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Taming Jets in magnetized fluids

Y. Kosuga1 and N. H. Brummell2

1)Center for Astrophysics and Space Sciences and Department of physics,

University of California at San Diego, 9500 Gilman Drive, La Jolla,

CA 92093

2)Department of Applied Mathematic and Statistics,

University of California at Santa Cruz, 1156 High Street, Santa Cruz,

CA 95064

Effects of a uniform horizontal magnetic field on jets dynamics in 2D Boussinesq

turbulence, i.e. Howard-Krishnamurti problem are studied with a numerical simula-

tion. For a fixed fluid and magnetic diffusivity, it is shown that as the imposed field

strength becomes larger jets start behaving in a more organized way, i.e. achieve sta-

tionary state and are finally quenched. The time evolution of total stress, Reynolds

stress, Maxwell stress is examined and all the stresses are shown to vanish when jets

are quenched. The quenching of jets is confirmed for different values of magnetic

diffusivity, albeit the required field strength increases. It is also shown that the in-

clusion of overstable modes reinforces jets where Maxwell stress overcomes Reynolds

stress. For a larger imposed field jets are shown to quench. A possible mechanism

for the transition to the reinforcement of jets by Maxwell stress is discussed based on

the transition in the most unstable mode in the underlying turbulence.
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I. INTRODUCTION

Turbulence and subsequent turbulence driven large scale flows or Jets are ubiquitous

phenomena in nature. In the convective region in the sun, turbulence is driven by the

convective instability and the differential rotation result1. In planets, the Jupiter or the

earth for example, geostrophic turbulence with Rossby waves is excited due to the energy

input from the Sun, etc, and produces the famous zonal bands of Jets, i.e. zonal flows2,3.

The combination of turbulence and large scale flows are observed in laboratory plasmas as

well. In tokamaks, a device to confine plasmas magnetically, inhomogeneity in temperature

or density excites drift wave turbulence and the drift wave turbulence in turn produces

large scale flows called intrinsic rotation4,5 and zonal flows6,7, which are analogous to the

differential rotation in the sun and zonal jets on planets, respectively. Understanding basic

physics of these systems with turbulence and jets is an important issue, since of course these

systems are physically interesting and challenging to model, but also are quite beneficial

from a practical point of view: in fusion devices these large scale flows are believed to play

an important role to achieve better confinement by reducing turbulent transport of heat and

particle and improving stability of tokamak plasmas.

To be more specific, we focus on the issue of the generation and quenching of jets in 2D

turbulence with magnetic field. A theory for beta plane MHD turbulence was formulated8

and numerical work9 was done to confirm the quenching of jets by the inclusion of magnetic

field in beta plane turbulence; however, they used arbitrary forcing to excite turbulence.

Here, instead, we consider a problem of jets dynamics in 2D convective turbulence, which is

a natural forcing mechanism, with horizontal magnetic field, where horizontal here means

the direction of jets which is normal to the direction with a temperature gradient. The prob-

lem with a vertical magnetic field, i.e. the problem of the magneto-convection was treated

and understood fairly well10–12. The research of jets in 2D convective turbulence without

magnetic field was pioneered by Krishnamurti et al13 who observed the tilting of convective

cell, formation of jets, chaotic motion which destroys well-defined structures of cells, by in-

creasing the Rayleigh number for different values of the Prandtl number. Here the Rayleigh

number measures the strength of temperature difference in a system and the Prandtl num-

ber is defined to be the ratio of a fluid viscosity and a thermal diffusivity. Howard et al14

modeled the phenomena as a dynamical system with truncated Fourier components which
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includes the famous Lorenz system for convection as a subsystem. The transition between

different flow patterns was described as the transition between fixed points and especially

the transition from steady convective cell to jets with tilted steady cells was understood

as an instability of the fixed point which represents a steady convective solution. Numer-

ical experiments also confirmed the similar behavior and further discovered different type

of behavior such as a pulsating traveling wave15. The problem was extended to include

a horizontal magnetic field and understand the transition of flow patterns discovered by

the simulation for 2D convective turbulence with compressibility (anelastic approximation)

and a horizontal magnetic field16,17. They observed the transition of flow patterns from a

chaotic pattern to conductive state where the instability is switched off, by increasing the

Chandrasekhar number18 Q ≡ v2
Ad

2/(νη) at a fixed Rayleigh number. However, the result

is somewhat trivial, since the increasing of the Chandrasekhar number or the increasing

of the field strength for a fixed magnetic diffusivity, leads to the stabilization of the linear

convective instability, the very source which drives rich behaviors in the system, i.e. the

formation of jets, oscillation of jets and so on. And also the dynamics of jets, which is the

main focus in this report, was not the focus of the work by Lantz et al.

In this report, we examine the effect of horizontal magnetic fields on the transition be-

tween flow patterns in 2D convective turbulence, i.e. Howard & Krishnamurti (HK) problem.

