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ABSTRACT OF THE DISSERTATION

Mitigating Gender and L1 Biases

in Automated English Speaking Assessment

by

Alexander James Kwako

Doctor of Philosophy in Education

University of California, Los Angeles, 2023

Professor Michael H. Seltzer, Chair

Automated assessment using Natural Language Processing (NLP) has the potential to make English

speaking assessments more reliable, authentic, and accessible. Yet without careful examination,

NLP may exacerbate social prejudices based on gender or native language (L1). Current NLP-based

assessments are prone to such biases, yet research and documentation are scarce. Considering the

high stakes nature of English speaking assessment, it is imperative that tests are fair for all examinees,

regardless of gender or L1 background. Through a series of three studies, this project addresses the

need for more thorough investigations of bias in English speaking assessment. Study 1 examines

biases in automated transcription, a key component of automated speaking assessment. Study 2

focuses on a specific type of bias known as differential item functioning (DIF), and determines

which patterns of DIF are present in human rater scores and whether or not these patterns of DIF

are exacerbated by a pretrained, large language model (LLM) known as BERT. Lastly, Study 3

presents a comparison of two approaches of mitigating DIF using LLMs. Results from Study 1

indicate that there are indeed biases in automated transcription, however these do not translate into

biased speaking scores. In Study 2, it is shown that BERT does exacerbate human rater biases,

ii



although the effect size is small. Finally, Study 3 demonstrates that it is possible to debias human

and automated scores; however, the two approaches have limitations, particularly when the source

of DIF is unknown.
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CHAPTER 1

Introduction

Automated assessment of non-native (L2) English speaking proficiency is made possible by recent

advances in Natural Language Processing (NLP). Researchers have shown, for instance, that

pretrained large language models (LLMs) can accurately replicate human rater scores in English

speaking assessment (Wang et al., 2021). Although applications of NLP present new opportunities

for language assessment, recent studies have revealed that NLP can propagate and, in some cases,

amplify negative stereotypes of marginalized groups (Blodgett et al., 2020). Societal biases become

embedded in NLP models, which may lead to unfair scoring, e.g., where examinees of a particular

racial background are systematically given lower scores than others (Wang et al., 2018). Perhaps

more commonly, biases of NLP-based assessments are not examined at all (e.g. Collier and Huang,

2020; Ormerod et al., 2022)).

Considering how widespread and high stakes English speaking assessments are at both the

primary and secondary education levels (Cimpian et al., 2017; Educational Testing Service, 2005), it

is imperative that these assessments be fair for all students, regardless of gender or racial background.

This dissertation presents a set of three studies aimed at addressing the need for deeper analyses of

bias in automated assessment of non-native (L2) English speaking proficiency.

This study draws on data from the English Language Proficiency Assessment for the Twenty-

First Century (ELPA21), a consortium involving 7 state education agencies in the U.S. (Huang

and Flores, 2018). Both the quantity and quality of data, as well as the consortium’s openness to

research, make ELPA21 an ideal context in which to study biases of automated assessments.

In addition to examining gender and racial biases, I explore the use of debiasing techniques to
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mitigate such biases (Sun et al., 2019). As debiasing is a relatively new area of research and has

not yet been applied to language assessments, the primary goal is to examine advantages as well as

disadvantages afforded by various approaches. This project addresses important gaps in English

speaking assessment systems, so that NLP may be applied responsibly, in order to ensure fairness

for all examinees.

1.1 Automated speaking assessments

English language assessment is mandated in the United States by the Every Student Succeeds

Acts (Every Student Succeeds Act, 2015). Tests are administered to over 4 million K–12 students

annually (Irwin et al., 2021) and, for university admissions, over 500,000 students take the Test of

English as a Foreign Language (TOEFL; Educational Testing Service, 2005). These test are often

high stakes, affecting students’ graduation rates and university admissions (Cimpian et al., 2017).

In order to cut costs and meet the rising demand for English language assessments, some test

developers have transitioned to fully automated assessment systems. These systems automate all

aspects of English language assessment, including speech and writing, which in the past have been

scored solely by human raters (Evanini et al., 2017). Several researchers, however, have questioned

the fairness of automated speaking assessment systems, particularly for examinees of minority

groups (Wang et al., 2018b; Collier and Huang, 2020).

1.2 Advantages of automation

While the advantages of NLP-based assessments are typically framed in terms of efficiency and

affordability, NLP also has the capacity to improve reliability and even advance social justice-

oriented goals. In the testing literature, it is well known that human raters are subject to cognitive

and social biases (Engelhard, 2002). Psychometricians sometimes categorize these biases based on

raters’ tendencies toward excessive severity or leniency, or whether they are prone to halo effects
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(Saal et al., 1980). These biases persist even in the face of training and monitoring (Engelhard,

1994), indicating that they operate at an unconscious level (Spencer et al., 2016), making them

difficult to address.

Automated systems, in contrast to human raters, are not prone to the same kind of inconsistencies

or unconscious biases. Indeed, automated scoring can promote fidelity of scores by identifying and

mitigating human rater errors (Bejar, 2011). Wang et al. (2018b) have demonstrated how automated

systems can be used to identify overly lenient or harsh human raters in the TOEFL exam: A similar

approach, though not yet attempted, could be used to identify raters with biases against minoritized

groups.

While not prone to the same sorts of errors as human raters, automated systems can still be

biased. However, there are methods for identifying and mitigating such biases in NLP-based

applications. Zhao et al. (2018b), for example, have shown how it is possible to debias an NLP-

based application that resolves coreferences (e.g., identifying subjects of sentences when pronouns

are ambiguous). Originally, the application was more likely to ascribe historically male professions

(such as politician or doctor) to male subjects; however, after supplementing the corpus with less

biased data, the model became more gender-neutral in its coreference resolutions. Whether social

biases are present in humans or in automated systems, they can be measured and mitigated with

careful planning and engineering.

1.3 Examples of bias and debiasing

There is little research on bias in automated testing of English speaking proficiency. In order

to illustrate what sorts of problems might occur with these systems, I consider two hypothetical

examples of how biases might become embedded in automated English language assessment

systems, and how bias reduction techniques could be used to address them.
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1.3.1 Insufficient training data for automated speech recognition

Automated speech recognition (ASR) systems have been shown to be less accurate for non-White

speakers (Koenecke et al., 2020) and, in some cases, less accurate for women (Tatman, 2017;

Tatman and Kasten, 2017). These disparities may be due to lack of representation in the data itself

(e.g. Zhao et al., 2018b). In English language assessment, a less accurate ASR system will generate

less accurate transcripts, which may equate to less accurate scores for language-minority examinees.

In some cases, ASR systems are used to generate linguistic features (e.g., pronunciation subscores),

which may be biased against language-minority examinees.

One possible debiasing solution for language assessment systems that lack sufficient data for

language-minority groups is to implement a filtering model. The filtering model could flag some

responses as non-scorable and send them to human raters for review. Bypassing automated scoring

in some cases may help to ensure that certain examinees (e.g., those who are known to have less

accurate transcripts) are not penalized by the ASR system.

A more comprehensive solution would be to use a technique known as data augmentation (e.g.

Zhao et al., 2018b). A simple version of data augmentation is simply to duplicate the data of

underrepresented groups to artificially make them more representative. Although requiring more

effort, it is also possible to apply various transformations to audio data (e.g., changing the pitch

of male and female respondents, or mixing and matching speakers with different accents). These

transformations would help to prevent the model from learning construct-irrelevant features like

pitch or accent. This approach would remove the ability of the model to learn differences in race or

gender at the data level.

1.3.2 Implicit bias in human ratings

Scholarship on implicit bias demonstrates that human behavior is influenced unconsciously and

in diverse contexts by culturally-embedded associations (Greenwald and Krieger, 2006). These

associations, including negative stereotypes about underrepresented groups, typically operate
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independently of individuals’ explicit attitudes (Karpinski and Hilton, 2001) and they are often

activated by peripheral cues (Spencer et al., 2016).

In the context of English speaking proficiency, it is possible that examinees’ accents may trigger

human raters’ implicit biases. For instance, as a whole, the U.S. population has an implicit bias

against faces that have Arabic features (Park et al., 2007); it is possible that hearing a Middle Eastern

accent might prompt a rater from the U.S. to (unwittingly) give a lower score. Given the saliency of

contextual cues, these biases might be more prevalent when raters hear adult voices with heavier

accents, and for raters who are distracted, hungry, or otherwise on autopilot.

In addition to filtering and data augmentation, another technique that would ameliorate the

propagation of implicit bias is retraining the model using adversarial neural networks. Widely

applicable to a number of problems encountered in deep learning, adversarial networks actively

prevent the model from learning certain information. Following the example of Zhang et al. (2018),

it would be possible to ensure that the language model is unable to predict the ethnic origin of

examinees’ responses. In removing its ability to infer race or gender, it may also remove the source

of implicit bias.

1.4 Overview of study design

The general research design involves four main components: using automated transcription services

to generate text from speech, constructing a language model to score examinees’ (transcribed) text,

measuring gender and racial biases via analysis of differential item functioning (DIF), and exploring

solutions for debiasing models. Speaking items are selected from the English Language Proficiency

Assessment for the 21st Century (ELPA21), to reflect a range of ages and expected duration of

response. It is hypothesized that adult voices and longer items will trigger more implicit bias, and

hence will be more likely to show DIF. As a part of this analysis, I examine biases in examinees’

transcripts generated by the automated transcription service.

To measure gender racial bias, I focus on a specific type of bias known as DIF, common in
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educational and psychological assessment (American Educational Research Association et al.,

2014). Briefly, DIF occurs when equally proficient individuals who belong to different groups

(e.g., male and female) are given consistently different (i.e., higher or lower) scores for certain

items. Although items in large-scale assessments, including ELPA21, are analyzed for DIF prior to

operational use (Anderson, 2015), there are multiple methods of testing for DIF, and patterns of

DIF may change over time. The specific approach that I use to identify DIF is specifically suited to

the context of this research study. Debiasing NLP-based applications is a relatively new field of

research. It will be of interest to compare multiple methods of debiasing, and to determine how

well each addresses DIF.

The above research goals are organized within three interconnected studies:

1. Study 1 quantifies the biases of large-scale, automated transcription services, by comparing

average WER, disaggregated by gender and L1 background.

2. Study 2 identifies patterns of DIF in human raters, and determines if an LLM-based automated

scoring system introduces or exacerbates these patterns of DIF.

3. Study 3 explores two techniques to mitigate bias in automated systems, and reflects on the

advantages and limitations afforded by these techniques.

These three studies are discussed in separate chapters (Sections 4, 5, and 6, respectively), which

enumerate study-specific research questions and methods. However, these studies also share much

in common, drawing from a shared conceptual framework and many of the same methods: The

literature review (Section 2) and discussion of methods (Section 3) apply generally to all three

studies.
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CHAPTER 2

Literature Review

This study is situated at the intersection of (1) English speaking assessment, (2) measurement

of bias, and (3) language modeling. With respect to English speaking assessment, I review (a)

relevant literature on the prevalence and high stakes nature of English speaking assessment in the

United States, and (b) automated speaking assessment systems currently in use. With respect to

measurement of bias, I discuss (a) the impact of gender and native language (L1) on L2 English

speaking proficiency, and (b) differential item functioning (DIF) both in general and as it relates to

English speaking assessment. Finally, with respect to language modeling, I review research on large

language models (LLMs), how these models become embedded with societal biases, and how some

researchers have been able to debias LLMs for specific applications.

2.1 English speaking assessment

2.1.1 English speaking assessment in the United States

English language assessment is widespread and often holds high stakes for examinees in the United

States. The Every Student Succeeds Acts (Every Student Succeeds Act, 2015) requires states to

administer English language assessments to all students from non-English speaking homes, and tests

are administered to over 4 million K–12 students annually (Irwin et al., 2021). English language

assessments are also prevalent at the post-secondary level: Every year, over 500,000 examinees

take the Test of English as a Foreign Language (TOEFL), administered by Educational Testing

Service (Educational Testing Service, 2005), and 3.5 million people take the International English
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Language Testing System (IELTS; International English Language Testing System, 2023). In terms

of real-world impact, many universities require applicants to score above a certain threshold of

proficiency on the TOEFL or IELTS as an admission requirement. For K–12 students, being labeled

as an “English learner” decreases high school graduation rates and college-going behavior, even

among students of similar English language proficiency (Johnson, 2019).

Nearly all language assessments include speaking as one of four language proficiency domains,

along with listening, reading, and writing (Council of Chief State School Officers, 2012). At the

K–12 level, speaking tasks are usually open-ended, yet have a narrow contextual focus; for instance,

students are asked (via written or verbal prompt) to describe what is happening in a picture (Luoma,

2004), At the post-secondary level, examinees are given more challenging tasks, e.g., talking about a

particular topic for several minutes. For most assessments, examinees speak into a microphone and

responses are scored by a human rater or an automated system. Using a slightly different approach,

International English Language Testing System (2023) employs trained interviewers to administer

and score speaking proficiency in a face-to-face setting.

For K–12 students, the majority of states administer assessments developed by one of two

consortia, the World-Class Instructional Design and Assessment (WIDA) or the English Language

Proficiency Assessment for the 21st Century (ELPA21). Neither consortium currently uses auto-

mated speaking assessment. Rather, for speaking items, test-takers speak into a microphone for

5–10 seconds, whereafter their responses are passed along to human raters to score.

There are two states, however, that do use automated assessment for K–12 speaking proficiency.

Both states use systems developed and administered by Pearson. The Texas English Language Profi-

ciency Assessment System (TELPAS) uses Versant, one of the first automated speaking proficiency

assessments, originally developed for large businesses and administered over the telephone (Pearson

Education, Inc., 2019). Given the lack of validity studies and potential unreliability of its automated

system, TELPAS’ recent switch to Versant has sparked some skepticism among academics (Collier

and Huang, 2020). Pearson also helped to develop the speaking assessment for the Arizona English

Language Learner Assessment (AZELLA), seemingly independent of Versant (Johnston et al.,
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2019). At the post-secondary level, TOEFL uses an automated speaking assessment system known

as SpeechRater, developed by researchers at ETS (Chen et al., 2018b).

2.1.2 Current NLP-based automated speaking assessments

Chen et al. (2018b) identify four primary components of automated speaking assessment systems:

(1) an automated speech recognition (ASR) system, which includes speech-to-text transcription,

(2) the extraction of linguistic features from audio and text data, (3) a filter model to identify

non-scorable responses (e.g., those with audio errors or potential plagiary), and (4) a scoring model

to combine linguistic features into a single score.

