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1 Introdution

Most fault-tolerant algorithms are designed using a threshold model : one assumes that out of n

omponents, no more than t an be faulty. For example, solutions to the Consensus problem are

usually developed assuming no more than t of the n proesses are faulty where \being faulty" is

speialized by a failure model. It is a onvenient model to make. For example, bounds are easily

expressed as a funtion of t: if proesses an fail in an arbitrary manner, then without using digital

signatures the Consensus problem requires n > 3� t proesses [1℄. But, suh bounds are most useful

when proesses have idential probabilities of failure and they fail independently.

If this is not the ase (for most systems of interest today, it rarely is), then t needs to be large

enough to over the number of failures in any run of the system. If one instead takes into aount

how proesses fail, then one an have more eÆient protools, both in terms of running time and of

repliation. Thus, we have been studying various distributed problems in the ontext of dependent

proess failures [2℄.

So far, we have been onentrating on the Consensus problem, and we have developed new

bounds and protools from �rst priniples. This exerise has led to the question of whether one an

instead develop bounds and protools using the results that have been previously developed for the

threshold model. This brief paper desribes our progress towards answering this question. We have

generalized the assumption n > k � t for integer k � 1 to our dependent failure model and have

used it to generalize lower bound results. We have a onjeture for how to generalize upper bound

results.

�

This work was developed in the ontext of RAMP, whih is DARPA projet number N66001-01-1-8933.
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2 System Model

We assume a message-passing distributed system: there is a set � of proesses interonneted by

message hannels. In suh systems, proesses ommuniate only by exhanging messages. Beause

we fous on proess failures, we ignore hannel failures and so simply onsider them to be reliable.

In our system model, we allow proesses to fail dependently. To model failure orrelations,

we use ores and survivor sets, whih are abstrations that enable one to represent onisely suh

orrelations [2℄. Informally, a ore is a reliable subset of proesses: in every exeution of the system,

there is one orret proess in every ore. Survivor sets are subsets of proesses that have at least

one element from every ore. Thus, in every exeution of the system, there is at least one survivor

set ontaining only orret proesses.

More formally, let R be a rational number expressing a desired reliability, and r(x), x � �, be

a funtion that evaluates to the reliability of the subset x. We de�ne ores and survivor sets as

follows:

De�nition 2.1 Given a set of proesses � and rational target degree of reliability R 2 [0; 1℄, the

set of proesses  is a ore of � if and only if: (a)  � �; (b) r() � R; ()8p 2 , r(� fpg) < R.

Given a set of proesses � and a set of ores C

�

, s is a survivor set if and only if: (a) s � �; (b)

8 2 C

�

, s\  6= ;; () 8p

i

2 s, 9 2 C

�

suh that p

i

2  and (s� fp

i

g) \  = ;. C

�

and S

�

denote

the set of ores and of survivor sets of �, respetively.

One an also de�ne ores and survivor sets without resorting to R. For example, one an

use attributes to orrelate failures [3℄. Systems that share attributes, suh as the same software

pakages, are likely to share vulnerabilities that an lead to them failing together. In the remaining

of this paper, we assume that ores and survivor sets are omputed in some manner and desribed

using a system on�guration h�; C

�

; S

�

i.

3 Generalizing n > k � t

Many lower bounds on proess repliation for problems in distributed omputing are expressed as

an inequality n > k� t, where n is the number of proesses, k is an integer repliation fator, and t is

the maximum number of proess failures to be tolerated. A ommon strategy used to arrive at suh

a bound is to partition the proesses into k equally-sized subsets. Then, one onstruts k exeutions,

where in eah subset all of the proesses in one of the subsets fail. There will be one exeution

that violates some property of interest. For example, the Consensus problem with arbitrary failures

and with no digital signatures has the well-known lower bound on proess repliation n > 3 � t [1℄.

The proof onsists of partitioning 3 � t proesses into subsets fA;B;Cg, eah one ontaining t

proesses, and showing that two valid exeutions implies a third that violates agreement. Thus, any

generalization of n > k � t needs to onsider partitionings of the proesses into subsets that don't

ontain ores.

Many upper bounds are also expressed using the same inequality. Suh bounds are often de-

rived by onsidering sets of proesses that an interat. For example, algorithms for problems in

distributed omputing often have a proess take an ation only after it has reeived a message from

a ertain number of proesses. For example, the 3S Consensus algorithm by Chandra and Toueg

requires n > 2 � t [4℄. In this algorithm, a oordinator broadasts a deide message one a majority

of the proesses adopt its estimate. Thus, a generalization of the n > k�t needs to onsider survivor

sets, sine these are minimal subsets of proesses that are orret in at least one exeution.
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We now state two equivalent properties that both generalize the n > k�t repliation requirement

for integer k � 1. These properties are based on our two previous observations. Consider the

following properties for a system h�; C

�

; S

�

i:

Property 3.1 k-Partition

For every partition A = fA

1

; A

2

; � � � ; A

k

g of �, there is a subset A

i

2 A suh that A

i

ontains a

ore. 2

Property 3.2 k-Intersetion

For every subset fs

1

; s

2

; � � � ; s

k

g � S

�

, (\

i

s

i

) 6= ;. 2

Theorem 3.3 k-Partition � k-Intersetion. 2

A diret impliation of the k-Intersetionproperty is that the intersetion of any set of k � 1

distint survivor sets ontains a ore, for k > 1. To see this, suppose that k-Intersetionholds.