We especially focus on the behavior of jets, i.e. whether horizontal magnetic fields weaken,

quench, or possibly enhance jets. In doing so, we start from HK problem with a given

parameter set, and change the values of the horizontal magnetic field imposed on a sys-

tem and magnetic diffusivity, with a fixed criticality. First we focus on the cases without

overstable modes, which exist only when η > κ, where η and κ is magnetic diffusivity and

thermal conductivity respectively, and show that the jets are quenched by increasing the

Chandrasekhar number. We calculate the balance between Reynolds stress and Maxwell

stress for different values of Q and show that Reynolds stress always exceeds Maxwell stress.

Hence the jets are quenched due to the cancellation of Reynolds stress by Maxwell stress.

We also show the results with different magnetic diffusivities and show that qualitative pic-

ture of jets quenching agree with those obtained by Tobias et al9. We also calculate the case

when overstable modes exist in a system and show that Maxwell stress can exceed Reynolds

stress for high enough Q. We give an ‘guesstimation’ for the value of the transition between

Reynolds stress driven regime and Maxwell stress regime.
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The reminder of the report is organized as follows. In the section 2 we review the set

of equations, conservation relations, and linear stability problems to identify important

parameters in the system and different modes possible one could have. In the section 3, we

show the simulation results on the dynamics of jets with the horizontal magnetic fields. The

section 4 is conclusions and discussions.

II. FORMULATION

In this section we give the set of equations for 2D Boussinesq system with a horizontal

magnetic field and review basic properties of them. Specifically we give a brief discussion

on the conserved quantities in the system and linear stability problem. For the conservation

relations, we discuss the conservation of energy, magnetic potential and cross helicity. Of

these we pay a special attention to magnetic potential and cross helicity, which leads to Zeld-

vich theorem and a local conservation of momentum between waves and flows, respectively.

For the stability problem, we derive dispersion relations for critical modes and show that

there are two possibilities for the onset of the instability; one is a stationary cell which is

analogous to the usual hydrodynamic convection and the other is an overstabile mode which

is unique to the Rayleigh-Benard convection with magnetic fields. Some of the discussions

given here are beyond the scope of the report, but I just do it any way since it would be

helpful for me to summarize them!

A. 2D Boussinesq system with a uniform horizontal magnetic field

We consider a simple 2D Boussinesq system with a uniform horizontal magnetic field.

As a coordinate system, we take x being the horizontal direction, y being the neglected

direction, z being the vertical direction with temperature difference. We consider a box

with a height d in z, a length L in x. The set of equations are momentum, temperature and

induction equations:

∂tv + v · ∇v = −1

ρ
∇ptot −

(
1 +

δρ

ρ

)
gẑ +

1

4πρ
B · ∇B + ν∇2v (1)

∂tT + v · ∇T = κ∇2T (2)

∂tB = ∇× (v × B) + η∇2B (3)
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where δρ/ρ = −α(T − T0) denotes the effect of density variation due to the thermal ex-

pansion, which leads to the buoyant force. Introducing the stream function and magnetic

potential to write v = ŷ ×∇ψ, B = ŷ ×∇A (since ∇ · v = ∇ · B = 0), taking curl of the

equation of motion and integrating induction equation we can rewrite the equations as

∂t∇2ψ + J(ψ,∇2ψ) = gα∂xT +
1

4πρ
B · ∇∇2A+ ν∇2∇2ψ (4)

∂tT + J(ψ, θ) = κ∇2T (5)

∂tA+ J(ψ,A) = η∇2A (6)

where J(A,B) ≡ ∂xA∂zB − ∂zA∂xB. Setting T = T (z) + θ′ and A = −B0z +A′, where the

prime denotes a fluctuation part of physical quantities, we get

∂t∇2ψ′ + J(ψ′,∇2ψ′) = σR∂xθ
′ + σζQ∂x∇2A′ + σζQJ(A′,∇2A′) + σ∇4ψ′ (7)

∂tθ
′ + J(ψ′, θ′) = ∂xψ

′ + ∇2θ′ (8)

∂tA
′ + J(ψ′, A′) = ∂xψ

′ + ζ∇2A′ (9)

Here the physical quantities are normalized as t → t/(κ−1d2), l → l/d, θ → θ/∆T (∆T ≡

d|∂zT (z)|), A′ → A′/dB0 and the dimensionless numbers are the Prandtl number σ ≡ ν/κ,

the Rayleigh number R ≡ gα∆Td3/(νκ), the magnetic Prandtl number ζ ≡ η/κ and the

Chandrasekhar number Q ≡ B2
0d

2/(νη4πρ).

We take periodic boundary condition in the horizontal direction. In the vertical direction,

we consider stress free, i.e. ψ = ∂2
zψ = 0 at z = 0, 1 and perfect conductor both in thermal

and electric, i.e. θ′ = B′
z = ∂xA

′ = 0 at z = 0, 1.