Depending on the purpose or sophistication of the automated assessment system, some of the

above steps may be combined or omitted. Pearson, for instance, appears to omit the filter model

(step 3) for TELPAS and AZELLA. In a different vein, Chen et al. (2018a) have experimented with

combining steps 1, 2, and 4 into a single end-to-end model. (Models are described as end-to-end

when multiple intermediate processes get subsumed within a single architecture.) Although the

performance of end-to-end models can be impressive, they are a black box—that is, the linguistic

features that the model learns and uses to score examinees’ responses are hidden. For this reason, it

can be challenging to interpret or debug end-to-end models.

2.1.2.1 (1) Automated speech recognition

The ASR system built by ETS is comprised of multiple parts, and used for multiple purposes. Under

the hood, it uses a Hidden Markov Model to parse phonemes (i.e. syllables), an n-gram model to

track word dependencies, and a weighted finite state transducer to limit the search space (Qian et al.,

2019). Combined, these three components are able to generate transcripts and assign probabilities

to text. The transcripts are used for further data processing, while the probabilities associated with

the transcripts may be used as a linguistic feature (referred to as the “Average ASR Confidence

Score”) in the scoring model (Zhang et al., 2019).
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Training ASR systems requires a prolific amount of labeled data (i.e., audio files accompanied

by accurate transcripts). The exact amount of training data required to build an ASR system depends

on the complexity of the speech. For speech assessment purposes, Qian et al. (2019) suggests on

the order of a million words; Evanini et al. (2017) suggests 200–300 hours of speech. Data can be

supplemented with external speech corpora, e.g., the Switchboard corpus (Godfrey and Holliman,

1997), in order to improve the accuracy of speech-to-text transcription; but ensuring recording

quality across data sources can be challenging (Qian et al., 2019).

Even with external data, there may yet remain a significant amount of transcription error. A

common index of transcription accuracy is word error rate (WER), which is the ratio of the total

number of errors (i.e. erroneous insertions, deletions, or substitutions) to the total number of words

in a given transcript or corpus (Qian et al., 2019). (See Section 4.2.3 for details regarding how WER

is computed.) Human-human transcription of non-native speech typically yields a WER of 15–20%

(Zechner, 2009). SpeechRater comes close to human parity, with a WER of 23% for non-native

spontaneous speech (Tao et al., 2016). AZELLA has a higher WER of 35% (Cheng et al., 2014).

By contrast, human-human WER of native speech cam be as low as 5% (Xiong et al., 2016).

One of the significant challenges of transcribing non-native speech is faithfully capturing

errors. Rather than reproduce errors, ASR systems tend to predict a similar, grammatically correct

substitution. One internal study showed that SpeechRater failed to capture 70% of non-native

speakers’ grammatical errors (Yoon et al., 2019).

2.1.2.2 (2) Linguistic features

Once audio data has been transcribed, linguistically-relevant features are extracted from text and

audio data. Linguistic features are typically defined a priori, in alignment with standards of speaking

proficiency (e.g. Brown et al., 2005). For instance, to assess fluency, SpeechRater calculates (among

other things) the number of pauses, the duration of pauses, and the number of words per second in

examinees’ speech (Hsieh et al., 2019). To assess vocabulary, SpeechRater calculates the number of
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unique words that examinees use (Yoon et al., 2019). In TOEFL, over 60 linguistic features have

been examined as candidates for speech assessment. (Note: In an end-to-end model, these apriori

decisions about which linguistic features to use are not possible, since the features are latent.)

2.1.2.3 (3) Filter model

A filter model helps to reduce error in the automated system by identifying “non-scorable responses”

(Loukina and Yoon, 2019). Such responses may have had audio issues; alternatively, they may

be the result of uncooperative examinees or plagiary. In such cases, examinees’ responses may

bypass the automated assessment system, and instead be designated for human rating. Common

technical difficulties include the presence of background noise and mechanical issues with recording

devices; as described above, ASR systems can be sensitive to slight discrepancies in audio quality,

which may produce inaccurate transcripts and, subsequently, inaccurate test scores. There are also

instances in which a filter model can be used to identify examinees who are cheating or otherwise

gaming the system.

The filter model is helpful in improving the ASR system by acting as a manual override.

Automated assessment systems are known to have certain weaknesses, and rather than build a

system that is capable of handling every type of exception, it may be more cost-effective to bypass

the automated assessment system in certain cases.

2.1.2.4 (4) Scoring model

The scoring model combines linguistic features to produce a summative language proficiency score

for examinees (Loukina and Yoon, 2019). Finding an appropriate scoring model also requires a

lot of data. In order to train a scoring model for complex constructed item types, Zechner (2019)

suggests having at least 10,000–20,000 pre-scored responses. More complicated scoring models,

however, might require significantly more data.

TOEFL uses linear regression, wherein features are weighted and selected using a LASSO-
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based method (Loukina et al., 2015). The primary rationale for using linear regression is that it

is relatively transparent and easy to communicate; Loukina and Yoon (2019) report that ETS has

experimented with more complex scoring models, e.g., random forests, but they were not worth the

2–3% improvement in accuracy. Zechner (2019) reports that, at the item level, their scoring model

is more reliable than human-human reliability coefficients (r = 0.65, compared to r = 0.55–0.60).

In contrast to TOEFL, AZELLA combines features using a deep learning model with a single layer

of latent variables (Cheng et al., 2014).

2.2 Biases in English speaking assessments

2.2.1 Issues of fairness in automated speaking assessment

During the course of test development, it is standard practice for a bias review committee to screen

all items for inappropriate or content-irrelevant material, and to analyze items for differential item

functioning (DIF) to ensure quantitatively that items are not biased against any particularly groups

of examinees, e.g., women or racial minorities (American Educational Research Association et al.,

2014). It is likely that DIF analyses were conducted by Pearson and ETS for speaking items scored

by human ratings, but it is not clear whether they were repeated for automated scoring systems.

Given that Versant (Pearson’s ASR system for TELPAS) was not originally designed to assess K–12

students, and some evidence of inconsistency among examinees’ scores (Collier and Huang, 2020),

it is troubling such analyses have not been made public (or, possibly, even conducted).

2.2.2 Impact of gender and L1

In the context of bias in educational assessment, impact refers to the unconditional difference in

scores between groups of examinees (Angoff, 1993). Most of the research on the impact of gender

and L1 on language proficiency touches on myriad aspects of language proficiency, and is not

specific to speaking proficiency. In general, female examinees perform better than male examinees
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on language assessments (Reilly et al., 2019), and this typically including L2 English language

assessments (Denies et al., 2022). These differences have early developmental roots, e.g., in word

acquisition (Kaushanskaya et al., 2013) and phonetic acquisition (Dodd et al., 2003). Importantly,

gender differences vary by sociocultural factors (Denies et al., 2022), and others have pointed out

that some language tasks do seem to favor males (Wucherer and Reiterer, 2018).

Native language (L1) also impacts L2 English speaking proficiency. One body of literature, on

“language transfer” or “cross-linguistic influence,” focuses on similarities and differences between

language structures (Brown et al., 2000, p. 257). One intuitive finding, for instance, states that

examinees perform better on vocabulary tests when there are more L1 cognates (Leśniewska et al.,

2018). Other literature examines the more complex sociocultural factors that play a role in the

development of L2 English speaking. For instance, Derwing and Munro (2013) attribute differences

between Slavic and Mandarin English speaking proficiency to factors like age, motivation, and

conversational opportunities, which interact with L1 in complex ways.

2.2.3 Differential item functioning

This study focuses on a specific type of bias in English speaking proficiency known as differential

item functioning (DIF). Historically, interest in DIF grew out of a movement in the 1960s to make

standardized assessments more fair for racially underrepresented minorities by removing cultural

biases from test items (Angoff, 1993). Approaches for identifying DIF continue to be used in

test development to screen items for potential biases against specific groups. For example, an

item with extensive references to the Bible would give Christian examinees an advantage. Such

references would not be appropriate unless the explicit goal of the test was to measure knowledge of

Christian theology, otherwise the item would be measuring a content-irrelevant construct (American

Educational Research Association et al., 2014).

In educational assessment, a test item is said to exhibit differential item functioning (DIF) when

“equally able (or proficient) individuals, from different groups, do not have equal probabilities
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of answering the item correctly” (Angoff, 1993, p. 4). By definition, DIF is not a measure of

unconditional mean differences (or first-order group differences), which is known as impact. Rather,

DIF conditions on overall (and ideally unbiased) proficiency. In other words, DIF occurs when

examinees who should receive similar scores (based on their performance on other test items)

receive different scores on a specific item under review. In DIF terminology, overall proficiency is

referred to as the matching criterion, the majority group is referred to as the reference group and the

minority group is referred to as the focal group.

For instance, in college admissions tests of reading comprehension, males (the reference group)

tend to score higher on science-related passages, whereas females (the focal group) tend to score

higher on humanities-related passages, conditional on examinees’ overall language proficiency (i.e.,

the matching criterion; Steedle et al., 2023).

There are many possible causes of DIF. The above example highlights the possibility of con-

founding variables (e.g. males tend to major in STEM at a higher rate; Sloane et al., 2021). One of

the central concerns of this paper is that DIF might arise from implicit bias in human raters—that

is, human raters might be unconsciously influenced by phonic features in examinees’ voices. Also

pertinent to this study, DIF could be caused by discrepancies in automated transcription of speech,

or sociocultural differences rooted in examinees’ gender or L1 backgrounds. Test developers have

lamented that determining causes of DIF can be frustrating since studies often yield inconclusive

results (Zumbo, 2007).

2.2.3.1 DIF based on gender and L1

Although there are many studies of DIF with respect to gender and L1 in large-scale English

language assessment, most of these studies focus on vocabulary, listening, and writing proficiency

(Kunnan, 2017). There are very few studies that focus on English speaking proficiency.

Although DIF analyses of automated speaking assessment systems are not publicly available,

Wang et al. (2018b) have conducted some analyses of bias in SpeechRater. Analyzing examinees’
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overall scores, they found SpeechRater to be somewhat partial towards some groups over others,

based on examinees’ L1 background. Although they suggested some plausible explanations for

these discrepancies, e.g., an overall “[reduced number] of predicted scores at the extremes of the

scoring scale” (p. 117), they concluded that more research was needed to explore these hypotheses.

2.2.3.2 Sources of DIF

Issues of fairness in automated speaking assessment are underexplored (or underreported), but

examinations of sources of bias are practically non-existent. Based on literature in adjacent fields,

however, it is possible to construct a list of likely sources of DIF in automated speaking assessment.

Automated transcription bias

One potential source of DIF in automated speaking assessment lies in automated transcription.

Dichristofano et al. (2023) has shown that the largest providers of automated transcription services

(Google, Amazon, and Microsoft) all have discrepancies in transcription accuracy based on speakers’

L1 background. As text transcripts contribute the most important (and sometimes exclusive) input

for most NLP-based scoring systems, it is important to consider transcription discrepancies, as they

may lead to discrepancies in scores.

Human rater bias

Another potential source of DIF lies in the quality of human ratings. Although human ratings

are often considered the gold standard, and the benchmark against which to evaluate the success

of automated scoring systems (Zhang et al., 2019), human ratings are not ideal scores. An ideal

score would be “assigned by a panel of [unbiased] expert raters and represent the true score of a

spoken response” (Zechner, 2019). Although human raters receive training and are monitored over

time to improve consistency (Engelhard, 2002), human-human interrater reliability typically ranges

between 0.55 and 0.60 on individual items (Zechner, 2019).

Scholarship on implicit bias demonstrates that human judgment is influenced unconsciously by

peripheral cues, including speakers’ accents (Kang and Yaw, 2021). These biases may lead to unfair
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scoring without raters even realizing it (Greenwald and Banaji, 1995). Indeed, Winke et al. (2013)

reports that human raters are more lenient towards examinees who share the same L1 background.

In a summary of research on the biases of raters of L2 English, Lindemann and Subtirelu (2013)

report a strong disconnect between subjective evaluation of speech (e.g. using Likert scales) and

more objective measures (e.g. transcription). One limitation with these studies is that they assume

that L2 English speakers are of similar proficiency levels, and it is not clear whether the researchers

controlled for speakers’ English proficiency.

Research on implicit bias and speech suggests that, in the context of English language assessment,

there may be more bias in the domain of speaking (e.g. as opposed to writing). By listening to

examinees’ voices, human raters may be more likely to be influenced by examinees’ accents,

triggering implicit bias that affects judgment during scoring.

Sociocultural factors

There are many sociocultural differences based on gender and L1 that could affect English

speaking assessment. Derwing and Munro (2013), for instance, discuss how factors like age and

conversational opportunities interact with L1 in nuanced ways. Gender is also a source of variation

in L2 English speaking proficiency, although it varies by culture and task (Denies et al., 2022).

There may also be cultural differences that interact with item properties. Now a classic example,

Freedle (2003) describes how some test items draw on cultural knowledge that disadvantage minority

examinees. It is possible that certain speaking items may require an understanding of the context

of schooling in the U.S.; students of some racial backgrounds may be more (or less) familiar with

these practices than others.

Feature bias

One potential source of bias lies in the linguistic features and how they are combined in the

scoring model. Although research has not yet examined this issue, Zhang et al. (2019) warns that

“interactions of [features] and demographic groups can lead to subgroup biases” (p. 52). In broader

terms, English speaking is not a monolithic construct, and without specifying these differences in
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the scoring model, speakers of some language-minority backgrounds might be unfairly downgraded.

For instance, speakers of some ethnic backgrounds might enunciate more slowly which may not be

a marker of proficiency but simply a regional difference. Failing to specify this in the model would

lead to biased scores for these examinees.

Speaking proficiency is not a simple construct. It may require non-linear combinations of

multiple layers of latent variables to capture the complexity of fluency or discourse coherence.

At the same time, choosing a more complex model may reduce the transparency of the linguistic

features, and may make it more difficult to explore sources of bias (Loukina and Yoon, 2019).

Machine learning bias

NLP-based automated assessments often rely on machine learning methods, which are suscepti-

ble to introducing and exacerbating biases at multiple stages of development (Suresh and Guttag,

2021). Pretrained LLMs are especially susceptible to biases because they are trained on large

corpora of text scraped from the web and social media (Blodgett et al., 2020). Social biases in

source text resurface in downstream applications, including machine translation (Stanovsky et al.,

2019) and sentiment analysis (Kiritchenko and Mohammad, 2018). In educational assessment,

machine learning biases ultimately may influence examinees’ scores. In section 2.3.2, I consider in

greater detail how these sources of machine learning bias can occur in language modeling and in

LLMs more broadly.

