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" ZERO- MASS BOSONS IN S-MATRIX THEORY*"w
Farzam Arbabt and Richard C. Brower
Lawrence Radiation Laboratory

University of California
Berkeley, California

August 29, 1968

ABSTRACT
Here we describe‘the soft coupling df Zero mass bosonsbto other
particles, by considering the limit of a theory with & mgssive boson.:
With the standard S-matrix assumptions of analyticity and cfossingvfor_
four body helicity amplitudes, we demonstrate_generallyIthaf iﬁ the_ 
limit of zero mass, a vector boson (17) couples to a consgrvedvéharge_fi -
and a 2% boson couples to the inertial mass. Bosons of other spiﬁ-”'v

parity combinations (with the exception of zero spin) have no zero

. mass, soft coupling. With this technique, we not only give a pedagogi-

cally interesting solution to gauge invariance and kinematics of Zero
mass particles, but suggest new applications to small mass integral'x':'
spin systems. We speculate on the applicationvof this fechniquevto
such problems as p universality, the A@ler-Weisberger relation.éﬁd. 
the universality of leptonic couplings inra vector or axiai vector -

state.

T Permanent Address: Brookhaven National Laboratory, Uptbn,'Long

Island, New York 11973
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INTRODUCTION

Recgntly several a.uthorsl havé studied‘tﬁé question of gaﬁgev
invariance and zero-mass particles in S-matrix theory, and the related
subject of smali-mass mesons has also attracted some attention.2 There
exist two essentially distinct methods for the examination of the‘
S-matrix theory of massless particles. One approach uses iepo mass .
particles from the beginning aqd entails the construction of cerféin“
amplitudeé with the aid of the polarizatioh four vector of the_zefo mass
particle. The assumptions of Lorentz invafiance, analfticity and -
crossing are then introduced for these amplitudes. 1In this_approachifhé
principle of gauge invariance, . invariance under the addition of‘fhé
light-like momentum vector to the polarization four vector, is expligitly
utilized. However, since it has been shown by Weinberg and.Zwanziger < *
that gauge invariance is a consequence of Lorentz invariance'fér}iérb
mass particles,3 no new principle has in fact been intioduced. »This-'
method has further been used by Weinberg to prove certainlpfoperties of
the couplings of zer§ mas; particles, such as conservation of ¢hargeﬁ
and the equivalence principle.

In the second approach, which is the approach of this papef,_

one begins with the helicity amplitudes for massive particles and

~derives the zero mass results by studying the limit of the amplitudgé -

’

as one of the external masses is taken to zero. As we will showfin;
this paper, this limiting process leads to all the results derived from
gauge invariance. Furthermore,this approach may have the advantage of

being more readily extended to the study of small-mass particles,'or_ "
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pairs of particles dn a state of integer spin end low mass, such as the
J =1 gan state or the lepton pairs fevt andvtpv,;dAs far as.thevti":'
zero-mass limit offhe;icity amplitudes is concerned threevnoints.hgve
to be considered. We may demonstrate these-points for the.nhoton.in?
the following way. ' | | ”

For & zero-mass vector particle, thestateswrth hellclty tl
are completely decoupled from the zero-helicity state._ That 1s, there
is no Lorentz transformation (parity 1ncluded) whlch mlxes the B
two types of states. The photon occurs 1n the states with hellc1ty tl.
However, there are as yet no proofs which would rule out the existence o
of a zero-helicity, zero-mass particle. If such a particle'exiStedvin'
nature, it would behave like a spin zero particle and would not have to
be connected with the photon. Therefore, when the theory of photons is
derived as the limit of a theory of massive vector particles nothing
needs to be proved about the final behavior of the zero-hellclty ampli-
tude (denoted hy Mb). Although Mb pleys an im@ortsnt role hefore |
the final limit is taken, at the end we are’interested in_the.behavior]
of the amplitudes Mil'. | | .".

The second question to be considered is the flnal form of the
pole terms corresponding , to the external particles (hereafter 31mply‘
referred to as pole terms) for the helicity -_l amplltuaes Although'
this question is well answered in the framework of perturbation theory,'

w1t has caused some confusion in the S-matrix approach. If one works

/7 ! with zero -mass particles to begin with, then the pole»terms~from the

§ . .
E three channels of a four-body amplitude with one zero-mass particle.all

-




DU -~ ucRn-18M36

occur at the same péiﬁt; Without the_uée'of_pertﬁrbétion'théor&s i#l}{ '”
is not clear how these thfee poles should.be represented; ' On the |
other hand, if one starts with the massive case, the t-channel nonéénsé‘émpli-
tudes do not contain é t-channel pole, However, theré.is a‘kinématic
singularity which in the limit of zero mass beéomes a pole:denominator.v
The problém of gauge invariance ihvolves the ﬁormalization of the
residue of this pole. Moreover, one has to show that in the'iimit of
zero mass, this kinematic singularity has the chafacteristiés-of a:
dynamical pole. This means that the pole only occurs when the Quantum.
numbers of the t-channel agree with those of the pértiéle under»coﬁéid-\
eration. For example, if one uses the Regge languagé, one has to show
that the pole denominator multiplies only the Regge pole chresponding. -
to the partiéle-in quesfion and does not ocecur iﬁ the dthef Regge | |
cont:z‘ibutions.)’L .(As_a kinematic singularity, before thé mass is taken 8
to zero, this factor does ﬁultiply the ‘entire amplitude.) The probiem
of kinematic singularitieé has salready been studied by other‘authors.l’S.'
The next property of zero mass particles ﬁo'be consideréd is
the conditions on their couplings to other particles. These aié thg‘
conditions we ﬁill be mostly concerned with in this péper.- Using ﬁhé“
properties of helicity amplitudes in.the massive caseband the extfé‘r