The set of equations conserves energy
∫
d2x{(∇ψ)2 + σζQ(∇A)2}, magnetic potential

squared
∫
d2xA2 and cross helicity

∫
d2xv · B. The energy conservation can be derived by

multiplying ψ to the vorticity equation and ∇2A to the equation for the magnetic potential,

which yields

∂t

∫
d2x

{
(∇ψ′)2

2
+ σζQ

(∇A′)2

2

}
=σR

∫
d2xw′θ′ − σ

∫
d2x(∇2ψ′)2 − σζ2Q

∫
d2x(∇2A′)2 (10)

Note the boundary terms vanish by the boundary conditions. The first term in the right

hand side is the turbulent heat flux, the second and the third terms in the right hand side
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are the dissipation in ψ and A, respectively. Note that the turbulent flux is positive definite

as can be shown from the temperature equation:

∂t

∫
d2x

θ′2

2
=

∫
d2xw′θ′ −

∫
d2x(∇θ′)2 (11)

For a stationary state, one has∫
d2xw′θ′ =

∫
d2x(∇θ′)2 > 0 (12)

This is physically plausible since the temperature difference is such that the bottom is hot

and the top is cold, which would yield the heat flux from the bottom to the top, i.e. the

positive heat flux. Given the positivity of the heat flux, a stationary state is possible by

balancing the right hand side of the energy equation as

σR

∫
d2xw′θ′ = σ

∫
d2x(∇2ψ′)2 + σζ2Q

∫
d2x(∇2A′)2 (13)

which states that the turbulent flux resulting from temperature relaxation must be balanced

with the dissipation in the kinetic and magnetic energy.

The conservation of the magnetic potential squared also has a non-trivial consequence.

The conservation reads

∂t

∫
d2x

A′2

2
=

∫
d2xw′A′ − ζ

∫
d2x(∇A′)2 (14)

which for a stationary state yields∫
d2xw′A′ = ζ

∫
d2x(∇A′)2 (15)

In a dimensional form, we have∫
d2xw′A′ =

ηcol

B0

∫
d2x(∇A′)2 (16)

Note that the left hand side is the turbulent flux of magnetic potential which can be written

−ηturb∂z〈A〉 = ηturbB0 where ηturb is the turbulent resistivity. From this, one can derive the

Zeldovich theorem

ηturb

ηcol

=

∫
d2xB′2∫
d2xB2

0

(17)

which states that a large root mean square of magnetic fluctuations results when a turbulent

transport dominates collisional, i.e. ηturb � ηcol. We will use the theorem later.
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The conservation of the cross helicity is related to momentum conservation. Using the El-

sasser variable z± ≡ v±B/4πρ, which describes the population of Alfven waves propagating

in opposite directions along a large scale magnetic field, one can write

4v · B = z2
+ − z2

− (18)

So the cross helicity is tied to the imbalance between the population density propagating

in opposite directions, which suggests the role of the cross helicity as the momentum of

waves, since if more waves propagate in one direction then waves would have a finite value

of the momentum in the direction. To explicitly see the momentum balance, we derive a

local conservation theorem, i.e. we integrate only over the horizontal direction x. A global

conservation would be a trivial one due to the fact that
∫
dzU(z) = 0 where U(z) is a mean

flow in the horizontal direction. Multiplying A to the vorticity equation and ∇2ψ to the

magnetic potential equation, integrating only over x and dropping the third order terms in

fluctuations, one has

∂t〈A′∇2ψ′〉 = − σR〈B′
zθ

′〉 + σ〈A′∇4ψ′〉 + ζ〈∇2A′∇2ψ′〉

+ 〈∂xψ
′∇2ψ′〉 − σζQ〈∂xA

′∇2A′〉 (19)

Here 〈...〉 ≡ L−1
∫
dx is an ensemble average over a statistical distribution of fluctuating

quantities. The ensemble average and the spatial integration in the horizontal direction is

equivalent by assuming the ergodicity. Note the Taylor identity19 relates the last two terms

to the Reynolds and Maxwell stress, since

〈∂xψ
′∇2ψ′〉 =

〈
∂x

(∂xψ
′)2

2
+ ∂z(∂xψ

′∂zψ
′) − ∂x

(∂zψ
′)2

2

〉
= −∂z〈w′u′〉 (20)

Similarly 〈∂xA
′∇2A′〉 = −∂z〈B′

zB
′
x〉. Substituting these relations we have

∂t〈A′∇2ψ′〉 = − σR〈B′
zθ

′〉 + σ〈A′∇4ψ′〉 + ζ〈∇2A′∇2ψ′〉

− ∂z〈w′u′ − σζQB′
zB

′
x〉 (21)

The mean flow evolution is given by

∂t〈U(z)〉 + ∂z〈w′u′ − σζQB′
zB

′
x〉 = σ∂2

z 〈U(z)〉 (22)
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Combining the two equations, we have the local balance of the cross helicity, or the momen-

tum balance, as

∂t(〈U〉 − 〈A′∇2ψ′〉) = σR〈B′
zθ

′〉 − σ〈A′∇4ψ′〉 − ζ〈∇2A′∇2ψ′〉 + σ∂2
z 〈U〉 (23)

So flow and waves or turbulence can exchange momentum with each other. Here, more

precisely, the momentum is conserved between a flow and a gas of Alfven waves which is

described by Elsasser variables. The momentum theorem has the structural similarity as

the non-acceleration theorem first derived for the momentum balance between a large scale

flow and gravity waves20; in the absence of the forcing (here 〈B′
zθ

′〉) and the dissipation

in turbulence, one cannot accelerate flow with a stationary turbulence. The theorem also

predicts a stationary profile of the flow:

〈U(z)〉 =〈U(0)〉

−
∫ z

0

dz′
∫ z′

0

dz′′
(
R〈B′

zθ
′〉 − 〈A′∇4ψ′〉 − ζ

σ
〈∇2A′∇2ψ′〉

)
(24)

The flow profile is determined by the forcing and dissipation profile. Note that the global

conservation of the cross helicity follows by integrating over the vertical direction z, i.e.