Other biases

Although there are too many potential sources of DIF to review in full, I highlight several

miscellaneous sources of DIF that bear on the inquiry of L2 English speaking assessment. Huang

et al. (2016) report that curricula vary across countries, and that these differences are a likely source

of DIF in international assessment. This source of bias would also be related to the age at which

examinees emigrated and entered into the U.S. schooling system. In another vein, it has been

suggested that easier items might be more likely to exhibit DIF, and that this may be attributable (in

part) to guessing behavior, which is in turn related to overall proficiency (Dorans and Zeller, 2004;
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Santelices and Wilson, 2010). Given that speaking is a difficult aspect of L2 language acquisition

(Brown et al., 2000), it is possible that examinees who are less fluent are able to guess their way

through non-speaking items, but struggle with speaking items in particular.

2.3 Language modeling

2.3.1 Large language models

Language modeling refers to the construction and use of probabilistic models for language gen-

eration and inferential tasks (Jurafsky and Martin, 2023). In automated language proficiency

assessment, language modeling is used in multiple ways and at multiple stages of the automated as-

sessment process. As described above, ETS uses multiple language models which, when combined,

produce speech-to-text transcriptions and linguistic features relevant to speech proficiency (Qian

et al., 2019).

Language models with at least 1 layer of variables between the input and the output are classified

as deep learning models (Goodfellow et al., 2016). Such models are often characterized as black

boxes because the features that become embedded in the coefficients of the models are latent,

and often unclear (e.g. Gretter et al., 2019). Despite the inscrutability of deep learning models,

they are popular because they are easy to deploy, adaptable to a variety of tasks, and often quite

powerful. Although they are not widely used in language assessment, initial trials have shown that

deep learning models are moderately more accurate than the more common approach of combining

manually-constructed features (Chen et al., 2018a).

A prolific amount of data is required to train most language models and, as a general rule,

the more complicated the model, the more data is required. Currently there is on the order of

105 hours of speaking data publicly available (Galvez et al., 2021), and hundreds of terabytes of

uncompressed text data (Iderhoff, 2023). Industry leaders like Google and AWS, however, draw

from considerably more data. Sophisticated language models, whether speech or text-based, take a

18



lot of computational resources to train. RoBERTa, for instance, a text-based language model, is

comprised of 108 parameters and was trained for five days on 1,024 × Nvidia 32GB V100 GPUs

(Liu et al., 2019).

Because of the considerable costs involved in training language models, it is common to use a

general language model as a foundation, and fine-tune the model (which requires significantly less

data) to perform specific tasks; this technique is known as transfer learning (Jurafsky and Martin,

2023). With transfer learning, the theory is that the general language model can learn the complex

semantic and grammatical dependencies of language by training on a large corpus of data. Using

this general language model as a foundation, one can then train the model to perform various tasks

using a much smaller dataset (sometimes only thousands of observations), and for a fraction of the

computational resources (e.g., 1 GPU for 1–2 hours).

One of the most widely used text-based general language models is Bidirectional Encoder

Representations from Transformers (BERT), developed by Devlin et al. (2018). BERT was trained

as a masked language model, which means it learned language by trying to guess the words in a

sentence. More specifically, the model was presented with a sentence in which 15% of the words

were masked, and it had to predict what those correct words were. The model is constructed such

that it is able to learn dependencies between the masked word(s) and every other word in the

sentence using what known as an attention mechanism (Vaswani et al., 2017). Having trained the

general language model, it is then fine-tuned to do a variety of tasks.

The performance of general language models, including BERT, are evaluated by their accuracy

on various language tasks. One of the most widely used benchmarks is the 9 General Language

Understanding Evaluation (GLUE) tasks (Wang et al., 2018a). GLUE tasks vary from identifying

grammatically (in)correct sentences to assessing the (positive or negative) sentiment of movie

reviews. BERT performs as well as humans on a number of these tasks.
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2.3.2 Biases in large language models

There is now a large literature on bias in artificial intelligence (AI), and bias in NLP more specifically.

One branch of research has focused on classifying the types of socioeconomic harms caused by

biased AI (e.g. Blodgett et al., 2020). Potential harms potentially caused by biased automated

assessment are discussed in Section 2.1.1. Instead, this section focuses on the technical aspects of

how bias may be introduced into AI systems. Suresh and Guttag (2021) outline seven steps in the

AI pipeline in which bias may be introduced. The three sources of bias most pertinent to this study

include (1) a type of representation bias, (2) a type of measurement bias, and (3) learning bias. I

consider each of these sources of bias in greater detail below.

Although representation bias usually refers to a mismatch between the sample and the population,

there are other types of representation bias. For instance, even if the sample is representative of

the population, the population itself may contain subgroups too small for the model to learn. In

other words, for certain small groups, there may not be enough data for the algorithm to learn

how to make accurate predictions. Along these lines, it has been shown that ASR systems are less

accurate for non-White speakers (Koenecke et al., 2020) and, in some cases for women (Tatman,

2017; Tatman and Kasten, 2017). In the context of English language assessment, this may be a

problem for examinees from language-minority backgrounds.

Part of the reason why representation bias is so prevalent in applications of AI is that deep

learning models require a prodigious amount of data. Supplementing data with external speech

corpora, e.g., Switchboard corpus (Godfrey and Holliman, 1997), improves the accuracy of speech-

to-text transcription (Qian et al., 2019). Yet these external corpora may not be sufficiently large,

especially for non-native speakers from minority-language backgrounds.

Measurement bias refers to systematic differences in the operationalization(s) of constructs.

With respect to English speaking proficiency, measurement bias may occur when human raters

consistently give lower (or less accurate) scores to individuals from a certain group. As discussed

above, this may be caused by implicit biases (Spencer et al., 2016) or by interactions between
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linguistic features and demographic characteristics (Zhang et al., 2019). Because NLP-based

assessments are trained on human-rated data, human biases may become embedded in the model(s).

Finally, learning bias results when specifications of the model itself are susceptible to introducing

or exacerbating biases. As an example, Suresh and Guttag (2021) mention how pruning, a common

technique in large-scale AI models, often reduces prediction accuracy for small subgroups (Hooker

et al., 2020). Such model design choices may also exacerbate existing biases. In one example,

Zhao et al. (2017) found that their model predicted individuals’ gender in an image by their

proximity to objects in the surrounding environment (e.g. women around kitchen appliances, men

around computers) at approximately twice the frequency as was found in the original training data.

Likewise, for speaking assessment, certain models may be less accurate for smaller groups, or they

may amplify biases by fixating on certain acoustic or textual features (e.g., different accents).

One of the principal drawbacks of deep learning models is their inscrutability, and the difficulty

of characterizing which features (or which biases) are learned by the model. Although ETS’

SpeechRater relies primarily on manually-constructed features, one of their most predictive features,

“Average ASR Confidence,” is the output of deep learning models (Qian et al., 2019). Pearson does

not share details of their models in technical documentation, but they do seem to employ a scoring

model that uses deep learning (Cheng et al., 2014).

In addition to the above issues, general language models come prepackaged with their own

set of biases that exist even prior to fine-tuning for specific speech tasks. These biases arise from

the fact that general language models are pretrained on text from Wikipedia, online news outlets,

and even community forums like Reddit (Liu et al., 2019). Given the biases that exist in these

spaces, it is not surprising that applications of general language models often reflect strong cultural

biases against women and people of color. For example, in coreference resolution, NLP models will

associate historically male occupations (such as physician or politician) to masculine pronouns, and

historical female occupations to female pronouns (Zhao et al., 2018b).
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2.3.3 Debiasing techniques

There are several techniques that have been proposed for mitigating biases in NLP applications. Sun

et al. (2019) classify these techniques into two broad classes of methods, retraining and inference,

based on the stage at which bias is addressed. In retraining, the goal is to train (or retrain) the

model on an unbiased dataset or to change the way in which the model learns from data. Retraining

reshapes the model at a more fundamental level, but it can also be more cumbersome or infeasible

in practice. In contrast, inference-based methods address problems of bias further down the pipeline

by constraining or rebalancing the models’ inferences or predictions. Retraining and inference

methods are not mutually exclusive, yet researchers have not explored how they might be used in

conjunction.

One comprehensive yet laborious retraining solution is known as data augmentation (e.g. Zhao

et al., 2018b). A simple way to augment data is to duplicate the data of underrepresented groups

to artificially make them more representative, forcing the model to train on equal amounts of data

from each group. A more elaborate approach for augmenting data might be to change the pitch of

voices, so that male responses are made to occur in traditionally female registers, and vice versa. It

would also be possible to mix accents by cutting and pasting responses from different examinees.

This approach removes the ability of the model to learn differences in the pitch or accent of the

speaker at the data level, and may force it to focus on more relevant aspects of speech.

Another retraining technique employs adversarial neural networks. Widely applicable to a

number of problems encountered in deep learning, adversarial networks actively prevent the model

from learning certain information. Following the example of Zhang et al. (2018), an adversarial

network would penalize the model (during training) for predicting the gender or ethnic origin of

examinees’ responses. In removing its ability to infer race or gender, it may simultaneously remove

the source of implicit bias. One of the benefits of adversarial neural networks is that mitigating bias

may not require identifying the problematic features that the deep learning model has learned.

An example of an inference-based debiasing technique that may be relevant to the current

22



project is constraining predictions. In the context of English language assessment, this may involve

conditioning on overall language proficiency. That is, if we know that a group of language-minority

examinees is equally proficient as the reference group (based on their performance on other test

items), we could constrain the algorithm to give the focal group the same distribution of scores as

the reference group on each speaking item. While this approach introduces additional dependencies,

it may make the algorithm fairer in its treatment of examinees who face systematic bias.
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CHAPTER 3

Methods

3.1 Data

3.1.1 ELPA21

This study draws on data from the English Language Proficiency Assessment for the 21st Century

(ELPA21), a consortium involving 7 state education agencies in the U.S. (Huang and Flores, 2018).

Approval for this research project was granted by the ELPA21 consortium and the university

institutional review board. To maintain confidentiality, certain details regarding test items and

examinees are omitted.

In most frameworks for English language assessment, speaking is one of four language profi-

ciency domains, along with listening, reading, and writing (Council of Chief State School Officers,

2012). At the K–12 level, speaking tasks are open-ended, yet have a narrow contextual focus;

for instance, students are asked (via written or verbal prompt) to describe what is happening in a

picture (Luoma, 2004). Examinees speak into a microphone for up to two minutes, after which

their responses are passed along to human raters for scoring. All verbal responses in ELPA21 are

currently scored by human raters. Human raters assign holistic integer scores based on scoring

rubrics that vary by scale and item type. Consistent with best practices, human raters are trained

and monitored over time to ensure consistency (Engelhard, 2002).

Analyses focused on two grade bands (2–3 and 9–12) which corresponded to two different tests.

Tests were administered during the 2020–2021 school year. Although different tests were developed

for each grade band, we sampled examinees and selected test items to help ensure that these two
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sets of analyses were as comparable as possible.

3.1.2 Sample design and demographics

The sampling frame included all examinees in grade bands in 2–3 or 9–12 who met the following

inclusion criteria: answered all three speaking items analyzed in this study; answered enough

items in each of the other three domains to receive domain-specific scores; and had gender and

L1 demographic information available. Furthermore, to limit the scope of the study, we excluded

examinees who had an IEP or 504 Plan, examinees with non-binary gender, and examinees whose

L1 was not one of the ten L1s analyzed in this study.

From the sampling frame, we sampled 15,000 students (8,377 from grade band 2–3, and 6,623

from grade band 9–12). The size of our sample was limited, in part, by the cost of automated

transcription. We included all examinees whose L1 was one of our nine L1 focal groups (Table 3.1).

The remainder of examinees were randomly sampled from Spanish speakers.

Demographics of grade bands 2–3 and 9–12 are presented in Table 3.1. Note that there are group

differences with respect to overall language proficiency.1 In both grade bands, male examinees

scored slightly lower than female examinees. There is also heterogeneity among L1 groups.

3.1.3 L1 selection

Due to practical limitations, we focused on ten L1 groups. Spanish was the largest L1 group

(constituting 82.7% of all examinees in 2020–2021) and, for this reason, served as the reference

group. The other nine L1 groups were selected based on the number of examinees available, and

with a view to global diversity. See Appendix 8.1 for additional details regarding L1 selection and

grouping.

1See Section 3.3 for how language proficiency is computed for examinees.
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Table 3.1: Sample descriptive statistics, in aggregate and disaggregated by gender and L1.

Grade Band 2–3 Grade Band 9–12

n % Avg. Proficiency n % Avg. Proficiency

All 8377 100 0.18 (0.91) 6623 100 0.16 (0.93)

Gender

Male 4310 51.5 0.13 (0.9) 3648 55.1 0.14 (0.94)

Female 4067 48.5 0.23 (0.92) 2975 44.9 0.2 (0.92)

L1

Spanish 4205 50.2 0.08 (0.85) 3481 52.6 0.23 (0.92)

Marshallese 692 8.3 -0.0 (0.86) 891 13.5 -0.05 (0.75)

Russian 862 10.3 0.28 (0.9) 375 5.7 0.49 (0.86)

Vietnamese 522 6.2 0.41 (0.9) 402 6.1 0.36 (0.93)

Arabic 499 6 0.33 (0.88) 414 6.3 0.06 (0.86)

Mandarin 439 5.2 0.88 (0.89) 203 3.1 0.44 (1.02)

Hindi 416 5 0.75 (0.82) 185 2.8 0.67 (0.82)

Mayan 238 2.8 -0.66 (0.88) 258 3.9 -0.84 (0.95)

Persian 295 3.5 -0.05 (1.01) 197 3 -0.07 (0.94)

Swahili 209 2.5 0.22 (0.87) 217 3.3 0.04 (0.93)
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3.1.4 Item selection

Speaking items were selected to span a range of response times (i.e., length or quantity of speech).

Specifically, for each grade band, we selected one speaking item that was short in duration (i.e.,

requiring examinees to produce a phrase or simple sentence to answer the prompt), one medium-

length item (i.e., requiring 2–3 sentences or a compound sentence), and one long item (i.e., requiring

3+ sentences). Table 3.2 presents the lengths of items 1–3, based on average audio duration (in

seconds) and average number of words, for both grade bands. To increase comparability between

grade bands, our selection of items also took into consideration item type and item information.