assumption of the smoothness in the external mass (discuséedf;j' 8

" in detail in Section I), we will demonstrate how, to zeroth order in its

mass, a soft vector particle couples to a conserved quantity;> We will
also show that a soft, zero mass ot particle has to couple to-fhe

inertial mass, and that massless particles of spin higher than 2, or a
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massless éxial vector partiéle, ha#évno soft coupliné; We ha&e,not:“
been able to prove any results for the coupling of zero.ﬁasslspiniéss :‘
particles, except the existence of only'ohe soft.cbuplipg(iﬁdependénti.'
of helicities) to particles with spin. . |

In the case of the coupling of a vector'particle,we pr§Veﬂ

conservation of charge for a strong three particle vertex,f4COn$ervation_

of charge for any amplitude'can then be proved by induct;oh if we’.

assume that for an n-<body reaction there exists an n-1l _body reaction.

which is obtained from it by replacing two of the particlgﬁ‘withISQﬁe'gf

other communicating particle. -

The method we use here, namely the limiting proééduié ftdm”théi B

’

massive to the massless case, besides offering a_ciear prqbf.of,chgfgg'
conservation, opens the possibility of other applications. 'Forvexéﬁ?le,

once we know that conservation of charge is not a péculiérify‘of the

soft coupling of particles with exactly zero mass, but a rgSult that is_

almost true for small mass particles, we may ask if fbé_aﬁpréximatéi
universality of the p-meson is somehow connected with fhevsmallhéssf
of its mass. The scale of mass, of course, has to be sg@éhow B |
established. As indicated in Section IV, we are glsovconsideiing:ﬁhg’
possible extension of these techniques to diparticle’statesftq'diécﬁéé

such problems as the Adler-Weisberger relation. for the-antisymmeffic

part of amplitudesvinvolving two pions or problems involviqg leptoA_  v

pairs or currents (CVC and PCAC results). In'a forthcoming,lette;;ff
we will present our application of this method to the nonSense:COupling

of two photons to the Pomeranchuck trajectory in Compton Scaﬁtering.';i
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In Section I we consider the probleﬁfof:charge'COnservation for

a strong vertex with spinless particles. - In Section II we discuss the '

coupling of Zero mass particles of other. spin parity combinations. In

Section IIT we generalize the proof 6f the conservation of charge to
a8 vertex containing‘particles with arbitrary spin. 0Of course in thé
process of the proof we will also give the correct expression for the
pole terms in the final amplitudes. Also included in this section ‘is
a discuséion of the kinematic singularities and constraints for photo-

production ampiitudes in terms of the known results for the p meson.

- These kinematical results have alfeady been discussed by other authors.

The proof of Section IIT invoives a knowledge.of the crossing
préperties of the helicities of a vertex funétion.hnNotétthat in‘sématfix
theory this yerﬁex function ig a number (the Qéupling constant) which
depends on the external helicities. We discuss thisvcrossing propefty
which,besideé its importance fof our proof, is also useful in compariné
coupling constants in factorized Regge residues which are related by

the interchange of an iﬁternal pole with an external particle.
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I. THE ZERO MASS VECTOR PARTICIE

In this section we will prove universality fér”thgfcoupiiﬁg;of‘:

a soft vector particle to zeroth order in the mass .of that particlé;'”»ﬁ

Conservation df charge, with charge defined as the.cqupling*ong sqft 
zero mass photon, is thén a rigorous conseguence of_éhrfag§iysié,. Since
we always begin with a maééivé particl; and take,the.ii@if of zerdiﬁass:
atithe last stage of our proof, the main éef of aséumptibné uséd hefel
are the analyticity, crossing, and Lorentz invariancé céﬁdiﬁionsnﬁsuélly
assumed for méssive particles. The only extfa cohdition,fs én‘aSSﬁmp;.“
tion of'smobthness as'thé mass of the internal'pérticlefié%takén'fﬁ‘:.
zero. The details 6f this assumpfion will bg diécuSéedtin ﬁhe ?roéess

of the proof.