∂t

∫
d2x∇ψ′ · ∇A′ = σR

∫
d2xB′

zθ
′ − (σ + ζ)

∫
d2x∇2ψ′∇2A′ (25)

The mean flow contribution drops due to the boundary condition.

B. Linear stability

Before going into the detail on the transition of flow patterns and jets dynamics, it would

be useful to review the role of magnetic fields in the linear instability problem. The boundary

conditions allow one to write solutions in the form

ψ = Re
∑

k

ψ̂ke
−iωt+ikxx sin kzz (26)

θ′ and A′ are also in the same form. Substituting the expression into the set of equations,

linearizing them and requiring the marginality (Im(ω) = 0), we get two solutions.

The one of the solutions is the steady cell solution given by

ω = 0 (27)

R =
k6

k2
x

+Qk2 (28)
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where k2 ≡ k2
x + k2

z . This solution corresponds to the famous Rayleigh-Benard convection18

if Q = 0. Note that the critical Rayleigh number for the instability increases as Q increases,

i.e. the mode is stabilized. Q increases when i) the strength of the imposed field B0 increases

or ii) the magnetic diffusivity η decreases. The case i) makes the bending of field lines more

difficult: as field strength increases the ‘rigidity’ or ‘elasticity’ of field lines increase, which

leads to the stabilizing effect. The case ii) can be understood in terms of freezing-in law

of field lines: as magnetic diffusivity decreases the freezing-in law becomes more effective,

which makes fluids more susceptive to field lines.

The second solution is an overstable mode, which is given by

ω2 =
1 − ζ

1 + σ
σζQk2

x − ζ2k4 (29)

R =
(σ + ζ)(ζ + 1)

σ

(
k6

k2
x

+
ζ

1 + ζ

σ

1 + σ
Qk2

)
(30)

Note that this solution exists only when ζ < 1, i.e. when the magnetic field does not diffuse

away while the temperature does. Note also that this mode reduces to the Alfven waves for

a inviscid case: ω2 → v2
Ak

2
x where v2

A ≡ B2
0/(4πρ). Hence this mode is unique to magnetized

systems and we will pay a special attention later.

The two different modes, i.e. stationary cells and overstable modes, have different critical

Rayleigh number, which indicate the dominant mode changes dependent on the value of

Q. For example, when Q = 0, the critical Rayleigh number becomes R = k6/k2
x and

R = (1 + ζ/σ)(1 + ζ)k6/k2
x. Hence the stationary cell is more unstable for a small value of

Q. On the other hand, since ζ(σ+ ζ)/(σ+1) < 1 for ζ < 1, the critical Rayleigh number for

the overstable mode increases less rapidly compared to the stationary cell as Q increases.

Hence when the Chandrasekhar number is large enough, or the imposed field strength is

large enough for a fixed magnetic diffusivity, the overstable mode becomes more unstable.

The crossover of the two different regime with two different dominant modes occurs at

Qcross =
1 + σ

σ

ζ

1 − ζ

k4

k2
x

(31)

The relation between R and Q is summarized in the figure 1.

III. JETS

In this section we discuss the dynamics of the jets with magnetic fields. First we focus

only on the effect of the horizontal fields on jets dynamics. In doing so, we fix the Prandtl
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FIG. 1. the critical Rayleigh number as a function of Q. Stationary cell and overstable mode

depend on Q differently. The stationary cell is dominant for small Q and the overstable modes are

dominant for large Q. The crossover occurs at Qcross. Even before the crossover value, the relative

importance of the overstable modes increases.

number, the magnetic Prandtl number and the aspect ratio and vary the Chandrasekhar

number and the Rayleigh number. The Rayleigh number is varied so that we keep the same

criticality. Note that throughout the report the Prandtl number and the aspect ratio of the

box is kept fixed to be σ = 10 and λ ≡ L/d = 1/4. The Prandtl number is chosen to be close

to the experimental value13. The aspect ratio is chosen so that we can isolate nx = 1 modes

as an unstable modes from other nx modes, where nx is the mode number kx = 2πnx/λ. For

example the critical Rayleigh number for hydrodynamic convection is R = 417136 for the

nx = 1 mode and R = 6445817 for the nx = 2 mode and higher for the higher nx. Given the

parameters and starting from a fairly chaotic flow profile without a field, we show that jets

start oscillating with an apparent periodicity in an organized manner, achieving stationary

state and being quenched as magnetic field strength increases. After examining the jets

dynamics with a varying field and fixed diffusivity, we examine the effect of different values

of magnetic diffusivity. As the final topic, we include the overstable modes, i.e. we show

the simulation results for a parameter range ζ < 1 (ζ = 0.5 here) and show that jets exhibit
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interesting feature.