Table 3.2: Item descriptive statistics.

Grade Band 2–3 Grade Band 9–12

Item # Length

Num. of

Categories

Avg.

Seconds

Avg.

Words

Num. of

Categories

Avg.

Seconds

Avg.

Words

Item 1 Short 3 6.4 (4.9) 6.0 (6.5) 4 8.3 (5.0) 11.5 (7.1)

Item 2 Medium 5 17.2 (13.3) 25.1 (23.2) 6 14.9 (9.1) 22.8 (16.7)

Item 3 Long 6 36.9 (23.1) 51.1 (35.0) 5* 34.7 (18.9) 65.0 (38.4)

Note: Item 3 for grade band 9–12 was re-scaled from a 6-point scale to a 5-point scale. This change was

made in light of the fact that one group of respondents (Hindi) did not receive any 1s. Combining 1s and 2s

improved model convergence.

3.2 Transcription

3.2.1 Automated transcription

Automated transcripts were generated using Amazon Web Services. Transcript requests were sent

using Amazon’s API, boto3, during October 7–12 and November 14–16, 2022. Scripts were written
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in Python 3.8.12 (Python Software Foundation, 2022). Default transcription settings were used,

with output language set to “en-US.” Amazon provides multiple transcripts by default; the most

probable transcripts were selected for analyses.

3.2.2 Transcript standardization

Text was standardized in order to remove certain stylistic differences between automated transcrip-

tion services. Following the example of Koenecke et al. (2020), standardization included: changing

numerals to unhyphenated words (e.g. “forty two” instead of “42”); removing punctuation, with

the exception of apostrophes and translatable symbols (e.g. “percent” instead of “%”); removing

expressions of hesitation (such as “um” or “hm”); converting all text to lowercase; and formalizing

slang (e.g. replacing “cuz” with “because”).

3.3 Differential item functioning (DIF)

As discussed in Section 2.2.3, DIF occurs when there are group differences, conditioned on

“unbiased” proficiency estimates. The “unbiased” proficiency estimate, θ, is referred to as the

matching criterion. In this study, the matching criterion is examinees’ non-speaking English

language proficiency. By excluding speaking items, we ensured that estimates of θ were not

contaminated by the same type(s) of biases under examination. To compare examinees’ of similar θ,

the sample was divided into ten strata based on which quantile of the standard normal distribution

their non-speaking English proficiency resided.

The majority group is referred to as the reference group; and the minority group is referred to as

the focal group. For gender, the reference group is male, and the focal group is female; for L1, the

reference group is Spanish, and the nine focal groups are listed in Table 3.1.
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3.3.1 Matching criterion

Examinees’ non-speaking English proficiency was used as the matching criterion in DIF analyses.

Non-speaking proficiency was inferred from examinees’ responses to test items in non-speaking

domains (i.e. listening, reading, and writing). Items were modeled using an Item Response Theory

(IRT) framework (Cai et al., 2016), consistent with modeling choices used in production. One

difference, however, was that non-speaking items were modeled as a unidimensional construct, as

opposed to being modeled as three correlated dimensions, because (1) it simplified interpretation

of the matching criterion, which was non-speaking proficiency as a whole, (2) it yielded smaller

margins of error, and (3) model fit was acceptable for both grade bands, in terms of limited-

information fit statistics and Tucker-Lewis (non-normed) fit indices (M2 RMSEA ≤ .03 and M2

TLI ≥ .96).

3.3.2 DIF effect sizes

As summarized by Michaelides (2008), a common method to evaluate DIF for ordinal items is

based on the standardized mean difference (SMD) between reference and focal groups (Dorans and

Kulick, 1986).2 SMD is calculated as follows:

SMD =
∑
j

NF.j

NF..

∑
u

NFuju

NF.j

−
∑
j

NF.j

NF..

∑
u

NRuju

NR.j

where NFuj is the number of examinees in the focal group F who have a non-speaking language

proficiency score that puts them in stratum j, and who received score u (on the item in question).

Multiplying this quantity by the score, u, and dividing by the number of examinees in the focal

group in stratum j, yields the expected score for the focal group. A similar procedure is followed

for the reference group (in the rightmost expression). Before taking the difference, the expected

scores are weighted by the proportion of examinees in the focal group in stratum j.

2In the approach used in these studies, instead of using the Mantel test (Mantel, 1963), significance tests were based
on bootstrap sampling distributions and B-H adjusted p-values, described in Sections 3.4 and 3.5.

29



The effect size, z, is the ratio of SMD to the standard deviation (pooled between the two

groups).3 Intuitively, z represents how much the focal group outperforms the reference group,

comparing examinees of similar proficiency, in units of standard deviation.

What counts as a large or small effect size is based on a system originally proposed by Zwick

et al. (1993) and is currently in use by the Educational Testing Service and other educational

assessment organizations. Generalizing the system to ordinal items, Allen et al. (2001, p. 150)

designates items as having strong DIF (labeled “CC”) if z is greater than or equal to 0.25. Items

have weak DIF (“AA”) if z is less than 0.17. And items have moderate DIF (“BB”) if z is between

0.17 and 0.25.

3.3.2.1 Absolute effect size

For certain research questions, the primary interest is not in determining which specific groups are

(dis)advantaged, but only in quantifying the amount of DIF. In other words, we are not interested in

the direction of DIF, but only the magnitude. To address these questions, we base our analyses on

the absolute value of z, zabs = |z|. We also refer to this metric as the absolute effect size or absolute

DIF.

3.3.2.2 Differences between effect sizes

We also computed differences in effect sizes (i.e. differences in DIF between human and automated

scores, differences between items, and differences between grades). In each of these comparisons,

we were interested not in DIF itself, but in first-order differences of DIF. We refer to these quantities

as ∆z = zi − zj , and ∆zabs = |zabs,i − zabs,j|, where i and j represent two different effect sizes (e.g.

DIF based on human vs. BERT scores, or DIF of item 1 vs. item 2). In research questions 2–3, we

also examine second order differences, ∆∆zabs = |∆zabs,i −∆zabs,j|.

3Ormerod et al. (2022) refer to the effect size as z, a convention we follow.
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3.3.3 Aggregate DIF metrics

Analyses of DIF typically revolve around pairwise comparisons at the item level. This fine-grained

level of analysis is not suited for making general claims about DIF (i.e. across multiple items or

multiple focal groups). Aggregating effect sizes allows us to make more general claims about DIF.

3.3.3.1 Overall DIF

To evaluate DIF across items, we computed z based on examinees’ summed score (i.e. summed

across all items of interest). That is, for grade bands 2–3 and 9–12, we added examinees’ responses

to items 1–3, and computed z according to the procedure outlined in Section 3.3.2. Since z is in

units of standard deviation, it is unaffected by differences in items’ scales, and thus generalizes well

to a summed score.

3.3.3.2 Factor DIF

Analyses of DIF are usually localized to pairwise comparisons involving one focal group and the

reference group. For factors containing more than one focal group, however, we are interested

in evaluating DIF for the factor as a whole. To evaluate DIF for the entire factor, we take an

unweighted stratified mean of all pairwise comparisons, z̄abs = 1
p

∑
zabs,i, where p is the number of

focal groups. Note that in the case where there is 1 focal group, z̄abs reduces to zabs.

3.4 Statistical estimation

To compute confidence intervals and p-values, we used a simple bootstrap procedure (Efron and

Tibshirani, 1994). Examinees were resampled within grade band, gender, and L1 groups, as these

characteristics were central to the study design. Statistics were calculated from 1,000 bootstrapped

samples. Confidence intervals were determined from .025 and .975 quantiles for each estimate. p-

values of ∆z and ∆∆z were determined by assuming a normal distribution and taking the minimum
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of a two-sided quantile of the CDF evaluated at 0.

One of the additional advantages of using bootstrap estimators is that it was easier to include

variation associated with examinees’ non-speaking English proficiency in estimates. That is, prior

to each resampling, examinees’ non-speaking English proficiency estimates were redrawn from

a normal distribution with EAP as the mean standard error of EAP as the standard deviation.

Examinees were then stratified based on matching criterion, as described in section 3.3.2.

3.5 Controlling false discovery rate

Because of the large number of hypothesis tests (and corresponding p-values) examined in this

research project, it was necessary to control for “findings” resulting from random chance. We

controlled false discovery rate at the nominal level of .05 using the Benjamini-Hochberg (B-H)

technique (Benjamini and Hochberg, 1995). We use the term statistically significant (or simply

significant) when an estimated p-value is below the B-H adjusted p-value. In practical terms, we

are placing an upper bound of .025 on “the probability of being erroneously confident about the

direction of the population comparison” (Williams et al., 1999, p. 43).

3.6 Language modeling

3.6.1 BERT models

Six separate classification models were trained for each of the items analyzed in this study. Cross-

entropy served as the loss function. The maximum number of input tokens depended on the item

length; the cutoff was set at two standard deviations above the mean number of tokens for each item.

I selected BERT as the focus of analysis, after exploring several possible models with differing

hyperparameters as a part of a previous pilot study (Kwako et al., 2022). For off-the-shelf (OOS)

BERT models, I used the pre-trained, uncased BERT base model provided by Huggingface (Wolf
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et al., 2020; Devlin et al., 2018). By OOS, I specifically refer to models that (1) come pre-trained,

(2) remain unmodified with respect to model architecture, and (3) use conventional loss functions.

As described in the next section, however, OOS models were fine-tuned. Modified BERT models

(used in Study 3) were made with Pytorch (Paszke et al., 2019) in Python 9.3.12 (Python Software

Foundation, 2022).

3.6.2 BERT training

Data were split 1:1 into testing and training sets.4 Testing and training sets were split so as to

maintain equal proportions of examinees by gender and L1.

Based on prior research, I selected learning rates of 1e-6 for the BERT layers and 2e-6 for

classification heads, with a batch size of 16 (Kwako et al., 2022). To slow down overfitting, all but

the last attention layer and classification head were frozen during training. Models were trained for

10 epochs, and the epoch with the lowest test loss was selected as the final scoring model for each

item.

3.6.3 Performance metrics

To measure performance (or reliability) of BERT models, I compared BERT scores to human rater

scores using three different metrics: accuracy, correlation, and quadratic weighted kappa. These are

common metrics to assess inter-rater reliability. Approximately 10% of items were doubly scored

by human raters, which provided a baseline for evaluating the reliability of BERT models.

4A larger percentage of data was set aside for testing (50% as opposed to the conventional 20%) specifically for
Study 3, which required a robust calculation of z and zabs for the test set.
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CHAPTER 4

Study 1: Gender and L1 Biases in Automated Speech

Transcription

Automated speech recognition (ASR) is an integral component of automated English speaking

assessment. Yet, ASR is known to underperform for certain marginalized groups. Study 1 examines

gender and native language (L1) biases in automated transcription in the context of English speaking

assessment. To accomplish this, I analyze word error rate (WER) of transcripts generated by

Amazon. Appendix 8.2 also presents WER of transcripts generated by Microsoft and Google.

Findings are validated, in part, by repeating analyses on a public dataset known as L2-ARCTIC

(Zhao et al., 2018a). Results show that, for ELPA21, WER is higher for individuals whose L1 is

Vietnamese, and lower for Arabic. Study 1 finds no significant differences based on gender.

4.1 Study 1 overview

Automated transcription of speech consistently underperforms for underrepresented groups (Dichristo-

fano et al., 2023; Hutiri and Ding, 2022). This may pose a problem for automated English speaking

assessment, which relies on transcripts for scoring purposes (Zechner and Evanini, 2019; Johnston

et al., 2019). Discrepancies in ASR may lead to biased scores for certain groups of examinees, which

may limit students’ success in secondary school (Johnson, 2020) and access to higher education

(Johnson, 2019).

Study 1 examines discrepancies in the accuracy of automated transcription by comparing the

WER of groups of examinees disaggregated by gender and L1. This study focuses on automated
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transcripts generated by Amazon, since Amazon was used for generating transcripts in Studies 2–3.

However, in Appendix 8.2, I explore whether similar trends exist for Microsoft and Google and,

separately, whether results are consistent with a public dataset known as L2-ARCTIC (Appendix

8.3; Zhao et al., 2018a). By identifying disparities in transcription accuracy, this study allows for

analyzing transcription accuracy as a potential source of differential item functioning (DIF) in Study

2.

4.1.1 Biases in automated transcription

There is a growing body of literature showing that automated transcription is less accurate for L2

English speakers and for those with regional L1 English accents. Prior studies show that there

are more transcription errors for L2 English speech than L1 English speech (Dichristofano et al.,

2023; Markl, 2022; Meyer et al., 2020). Evidence suggests that accuracy is especially lower when

speakers’ L1 is tonal (Chan et al., 2022). Among L1 English speakers, non-hegemonic English

accents are less accurate, e.g., African American Vernacular English in the U.S. (Koenecke et al.,

2020) and the Belfast accent in the U.K. (Markl, 2022).

Gender disparities vary depending on the context. Some studies report lower accuracy for

women (Tatman, 2017; Hutiri and Ding, 2022), whereas others report lower accuracy for men

(Dichristofano et al., 2023; Zuluaga-Gomez et al., 2023; Markl, 2022), and still others report no

gender differences at all (Chan et al., 2022; Tatman and Kasten, 2017). These inconsistencies may

be due to differences between datasets, automated transcription services, or statistical methods (e.g.

inadequate p-value adjustments for multiple hypothesis tests).

4.1.2 Research questions and study design

This study revolves around a set of pairwise comparisons of average WER, disaggregated by

speakers’ gender, L1, and grade band. More specifically, Study 1 addresses the following research

questions:
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1. Are there differences in WER, on average, between examinees with different L1 backgrounds?

2. Are there differences in WER, on average, between male and female examinees?

3. Are there differences in WER, on average, between younger (grade band 2–3) and older

(grade band 9–12) examinees?

I employ a study design that addresses the above research questions efficiently and rigorously

by (1) standardizing automated transcripts, (2) making statistical adjustments for more accurate

comparisons, and (3) employing p-value adjustments to minimize false discovery rate.

4.2 Study 1 methods

The ELPA21 sample, described in Section 3.1, was subsampled for Study 1, according to a process

described in the following section. Methods of generating automated transcripts may be found in

Section 3.2.1, and p-value adjustments may be found in Section 3.5. In terms of item selection,

analyses in Study 1 focused exclusively on items 1 and 2.