We consider a four particle amplitude and defiﬂe“our éhgnﬁélsf,,'

as
s : Vs »tu ,
t : Vt »su ,

u: Vu -ts

We have denoted the particles in the initial states'énd-the”éhannels*;.'

by the same symbol. We denote the masses of thesefparticieS-by M5
m, m; and m . In this section we consider spinless fs,.ﬁ;bqn¢;lu'f'-
particles, so that the physical arguments of our proof are ﬁét confused

with spin complications. In Section IIT we give the Qﬁtlineidf'tpe:'

t

M1 and \Mot, by

proof in the general case. We define the t-channel‘helicity aMplitu&es‘v

——— X
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t t I T
o= MbO;Ol ""-Mbo;o-l”
t t
My” = Mo0500
and similarly weﬁidéfiﬂe 7o the s- ahd uQchannel amplitudes._5

Qur proof consists of essentially.tﬁp parts. ‘Forvr nonzero
Iy the nonsense amélitude Mit has no poles at t = mte. Howgver,
it does contain the s and the u-poles at‘ s = mse and u = mug, |
through crossing from the s- and u-channel Sehse’aﬁplitudés. The first
step‘of the{proof simply consists of'wfiting a representatioh fo? the
kinematic-Singularity-free amplitude, ﬁit, in terms of the s- and  o
u-channel poles. The residues of the pdles are horma}iéed, through'thé’
crossihg matrix, by the charges of thé particlés“ s; ahdg,ﬁ, Aefinéd' 

in the s- and u-channel sense amplitudes. Actually immediately after .

this step we can set my equal to zero and give a simple proof of

conservation of chargé by comparing ﬁit with ﬁis. We will present”.

~this simple argument and then proceed to the second step of our original

proof. This step involves a careful study of the behavior of ﬁlt as
m, goes to zero, and besides adding rigour to the discgssion mﬁy'lead
to.insighﬁs into such problems as the universalify_of the-.p—meson.a
Our procedure consists of using'Lorentz invariance in the form.qf

threshold and pseudothreshold relations6 (TP relations) to normalize

=1 2 et

M1 near t = my in terms of the t charge defined in Mb . By . :

comparing this with the representation of Step I we will prove that the
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sum of the s, %, and U charges (denotedaby'fes,1E%;;ahdgzﬁ):'is'of ";
ordér.‘mvl.' It is important to pointvouf'thaf the comparison of the.'

charges is made in the nonsense kinematic singularity freéfamplitudé

ﬁit which does not contain a t-channel pole. Therefore, we never wrltev _‘

an amplltude as a sum of three poles in all three channels, so that we |

do not commit any double counting.
Step I

We define the kinematic factors 'Y and ;7" ar

:7 2

‘.[t ‘_ (mt + mv)z][t '_ '(mt _ mv)2]

v‘2 '

7

Tt (m, )20 - (o - m )2,

and s similar definition of & and _'. In writing crossing matrices

. we will use the conventions of Ref. (5)

3o, HON :Z( = dx x( Xv) 003 ox R ke

}\'Y
The angle X, is given by, !
B (s,) 2mv(°)2 T as
cos X, = v, :7 "3 sin Xy = x! 37 _2;   ~__ :Kl.?)
where

| vPV(t,s) = j(s + mv2 - mse)(t.+ mv2 f ﬁt2)

' - - 2 2
. ooy (e em e

(1’;1)"'
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and ¢ is the Kibble function, with (0)? dJdefined to be positive in

the .s physical region. The kinematic-singﬁlarity—free amblitudes are

given by

t. . (0 H =t t 1=t o
Ml = Ml MO = 3—' MO Y (l°h)
and by:a similar relation for the-s-channel -amplitudes. - Substituting

these results in Eq. (1.2) we have,

b '_;!%E[\/Emvﬁohpv(s,t)ﬁlsj )

The charge of the particle s is defined by

. o s ‘_ - 'h 2_ 2,1 . R
lim ’2(8 m )Mb = =if m So-m )2 g e, | .(136)
S->m
s
where g 1is the coupling of the s, f,_and u partiéles at the other
. L
vertex (g has the units of mass). The constant factor, pi(hmse.- mve)?,'is
inserted to make our definition of charge the same as the conventional
one. With the aid of Eq. (1.5), we obtain the residue of~’ﬁlt

lim (s - m )M1 = /2 ge, - . (r.7)

s m
s
Similarly, from the crossing relation from the u-channel we find7

lim 2(u -.@ug)ﬁit = -\/E- g gu . | (1.8)

Uu-—- m
u

For s near ms2 and values of t such that u is also near mu2,

we can write
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2
.8 =m , u -m
s o u

1

- % - '\./I—Q-g‘es--_.."\/_-?fg'é'u: - ’c.
Moo= 2

For the simple vergion of the proof we set mv"equal to ‘zero ét fhis._' ‘

point and use the same crossing matrix again. In this limit, for

general s and t, the crossing matrix becoméé‘diagonél_and‘we havé'z"

L emPRS - -e-mPRE . @ao)

We can write a_repreéentatién similar to thét of Eq. (1.9) forjthé f

s=-channel amplitude ﬁisz

2
t_-mt . u..-vmu.