A. Taming jets with magnetic fields

Without magnetic field, jets exhibit complicated behavior13–15. Figure 2 is the simulation

result for a unmagnetized case with σ = 10, ζ = 1, R = 660000 and Q = 0. The critical

value of the Rayleigh number for the onset of instability for this case is R = 417136. The

aspect ratio of the box is fixed to be λ ≡ L/d = 1/4, which is a tall thin cell and isolates

the nx = 1 mode as the only linearly unstable mode. The simulation was over a few thermal

diffusion time. In this case, the system shows fairly chaotic behavior. In the initial stage,

the linear instability sets in and the total kinetic energy of the system increases. After the

onset of the linear instability, the large scale flow starts growing slowly, as indicated by the

growth of the kinetic energy in the mean flow. Although we can see the large scale flow is

driven in this case, we immediately notice that the system never achieves stationarity. The

direction of the flow is not fixed either, as indicated in the time evolution of the flow velocity

at z = 0.2. For a certain duration of the time, the flow is in a positive direction at z = 0.2;

however after a certain period of the time, flow flips its direction and the flow reversal occurs

again later. The pattern of the cell is not well-defined as indicated in the contour plot.

When a magnetic field is imposed, the system start behaving ‘well.’ The figure 3 is the

simulation result for Q = 100.5, R = 7.23 × 106 and other parameters are fixed. Note

the Rayleigh number was increased to keep the supercriticality constant. There exists a

well-defined periodic oscillation. As in the unmagnetized case, the linear instability appears

in the initial stage and subsequently the large scale flow gradually grows. Although the

system behaves in a more organized way compared to the unmagnetized case, i.e. periodic

oscillation as opposed to the chaotic behavior, the system does not achieve stationary state

either. The flow still flips its direction, as indicated in the time evolution of the flow velocity

or the instantaneous pattern of the flow and the cell. The cell exhibits well-defined structure,

while changing the direction of the tilting at different times. Note that the spike in the total

kinetic energy: the time of the spike corresponds to the time when the reversal of the flow

occurs. We speculate this might be related to an instability in the large scale flow, i.e.

Kelvin-Helmholtz type instability; however a clarification is ongoing and we do not go in

detail further here.
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When the imposed magnetic field increases, the system changes its behavior drastically:

the system reaches stationarity. The figure 4 is the simulation result for Q = 150, R =

7.56×106 and other parameters are fixed. As in the other cases, the linear instability occurs

in the initial stage and the large scale flow grows after the onset of linear instability. After

the growth of the large scale flow, a stationary state is achieved. A flow and cell pattern

at a given time in the stationary state is shown in the figure 4. At the stationary state the

flow and cell patterns are fixed and they maintain their structure. The magnetic field can

organize the system, or make the jets behave well.

When the imposed magnetic field further increases, the jets are quenched, as indicated

in the figure 5. The parameters used for the simulation were Q = 200, R = 7.56 × 106

with other parameters fixed. The linear instability grows in the initial stage; however, the

subsequent growth of the large scale flow is quenched. Note the supercriticality is same in

the other cases as can be seen in the level of the total kinetic energy: Both Q = 150 and

Q = 200 cases have the same turbulence level or the total kinetic energy ∼ 104. Hence

the jets are quenched while the linear instability is not. The pattern of the cell and flow

is plotted in the figure 5 as well, which shows the well-defined structures of the convective

cells. The magnetic field can quench the jets while the linear instability survives.

In summarizing, we considered the effect of the horizontal magnetic field to the forma-

tion of the jets in Howard-Krishnamurti problem, by varying Q and R while fixing other

parameters including magnetic diffusivity. In the unmagnetized cases the large scale flow

grows, while the system shows fairly complicated behavior. As the imposed magnetic field

increases with a constant supercriticality, the jets i) start behaving in a more organized way,

i.e. exhibit well-defined oscillation without achieving a stationary state, ii) achieve a sta-

tionary state with a stationary pattern in the cell and flow and iii) finally are quenched while

the system is as unstable as other cases. This may be compared to the result obtained by

Lantz16 where they also observed the well-organized behavior of a system with an increasing

magnetic field and quenching of the jets as well; however, they did not keep supercritical-

ity fixed while Q was increased. Not surprisingly, then, the system starts behaving in a

more organized way and jets are quenched since the system head toward the linearly stable

state. Indeed in their numerical experiment the final state achieved as Q increased was the

linearly stable state without the convection. Here, we kept the supercriticality constant,

which indicates the quenching mechanism is different from the case by Lantz where the jets
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are quenched partly because the linear instability is weakened. In the following, we try to

identify the mechanism of the quenching of the jets.