4.2.1 ELPA21 subsample

From the sample of 15,000 students, a subset of 1,000 students was sampled for this study. I em-

ployed stratified random sampling, selecting 25 students randomly from each 3-factor combination

of gender, L1, and grade band. The size of the sample was limited in part by the time required for

manual transcription. Table 4.1 presents the descriptive statistics of the subsample used in Study 1.

Overall, the subsample included 6.7 hours of speech.

In contrast to the main sample (Table 3.1), which presented descriptive statistics of examinees’

non-speaking English proficiency, Table 4.1 presents examinees’ overall English proficiency. For

Study 1, it was not critical to separate speaking items from non-speaking items. As before, there

were group differences in students’ overall English language proficiency. Overall English proficiency
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was used for covariate adjustment, described in Section 4.2.5.

Table 4.1: Descriptive statistics of examinees subsampled for Study 1, overall and disaggregated by

gender and L1.

Grade Band 2–3 Grade Band 9–12

n

Avg.

Seconds

Avg.

Words

Avg.

Proficiency n

Avg.

Seconds

Avg.

Words

Avg.

Proficiency

All 500 24 (17) 32 (29) 0.03 (1.11) 500 24 (13) 37 (23) 0.04 (1.06)

Gender

Male 250 22 (16) 29 (31) -0.08 (1.11) 250 23 (11) 34 (18) 0.01 (1.02)

Female 250 25 (18) 35 (28) 0.14 (1.1) 250 26 (15) 39 (27) 0.07 (1.1)

L1

Spanish 50 23 (16) 32 (29) -0.05 (1.12) 50 22 (8) 32 (16) 0.08 (0.94)

Marshallese 50 23 (24) 27 (32) -0.33 (0.86) 50 20 (9) 31 (16) -0.15 (0.94)

Russian 50 24 (16) 33 (27) 0.09 (0.91) 50 24 (9) 38 (14) 0.47 (0.86)

Vietnamese 50 22 (14) 29 (23) 0.25 (0.99) 50 29 (16) 41 (24) 0.05 (0.96)

Arabic 50 22 (12) 32 (24) 0.26 (1.01) 50 23 (11) 36 (19) -0.05 (0.94)

Mandarin 50 25 (15) 34 (21) 0.86 (0.84) 50 33 (25) 51 (44) 0.41 (1.04)

Hindi 50 27 (15) 39 (29) 0.55 (0.88) 50 27 (10) 46 (18) 0.73 (0.78)

Mayan 50 17 (11) 16 (17) -1.24 (1.03) 50 20 (12) 22 (17) -0.96 (1.21)

Persian 50 25 (15) 36 (27) -0.32 (1.1) 50 23 (10) 31 (17) -0.24 (1.11)

Swahili 50 32 (25) 43 (47) 0.25 (0.97) 50 24 (10) 38 (16) 0.06 (0.91)

4.2.2 Manual transcription

In transcribing L2 English speech, particularly for English language learners, there is a tension

between transcribing grammatical mistakes and allowing for differences in accent, as others have

noted (Yoon et al., 2019). I sought to transcribe speakers’ intended meaning when the context was
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clear. For example, I would faithfully transcribe “a apple” or “one apples,” but would not transcribe

“clothing” as “closing” if the context made the speakers’ intention clear.

4.2.3 Word error rate

Performance (and biases) of automated transcription services were evaluated by calculating word

error rate (WER), a metric commonly used for these purposes. Under the assumption that the

manual transcript is true, WER is calculated as the ratio of total number of errors (in the automated

transcript) to total number of words (in the manual transcript; Qian et al. (2019). There are three

types of errors: insertions, deletions, or substitutions. Qian et al. (2019, p. 65) gives the following

hypothetical example to illustrate how WER is computed. Insertions are presented in bold, deletions

in strikethrough (strikethrough), and substitutions in italics:

Table 4.2: Example of calculating word error rate, with annotations.

Human transcription: This is a sample response to a speaking test question.

ASR output: This is the sample response to speaking test quest shun.

1 insertion+ 1 deletion+ 2 substitutions

10 words total
= .4 or 40%WER

4.2.4 Text processing

Following text standardization (Section 3.2.2), speakers’ responses were concatenated into a single

line of text before calculating WER. A small number of outliers (n=21 for Amazon) had WERs

exceeding 100%. In the most extreme cases, these were the result of students speaking in their

native languages. Since I did not want these outliers to drive findings, WER was winsorized at

100% (Wilcox, 2012).
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4.2.5 Covariate adjustment

WER was adjusted for students’ English language proficiency to avoid confounding bias (Elwert

and Winship, 2014). Without the adjustment, it is possible that some groups would have had a lower

WER not because of transcription bias, but because the group was, on average, less fluent. To make

these adjustments, I used a simple linear model: ŴERadj = β0 +
∑

iGiβ1i + θβ2, where Gi are

indicator variables of group membership, θ is English proficiency, and βj are estimated coefficients.

All statistical analyses were conducted in R 3.6.3 (R Core Team, 2020).

4.2.6 Statistical estimation

For gender, I conducted pairwise comparisons; for L1, I computed differences between each L1

mean and the overall (stratified) mean of all L1s. I used least square estimation with bootstrapping

to calculate group WER estimates, group means difference, and p-values (Tibshirani and Efron,

1993). Bonferonni-Hochberg (B-H) adjusted p-values were used to control for false discovery rate

(see Section 3.5).

4.3 Study 1 results

Figure 4.1 presents the estimated WER for examinees’ speech based on Amazon’s automated

transcription service. For each grade band, WER is presented in aggregate (black) and disaggre-

gated by gender (gold) and L1 (blue). Significance bars (with asterisks) indicate which pairwise

comparisons were statistically significant, using B-H adjusted p-values. Results for Microsoft and

Google automated transcription services (which were not used for Studies 2 or 3), are presented in

Appendix 8.2.
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Figure 4.1: Average WER estimates produced by Amazon’s automated transcription service.
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Note: Overall WER appear in black, and disaggregated WER appear in gold (gender) and blue (L1);

whiskers indicate 95% confidence intervals; brackets with asterisks indicate statistically significant pairwise

comparisons.

4.3.1 Gender biases

With respect to gender, results show no statistically significant differences between male and female

WERs. Note that, while female speakers tended to have lower WERs, these differences were not

statistically significant using B-H adjusted p-values.

4.3.2 L1 biases

Results show two statistically significant differences based on speakers’ L1. Native Vietnamese

speakers had a higher WER, on average, compared to other L1s. This means that automated

transcription was less accurate for examinees’ with Vietnamese L1 backgrounds. In contrast, native

Arabic speakers had a lower WER compared to other L1s.
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4.3.3 Age differences

There were also differences in WER based on speakers’ grade band. Although it does not make

sense to characterize these differences as biases in the same way as gender or L1, yet they may

be relevant to further analyses of automated English speaking assessment. The WER of children

(grades 2–3) was found to be significantly higher than the WER of young adults (grades 9–12). For

Amazon, WERs were 20.5% [18.8%, 22.2%] and 16.5% [15.0%, 18.0%], respectively.

4.3.4 Differences across services and datasets

Although not the focus of Study 1, WER was computed across multiple automated transcription

services (Appendix 8.2), and analyses were repeated on a public dataset known as L2-ARCTIC

(Appendix 8.3). These supplemental analyses provide some evidence that the results of Study 1 are

robust. Specifically, it was found that speakers with Vietnamese L1 backgrounds had a higher WER

in L2-ARCTIC data, and across all three automated transcription services. Arabic speakers do not

have a lower WER for L2-ARCTIC, however, and in ELPA21 the difference is not as extreme for

Microsoft or Google as it is for Amazon.

4.4 Study 1 summary

The main finding of Study 1 is that there are indeed biases in automated transcription of examinees’

speech for certain L1 backgrounds. Transcription was less accurate for young adults (grade band

9–12) whose L1 was Vietnamese. This finding is also consistent with a prior study of adult L2

English speech (Chan et al., 2022). It is interesting to note that this bias was not present for

younger examinees (grade band 2–3). Findings from Study 1 were focused on Amazon’s automated

transcription service, since Amazon was selected as the main automated transcription service for

Studies 2 and 3; however, similar biases were found for Microsoft and Google (Appendix 8.2).

Although our analyses did not detect gender bias, other studies have found that gender bias poses
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a major problem in ASR (Hutiri and Ding, 2022). With a larger sample size, it would be possible to

calculate more accurate WER estimates and to determine the size and direction of gender-based

differences.

Given that I do not have access to the training data or models used in developing these services,

I was unable to identify the source of the biases or attempt to mitigate them. Other researchers,

however, point out that biases exists at every stage of the ASR development pipeline (Hutiri and

Ding, 2022; Suresh and Guttag, 2021).

Although Study 1 highlights specific L1 biases in ASR systems, it alone is insufficient for

providing evidence as to how these biases might impact examinees’ test scores. In Study 2, however,

I claim that these biases in automated transcription do not equate to lower (or higher) speaking

scores.
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CHAPTER 5

Study 2: Gender and L1 Biases in Human and Automated Scores

in English Speaking Assessment

In L2 English speaking assessment, pretrained large language models (LLMs) such as BERT can

score constructed response items as accurately as human raters. Less research has investigated

whether LLMs perpetuate or exacerbate biases, which would pose problems for the fairness and

validity of the test. Study 2 examines gender and native language (L1) biases in human and

automated scores, using an off-the-shelf (OOS) BERT model. Analyses of bias focus on differential

item functioning (DIF). Results show that, with respect to examinees’ L1 background in grade band

9–12, there is a moderate amount of DIF, and this DIF is higher when scored by an OOS BERT

model. In practical terms, the degree to which BERT exacerbates DIF is very small. Additionally,

although there is more DIF for longer speaking items and for older examinees, BERT does not

exacerbate these patterns of DIF.

5.1 Study 2 overview

Study 2 is designed to analyze gender and L1 biases in human and automated scores. For the

automated scoring model, I use an OOS pretrained Bidirectional Encoding Representation using

Transformers (BERT) because of its seminal status in the field (Devlin et al., 2018) and because

it remains a focus of study in educational assessment (Wang et al., 2021). Bias is quantified

using differential item functioning (DIF). I describe specific patterns of DIF in human scores, and

determine whether or not BERT exacerbates DIF.
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This study is designed to address four specific research questions:

1. Compared to human scores, do automated scores increase overall DIF with respect to gender

or L1?

2. Does DIF increase with item length and, if so, is this exacerbated by automated scores?

3. Is DIF higher for older examinees and, if so, is this exacerbated by automated scores?

4. Which specific groups of examinees are (dis)advantaged most, and do automated scores

exacerbate this (dis)advantage?

5.2 Study 2 methods

The data source and sample used in analyses were described previously (Section 3.1.2), as were

automated transcription processes (Section 3.2.1), methods used to quantify DIF (Section 3.3),

p-value adjustment (Section 3.5), and models and training procedures (Section 3.6). Study 2 used

OOS BERT models provided by Huggingface (Wolf et al., 2020).

5.2.1 Performance metrics

In terms of performance (or reliability), OOS BERT models achieved near-parity with human

raters for items 1–2 (for both grade bands), and BERT performed as well as (and, in grade band

9–12, outperformed) human raters for item 3. Table 5.1 reports the performance of each of the six

BERT models in terms of accuracy, correlation, and quadratic weighted kappa, as compared to

human-human agreement (which were derived from doubly-scored responses).
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Table 5.1: Performance of off-the-shelf BERT scoring models for items 1–3, compared to

human-human agreement, with respect to accuracy, correlation, and quadratic weighted kappa

Grade Band 2–3 Grade Band 9–12

Acc. r QWK Acc. r QWK

Item H B H B H B H B H B H B

1 .911 .896 .793 .713 .792 .713 .929 .904 .920 .895 .920 .895

2 .756 .685 .898 .861 .898 .859 .728 .700 .911 .910 .911 .909

3 .614 .618 .834 .834 .834 .829 .694 .707 .841 .885 .609 .884

Note: “Acc.” refers to accuracy, “r” to correlation, and “QWK” to quadratic weighted kappa. “H” refers to

human-human comparisons (i.e. rater 2 compared to rater 1). The number of observations that were scored

by two human raters ranged from 1,567–1641 for Grade Band 2–3, and from 1,254–1,293 for Grade Band

9–12. “B” refers to human-BERT comparisons (i.e. BERT compared to rater 1). The number of observations

in the testing sets were 4,185 for Grade Band 2–3, and 3,306 for Grade Band 9–12.

5.3 Study 2 results

5.3.1 BERT increases DIF for L1

Overall, BERT-based automated scores increased DIF (to a very small degree) with respect to L1 in

Grade Band 9–12. Although this difference was visible across all items in Grade Band 9–12, item 3

had the largest difference between human and automated scores.

5.3.1.1 Overall DIF of human scores

Results revealed a moderate amount of DIF in human ratings based on examinees’ L1 in Grade

Band 9–12. This result is visualized in Figure 5.1, which shows a gray bar (representing human

scores) extending into the yellow (“moderate” DIF) region of the chart (zabs = .196, CI95% =

[.170, .222], p = 5.4 · 10−48). Additionally, there was non-zero DIF based on L1 in Grade Band 2–3,
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and non-zero DIF based on gender in Grade Band 9–12; however, the effect sizes of these quantities

were weak.

Figure 5.1: Estimates of DIF by gender and L1 over all 3 items for grade bands 2–3 and 9–12.

Grade Band 2-3 Grade Band 9-12

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

L1

Gender

zabs

Human

BERT

Note: Error bars indicate 95% confidence intervals. Yellow shaded regions correspond to moderate DIF, and

red shaded regions correspond to strong DIF.

5.3.1.2 Human vs. BERT overall DIF

Overall DIF of automated scores was highly similar to human scores. As seen in Figure 5.1,

green bars (representing BERT scores) are nearly commensurate with gray bars (representing

human scores), with mostly overlapping 95% confidence intervals. Yet, there was significantly

more DIF in BERT scores compared to human scores with respect to L1 in Grade Band 9–12

(∆zabs = .025, CI95% = [.011, .039], p = 3.3 · 10−4). In practical terms, however, an effect size of

0.025 standard deviations is very small.