By putting Egs. (1.9), (1.10), and (1.11) together, we find that if g

is not zerb, and as long as the backgrounds are not as siﬁgular as»éz'; »

pole, we must have

e +e, +e = 0 ' Lo S ,(1;12)-"

and

i

Blt(s,t) - 0, . - as  t —>m

This proves the conservation of charge for a strong'ﬁértexglbut inf:)

order to examine the behavior of our amplitudes more caréfuliy we will

woBt | 1(1.9?  :'.
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now.proceed'ﬁb thevsecpnd_step of-our.ofigiﬁai/prgdf'<thi§latter-
technique is thg ohe we generalizé to the disqﬁssiéﬁ of the conservatiph.
of charge fdr vertices withvarbitrary épin). :
Step IT |

For the purposes of this discuésion it:is bést to derive thé ‘
TP relations from s,t crossing. From>the.invérée of Eq, (1L.2) we

can write ' ‘ . ' : : .

2 ey (5,60, - 2VE m, 0 "]
; S ’ - (1.19)

=

AR

At threshold and pseudothreshold [t ='(m£ + mv)2»= ti] ,*':jg becomes

infinite and we must have

. =2 S : c '
M %(s,t%) = ;_———m";-ﬁot(s',tf) L (rae)
PV(s,t”) o ' : ’
The identity
(s, = %% -umfo  qam

ensures that both relations in Eq. (1.15) lead to Eq. (1.16). The

charge of T is defined in the same way as the s and U charges

2 t 2 ... 23X | .

1im t - m M = =1(k - 2 1.
2( ) ( m, ,mV )2 g e, - _(l 18)

t-—amt t 0

-
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Using the definition of the klnematic singularlty free amplitudes,

Eq. (1. h), we have,

: (4 m - g e : L S R
_ﬁbt m& + By(s,t) . - -  (1.19)
t - mt S ’ S

In order to normaliée the value of ﬁi#(e,mtz) in'terﬁsvof .E£ end_-
then cOmpafe the result wifh the_repreeentatioh'of'StepeI, we sobstif
tute:Eq. (1.19) in the TP relations of qu'(l.16). We ﬁill.be coneerned:,
with the region of .t between t° .and f+. hThis'interﬁel is ofv_ ‘

order mV. Our smoothness conditions consist of assuming_that as mV'

goes to zero, e, is bounded and that the quantltles

t

B, (s't+) - E"(s t-) ~and Ml(s £*) -_Mi(s t7) are of order e(hv),

where e(mv) denotes any quantity that goes to zZero as- mvf is taken:
9

to zero.” Note that. although these assumptlons may seem plaus1ble,» ;fh,:' : o
rigorous proof of them in S-matrix theory would entail a close examina- . |
tion of the unitarity condition. We have not é&dressed'ourSelves.ho'~:_ o v 1
such a problem in this paper. | :

Substituting Eq. (1.19) in Eq. (1.16), and using the fact that o N

P(s,ti)v = 2 m, mt(s —.mse) + O(mVE), we obtain o ._'; 'h . ’ ;'

(Sh; mSE) Mit(s;ti) = ‘-\/§‘E£ g I R7;%5;,]30.(8,ti) N O(mv) ; (l’2¢)f

By adding and subtracting the relations st t' and t~ and with the . . 4

- aid of the assumptions mentioned above. we:find 'that~for 1T < e gt
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3 : Bo(s,t)g = ﬂe(mv) o, o i_:':;‘iA. (1_21)
S . K (s - 2 ) M “(s,t) v=‘_-\/§' e, & + €(my). (1.22)
. % _ ' _ 2
Note that M, (s,t) - and Bo(s,t) have poles at s =m "~ and

u = mug, hence it is convenient to consider a function f(s,t)

defined by
2(s,8) = (s -n ) -0 Fls,t) . (1.23)

In terms of this function Eq. (1.22) at t = m ", with the help of

. . 2y 2 o2y . 2 .
the 1dent1ﬁy\ (u - m ) = -(s - m ) - (t - m, ) - m,~ ; now becomes

o2 - RS
f'(s,m.t ) = \/51 e, g(s -‘msb) +_§(mv) . (}.2&)
This expression is a partial expansionvin'-(s - mse) and my
that can be continued to any value of s;~inqluding S =‘ms2 and

u = mug. A fuller expansion would explicitly introduce the s

dependence in e(mv), e(mv) = eo(mv) + gl(mv,s)(s - msz), and the . -

mv dependence in - et.

From the representation bkatep I, Eq. (1.9), we obtain

another expansion

f(s,mte) = V2 g Eﬁ(é - msg) -V ¢ eé(s - mée)A

- (s - m82)2>Blt(s,mt2) + O(mV) . (1.25) |



Comparing Egs. (1.2h) and (1.25) we.concludé that if"gv.is nonzero,

the guantity ,(es + ey

+ Eﬁ)' is of order 'e(mv)' so that the small

mass vector pdrtiéle couples approximately to a conserved quantity.v

Note that by comparing the coefficients of (s_-'msg)2 in the -

two representations we have shown that Blt(t = mtg) ‘goes to zero as
m, goes to zero. Therefore in this limit,