So what is behind the view graphs? It is well known that the turbulent Reynolds stress

can drive large scale flows. In magnetized fluids, in addition to the Reynolds stress, one has

Maxwell stress which originates from the bending of the field lines. With these stresses the

flow evolution is described as

∂t〈U(z)〉 + ∂z〈w′u′ − σζQB′
zB

′
x〉 = σ∂2

z 〈U(z)〉 (32)

Here 〈...〉 is defined in the same as before, i.e. 〈...〉 =
∫
dx... due ergodicity. Given the

relation, it would be physically plausible to check the stress balance when the quenching

occurs.

The figure 6 is the simulation results for different magnetic fields Q = 130, 150, 170

and shows the time evolution of Reynolds, Maxwell and total stresses at a given position

(z = 0.2 here) with the corresponding cell patterns. Note all the cases are well-behaving

system, i.e. the system which achieves stationarity. For Q = 130, Reynolds stress (red)

exceeds Maxwell stress (green) and the total stress (blue) has the same sign as the Reynolds

stress, which suggests the flow is Reynolds stress driven. The pattern of the cell is fixed and

large scale flow profile is such that the flow is in left (negative x) at the top of the box and

in right (positive x) at the bottom of the box. As the field strength increased to Q = 150,

the system shows the similar behavior as in the case with Q = 130, while the tilting of the

cell is weakened. The cancellation between Reynolds and Maxwell stresses becomes larger

and the total driving becomes weaker. When the magnetic field strength is increased to

Q = 170 the stresses cancel with each other and the neither of Reynolds or Maxwell stress

has a finite value. Due to the cancellation of the stresses the large scale flows are quenched

and the cell patterns are that of the convective cells without any flows. Note for a larger

value of Q, say Q = 500, it was observed that the system behaves in the same way, i.e. the

stresses cancel and both Reynolds and Maxwell stresses are suppressed for a stationary state

with the standard convective cells.

Of course the relevant question to ask here is why the quenching occurs at the value of

Q = 170. In order to estimate the value of Q for a quenching, we can do a ‘back-of-an-

envelope’ type calculation, i.e. ‘guesstimation’ as follows. Since the quenching occurs, the
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energy would be equipartitioned between kinetic and magnetic energy, as

|v′2| ∼ σζQ|B′2| (33)

The root mean squared of the magnetic field is related to the turbulent mixing of the

magnetic potential via Zeldovich theorem as

ζ

∫
d2x|B′2| =

∫
d2x∂xψ

′A′ (34)

The magnetic potential would be mixed by the advection due to the convective cell, i.e.

A′ ∼ τc∂xψ
′ ∼ (kz|v′z|rms)

−1∂xψ
′ (35)

where τc is a time scale that the turbulent velocity field advects magnetic potential, which

can be estimated to be a turn over time here. Collecting the estimates, we have

Q ∼ |v′2|
σ

kz|v′z|rms

|∂xψ′|2
∼ k2

k2
x

kz
|v′z|rms

σ
(36)

For the parameters we used here, σ = 10, kz = π, kx = 2π/λ = 8π and |v′z|rms from the

simulation results, we have

Q ∼ 30 (37)

which suggests we need a larger envelope, or another physics missing here. One possibility

may be the quenching of the turbulent resistivity. When we treated the mixing of the

magnetic potential we considered the kinematic problem, i.e. we treated the magnetic

potential as a passive scalar. Since the magnetic potential affects the ambient turbulent

velocity field via Lorentz force, the magnetic potential is an active scalar. When the effect of

the magnetic potential as an active scalar is incorporated for the calculation of the turbulent

resistivity, one could have a quenching factor21 which could enhance the value of Q. Further

investions are left as a future work.

B. Magnetic diffusivity

Up to this point, we examined the effect of the field strength on the dynamics of the

jets, specifically, quenching of jets, with a fixed magnetic diffusivity or ζ; however, ζ could

play an important role since the magnetic diffusivity control the ‘degree’ of freezing-in law.
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Hence, in this subsection we discuss the effect of different values of magnetic diffusivity on

the jets dynamics.

The figure 7 shows the relation between the strength of magnetic fields and the strength

of the magnetic diffusivity. The line separates the region with and without jets, i.e. gives

the strength of the field to quench the jets for a given value of a magnetic diffusivity.

As magnetic diffusivity increases, the frozen-in law is broken and the flow and field are

decoupled; hence it becomes harder to affect the jets with magnetic fields, which requires

stronger field to suppress jets. The same tendency was obtained by Tobias et al9, although

they treated different systems, i.e. jets dynamics in beta plane MHD turbulence with an

arbitrary forcing. Note that they confirmed the tendency over decades, while here we only

confirmed from ζ = 1 to ζ = 10. Note also that we only considered the case for ζ ≥ 1 to

exclude the overstable modes which are considered in the following.

C. Overstable mode

In this subsection, we show the simulation results with the overstable modes. We show

the time evolution of Reynolds, Maxwell and total stresses and pattern of the cell for different

values of Q and R, with σ = 10, ζ = 0.5 and λ = 1/4 fixed. So here again we are interested

in the change of the jets’ behavior for different values of the imposed fields, with a special

attention to the overstable modes in this subsection. It would be useful to recall that as

Q increases the dominant unstable modes change from the stationary cell to the overstable

modes. See the figure 1 for the details. The value of Q at the crossover is given by Eq.(31),

whose value is Q = 715.976 for the parameters we chose.