5.3.1.3 Human vs. BERT individual item DIF

In addition to overall DIF, I examined DIF for each individual item. Figure 5.2 presents DIF of

human and automated scores, for gender and L1, across items 1–3, for each grade band. Human

and automated scores are again quite consistent. For Grade Band 9–12, L1 DIF tends to be higher

across all items; however, only item 3 reaches statistical significance (∆zabs = .032, CI95% =
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[.010, .055], p = 3.3 · 10−3). An effect size of 0.032 is very small.

Figure 5.2: Estimates of DIF by gender and L1 for each of the 3 speaking items in grade bands 2–3

and 9–12.
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Note: Error bars indicate 95% confidence intervals. Yellow shaded regions correspond to moderate DIF, and

red shaded regions correspond to strong DIF.

5.3.2 DIF increases with item length

Longer speaking items tended to exhibit more DIF than shorter speaking items. Automated scores,

however, did not exacerbate this trend. By design, item 3 was longer than item 2, which in turn was

longer than item 1. Figure 5.2 shows that, in general, item 3 had more DIF than item 2, which in

turn had more DIF than item 1. Table 5.2 presents the specific values of ∆zabs,ij , based on human

rater scores, for all three item comparisons. For example, in grade band 9–12, the difference in DIF
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between items 1 and 2, based on human rater scores (i.e., the gray bars in Figure 5.2), with respect

to L1, was ∆zabs,21 = .087. That is, item 2 had .087 more standard deviations of DIF compared to

item 1. Using B-H adjusted p-values, this is a statistically significant difference, as indicated by

asterisks in Table 5.2.

Table 5.2: Differences in DIF between longer and shorter items, within each grade band, based on

human ratings.

Grade Band 2–3 Grade Band 9–12

Factor 2 - 1 3 - 1 3 - 2 2 - 1 3 - 1 3 - 2

Gender
.012 .010 -.002 .065 * .078 * .013

[-.030, .051] [-.029, .049] [-.042, .039] [.021, .110] [.031, .116] [-.032, .055]

L1
.046 * .053 * .006 .087 * .184 * .097 *

[.009, .085] [.010, .093] [-.035, .046] [.043, .130] [.139, .226] [.056, .138]

Note: “*” indicates that an estimate is statistically significant using B-H adjusted p-values. 95% confidence

intervals are presented in square brackets.

Although longer items tended to have more DIF, this general trend was not uniformly consistent

across factors and grand bands. Specifically, the trend was less consistent for gender: There were

no statistically significant differences in grade band 2–3; and in grade band 9–12, item 3 did not

have more DIF than item 2 at a statistically significant level. Additionally, for grade band 2–3, item

3 did not have significantly more DIF than item 2.

In order to determine if item-item differences were exacerbated by automated scoring, we

computed second-order differences, ∆∆zabs. None of these values, however, were statistically

significant. We conclude that the pattern of longer items producing more DIF is consistent for both

human and automated raters.
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5.3.3 DIF is higher for older examinees

In general, there was more DIF for older examinees (in grade band 9–12) compared to younger

examinees (in grade band 2–3), in terms of both gender and L1. Automated scores, however, did not

exacerbate this trend. This trend can be seen clearly in Figure 5.1. Based on bootstrapped estimates

for overall DIF with respect to gender, ∆zabs = .059 (CI95% = [.011, .100], p = 4.9 · 10−3); with

respect to L1, ∆zabs = 0.082 (CI95% = [0.047, 0.120], p = 3.8 · 10−6).

When we examine individual items, this trend is present for items that are medium-length or

longer (items 2 and 3) but not for short items (item 1). Visually, this can be seen in Figure 5.2.

First-order differences between grade bands, ∆zabs, based on human ratings, are presented in Table

5.3. For example, in item 1, the difference between DIF observed in grade band 2–3 versus grade

band 9–12 is ∆zabs = .005, with respect to L1, which is not a statistically significant difference.

In items 2 and 3, however, the differences between grade band 2–3 and 9–12 are much larger

(∆zabs = .050 and ∆zabs = .144, respectively).

Table 5.3: Differences in DIF between grade bands for each of the 3 speaking items, based on

human ratings.

Factor Item 1 Item 2 Item 3

Gender 0.004 [-0.035, 0.043] 0.058 * [0.006, 0.104] 0.071 * [0.02, 0.119]

L1 0.005 [-0.037, 0.048] 0.050 * [0.006, 0.095] 0.144 * [0.098, 0.189]

Note: “*” indicates that an estimate is statistically significant using B-H adjusted p-values. 95% confidence

intervals are provided in square brackets.

In order to determine if differences between grand bands were exacerbated by automated scoring,

we computed second-order differences, ∆∆zabs. None of these values, however, were statistically

significant. We conclude that the trend of greater DIF in older examinees was consistent for both

human and automated raters.
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Figure 5.3: Estimates of direction and magnitude of overall DIF.
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Spa = Spanish); focal groups are listed on the right (L1 groups are abbreviated by the first three letters). DIF

in the positive direction indicates that the focal group is favored.

5.3.4 Severity of DIF depends on L1 and grade band

The magnitude and quantity of DIF varied by L1 background, and patterns were generally not

consistent across grade bands. Figure 5.3 depicts the magnitude and direction of DIF for gender and

all L1 groups. For grade band 2–3, native speakers of Marshallese and Mayan languages showed

evidence of moderate–strong DIF for human and BERT scores. DIF was negative for both L1

groups, indicating that these examinees fared worse on speaking items than their (equally-proficient)

Spanish-speaking counterparts.

In grade band 9–12, examinees of nearly all L1 backgrounds fared better than native Spanish

speakers. In this case, speaking items tended to disadvantage members of the reference group (i.e.

examinees with Spanish L1 backgrounds).
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As with preceding analyses, DIF based on BERT scores aligned closely with DIF based on

human scores. Although results showed that BERT exacerbated DIF in L1 as a whole (Section 5.3.1),

analyses of individual L1 groups did not reveal any statistically significant differences between

human and BERT scores. We also did not find any statistically significant differences between

human and BERT scores when examining DIF at the individual item level (Appendix 8.4).

5.4 Study 2 summary

5.4.1 Main findings

Analysis of DIF revealed specific patterns of biases in human and automated scores of English

speaking assessment. With respect to human scores, there was more DIF for older examinees and

for longer items. Based on commonly accepted standards regarding effect size, there was a moderate

amount of overall DIF in grade band 9–12 based on examinees’ L1 backgrounds. Automated scores

generated by OOS BERT closely matched human scores, yet BERT was found to exacerbate overall

DIF for grade band 9–12 based on examinees’ L1. The degree to which BERT exacerbated bias,

however, was very small.

5.4.2 Sources of DIF

Although our findings do not confirm any causes of DIF, they do allow us to rule out several

possibilities.

5.4.2.1 Transcription (in)accuracy

Study 1 showed that there were discrepancies in word error rate (WER) of automated transcription

based on L1. Specifically, automated transcription struggled with speakers of Vietnamese L1

backgrounds. Yet given the close correspondence between human and automated scores—for all

examinees, not just Vietnamese examinees—it appears unlikely that transcription inaccuracies
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engendered lower or higher scores.

5.4.2.2 Implicit bias

Our automated scoring system was based exclusively on transcripts of examinees’ speech. No

phonic information was used in the automated scoring process. It is notable, then, that there was no

mitigation of DIF in automated scores using a text-based BERT model. In other words, removal

of acoustic input did not reduce bias. From this, we can conclude that examinees with identical

(transcribed) responses could not have received higher or lower scores, on average, based on gender

or L1.

Although text-based automated scores did not mitigate bias, this does not necessarily imply

that human raters were unaffected by implicit bias. It is possible, for instance, that examinees with

different accents also had different (transcribed) responses, which yet affected human judgment.

5.4.3 Accuracy and DIF

As the performance of automated scoring improves to match (or exceed) that of human raters, one

might have expected the magnitude of DIF to also match (or potentially reduce) that of human raters.

Contrary to expectation, for longer speaking items, automated scores exceeded the performance

of human raters yet increased DIF. More research is needed to determine the relationship between

performance and DIF.
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CHAPTER 6

Study 3: Mitigating Gender and L1 Biases in Automated English

Speaking Assessment

As reported in Study 2, there was a moderate degree of differential item functioning (DIF) for grade

band 9–12 based on examinees’ native language (L1). Drawing from a new body of research in

machine learning known as debiasing, Study 3 explores the possibility of reducing DIF. I compare

two different debiasing approaches: The adversarial approach, which removes specific aspects of

gender or L1 from examinees’ responses; and the shrinkage approach, which averages automated

scores with examinees’ expected scores (ES). Results show that the adversarial approach fails

to reduce DIF, producing identical scores to off-the-shelf (OOS) BERT models. Although the

shrinkage approach uniformly reduces DIF, it does so at the expense of item information.

6.1 Study 3 overview

As a growing field in machine learning, debiasing is focused on making predictions more equitable

with respect to protected attributes (Elazar and Goldberg, 2018). In many contexts, the prediction

task (in this case, scoring English speech) may be intertwined with protected attributes (i.e., gender

or L1), and it is the goal of debiasing to untangle this association and prevent protected information

from affecting task predictions. Sometimes the association between the task and the protected

attribute is referred to as leakage, in the sense that information in the prediction function leaks

information about the protected class. There are numerous techniques that have been proposed and

applied toward specific tasks, but because it is a relatively new field, there is little consensus as to
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which techniques are most effective (Sun et al., 2019).

Debiasing techniques have not been applied to English speaking assessment, yet they may offer

a solution for reducing biases (including the patterns of DIF enumerated in Study 2). It may be

possible to reduce biases introduced by LLMs, and perhaps even to reduce bias below what is seen

in human rater scores. Sun et al. (2019) review a number of debiasing techniques, organized by

methodological approach. In Study 3, I apply two of these techniques toward mitigating gender and

L1 biases in automated English speaking assessment, and discuss the relative merits and weaknesses

of each.

6.1.1 The adversarial approach

The adversarial approach is characterized by predicting the protected class, and then preventing the

model from using this information in task predictions. In one application of this technique, Wang

et al. (2019) first trained a model to predict gender and, subsequently, during task training, reversed

the optimization function so that the model unlearned its ability to predict gender.

This approach is appealing because it attempts to remove biases specific to the protected

attributes. This approach is surgical in its attempt at removing only the parts of the prediction

function that are related to the protected attributes. Aspects of the protected attribute that are related

to the task function are actively unlearned. In image recognition, this is analogous to removing facial

details or hair styles that might be related to gender. With respect to English speaking assessment,

this approach would (in theory) unlearn aspects of the scoring function that are related to gender or

L1.

6.1.2 The constrained prediction approach

Another approach is constrained prediction, which involves altering predictions after training is

completed. One way of doing this is to alter the probability distributions so that each protected

attribute has equal odds of receiving the same prediction (e.g. Yatskar et al., 2016). The method
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that I employ in Study 3 is to use a shrinkage estimator (Fourdrinier et al., 2018), which is tailored

specifically to shrink estimates towards zero DIF. The specific condition that shrinks predicted

scores towards zero DIF is when examinees’ scores are exactly equal to their expected scores, based

on their responses to non-speaking items.1

6.1.3 Research questions and study design

Study 3 explores two approaches of debiasing gender and L1 in English speaking assessment. The

specific research questions I address are:

1. Does the adversarial approach reduce overall DIF, based on gender or L1?

2. What are the causes of the adversarial model’s success or failure?

3. Does a constrained prediction approach reduced overall DIF, based on gender or L1?

4. What are the causes of the constrained prediction model’s success or failure?

In Section 6.4, I also discuss the advantages and limitations afforded by each approach, and I

suggest possible developments and further research that could redress those limitations.

6.2 Study 3 methods

The data source and sample used in analyses were described previously (Section 3.1.2), as were

automated transcription processes (Section 3.2.1), methods used to quantify DIF (Section 3.3),

p-value adjustment (Section 3.5), and models and training procedures (Section 3.6). Consistent with

Study 2, Study 3 uses OOS BERT models provided by Huggingface (Wolf et al., 2020), as well

as modified BERT models; modifications were made with Pytorch (Paszke et al., 2019), based on

original models provided by Huggingface.

1Expected scores are described in greater detail in Section 6.2.3.
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6.2.1 Adversarial models

Adversarial models included three classification heads, corresponding to score, gender, and L1

predictions. Cross-entropy loss was calculated for each classification head. Before taking each

optimization step, losses were combined in such a way as to reduce bias. Following the example of

Wang et al. (2019), the final objective function is

Lp =
∑

(Xi,hi,Yi)

[L(p(Xi), Yi)− λgLcg(cg(hi), gi)− λlLcl(cl(hi), li)]

where p(Xi) are the predicted scores, Yi are the actual scores, and cg(hi) and cl(hi) are critics—

that is, functions that predict protected classes (i.e. gender and L1, respective) from BERT’s

contextual token embedding (i.e., the pooled output layer), h. λg and λl represent hyperparameters

to weight the importance of the gender and L1 critic, respectively.

6.2.2 Shrinkage models

The DIF shrinkage approach computes examinees scores from a weighted average of (1) examinees’

predicted scores, using regression BERT models, and (2) examinees’ expected scores (ESs), based

on their responses to non-speaking items. ESs are described in greater detail in Section 6.2.3.

Regression BERT models are OOS BERT models. Instead of predicting score categories using

cross-entropy loss, however, these models are trained to predict a single, continuous score using

mean squared error loss. Thus, scores predicted by regression BERT were non-integer, float values.

Regression scores (RSs) were combined with examinees’ ESs, at varying weights (or pro-

portions), to produce regularized scores. Study 3 includes five different weighting conditions:

1RS +0ES, .75RS + .25ES, .5RS + .5ES, .25RS + .75ES, and 0RS +1ES. Combined scores

were rounded to the nearest whole integer, in order to remain consistent with scores produced by

human raters.
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6.2.3 Expected score estimates

Based on examinees’ responses to non-speaking items, an expected score (ES) was computed for

responses to each item in examinees’ respective grade bands. That is, each examinee had three ESs,

corresponding to items 1–3. ES is a function of non-speaking proficiency, θ, as well as IRT item

parameters, which include the discrimination parameter, a, and the difficulty parameters, b. More

specifically, for examinee i, responding to item j, across all possible scores, u, ESij = E[U =

u|θi, aj,bj]. For computation of θ, see Section 3.3. With respect to IRT item parameters, each item

was modeled using a graded response model (Samejima, 1997) and computed using flexMIRT (Cai,

2012), based on the responses of all examinees in the sample.

