UC San Diego

Technical Reports

Title
On the Generalization of n > k * t

Permalink
https://escholarship.org/uc/item/5ff74272

Authors
Junqueira, Flavio
Marzullo, Keith

Publication Date
2003-04-21

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5ff74272
https://escholarship.org
http://www.cdlib.org/

On the Generalization of n > k xt¢ *

(Brief Announcement)

Flavio P. Junqueira Keith Marzullo
flavio@cs.ucsd.edu marzullo@cs.ucsd.edu

University of California, San Diego
Department of Computer Science and Engineering
9500 Gilman Drive
La Jolla, CA

1 Introduction

Most fault-tolerant algorithms are designed using a threshold model: one assumes that out of n
components, no more than ¢ can be faulty. For example, solutions to the Consensus problem are
usually developed assuming no more than ¢ of the n processes are faulty where “being faulty” is
specialized by a failure model. It is a convenient model to make. For example, bounds are easily
expressed as a function of ¢: if processes can fail in an arbitrary manner, then without using digital
signatures the Consensus problem requires n > 3 * ¢ processes [1]. But, such bounds are most useful
when processes have identical probabilities of failure and they fail independently.

If this is not the case (for most systems of interest today, it rarely is), then ¢ needs to be large
enough to cover the number of failures in any run of the system. If one instead takes into account
how processes fail, then one can have more efficient protocols, both in terms of running time and of
replication. Thus, we have been studying various distributed problems in the context of dependent
process failures [2].

So far, we have been concentrating on the Consensus problem, and we have developed new
bounds and protocols from first principles. This exercise has led to the question of whether one can
instead develop bounds and protocols using the results that have been previously developed for the
threshold model. This brief paper describes our progress towards answering this question. We have
generalized the assumption n > k % ¢t for integer £ > 1 to our dependent failure model and have
used it to generalize lower bound results. We have a conjecture for how to generalize upper bound
results.

*This work was developed in the context of RAMP, which is DARPA project number N66001-01-1-8933.

2 System Model

We assume a message-passing distributed system: there is a set II of processes interconnected by
message channels. In such systems, processes communicate only by exchanging messages. Because
we focus on process failures, we ignore channel failures and so simply consider them to be reliable.

In our system model, we allow processes to fail dependently. To model failure correlations,
we use cores and survivor sets, which are abstractions that enable one to represent concisely such
correlations [2]. Informally, a core is a reliable subset of processes: in every execution of the system,
there is one correct process in every core. Survivor sets are subsets of processes that have at least
one element from every core. Thus, in every execution of the system, there is at least one survivor
set containing only correct processes.

More formally, let R be a rational number expressing a desired reliability, and r(x), z C II, be
a function that evaluates to the reliability of the subset z. We define cores and survivor sets as
follows:

Definition 2.1 Given a set of processes I and rational target degree of reliability R € [0, 1], the
set of processes ¢ is a core of I if and only if: (a) ¢ CII; (b) r(c) > R; (c)Vp € ¢, r(c — {p}) < R.
Given a set of processes II and a set of cores Cpy, s is a survivor set if and only if: (a) s C II; (b)
Ve € Cr, sNec#0; (¢) Vp; € s, Ic € Cpp such that p; € c and (s — {p;}) Nc = 0. Cp and Sy denote
the set of cores and of survivor sets of II, respectively.

One can also define cores and survivor sets without resorting to R. For example, one can
use attributes to correlate failures [3]. Systems that share attributes, such as the same software
packages, are likely to share vulnerabilities that can lead to them failing together. In the remaining
of this paper, we assume that cores and survivor sets are computed in some manner and described
using a system configuration (II, Cyy, St).

3 Generalizing n > k xt

Many lower bounds on process replication for problems in distributed computing are expressed as
an inequality n > kxt, where n is the number of processes, k is an integer replication factor, and ¢ is
the maximum number of process failures to be tolerated. A common strategy used to arrive at such
a bound is to partition the processes into k equally-sized subsets. Then, one constructs k executions,
where in each subset all of the processes in one of the subsets fail. There will be one execution
that violates some property of interest. For example, the Consensus problem with arbitrary failures
and with no digital signatures has the well-known lower bound on process replication n > 3 * ¢ [1].
The proof consists of partitioning 3 * ¢ processes into subsets {A, B,C}, each one containing ¢
processes, and showing that two valid executions implies a third that violates agreement. Thus, any
generalization of n > k x t needs to consider partitionings of the processes into subsets that don’t
contain cores.

Many upper bounds are also expressed using the same inequality. Such bounds are often de-
rived by considering sets of processes that can interact. For example, algorithms for problems in
distributed computing often have a process take an action only after it has received a message from
a certain number of processes. For example, the &S Consensus algorithm by Chandra and Toueg
requires n > 2% ¢ [4]. In this algorithm, a coordinator broadcasts a decide message once a majority
of the processes adopt its estimate. Thus, a generalization of the n > kxt needs to consider survivor
sets, since these are minimal subsets of processes that are correct in at least one execution.