The figure 8 is the results for Q = 150, 200, 500. Note that all the values are less than the

crossover values; hence the dominant modes or most unstable modes are the stationary cells.

In this case, the system shows the similar behavior as shown before, i.e. as the imposed field

strength increases the jets start behaving well (although oscillates), achieves a stationary

state and try to quench the jets, as seen in the time evolution in total stresses. The total

stress, which is responsible for the driving of large scale flows, is determined by Reynolds

stress, i.e. Reynolds stress is always larger than Maxwell stress. Maxwell stress tries to

cancel Reynolds stress as the imposed field increases. The relation between Reynolds stress

and total stress is apparent in the result for Q = 150. Although the stress or equivalently
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the flow pattern shows the oscillation, the total stress (blue) always has the same sign as

the Reynolds stress (red). Hence the flow is Reynolds stress driven.

Now what happens if the imposed field strength Q is around the crossover value? The

figure 9 is the results for Q = 600, 800, 1000. Note that here we are around the cross over

value where the most unstable mode changes from the stationary cell to the overstable mode.

Plotted are the time evolution of Reynolds (red), Maxwell (green) and total (blue) stresses

and the pattern of the cells. In these simulations, the system changes its behavior drastically,

i.e. Maxwell stress overcomes Reynolds stress which was not observed in the other cases

without overstable modes. As the imposed field strength increases the imbalance becomes

more dominant. These are the large scale flows which are driven by Maxwell stresses.

Since the Maxwell stress dominates and the imbalance becomes more dominant as the

imposed magnetic fields increases, one may ask what happens if we keep increasing the

strength of the field. The figure 10 shows the results for Q = 1100, 1300, 1500. Plotted are

the time evolution of stresses and the cell patterns. Note that in this regime the cell changes

the direction of tilting as compared to the regime treated in the figure 9. Also stresses show

different behavior from the last one. Although the total stress is still dominated by Maxwell

stress, the imbalance becomes smaller as Q increases. And finally at the value of Q = 1500

jets are quenched, as seen in the straight cell pattern and the cancellation in the total stress.

Based on how large scale flows are driven or the behavior of the stresses, we can consider

three distinct regimes. The first regime is Reynolds stress driven regime. This is the usual

case, as observed in the other results in the former sections. In this regime Reynolds stress

is always larger than Maxwell stress and Maxwell stress start canceling as the imposed field

strength increases. Note that the magnetic field makes jets behaving in a more ordered way.

The second regime is Maxwell stress driven regime, with the increasing unbalance in total

stress as the imposed field strength increases. In this case Maxwell stress wins Reynolds

stress and the flow is driven by Maxwell stress. The third regime is also Maxwell driven,

while the total stress decreases as the imposed magnetic fields becomes larger. In this regime

jets are finally quenched. The figure 11 shows the flow profile for the different regimes.

We speculate that the Maxwell stress driven regime is unique to the system with over-

stable modes, since this regime was only observed in the case ζ < 1 where overstable modes

exist. This is also physically plausible, since magnetic fields act as unstable restoring forces,

which would possibly overcome Reynolds stresses. Given this assumption or speculation, we
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can estimate the value of Q where the Maxwell stress wins Reynolds stress. Since overstale

modes would be the cause of the Maxwell stress driven total stress, the transition occurs

when the overstable modes become most dominant, i.e. when the overstable modes becomes

more unstable than the stationary cell, which is around the crossover value of the Q ∼ 700.

The numerical result of the transition between Reynolds stress driven case and Maxwell

stress driven case is between Q ∼ 500 and Q ∼ 600, which is comparable to the crossover

value Q ∼ 700. The possible explanation on the offset would be due to the fact that the

overstable modes increases relative importance before the crossover value as shown in the

figure 1. Hence the transition value of Q for the Maxwell stress driven regime would be

shifted toward a smaller value of Q. An alternative explanation would be the onset of non-

linear instability, where the finite amplitude fluctuation helps instability to set in, giving

rise to the shift in the transition value.

There are the other two important Q values in the problem; one is for the transition

between two different Maxwell stress driven regimes and the other is for the quenching of

jets. The underlying physics to determine these Q values are currently under investigation.