6.3 Study 3 results

6.3.1 The adversarial approach

The adversarial model failed to remove overall DIF, based on gender or L1, in either grade band 2–3

or 9–12. Figure 6.1 compares overall DIF based on human scores (gray) to OOS BERT (green) and

the adversarial BERT model (dark green). Although there were minor differences between OOS

BERT and adversarial BERT, ∆zabs, none of these differences were statistically significant, and

may be attributable to noise (e.g. from slightly different starting values).

There were also no statistically significant differences between OOS BERT and adversarial

BERT when examining the direction and magnitude of overall DIF, based on gender or any individual

L1 group (Figure 6.2). Again, although there were minor discrepancies, based on ∆z, none of the

discrepancies were statistically significant.

One of the reasons why the adversarial BERT model may not reduce DIF is that there is little to

no leakage. Indeed, BERT struggled to predict the protected attributes in examinees’ responses,

let alone the protected attribute present in the score prediction function. Figure 6.3 presents the

accuracy with which BERT predicted gender based on examinees’ responses for each of the 3
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Figure 6.1: Comparisons of overall DIF across human, off-the-shelf BERT, and adversarial BERT,

by gender and L1 over all 3 items for grade bands 2–3 and 9–12.

Grade Band 2-3 Grade Band 9-12

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

L1

Gender

zabs

Human

BERT

advBERT

Note: BERT represents the off-the-shelf BERT model, and advBERT represents the adversarial BERT model.

Error bars indicate 95% confidence intervals. Yellow shaded regions correspond to moderate DIF, and red

shaded regions correspond to strong DIF. Estimates of magnitude of L1 DIF are the average zabs for all 9

focal groups.

speaking items in grade bands 2–3 and 9–12. In both grade bands, there are many incorrect (i.e. off-

diagonal) predictions. Indeed, the predictions are nearly random, suggesting that BERT identified

little gender-related signal in examinees’ responses. In grade band 9–12, the majority of responses

were predicted as male.

With respect to predicting L1 group based on examinees’ responses, results were even more

extreme. For both grade bands, and across all three items, BERT predicted Spanish for nearly

all examinees (Figure 6.4). Although the majority of examinees had Spanish L1 backgrounds

(50.2% of examinees in grade band 2–3, and 52.6% in grade band 9–12; Table 3.1), one might

have expected BERT to have predicted minority L1 groups at higher rates. Despite this limitation,

BERT’s prediction accuracy is higher than that of a Naïve Bayes classifier (Appendix 8.5). Note that

analyses of confusion matrices do not control for examinees’ scores, which precludes the possibility

of identifying more subtle differences in examinees’ responses.
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Figure 6.2: Comparisons of direction and magnitude of overall DIF across human, off-the-shelf

BERT, and adversarial BERT, by gender and each L1 group for grade bands 2–3 and 9–12.
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Human
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Note: BERT represents the off-the-shelf BERT model, and advBERT represents the adversarial BERT model.

Error bars indicate 95% confidence intervals. Yellow shaded regions correspond to moderate DIF, and red

shaded regions correspond to strong DIF. Reference groups are listed on the left of each chart (M = Male,

Spa = Spanish); focal groups are listed on the right (L1 groups are abbreviated by the first three letters). DIF

in the positive direction advantages the focal group.

6.3.2 The shrinkage approach

Shrinking BERT scores towards examinees’ expected scores (ESs) reduces DIF and, at the extreme,

eliminates DIF entirely. The degree of reduction of DIF depends on the percentage of the weighted

average apportioned to ES. If zero weight is apportioned to ES, then results are identical to patterns

of DIF seen from OOS BERT models. As a greater percentage of the score is apportioned to ES (i.e.
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Figure 6.3: Confusion matrix of BERT predictions of gender for each of the 3 speaking items in

grade bands 2–3 and 9–12.
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Note: accuracy is conditioned on the true number of examinees within each gender.

25%, 50%, and 75%), there is a corresponding decrease in DIF. In the extreme case, when scores are

exclusively determined by ES, DIF is eliminated. Recall that ES is based on examinees’ responses

to non-speaking items (Section 6.2.3); thus, although DIF is reduced or eliminated, the information

provided by the item is correspondingly reduced or eliminated. In the extreme case, “speaking”

scores are based on non-speaking items, and examinees’ responses are not taken into consideration

at all. Although impractical, the extreme example is helpful in illustrating the downside of reducing

DIF with the shrinkage model.

Figure 6.5 depicts the inverse relationship between DIF and the weight apportioned to ES across
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Figure 6.4: Confusion matrix of BERT predictions of L1 group for each of the 3 speaking items in

grade bands 2–3 and 9–12.
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Note: accuracy is conditioned on the true number of examinees within each L1 group.

five conditions. Darker shades of green correspond to higher weights apportioned to ES. It is clear

that DIF decreases monotonically as the percentage (of examinees’ speaking scores) determined by

ES increases.

DIF is also reduced (or eliminated) with the shrinkage model, regardless of direction or mag-

nitude of DIF (Figure 6.6). As above, Figure 6.6 presents DIF across five shrinkage models,
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Figure 6.5: Comparisons of overall DIF across human and five shrinkage BERT models, by gender

and L1 over all 3 items for grade bands 2–3 and 9–12.

Grade Band 2-3 Grade Band 9-12

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

L1

Gender

zabs

Human

ES_0

ES_25

ES_50

ES_75

ES_100

Note: ES stands for “expected score,” and represents the percentage of weight given to expected score (in

conjunction with regression BERT). Error bars indicate 95% confidence intervals. Yellow shaded regions

correspond to moderate DIF, and red shaded regions correspond to strong DIF. Estimates of magnitude of L1

DIF are the average zabs for all 9 focal groups.

corresponding to weight apportioned to ES, by gender and L1 group for grade bands 2–3 and 9–12.

Although this study examines gender and L1, the shrinkage approach would eliminate DIF across

all background factors.
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Figure 6.6: Comparisons of direction and magnitude of overall DIF across human and five shrinkage

BERT models, by gender and each L1 group for grade bands 2–3 and 9–12.
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Note: ES stands for “expected score,” and represents the percentage of weight given to expected score (in

conjunction with regression BERT). Error bars indicate 95% confidence intervals. Yellow shaded regions

correspond to moderate DIF, and red shaded regions correspond to strong DIF. Reference groups are listed

on the left of each chart (M = Male, Spa = Spanish); focal groups are listed on the right (L1 groups are

abbreviated by the first three letters). DIF in the positive direction advantages the focal group.
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6.4 Study 3 summary

6.4.1 Limitations and further developments for the adversarial approach

Speaking scores generated using the adversarial approach did not differ significantly from off-the-

shelf BERT scores. One of the reasons the adversarial model failed to reduce DIF may be because

BERT failed to detect gender or L1 differences in examinees’ responses. If this is indeed the case,

then there would be no leakage to mitigate, and we would not expect the adversarial approach to

mitigate DIF in the first place.

Although results showed that the adversarial method was unable to reduce DIF, this could be

less of a limitation of the method, and more of an indication that the method requires additional

engineering. Specifically, although it was found that BERT was unable to predict gender or L1,

the relationship between examinees’ protected attributes and their response was not conditioned

on non-speaking proficiency, which is critical in analyses of DIF. It is also possible that this lack

of predictive power is due (in part) to the fact that the sample is imbalanced: There may be subtle

differences in responses based on L1, but these are eclipsed by the fact that the vast majority of

examinees have Spanish L1 backgrounds. More fine-grained analyses are needed to parse the

relationship between responses and L1 background. Through data augmentation, it would be

possible to rectify the imbalance between L1 group sizes. If these additional analyses do, in fact,

reveal a relationship between examinees’ responses and L1, then it might reopen the possibility of

mitigating DIF through adversarial models.

Although there are other adversarial models, all would suffer from the same limitation of

not being able to remove bias as long as there is no leakage. Zhang et al. (2018), for instance,

suggests projecting the task-specific gradient onto the orthogonal compliment of the protect attribute

gradients during training. So long as the subspace is sufficiently restricted, this could prevent the

model from learning to predict gender or L1 from responses, but only if the model is able to identify

a relationship between the protected attribute and the response to begin with.
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6.4.2 Limitations and further developments for the shrinkage approach

Although the shrinkage approach reduces DIF (irrespective of magnitude, direction, or even back-

ground characteristic), it also reduces the information contained in speaking items. In the extreme

case, examinees’ responses are determined exclusively by their non-speaking English proficiency.

Thus, if applied uniformly to all speaking items, the shrinkage approach precludes the possibility

of measuring speaking proficiency, and confounds the very purpose of the assessment. A more

judicious application of the shrinkage approach (e.g. applying it only towards those items exhibiting

moderate–strong DIF), could be beneficial. Without knowing the source of DIF, however, it is

impossible to know whether this more judicial application is still removing key components of

speaking proficiency. This danger is plausible, especially given that longer speaking items exhibit

more DIF.

One possible extension of the shrinkage approach would be to specify further constraints so as

to determine algorithmically the optimal weight to apportion to examinees’ expected scores. Study

3 analyzed five conditions of various weights; with additional specifications, the weight assigned

would not be arbitrary, but determined a priori by some modified loss function. This addition might

help clarify what is important, psychometrically. With more weight given to expected score, we

reduce DIF, but we also reduce item information; it would make sense, then, to limit DIF while

also maximizing some measure of item information—ideally, information that is orthogonal to

non-speaking proficiency.
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CHAPTER 7

Discussion

7.1 Summary of findings

7.1.1 Studies 1–3

Study 1 analyzed the accuracy of a large-scale automated transcription service by comparing average

word error rate (WER) of a subsample of examinees, disaggregated by gender and L1. Results

showed no difference in accuracy based on gender, for either grade band. Yet for grade band 9–12,

examinees whose native language (L1) was Vietnamese tended to have less accurate transcripts, on

average, while those with Arabic L1 backgrounds had more accurate transcripts.

Study 2 examined patterns of differential item functioning (DIF) with respect to scores generated

by human raters and by a off-the-shelf (OOS), commonly used large language model known as

BERT. Results revealed that, based on human rater scores, there was a moderate amount of overall

DIF for grade band 9–12 based on examinees’ L1. Across both grade bands, there was more DIF for

longer speaking items, and more DIF for older examinees (grade band 9–12) compared to younger

examinees (grade band 2–3). BERT exacerbated DIF by a small amount, with respect to overall DIF

for grade band 9–12 based on examinees’ L1. Yet BERT had identical patterns of DIF with respect

to length of speaking items and age of examinees. Overall, BERT scores corresponded closely to

human rater scores.

Study 3 focused on two approaches aimed at mitigating DIF, the adversarial approach and the

shrinkage approach. The adversarial approach produced scores that were not significantly different

from the OOS BERT model used in Study 2. One possible reason for the failure of the adversarial
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model to mitigate DIF may be due to the fact that BERT struggled to identify information related to

examinees’ gender or L1 in examinees’ responses; additional research is needed to verify if this

association could be revealed by other models. In contrast to the adversarial approach, the shrinkage

approach did reduce DIF for gender and L1. The drawback of the shrinkage approach is that, as

DIF is reduced, information regarding examinees’ speaking proficiency is also reduced. Without

untangling the relationship between DIF and speaking proficiency, the shrinkage approach may

undermine the very purpose of the assessment.

7.1.2 Overarching research goals

This research project was designed in part around exploring two specific construct-irrelevant drivers

of DIF, automated transcription bias and implicit bias. Evidence from Studies 1–2 rule out the

possibility that automated transcription is the cause of DIF. And Studies 2–3 indicate that implicit

bias is likely not the main issue. Yet there is room for further exploration of implicit bias, particularly

if additional data becomes available (see Section 7.2).

Another overarching goal of this research project was to explore debiasing techniques for the

removal of DIF. It was especially of interest to explore adversarial methods capable of removing

construct-irrelevant aspects of examinees’ responses (i.e. surgically removing aspects specific

to gender or L1). Such a technique could be employed regardless of the main drivers of DIF.

Unfortunately, this technique did not yield fruitful results, in part because BERT did not identify

any large differences in examinees’ responses based on gender or L1.

7.2 Sources of DIF

Results from Studies 1–3 allow us to rule out certain sources of DIF, and suggest possibilities for

examining other sources more deeply.
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7.2.1 Automated transcription

Study 1 revealed that there were discrepancies in transcription accuracy that varied by L1. Yet Study

2 showed that there was very little room for these inaccuracies to affect scores. Rather, human

rater scores and automated scores generated by BERT, when disaggregated by L1, were nearly

identical; DIF was also nearly identical. Furthermore, we do not see DIF and accuracy trend in the

same direction: examinees with Vietnamese L1 backgrounds have, on average, lower transcription

accuracy, yet DIF seems to favor them over other L1 groups. Because of the tight correspondence

between human and automated scores and human and automated DIF, automated transcription can

be ruled out as a source of DIF.

7.2.2 Human rater bias

Research on implicit bias suggests that human raters might judge certain accents more harshly than

others. That is, examinees (of different L1 backgrounds) might give the same response, yet receive

different scores. For instance, Spanish speakers and Mandarin speakers who both said “she put on

her shoes” may receive different scores. Study 2, however, ruled out this possibility. If examinees

had received different scores, then BERT (which takes text-only input) would have reduced DIF,

which was not the case. Note that this finding is consistent with scoring rubrics, which focus on the

content of examinees’ responses, as opposed to aspects of fluency, such as pronunciation.

Based on results from Study 2, however, the possibility still remains that examinees (of different

L1 backgrounds) gave slightly different responses—that deserved the same scores—yet received

different scores. For instance, consider the possibility that examinees of Spanish L1 backgrounds

might have been more likely to say, “She put on her shoes,” whereas examinees of Mandarin L1

backgrounds might have been more likely to say, “She was putting on her shoes.” Although these

responses deserve the same score, they may trigger implicit bias in human raters and be given

different scores. It is possible that BERT would propagate these discrepancies.

Results from Study 3 demonstrated that BERT was unable to detect a relationship between L1

68



and examinees’ responses.1 That is, BERT was not able to distinguish examinees whose L1 was

Spanish versus Mandarin. This finding suggests that implicit bias—and even the more nuanced

type of implicit bias described above—is unlikely. An important caveat to this claim is that, in

the analysis of the relationship between response and L1, Study 3 did not control for examinees’

language proficiency (or, even more coarsely, human rater scores), which is critical in analyses

of DIF. In examining whether human rater bias is a source of DIF, it is necessary not to compare

examinees of Spanish and Mandarin L1 backgrounds as a whole, but only those examinees who

deserve the same score. Unfortunately, exploring this possibility requires a great deal more data,

since L1 groups would need to be partitioned by observed score, and some groups have little overlap

in observed scores.