We now state two equivalent properties that both generalize the n > kxt replication requirement
for integer k£ > 1. These properties are based on our two previous observations. Consider the
following properties for a system (II, Cyy, Sy):

Property 3.1 Ek-Partition
For every partition A = {A;, Ay,---, A} of II, there is a subset A; € A such that A; contains a
core. O

Property 3.2 k-Intersection
For every subset {s1,89,--+, 8k} C St, (N;s;) #0. O

Theorem 3.3 k-Partition = k-Intersection. O

A direct implication of the k-Intersectionproperty is that the intersection of any set of & — 1
distinct survivor sets contains a core, for £k > 1. To see this, suppose that k-Intersectionholds.
Then, for every subset S" = {s1,52, -+, 1} C Sp and survivor set s € Sy;/S’, we have that
(Nisi) N's # 0. Since this is true for any s € Syr/S’, each survivor set in S’ contains at least one
element from each other survivor set. By assumptiom, in every execution, at least one survivor
set contains only correct processes, and hence the intersection must contain a core. This implied
property is a generalization of the Byzantine Intersection property we showed in [2]. We used
this intersection property to modify an existing algorithm for the Consensus problem in synchronous
systems with arbitrary failures.

We now argue that k-Partitionis a lower bound on process replication for any problem that
requires n > k x t process replication, for an integer k > 1. Let P be some problem in fault-tolerant
distributed computing that requires n > k * ¢ replication for some integer £ > 1. This threshold
implies that a system requires at least (k*t¢) + 1 processes to solve P, assuming at most ¢ failures.
From the pigeonhole principle, any partition of the processes into k subsets requires that one subset
contains at least ¢t + 1 processes. This subset therefore contains a core and the system consequently
satisfies k-Partition.

Consider now an algorithm under the threshold model that requires n > k * ¢ replication. In
addition, suppose there is at least one statement in this algorithm in which a process sends or
receives n — (7 * t) messages m, for some positive integer v < k. We conjecture that we can
automatically translate this algorithm to our model by simply replacing every statement in which
some process sends or receives n — (v * t) messages by one in which a process sends or receives
messages to elements in some intersection of 7 survivor sets. Although we have not been able to
prove a general result, this conjecture holds for the examples we have looked at. We discuss one of
these examples in the following section.

4 An Example: State-machine Replication

State-machine replication is a well-known approach for implementing fault-tolerant distributed ser-
vices [5]. Typically, this approach is characterized by clients that send requests to a set of server
replicas executing a deterministic state machine. A correct server processes an agreed-upon se-
quence of requests and returns the corresponding sequence of responses to the clients. Because
every server executes the same deterministic state-machine and the replicas agree on the sequence
of commands, the replies from all the correct servers are the same. Thus, after collecting answers
from a subset of these servers, a client computes an output.

Assuming arbitrary failures, the minimum number of servers needed to implement state-machine
replication is 2t 4+ 1 in the threshold model [5]. The outcome decided by the client is given by the
value given in a majority of the replies.

In our model of dependent failures, one can implement a service based on state-machine repli-
cation by using the same approach, but assuming 2-Intersection instead of n > 2 x ¢t as the process
replication requirement. The client waits until it receives identical replies from a survivor set in-
stead of from a majority (n — t) as in the threshold model. From the previous section, if a system
satisfies 2-Intersection, then the intersection between every pair of survivor sets is not empty. As a
consequence, we have that every survivor set has to contain a correct process, because we have by
assumption that in every execution at least one survivor set contains only correct processes. Thus,
it is impossible for a client to receive one reply from one survivor set and a different reply from
another survivor set.

5 Conclusions and Future Work

Cores and survivor sets constitute a concise way of representing correlation of failures among pro-
cesses. There are several benefits of using this model, such as a reduced number of rounds and a
reduced number of replicas. In this paper, we have discussed another benefit of considering such
model: being able to take advantage of the benefits of modeling with cores and survivor sets without
designing new algorithms from scratch. This is a first step towards a generalization of the threshold
model for dependent process failures.

We have proofs for most of the assertions made throughout the paper. We have yet to show
the conjecture presented in Section 3, which refers to the automatic translation of algorithms for
a particular class of algorithms. In order to achieve this goal, we are looking into new problems
to gain intuition. If we can show this (or perhaps a more restricted) conjecture, then we believe it
could lead to a widespread practical application of cores and survivor sets.

References

[1] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM Transactions
on Programming Languages and Systems, vol. 4, pp. 382-401, July 1982.

[2] F. Junqueira and K. Marzullo, “Synchronous Consensus for Dependent Process Failures,” in
International Conference on Distributed Computing and Systems (ICDCS), May 2003.

[3] F. Junqueira, R. Bhagwan, K. Marzullo, S. Savage, and G. M. Voelker, “The Phoenix Recovery
System: Recovering from the ashes of an Internet catastrophe,” in IX Hot Topics in Operating
Systems (HotOS-IX), May 2003.

[4] T. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Distributed Systems,”
Journal of the ACM, vol. 43, pp. 225267, March 1996.

[5] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach: a
tutorial.” ACM Computing Surveys, December 1990.