.,2'_

. % 2y L T
B, (s,t) = B, (s,8)/(t - m, ) has no pole at t = m ~. The fgll-‘
helicity amplitude M _can then be written as
t \/Eg-é'u -t .
M= - = |+ o Bl (s,t) (1.26)

Using charge conseryation we find the residue of the t-pole is"

(A

iVe m, g'ei. Hence the existence of the pple'now‘dépends on whethér._i:_
the quantum numbers of the t-channel allow theiexistencé of the t-pole -

in the sense amplitude before m, is taken to zero. 1In this sense the

Born term of Mit noﬁ has the charactpristics of .a dynamical pole.

ke . UCRL-18436 -
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' II. MASSIESS PARTICLE OF GENERAL SPIN AND PARITY

In this section wé will prove that the‘doﬁpling of a soff
massless 27 parficle, denoted by G, to a spin zero particle is
proportional tovthe'reSt mass of that particle. We will also discuss
the case of other spin parit& combinations. We define our channélsv

and the kinematic factors in the same way as in.Section'I. We still.

‘confine ourselves to spinless s, t, u particles. The proof we will

discuss here will be analogous to the one at the end of Step I of

the previous section. The amplitudes under consideration are Mi,

- where ) refers to fhe helicity of the ot particle and parity giVes, A'

‘M_x = (-l)x M, . The kinematic-singularity-free amplitudes are given“;fif~"
by ’
- N PR
27 . —_— .
w® - ['('¢)U"Z'J?""' u° (2.1) .

andby isimilar:definitions for the:s and u-éhannels.-'The-couplings of
the 27 pérticle dre‘again defined'in_the sense amplitudes of the
respective channels.by
lim (¢t - m 2) Y on T g : s : (é 2)"
- t ) Yo t Ty 8 - e
- m : , . : , o
' t
As in the previous section, the bar denotes5£hefcouplingft6 the
antiparticle. After defining .fs “and b?u in a similar.way, we can
use the crossing matrix to obtain the residue of the s and u poles

of ‘ﬁét. We find



(s ? mS. .M2‘ i;

2y 5t . g6g2 e
m SO
s K

‘ - 2 fg -
2, =t 62 v -
(- mT) M “%}a:.-

We can thus write the following representation for ‘ﬁét‘ when

u are near ﬁsz and mu2 respectively (t is near mt2)
Cooa y . LT -

—t (62 & 1 62 1 g
M2=lhm 2 - L m 2+B'
: _ S s .-m u nu-m
{ . S _ u

Repeating the same pfocedure for M2 we fihd.
L F 1 7
—s _ (6)F T8 1 62 T8 1 s
I ™ 2 m —3 * B
t t-n u u-m
o0t v

If we hqw put_.mG = 0 the crossing relation reduces to

(s - ﬁsg)z M%t '= (t f_mt2)2 ﬂés .;

UCRL-18436

(2.3)
end

(2
;f?-5) :

”@@l

Substituting Egs. (2.L) and (2.5) in Eq. (2.6) we find for the pole terms

S u

o f ‘~ iy . ‘ o | -
' [ u ; 2.2 s 2 2 ,
<;'f>“f%) P st m )t m)

f T, T
+ L (s -m 2)(t -m 2) +<:—£ - —2:>(t -
m t m
t t u

- (2.7)
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This equafiqn is satisfied if

fs -é ?u l
S =2 2 2 (2.8)
m m m
s t u
+

Note thét we have found the same sign for thé_céupling of the 2

- to spinless particles and antiparticles. If the zero mass particle

has spin higher than. 2, and natural J-parity,the kinemdtic singu-

larities are given by (s,t,u spinless)

ravdn] | -

In the equation analogous to Eq. (2,7) thefé’Will bé[termsvproportional

| 2,J-1 2 = 2yJ-1 2
to fs(s -m ) N ) and ft(t - m, ) (s - m, ) which can

S (t -m

not be matched. Therefore, the soft couplings‘of Zero mass particles

with spin higher than 2 mﬁst vanigsh.
If the zero mass ﬁarticle has unnatural paiity then its coupling

to spinless particles is zero due to conservation of angular momentum

“and parity. We studied these couplings to particles with spin with

the techniques introduced in Section III. One can prove,for example,

that all the soft couplings of an axial vector zero mass particle must

. vanish. We can extend this result to all unnatural parity particles

except the 0.
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| III. CHARGE CONSERVATION FOR ARBITRARY SPIN

Hefe we generalize the diecussionfof charge eohservation‘to. | 3 lf\‘; ]
‘partlcles of arbitrary spin and parity at the strong vertex. Only an -
outline of the proof is glven, since it closely parallels the dlscuss1onv;
of Section I for spinless particles. However,.enopgh of the formalism

is given to ihdicate the essential differences. In addition to the | ,' %
-proof this formalism provides a complete solutlon to ‘the problem of
kinematic singularltles and gauge 1nvar1ance for the four particle photo- ; !
production amplltudes in terms of the known results for massive | | |
particles?’G%With'this foyﬁalikm it is easy to translete the standard ' lAV .

