf. spin for ',s is'-;>",' • , s' 

Now we cross the particles sand t to sand ,t. In order to 

conserve the z-component of spin both before and after crossing, the 

z-component must flip for either the s and t particles or the u 

particle. 
s· " 

g~;>"'t The resultant coupling is (up to a real phase) with 

~ = ±~ and, ~ = ±;>"'t = ±(~ - ;>"'s)" Note that these two couplings 

have the 'same magnitude if parity is conserved. 

In addition to the TP relations used in the above proof, there 

, are the derivative relations, obtained by expanding the right side of 

E ( 12) t h · h d . (t - t±). th h t th q. 3. 0 ~g er or ers ~nFor e p 0 on, ese 

additional relations survive at 2 t = mt and are responsible for. 

2J 
eliminating the kinematical factors of l/(t - fit 2), t from the 

survives. In terms of the amplitudes 

"dynamica.l pole" at t = mt
2 

2 J t t." . 
(t - mt ) ~-;>... ;>... A-_ (s, t) 

~ s' t"-y 

unpolarized cross section so only the 

that contain only dynamical poles the new TP relations are given ,'by 

This completes the description of the kinematical constraints 

discussed earlier in this section for the photoproduction amplitudes. 
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IV. OTHER APPLICATIONS 

Before we discuss the possibility of other applications of this 

metho~we should again emphasize that the assumed behavior of amplitudes 

in the external mass, which is so essential to our proof, needs a careful 

examination in itself. As the mass of an external particle goes to zero, 

an infinite number of branch points approach the point 2 
s '= m , s 

As mentioned befor~a'knowledge of the behavior of the amplitude in this 

limit, probably ,entails a detailed examination of theunitarity condition. ' 

A very interesting question that arises in this connection is the relation 

of the strength of the coupling to this behavior. We have to find out 

whether our smoothness assumptions hold only for special cases of small 

couplings such as electrodynamics, or whether they are, also true when ,the small 

mass particle participates in strong interactions. If this latter 

alternative is true, we can proceed and examine some of the applications 

of this method to strongly interacting particles'. 

The first application concerns the problem of p-universalit:y. 

Usually, p universality is proved with the aid of the concept of­

p-dominance in, for example, the electromagnetic form factor. It is, 

possible that our method may be used to deduce some approximate 

universality without the use of p dominance., Note that one can 

easily generalize the mechanics of our prdof of charge conservation to 

the case o'f couplings involving isospin or other symmetries. This 

problem of p universality and the related problem of its application 

to Compton scattering is now being investigated. We should not expect 

p universality to be very accurate due to the long extrapolation in the 

mass of the p. 
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Another interesting set of problems may be the application of 

this method to the scattering of pions off other particles or the coupling 

of currents in weak interactions. In the proof of this paper, we used a 

four-body amplitude in.-which the small mass particle was 'one of the 

external lines. The question arises whether we can substitute, for example, 

the external -vector particle with a p-wave, 101 channel. If this, can 

be done, we can then prove results such as the Adler-Weisberger relation', 

for the antisymmetric part of 1(1( amplitudes. More promising perhaps is 

the application to weak interactions, since the coupling is small and 

local. ,However, we feel that. in order to make rigorous statements about 

these problems, a careful study of the five line connected part and the 

related questions of TP relations for subenergies is needed. Such a 

study may also lead to other results associated with current algebra, 

PCAC, and the smallness. of certain masses. 

, " 

,<Ii 

f 
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be tolerated except a simple pole at 2 and t = mt 
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