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1 Introdu
tion

Most fault-tolerant algorithms are designed using a threshold model : one assumes that out of n


omponents, no more than t 
an be faulty. For example, solutions to the Consensus problem are

usually developed assuming no more than t of the n pro
esses are faulty where \being faulty" is

spe
ialized by a failure model. It is a 
onvenient model to make. For example, bounds are easily

expressed as a fun
tion of t: if pro
esses 
an fail in an arbitrary manner, then without using digital

signatures the Consensus problem requires n > 3� t pro
esses [1℄. But, su
h bounds are most useful

when pro
esses have identi
al probabilities of failure and they fail independently.

If this is not the 
ase (for most systems of interest today, it rarely is), then t needs to be large

enough to 
over the number of failures in any run of the system. If one instead takes into a

ount

how pro
esses fail, then one 
an have more eÆ
ient proto
ols, both in terms of running time and of

repli
ation. Thus, we have been studying various distributed problems in the 
ontext of dependent

pro
ess failures [2℄.

So far, we have been 
on
entrating on the Consensus problem, and we have developed new

bounds and proto
ols from �rst prin
iples. This exer
ise has led to the question of whether one 
an

instead develop bounds and proto
ols using the results that have been previously developed for the

threshold model. This brief paper des
ribes our progress towards answering this question. We have

generalized the assumption n > k � t for integer k � 1 to our dependent failure model and have

used it to generalize lower bound results. We have a 
onje
ture for how to generalize upper bound

results.

�

This work was developed in the 
ontext of RAMP, whi
h is DARPA proje
t number N66001-01-1-8933.
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2 System Model

We assume a message-passing distributed system: there is a set � of pro
esses inter
onne
ted by

message 
hannels. In su
h systems, pro
esses 
ommuni
ate only by ex
hanging messages. Be
ause

we fo
us on pro
ess failures, we ignore 
hannel failures and so simply 
onsider them to be reliable.

In our system model, we allow pro
esses to fail dependently. To model failure 
orrelations,

we use 
ores and survivor sets, whi
h are abstra
tions that enable one to represent 
on
isely su
h


orrelations [2℄. Informally, a 
ore is a reliable subset of pro
esses: in every exe
ution of the system,

there is one 
orre
t pro
ess in every 
ore. Survivor sets are subsets of pro
esses that have at least

one element from every 
ore. Thus, in every exe
ution of the system, there is at least one survivor

set 
ontaining only 
orre
t pro
esses.

More formally, let R be a rational number expressing a desired reliability, and r(x), x � �, be

a fun
tion that evaluates to the reliability of the subset x. We de�ne 
ores and survivor sets as

follows:

De�nition 2.1 Given a set of pro
esses � and rational target degree of reliability R 2 [0; 1℄, the

set of pro
esses 
 is a 
ore of � if and only if: (a) 
 � �; (b) r(
) � R; (
)8p 2 
, r(
� fpg) < R.

Given a set of pro
esses � and a set of 
ores C

�

, s is a survivor set if and only if: (a) s � �; (b)

8
 2 C

�

, s\ 
 6= ;; (
) 8p

i

2 s, 9
 2 C

�

su
h that p

i

2 
 and (s� fp

i

g) \ 
 = ;. C

�

and S

�

denote

the set of 
ores and of survivor sets of �, respe
tively.

One 
an also de�ne 
ores and survivor sets without resorting to R. For example, one 
an

use attributes to 
orrelate failures [3℄. Systems that share attributes, su
h as the same software

pa
kages, are likely to share vulnerabilities that 
an lead to them failing together. In the remaining

of this paper, we assume that 
ores and survivor sets are 
omputed in some manner and des
ribed

using a system 
on�guration h�; C

�

; S

�

i.

3 Generalizing n > k � t

Many lower bounds on pro
ess repli
ation for problems in distributed 
omputing are expressed as

an inequality n > k� t, where n is the number of pro
esses, k is an integer repli
ation fa
tor, and t is

the maximum number of pro
ess failures to be tolerated. A 
ommon strategy used to arrive at su
h

a bound is to partition the pro
esses into k equally-sized subsets. Then, one 
onstru
ts k exe
utions,

where in ea
h subset all of the pro
esses in one of the subsets fail. There will be one exe
ution

that violates some property of interest. For example, the Consensus problem with arbitrary failures

and with no digital signatures has the well-known lower bound on pro
ess repli
ation n > 3 � t [1℄.

The proof 
onsists of partitioning 3 � t pro
esses into subsets fA;B;Cg, ea
h one 
ontaining t

pro
esses, and showing that two valid exe
utions implies a third that violates agreement. Thus, any

generalization of n > k � t needs to 
onsider partitionings of the pro
esses into subsets that don't


ontain 
ores.