"kinematic singularities, conspiracy relations and TP relations for

helicity amplitudes with a massive rho into results for the helicity

- _ v
amplitudes of photoproduction. Also we note a useful crossing rela- .

tion between coupling constants for helicity amplitudes. This relates

the sense couplings at a vertex to the sense couplings resulting from

the interchange of the internal pole with one external particle.

To the.particles s,t and u of Section I, we now assign the

-spins J §? Jt and J and the parities Ngs Mg and L™ ~ The t-channel -
helicity amplitudes are related to the kinematical 31ngularity free

amplitudee F"

Nars ’w»v - | E

(s,t) = (1 -z

t
sy v
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where, for honzero _mv,'the kinematic.singularities are ‘f'”

*n(.) L v - (m, cn )PP - (- PY (5.2)
K'(t . d +l—m-2(1+l) T Arm 3. -

In the case of all unequal masses £ = lxl lp,, o

T 4T, o, e (Ju-JS)-v o
= [1+m nu( -5 % e, at =L gy () 12 witn
: J -v ' ' ,
o = (my = m)/[my - ml, end n=nq.(- S . - (3.3)

The rule for modifylng the kinematics in the llmlt mv -0 1is very
simple. The half angle factors (1 * t)’ the factors of (t)2 and’
[t - (mu + ms)g] aré not éffected at all.by the limit. Alsqg the
conséiracy relations at t = O, and the TP relations at the massive .
particle vertex at t = (ﬁu + mé)2 carry over withouf any changes,
since they only relate ampllfudes with the same value of Kt and XV
As we will see in the process of the proof, all the factors of 1/27
go over into klnematical factors of 1/(t - m, ):EEEEBE one factor of
l/{j in’ Kn(t),~ whlch becomes a dynamical pple if such a pole is

permitted.by the conservation laws. . :“The"_resulﬁant TP: relations
5 .

at t =m will be indicated at the end of this section.

t
As in Section I, we must first define the .charges in all the

sense amplitudes. We do- this through the partial wave amplitudes of
‘ ' J, -v ' _
appropriate parity q = nt(-) t (v = 4 for fermions) by the limit:

R
lim (¢t - t - 2im g8 ef (1) b, (3.4)

tom, 2 Mgy MNrs My

t
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The phase (-i) t is chosen so that the pole 5 contribution 'is in

" accord with the real analytlcity of F - From the partial wave expfessién‘
o . _ j{: , s Ti
K(t) F>\u>‘ >‘t>"v(s ,t) 2 (a)\ux i >"V( ) N (zt)
(t)’e“(z 3o, (35
’\u" ”‘txv e |
: o k£+1 | .
we see that the phase of (—i) must be_the phase of
Jt-m : 5 o L
g g g Kn(t) ot & = t . With the above definition of charge,
we can write the sense hellclty amplltudes as a pole plus & smooth
background in the nelghborhood of t = mtgz
t (s,8) = hm"mt(i)t_ﬁ_“____.):t_xl (' v)
. : 2 = 5
M7\-\>\S’>\t>\'v ) t - mte S t
(1 -z,.) E (l + 2z, 2
+ . -..t Jot+l-m A A (S t)
@)t *u s3 tKV
(3.6)

Similar expressions hold ih the s and u~channel. Note that as
t ' -2 2 L, 2 '
t-t, 3z, - [2 m, (s - mg ) + O(mv )1/ &', so that both the pole
term and the background have explicitly exhibited the proper kinematical
' ; +
singularity of l/(;jft+l at t = t.. The more distant singularities

in t have not been made explicit, since they do not affect our

W




!
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discussion. It will be useful to express the function. a,,(z) by
the equation, |
N N 1 S o ‘
() Y@ e (@), G
so that expansions can be made when t —t . The u-matrices are the
unitary, symmetric, transformations»frdm heliéity to transversity given

by -

_i ﬂ n.‘ . L :
2 J ir= . .
() = e dmg) e 2__‘ . o (3.8)

.As in StemeiLQf;fheuspinles&uc&seﬁ;wéffindﬂfhe:valuerof;fhe;nonéenge
amplitude qux 3T . l “in terms of the chargés for thé sense amplitude
by the use of TP relatlbns. With the help of Eq. (3.7), we rewrite
the crossiﬁg relation of Ref.:5 in the form 1.
% ’ ;1X ﬁ%ﬁ o : . -
M" ”‘t"v Z RN WT Tty ©-9)

Tty

where all the factors that are not singular at t =ty are in

(S,t; A)
TtTV ku S.‘

- T -ix x
. _ s e M >‘v

v o s

J : o, v . .
X d}\zxu(xu) oy (=X, ) M}\R\t "s"v ,::vr-_(%..rlo.)
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‘+1XtTt L +1)g"r

By expressing the 'singula.r terms e " and e iin the

- + = .
neighborhood of t ~ t7, and s =m as:

e ~ - H

—A #-’d' S - 3- >

(3.11)
we can easily derive the TP relations,

J
J +1-

Ry téking ratios §f the-aboveirelafions for varibus'vdlues of Xt and
XV’ and sﬁﬁstitutihg for the sense ampliﬁudes their éxpfession in termé
of the pole plus background [Eq. (3.6)], several important results are
obtained. We show (a) that the backérouﬁd.fér the helicity zero ampli-
tudes goes to zero as we take m, to zero and also (v) that there is.
only one soft photon coupling Et “in the limit mV - 0.