IV. CONCLUSIONS AND DISCUSSIONS

In this report, we considered the dynamics of jets in 2D Boussinesq convective turbulence

with a horizontal magnetic field. We discussed simple properties of 2D Boussinesq system

with a uniform horizontal magnetic field and showed results from numerical experiments

on transitions between flow patterns for different values of the Rayleigh number, the Chan-

drasekhar number and the magnetic Prandtl number. The Rayleigh number was changed

to keep the criticality as constant. The rest of the parameters, the Prandtl number and the

aspect ration of the box were kept constant throughout the numerical experiments. The

principal results are:

1. Momentum theorem was derived between flows and waves as

∂t(〈U〉 − 〈A′∇2ψ′〉) = σR〈B′
zθ

′〉 − σ〈A′∇4ψ′〉 − ζ〈∇2A′∇2ψ′〉 + σ∂2
z 〈U〉 (38)

in a small amplitude limit. To describe the momentum balance, the cross helicity

is utilized. A physical interpretation of the cross helicity as wave momentum was
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discussed. Using the momentum theorem, a stationary profile of the mean flow was

predicted as

〈U(z)〉 =〈U(0)〉

−
∫ z

0

dz′
∫ z′

0

dz′′
(
R〈B′

zθ
′〉 − 〈A′∇4ψ′〉 − ζ

σ
〈∇2A′∇2ψ′〉

)
(39)

2. By starting from a fairy complicated flow pattern in hydrodynamic case and increasing

the Chandrasekhar number Q with the magnetic Prandtl number ζ fixed, we found

that; a) for 100 <∼ Q <∼ 150, flow pattern starts oscillating with a definite period.

stationary state was not achieved. b) for 150 <∼ Q <∼ 200 system achieves steady state

with a tilted cell structure. c) for 150 <∼ Q jets are quenched. We confirmed that the

total stress, i.e. sum of Reynolds stress and Maxwell stress decreases as Q increases,

and both Reynolds stress and Maxwell stress becomes zero when jets are quenched.

A simple estimate for the Q value at the quenching gave Q ∼ 30. Quenching of the

turbulent resistivity was proposed as the explanation for the offset.

3. We repeated the above experiment for different values of the magnetic Prandtl number

ζ. It was shown that a larger ζ requires a larger Q to quench jets, which shows a similar

qualitative behavior to the jets in forced beta plane MHD turbulence9. The result was

interpreted based on the idea of the freezing-in law for MHD systems.

4. Including overstable modes, it was shown that Maxwell stress can exceed Reynolds

stress. A transition from Reynolds stress driven jets to Maxwell stress driven jets was

argued based on a crossover of most unstable modes. A numerical value of Q at the

crossover was calculated to be Q ∼ 700 for the parameters we chose and shown to

be close to the numerical value of Q <∼ 600 at the transition between Reynolds stress

dominated jets and Maxwell stress dominated jets. It was argued that the shift in the

transition value would be due to the increasing relative importance of the overstable

modes before the actual crossover.

Following is a few remarks on a caveat.

1. The Reynolds number in the simulation, which can be calculated a-posteriori, is Re ∼

10 in the simulations presented here. Further study with higher Reynolds number is

desirable, to see the dynamics of jets in a strongly turbulent regime.
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2. We only focused on the dynamics of jets. Obviously, the dynamics of the fields would

be interesting to check. Preliminary results show that the field lines are expelled in the

Maxwell stress driven regime and not expelled in the Reynolds stress driven regime.

This raises the question on the underlying physics of the transition Maxwell stress

driven jets to Reynolds stress driven jets, since both flux expulsion and overstable

modes can result when ζ < 1.
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FIG. 2. Unmagnetized case. From upper left: time evolution of total kinetic energy. Middle left:

time evolution of the kinetic energy in mean flow. Down left: time evolution of velocity at the

position z = 0.2. Color: contour plot of stream function. Right: Flow profile corresponding to the

contour plots

FIG. 3. With magnetic field Q = 100.5. From upper left: time evolution of total kinetic energy.

Middle left: time evolution of the kinetic energy in mean flow. Down left: time evolution of velocity

at the position z = 0.2. Color: contour plot of stream function. Right: Flow profile corresponding

to the contour plots
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FIG. 4. With magnetic field Q = 150. From upper left: time evolution of total kinetic energy.

Down left: time evolution of the kinetic energy in mean flow. Upper right: ontour plot of a stream

function. Down right:Flow profile corresponding to the contour plot

FIG. 5. With magnetic field Q = 200. From upper left: time evolution of total kinetic energy.

Down left: time evolution of the kinetic energy in mean flow. Upper right: ontour plot of a stream

function. Down right:Flow profile corresponding to the contour plot
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FIG. 6. From left to right, Q = 130, 150, 170 respectively. Up:Reynolds(red), Maxwell(green) and

total(blue) stresses. Down: Contour plot of a stream function.

FIG. 7. The value of Q for quenching v.s. ζ. Above the line flows are quenched.
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FIG. 8. From left to right, Q = 150, 200, 500 respectively. Up:Reynolds(red), Maxwell(green) and

total(blue) stresses. Down: Contour plot of a stream function.

FIG. 9. From left to right, Q = 600, 800, 1000 respectively. Up:Reynolds(red), Maxwell(green)

and total(blue) stresses. Down: Contour plot of a stream function.
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FIG. 10. From left to right, Q = 1100, 1300, 1500 respectively. Up:Reynolds(red), Maxwell(green)

and total(blue) stresses. Down: Contour plot of a stream function.

FIG. 11. Flow profile at different regimes. Upper left: Reynolds stress driven. Upper right:

Maxwell stress driven. Down left: Maxwell stress driven. Down right: Cancellation of stresses and

quenching of Jets.
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