Many upper bounds are also expressed using the same inequality. Su
h bounds are often de-

rived by 
onsidering sets of pro
esses that 
an intera
t. For example, algorithms for problems in

distributed 
omputing often have a pro
ess take an a
tion only after it has re
eived a message from

a 
ertain number of pro
esses. For example, the 3S Consensus algorithm by Chandra and Toueg

requires n > 2 � t [4℄. In this algorithm, a 
oordinator broad
asts a de
ide message on
e a majority

of the pro
esses adopt its estimate. Thus, a generalization of the n > k�t needs to 
onsider survivor

sets, sin
e these are minimal subsets of pro
esses that are 
orre
t in at least one exe
ution.
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We now state two equivalent properties that both generalize the n > k�t repli
ation requirement

for integer k � 1. These properties are based on our two previous observations. Consider the

following properties for a system h�; C

�

; S

�

i:

Property 3.1 k-Partition

For every partition A = fA

1

; A

2

; � � � ; A

k

g of �, there is a subset A

i

2 A su
h that A

i


ontains a


ore. 2

Property 3.2 k-Interse
tion

For every subset fs

1

; s

2

; � � � ; s

k

g � S

�

, (\

i

s

i

) 6= ;. 2

Theorem 3.3 k-Partition � k-Interse
tion. 2

A dire
t impli
ation of the k-Interse
tionproperty is that the interse
tion of any set of k � 1

distin
t survivor sets 
ontains a 
ore, for k > 1. To see this, suppose that k-Interse
tionholds.

Then, for every subset S

0

= fs

1

; s

2

; � � � ; s

k�1

g � S

�

and survivor set s 2 S

�

=S

0

, we have that

(\

i

s

i

) \ s 6= ;. Sin
e this is true for any s 2 S

�

=S

0

, ea
h survivor set in S

0


ontains at least one

element from ea
h other survivor set. By assumptiom, in every exe
ution, at least one survivor

set 
ontains only 
orre
t pro
esses, and hen
e the interse
tion must 
ontain a 
ore. This implied

property is a generalization of the Byzantine Interse
tion property we showed in [2℄. We used

this interse
tion property to modify an existing algorithm for the Consensus problem in syn
hronous

systems with arbitrary failures.

We now argue that k-Partitionis a lower bound on pro
ess repli
ation for any problem that

requires n > k � t pro
ess repli
ation, for an integer k � 1. Let P be some problem in fault-tolerant

distributed 
omputing that requires n > k � t repli
ation for some integer k � 1. This threshold

implies that a system requires at least (k � t) + 1 pro
esses to solve P , assuming at most t failures.

From the pigeonhole prin
iple, any partition of the pro
esses into k subsets requires that one subset


ontains at least t+1 pro
esses. This subset therefore 
ontains a 
ore and the system 
onsequently

satis�es k-Partition.

Consider now an algorithm under the threshold model that requires n > k � t repli
ation. In

addition, suppose there is at least one statement in this algorithm in whi
h a pro
ess sends or

re
eives n � (
 � t) messages m, for some positive integer 
 < k. We 
onje
ture that we 
an

automati
ally translate this algorithm to our model by simply repla
ing every statement in whi
h

some pro
ess sends or re
eives n � (
 � t) messages by one in whi
h a pro
ess sends or re
eives

messages to elements in some interse
tion of 
 survivor sets. Although we have not been able to

prove a general result, this 
onje
ture holds for the examples we have looked at. We dis
uss one of

these examples in the following se
tion.

4 An Example: State-ma
hine Repli
ation

State-ma
hine repli
ation is a well-known approa
h for implementing fault-tolerant distributed ser-

vi
es [5℄. Typi
ally, this approa
h is 
hara
terized by 
lients that send requests to a set of server

repli
as exe
uting a deterministi
 state ma
hine. A 
orre
t server pro
esses an agreed-upon se-

quen
e of requests and returns the 
orresponding sequen
e of responses to the 
lients. Be
ause

every server exe
utes the same deterministi
 state-ma
hine and the repli
as agree on the sequen
e

of 
ommands, the replies from all the 
orre
t servers are the same. Thus, after 
olle
ting answers

from a subset of these servers, a 
lient 
omputes an output.
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Assuming arbitrary failures, the minimum number of servers needed to implement state-ma
hine

repli
ation is 2t+ 1 in the threshold model [5℄. The out
ome de
ided by the 
lient is given by the

value given in a majority of the replies.

In our model of dependent failures, one 
an implement a servi
e based on state-ma
hine repli-


ation by using the same approa
h, but assuming 2-Interse
tion instead of n > 2 � t as the pro
ess

repli
ation requirement. The 
lient waits until it re
eives identi
al replies from a survivor set in-

stead of from a majority (n� t) as in the threshold model. From the previous se
tion, if a system

satis�es 2-Interse
tion, then the interse
tion between every pair of survivor sets is not empty. As a


onsequen
e, we have that every survivor set has to 
ontain a 
orre
t pro
ess, be
ause we have by

assumption that in every exe
ution at least one survivor set 
ontains only 
orre
t pro
esses. Thus,

it is impossible for a 
lient to re
eive one reply from one survivor set and a di�erent reply from

another survivor set.

5 Con
lusions and Future Work

Cores and survivor sets 
onstitute a 
on
ise way of representing 
orrelation of failures among pro-


esses. There are several bene�ts of using this model, su
h as a redu
ed number of rounds and a

redu
ed number of repli
as. In this paper, we have dis
ussed another bene�t of 
onsidering su
h

model: being able to take advantage of the bene�ts of modeling with 
ores and survivor sets without

designing new algorithms from s
rat
h. This is a �rst step towards a generalization of the threshold

model for dependent pro
ess failures.

We have proofs for most of the assertions made throughout the paper. We have yet to show

the 
onje
ture presented in Se
tion 3, whi
h refers to the automati
 translation of algorithms for

a parti
ular 
lass of algorithms. In order to a
hieve this goal, we are looking into new problems

to gain intuition. If we 
an show this (or perhaps a more restri
ted) 
onje
ture, then we believe it


ould lead to a widespread pra
ti
al appli
ation of 
ores and survivor sets.
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