2 - : ,
(a) B)xuk i, O b my ) @ e(mv). This is proved by t_aking

J,+1 : :
~ the ratio of ﬂ E M:\f\ 2.0 to the nonsense amplitude -
>

+

o Tt . * . o
pel| M 50,1 Bt = t7. Usingitherelation oMy = HYE

we eliminate the poleiterm;.as!in the s',pin'less- example,to obtain: .

gt.t‘ -‘ B <m(s-ms)t(Ll )F _'
| b&uxs”‘ﬁ’?v.t:t; R "v-l m" “Tgt

(5.12)_




J, +1

-9 k qu*s.; sal o G

t7

The assumption Qf;smooﬁhngss,fdrgwhernonseﬂse amp}itﬁde gives our fesult;

5 Lo

(b) e . =B e, + €(m,): By using the ratio of
)\t)\v O)‘.V t fy - N
J 41 ‘ J‘+l‘ : : v
t t . t : : + - :
J . to . .1~ 8t t =17 and result (a), one
‘ quxs’xto o Miuxs’xto‘ : o . L

shows that all zero heiicity photon couplings are the same. 'For

r

J : T+l '
M\lks;)\tﬂ ’to 3 qu)\SBKtO e

7 1
xv-= +1 one takes the ratio of :j

£*
for threshold and pseudothreshold. Between these equations

. . h ' . 3 .
Bxuxs;xttl(s’t) can be eliminated to ;erot order in m, to‘qbtaln,

e)\til o e(mv).'

Finally, we can normalize the nonsense amplitude

|zl

| | , ]
M; x 3J.,-1 T M;'x 5T /(- z) ° (1 z)
us’t’ (VU RAS 4 v

I+

at t = t- by taking its ratio t e ampl Mo “and:
| y g . s ratio to a sense amplitude quks;xto and

ﬁsing the above results. To zeroth order in mv,.we_obtain
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o :3 ( \_ .t A
’“u’? ’Jt’ m, 'd“Jt<§‘)fg"u>‘sy jet -4)

(s-m)
which for the spinlessicase reduces exactly to the result of Section I,
 Eq. (1. 20)’ '

To complete the proof we use & representatlon for the nonsense
amplitude similar to the one of Step:T; . Eq. (1.9), for the splnless
case: | |

o (8) r (%) S .
=t : S 0 =t
' . (s,t) = + + B . - (s,t) .(3.15)
: quxs’Jt’ 1 = s 2 2. - Kuks’Jt? 1

-.nm .u-nm
s u

The reSidues' r (t) and r (t) ~are determined through crdssing; Since

r (t) and r (t) are analytic for t ~ mtz,

and only the first term r ( ) and rt( ) enter into the proof..

they can be expanded,

To. demonstrate the’ procedure, we will find r ( )

By looking at the residues of the s-pole at t = mtg, the

crossing matrix becomes especially.simple. Furthermore, fzt and Zg

go to zero at this point. Hence we have

.in(J‘rJ-K)EA Iy T T :
2 t / g 17t t 7
}rS(mt.) me Ku\l(o) %W (‘2)‘1»'5% 5) |

NN

x >‘v 2L (mm )] -2t (- e, VR h.s_xv,% w (B)
(3.16)

(5‘1%);,
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Now using TP relations in the s-channel we obtéin_
ei! v = O o &g t e(mV).v This relation and the special proﬁerties
shy M , ‘ S

‘of the d-function at -0 and n/2 allow all the sums to. be done and

lead to the follow1ng equatlon,

oy y (m ) -)\u ,
rg(mg) = _Erﬁ— 2dJ(2)( -1) ¢ MM”‘

ks Js+Jt-Ju ' NP
v (-1) 5 ()® L Gan
| . } | kg . . ,
With the obeservation that (-i) */(-1i) ® is real and that
t v T8 o ‘ :
N C . 6w

Ns N Ay

we have the desired result up to an undetermined sign

' The last ingredient to this outline [Eq. (5 18)] can eas1ly be

t

a the n-
xﬁ,x' S o

understood by considering the coupling constant 'g
— [ '
mass shell vertex function (\|p|,ALD! lxtpt) (pf =) + DL AL = N, = ML)
The coupling constant giax, is defined in the rest frame of particle
'S

t, or equivalently the center-of-mass frame of u and E,.if t is

a resonance. With p& taken along the positive z-axis, x% is the

z—component of spin for particle t. To cross this function, we first

boost all particles along the positive z~-axis until we get +to the
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rest frame of particle:.Euﬁ(laboratOry-frame)E:uThé'z-cqmponen£ of spin _.

is' not effected by the boost, so in the neW'frame (dén6ted by double

prime) XG_= ! _xg ﬁ,h%; and the’zrcomponent"Of:sp;p for s isﬂy-xé, "

u!