Then, for every subset S

0

= fs

1

; s

2

; � � � ; s

k�1

g � S

�

and survivor set s 2 S

�

=S

0

, we have that

(\

i

s

i

) \ s 6= ;. Sine this is true for any s 2 S

�

=S

0

, eah survivor set in S

0

ontains at least one

element from eah other survivor set. By assumptiom, in every exeution, at least one survivor

set ontains only orret proesses, and hene the intersetion must ontain a ore. This implied

property is a generalization of the Byzantine Intersetion property we showed in [2℄. We used

this intersetion property to modify an existing algorithm for the Consensus problem in synhronous

systems with arbitrary failures.

We now argue that k-Partitionis a lower bound on proess repliation for any problem that

requires n > k � t proess repliation, for an integer k � 1. Let P be some problem in fault-tolerant

distributed omputing that requires n > k � t repliation for some integer k � 1. This threshold

implies that a system requires at least (k � t) + 1 proesses to solve P , assuming at most t failures.

From the pigeonhole priniple, any partition of the proesses into k subsets requires that one subset

ontains at least t+1 proesses. This subset therefore ontains a ore and the system onsequently

satis�es k-Partition.

Consider now an algorithm under the threshold model that requires n > k � t repliation. In

addition, suppose there is at least one statement in this algorithm in whih a proess sends or

reeives n � ( � t) messages m, for some positive integer  < k. We onjeture that we an

automatially translate this algorithm to our model by simply replaing every statement in whih

some proess sends or reeives n � ( � t) messages by one in whih a proess sends or reeives

messages to elements in some intersetion of  survivor sets. Although we have not been able to

prove a general result, this onjeture holds for the examples we have looked at. We disuss one of

these examples in the following setion.

4 An Example: State-mahine Repliation

State-mahine repliation is a well-known approah for implementing fault-tolerant distributed ser-

vies [5℄. Typially, this approah is haraterized by lients that send requests to a set of server

replias exeuting a deterministi state mahine. A orret server proesses an agreed-upon se-

quene of requests and returns the orresponding sequene of responses to the lients. Beause

every server exeutes the same deterministi state-mahine and the replias agree on the sequene

of ommands, the replies from all the orret servers are the same. Thus, after olleting answers

from a subset of these servers, a lient omputes an output.
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Assuming arbitrary failures, the minimum number of servers needed to implement state-mahine

repliation is 2t+ 1 in the threshold model [5℄. The outome deided by the lient is given by the

value given in a majority of the replies.

In our model of dependent failures, one an implement a servie based on state-mahine repli-

ation by using the same approah, but assuming 2-Intersetion instead of n > 2 � t as the proess

repliation requirement. The lient waits until it reeives idential replies from a survivor set in-

stead of from a majority (n� t) as in the threshold model. From the previous setion, if a system

satis�es 2-Intersetion, then the intersetion between every pair of survivor sets is not empty. As a

onsequene, we have that every survivor set has to ontain a orret proess, beause we have by

assumption that in every exeution at least one survivor set ontains only orret proesses. Thus,

it is impossible for a lient to reeive one reply from one survivor set and a di�erent reply from

another survivor set.

5 Conlusions and Future Work

Cores and survivor sets onstitute a onise way of representing orrelation of failures among pro-

esses. There are several bene�ts of using this model, suh as a redued number of rounds and a

redued number of replias. In this paper, we have disussed another bene�t of onsidering suh

model: being able to take advantage of the bene�ts of modeling with ores and survivor sets without

designing new algorithms from srath. This is a �rst step towards a generalization of the threshold

model for dependent proess failures.

We have proofs for most of the assertions made throughout the paper. We have yet to show

the onjeture presented in Setion 3, whih refers to the automati translation of algorithms for

a partiular lass of algorithms. In order to ahieve this goal, we are looking into new problems

to gain intuition. If we an show this (or perhaps a more restrited) onjeture, then we believe it

ould lead to a widespread pratial appliation of ores and survivor sets.

Referenes

[1℄ L. Lamport, R. Shostak, and M. Pease, \The Byzantine Generals Problem," ACM Transations

on Programming Languages and Systems, vol. 4, pp. 382{401, July 1982.

[2℄ F. Junqueira and K. Marzullo, \Synhronous Consensus for Dependent Proess Failures," in

International Conferene on Distributed Computing and Systems (ICDCS), May 2003.

[3℄ F. Junqueira, R. Bhagwan, K. Marzullo, S. Savage, and G. M. Voelker, \The Phoenix Reovery

System: Reovering from the ashes of an Internet atastrophe," in IX Hot Topis in Operating

Systems (HotOS-IX), May 2003.

[4℄ T. Chandra and S. Toueg, \Unreliable Failure Detetors for Reliable Distributed Systems,"

Journal of the ACM, vol. 43, pp. 225{267, Marh 1996.

[5℄ F. B. Shneider, \Implementing fault-tolerant servies using the state mahine approah: a

tutorial." ACM Computing Surveys, Deember 1990.

4