Now we cross the particles s and t 'to_is and .t. In order to-
conserve the‘z-cdmponent of spin both before and after crossing, the

z-component must flip for either the s and 1 particles or the u

particle. . The resultant coupling is gs'. (up to a real phase) with ,: 

MM

A, = +Xu and - Kt +x. = +()\u - x ) Note that these two coupllngs _1 

have the same magnitude if parlty is- conserved

In addition to the TP relations used in the.above proof, theré’;

" are thé derivative relations,obtained by expanding the right side of

Eq. (3.12) to higher orders in (t - t#). 'For the photon, these

additional relations survive at t = mtel and are responsible for

2dy,

eliminating the kinematical factors of 1/(t - m 2) from the

unpolarlzed eross sectlon 80 only the "dynamical pole at t = mtg -

survives. In terms of the amplltudes (t - m, ) qux ’htxv(s t)

that»contaln only dynamlcal poles the new TP relatlons are glven:by_'
+T

]
M

This completes the description of the kinematical constraints

discussed earlier in this section for the photoproduction amplitudes.

. | 3 | B | ) - . S
z: u:xé(t -jm%) t qux.;x%xQ"n (t - th)'ﬁ'. . (3.19)
s : . o .
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I OTHER APPLICATIONS .

Before we discuss the poss1bility of other applications of this f'
method, we should again emphasize that the assumed behavior of amplitudes ff'
in the external mass, which is so essentlal to our proof needs a careful't '
examination in 1tse1f. As the mass of an external partlcle goes to zero,
~an infinite number of branch points approach the point s = m, t=nmn
As mentioned before, a knowiedge of the behavior of the amplitude in this
limit.’ probably entails a detailed examlnatlon of theunitarlty conditlon
A very_interesting guestion that arises in this connection is the relation
of the stfength of.the'coupiing to this behavior.v.We have to find out
whether'our>smoothhess assuﬁptions hold only for speciai cases of small
couplings such as electrodynamics, or whether they are also true when the small
mass particle participates in strong interactions. If this latter
alternative is true; we can proceed and examine some of the applications
of this method to strongly interacting particlesl

The first application concerns'tﬁe problem of p-universality.
V'Usually; o) oniversality'is proved with the aid of the concept of -
p-dominance in, for example, the electromagnetic form factor. Tt is.
possible that our method may be used to deduce some approximate
universality without the use of o dooinance.p Note that one can
easily generalize the mechanics of our proof of charge conservation to
the case of‘couplings involving isospin or‘other symmetriesi This"
problem of p universality and the related problem of its application'
to Compton scattering is now being investigated. We should not expect :

p universality to be very accurate due to tﬁe long extrapolation in the

mass of the p.
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Another interestihg set of problems may be the application of

this method to the scattering of pions off other particles. or the coupling -

of currents in wéak interactions. In the proof of this paper, we used a

- four-body amplitude in which the small mass paftiélé was -one of thé’ 

external lines. The question arises whether we can substitute, for example,

the external‘vector particle with a p-wave, nx channéi. If'this can
be done; we can then prove results such as fhe Adler-Weisberger relation:
for the antisymmetric part of gn amplitudes. More promising perhaps‘ié
" "the application to wéak,interactions, since thevcoupling is small and
iocal. :However, we feel‘thatAin order to make'rigofous étatements_about
these problems, a careful study of the five liné connected part and the
related qﬁestions of TP‘réi#tions fqr subenergies is needed. Suchua
study may also lead to other resﬁlts associated withjéurrent algebra,:

PCAC, and the smallness of certain masses.
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Here we have assumed there are no particles in the 'Vg,'Vf’ and HVﬁ:,'

+rchannels degenerate in mass with particles s, u and t. '(For ,
the photon ¢ = -1 ‘rﬁles out all_couplings to self—charge-conjugaté

particles like the 'ﬁO‘) With this assumption and the assﬁmption

of zero spin for s,<¥ and E, we havé the same coupling g at

‘all three strong vertices (tul|s), (tg[ﬁ) and (sult).

The exact condition on the charges is

e + e

- 2y .t 2y s ?
s £t et (s - m ) B, + (# - @t ) B,” =0 for all s and

t
1

can be tolerated except a simple pole at s = ms2 and t = mtg.

t. TFor the proof of charge conservation any singularity in B

We have introduced the assumption of smoothness on quantities with
s and u poles; however, it can be shown that the pole terms

above satisfy our condition for_.fixed s # msg. Hence, the

. condition really applies to\the infinite set of cuts in the coﬁtinuum.‘

" One- can see explicitly the conditions on the cuts, by separating

o end then substituting this decomposi-

; Y t + s = +
tion of Mb(s,t ) end the decomposition of Ml(s,t‘) [Eq.(1.19)1.

into the TP relations ![Eq. (1.16)]. In the interest of clarity,

we use an approach that severely limits the algebra. By any>approach,'_

the lesson is the same; with proper conditioné on the cuts, Lorentz

invariance and crossing require.- charge conservation in the limit

~

of zero mass.
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