7.2.3 Sociocultural factors

Item 3 is a science-related item, and item 2 for grade band 9–12 involves some quantitative reasoning.

Depending on which countries students emigrated from, these types of content-related items might

have been easier for students from countries where these concepts were covered in more depth

(Huang et al., 2016). However, item 2 for grade band 2–3 still exhibits some DIF with respect to

L1, and it is not related to science or quantitative reasoning. Furthermore, there are non-speaking

science and quantitative reasoning items. Therefore, to pursue this possibility further, it would

be beneficial to examine non-speaking items related to science or quantitative reasoning to see if

similar patterns of DIF emerge.

Study 2 revealed that examinees in grade band 9–12 who have Spanish L1 backgrounds tend to

struggle with speaking items. There could be some sociocultural or socioeconomic cause, perhaps

related to SES, migrant status, age of entry into the U.S. schooling system, or some other factor.

Unfortunately, these data are not collected by all states, nor are they collected in the same way,

which makes such follow-up analyses more difficult.

1It is possible that there is no strong relationship between L1 and examinees’ responses, however this claim cannot
be proven by one negative result. Other models, such as Naïve Bayes, may reveal such an association (Appendix 8.5).
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There are other sociocultural factors that could be specific to speaking proficiency, such as

opportunities or motivation to communicate with others (Derwing and Munro, 2013). However,

exploring these factors would require data beyond what is available.

7.2.4 Feature bias

Although feature biases are less salient when using deep learning models, manual features could be

helpful in determining the sources of DIF. For instance, it has been shown that embedding layers

of LLMs correlate with manually specified features (Ormerod, 2022b). By examining intraclass

correlation coefficients, it might be possible to ascertain which manual features are (or are not)

associated with responses of each L1 group, providing additional possibilities for investigating

sources of DIF.

7.2.5 Machine learning bias

Given the close correspondence between scores generated by human raters and BERT, there is little

room for machine learning bias. Nevertheless, Study 2 did find that BERT exacerbated DIF with

respect to L1 in grade band 9–12. Even though the effect size is small, it is worth investigating

whether or not this is due to modeling or training decisions. One possible avenue of research would

be to experiment with different LLMs (besides BERT). In particular, it would be useful to repeat

these analyses using a smaller LLM, such as Electra, or an ensemble of models (Ormerod, 2022a).

7.2.6 Other biases

The majority of non-speaking items are relatively easy, based on their IRT parameters. Research

has suggested that easier items are more likely to exhibit DIF, since they may be more likely to

draw on cultural knowledge (Santelices and Wilson, 2010). If this is the case, then perhaps the

non-speaking items do not constitute an appropriate set of anchor items. Although it contradicts

research on implicit bias, it is possible that the speaking items are less biased than the non-speaking,
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anchor items.

Dorans and Zeller (2004) suggest that there is a relationship between impact and DIF. Although

they suggest that this is tied to guessing behavior, this still might be relevant for constructed

response, speaking items. For instance, it has been noted that speaking is one of the most difficult

aspects of L2 language acquisition (Brown et al., 2000). Thus, examinees of lower language

proficiency might be able to guess their way through non-speaking items, but struggle to a far

greater extent for speaking items. In this case, there may be something unique about the speaking

domain that is construct-relevant, yet interacts with examinees’ non-speaking language proficiency.

An even more complicated case would be if speaking proficiency was also affected in a unique

way by general academic proficiency, in which case there would be a mix of construct-relevant and

construct-irrelevant factors associated with speaking items.

7.3 Implications

Findings revealed that there was moderate DIF, based on examinees’ L1 backgrounds, specifically

for medium–long speaking items in grade band 9–12 (Section 5.3.1). If certain groups of students

are indeed (dis)advantaged compared to others, the test may lead to unfair assessment of students’

speaking proficiency, which might potentially impact their academic trajectories (Johnson, 2019).

Issues of fairness also have ramifications for validity: If the test performs differently for certain

groups of students, then the test may be capturing construct-irrelevant features of students’ responses.

Given these potential dangers, what should be done, from a practical point of view?

7.3.1 Fairness

Unfortunately, without further analyses, there are no clear, actionable steps that can be taken to

mitigate DIF in English speaking assessment. One of the main reasons for this is that the cause of

DIF remains unknown. Without knowing the cause, removal of DIF runs the risk of a removal of

construct-relevant aspects of the test or of examinees’ responses to test items. In other words, if all
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human rater scores are fair and valid—which is still a possibility—then altering examinees’ scores

based on DIF could make the test less fair.

Definitions of fairness dictate, to some degree, what should be done. If fairness means leveling

the playing field, regardless of cause, then one can use the shrinkage approach (described in Study

3) to reduce DIF to an acceptable level. On the other hand, if fairness means ensuring that the test

functions in the same way for all examinees (i.e. the test is valid), then altering scores runs the

risk of deforming the construct, and should be avoided. If the cause of DIF is construct-irrelevant,

however, then removing DIF would be acceptable, based on either definition of fairness.

7.3.2 Construct (ir)relevance

There are a number of possible construct-irrelevant causes of DIF which, if found to be main drivers

of DIF, would promote the unambiguous policy of taking steps to remove DIF. For example, if

it were clear that quantitative test items preferentially disadvantaged examinees’ with Spanish

L1 background in grade band 9–12, then these items should be weighted less heavily (e.g., the

shrinkage approach could be used to reduce DIF to an acceptable level for these items). After all, it

is not the goal of an English speaking exam to assess quantitative reasoning.

If the main driver(s) of DIF are construct-relevant, however, then removal of DIF depends on

one’s definition of fairness. For example, if it were clear that the source of DIF lies in the fact that

L2 English speaking is a more challenging domain, and that speaking proficiency interacts with

overall language proficiency in a unique way, then groups whose L1 backgrounds are lower, on

average, would be expected to have lower scores on speaking items. In this case, removing DIF

would change the natural properties of the speaking construct itself. Arguments about whether

or not DIF should be removed in this case could be made on either side; on the whole, however,

psychometricians would probably recommend not removing DIF (American Educational Research

Association et al., 2014).
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7.3.3 Evaluating bias

Ormerod et al. (2022) notes that the field of automated assessment (of constructed response items)

has not been as rigorous as it should be when it comes to evaluating bias. Typically, studies

narrowly focus on accuracy or other performance metrics, without regard to whether or not there

are discrepancies by group affiliation. To ensure fairness and validity of the test, developers should

examine bias alongside conventional performance metrics. However, this project also reveals the

difficulties of evaluating (and responding to) test bias.

7.4 Limitations

7.4.1 Sources of DIF

Consistent with other analyses of DIF, Studies 1–3 also struggled to identify sources of DIF.

Although it was possible to rule out several sources of DIF, it yet remains unknown what factors are

driving DIF, and if those factors are construct relevant or irrelevant.

7.4.2 Automated scoring systems

An ideal study design would examine language models most similar to those currently in use, so as

to generate the most relevant and actionable results. Practical realities, however, make it impossible

to recreate systems like SpeechRater or Versant (NLP-based assessments created by ETS and

Pearson, respectively); these systems were developed and refined over the course of twenty years.

Despite these limitations, the automated system developed for this study does share key aspects that

are similar to those of SpeechRater and Versant. Perhaps more importantly, the methods used to

examine the system for bias are easily adaptable to any automated English speaking proficiency

assessment.
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7.4.3 Mitigating DIF

Unfortunately, the adversarial approach to debiasing was not successful. Furthermore, without

being able to identify the primary source(s) of DIF, using the shrinkage approach may make the test

less fair. Together, these findings provide no clear policy recommendation to be taken. Additional

research will need to be conducted in order to make helpful recommendations for how to handle

DIF, particularly for grade band 9–12.

7.4.4 Measures of DIF

Our analyses are based around one family of metrics of uniform DIF, z. One of the benefits of z is

that it is commonly used in practice, it is highly interpretable with well-established effect sizes, and

it is easy to aggregate across items and focal groups. One of the drawbacks, however, is that it does

not capture non-uniform DIF, and it is not ideal in terms of statistical power (Woods et al., 2013). It

could be beneficial to include other metrics of DIF in future research.

7.5 Future research

Several potentially valuable extensions of the study have been proposed in Sections 6.4, 7.2, and

7.3. This section summarizes past proposals, and considers several new avenues of research.

7.5.1 Exploring other sources of bias

The source of DIF in speaking items remains unknown, yet this information is vital in determining

what policy of action to take with regard to DIF. Specifically, it would be most helpful to know if

the source is relevant or irrelevant to the speaking construct. If irrelevant, then mitigating DIF (e.g.

using the shrinkage approach) would be warranted. One of the challenges in investigating source(s)

of DIF is prioritizing research tasks, since sources must be investigated one at a time.

Perhaps of primary importance is determining if speaking is related to non-speaking language
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proficiency. The advantage of using this as a starting point is that data is already available, and it is

one of the few (perhaps the only) easy-to-verify construct-relevant sources of DIF.

A more laborious analysis of construct relevant sources of DIF could involve linguistic analyses.

There are a number of techniques that could yield intuitive results showing the differences between

examinees’ responses, based on gender or L1. A simple place to start would be to examine word

frequencies and bigrams. Such analyses might suggest if differences are present at the response level.

Given that BERT was unable to strongly differentiate responses based on gender or L1, however,

this might not yield fruitful results; prior to conducting these analyses, it might be beneficial to see

if BERT can differentiate responses following data augmentation, or conditioned on score (even

with the limited data available).

In a similar vein, it could be beneficial to conduct a follow-up investigation into why BERT

exacerbated bias in grade band 9–12 based on examinees’ L1. To explore this, it might be beneficial

to borrow from some methods of explainable AI, such as integrated gradients (Ormerod, 2022b), or

even something simpler such as term-frequency inverse-document-frequency (Jurafsky and Martin,

2023).

Another approach would be to examine construct-irrelevant factors. To this end, a relative easy

set of analyses would involve examining migrant status, socioeconomic status, and other widely

available background characteristics. It would possible to make linear adjustments to examinees’

speaking scores and, based on the relationships between factors and scores, recalculate DIF.

7.5.2 Human raters as units of analysis

Instead of studying DIF with items as the central unit of analysis, it could be advantageous to study

DIF with human raters as the central focus. Recent research has found that labeled data varies by

background characteristics of human raters, such as race (Prabhakaran et al., 2021). Research in

English language assessment has shown that raters are more favorable to speakers who share the

same L1 background. Such an analysis could reveal that, even if implicit bias does not affect scores
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on an aggregate level, it should still be taken into account at the individual rater level. Additional

data would be required to conduct these analyses.

7.5.3 General AI scoring models

Although BERT is still a focus of research in English speaking assessment (e.g. Wang et al., 2021),

it is far from state of the art. Ensembling smaller LLMs have been found to produce better results

(Ormerod et al., 2021). Additionally, recent research has found that general AI models, such GPT-4,

can produce accurate predictions with only a handful of training examples. It is important to

continue to monitor biases for automated assessment systems built on general AI, especially since

these models are changing (and supposedly improving) on a constant basis.

7.5.4 Improving the shrinkage approach

As mentioned in Study 3, the shrinkage approach could be further refined, particularly by specifying

an additional component in the loss function. Doing so would allow the shrinkage model to optimize

the balance between maximizing information, on the one hand, and reducing DIF, on the other.

7.5.5 Exploring other methods of DIF

It could be beneficial to include a non-uniform, and ideally more powerful, statistical method to

test for DIF. The standardized mean difference (SMD) approach used in Studies 2 and 3 has the

advantage of being widely deployed in practice, and it includes well-established cutpoints. However,

it might be helpful to triangulate DIF (or identify other patterns of DIF) through the use of other

methods, such as the IRT-based Wald Test (Woods et al., 2013) and weighted Area Between Curve

(Hansen et al., 2014). These approaches would be able to identify non-uniform patterns of DIF, and

perhaps have more statistical power.
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CHAPTER 8

Appendices

8.1 L1 groups

In selecting L1 groups, one of our aims was to represent languages from around the globe. In some

cases, this required grouping languages to reach an adequate sample size for statistical analyses.

Given the constraints of sample size, we tried to ensure that L1 groups were as geo-historically

related to each other as possible (Brown, 2005). The four composite L1 groups in our study were

(1) Hindi, (2) Mayan languages, (3) Persian, and (4) Swahili. For simplicity, we refer to composite

L1 groups by the predominate language within each group, with the exception of Hindi. It would be

more accurate, however, to refer to the L1 groups as (1) Indo-Aryan, (2) Indigenous languages of

Central and South America, (3) Indo-European languages of the Middle East, and (4) Niger-Congo

languages.

The languages within each of the composite L1 groups are presented in Table 8.1. Note that

the names of languages are derived from states’ departments of education, which do not follow

the same naming conventions. We made minor changes in compiling the list of languages (e.g.

changing “Panjabi” to “Punjabi”).

There is a great deal of heterogeneity within L1 groups, as with gender, and as with all other

demographic characteristics. We note that L1 is not synonymous with cultural identity, racial

identity, geographic identity, or preferred language. Despite these limitations, in the context of

English speech assessment, we believe L1 is a more relevant construct than, say, conventional racial

categories (e.g. White, Asian, Black).
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Table 8.1: Languages of composite L1 groups by grade band.

Grade Band 2-3 Grade Band 9-12

Language n % n %

Hindi

Punjabi 157 37.7 75 40.5

Hindi 124 29.8 39 21.1

Urdu 65 15.6 35 18.9

Gujarati 46 11.1 30 16.2

Marathi 24 5.8 6 3.2

Mayan languages

Mayan languages 212 89.1 214 82.9

Q’anjob’al 24 10.1 40 15.5

Quechua 1 0.4 3 1.2

Q’eqchi 1 0.4 1 0.4

Persian

Persian 209 70.8 97 49.2

Kurdish 76 25.8 87 44.2

Farsi 10 3.4 13 6.6

Swahili

Swahili 89 42.6 120 55.3

Nuer 37 17.7 28 12.9

Niger-Kordofanian languages 16 7.7 16 7.4

Dinka 19 9.1 11 5.1

Kinyarwanda 7 3.3 19 8.8

Wolof 15 7.2 10 4.6

Fulah 10 4.8 5 2.3

Igbo 7 3.3 5 2.3

Yoruba 3 1.4 1 0.5

Hausa 1 0.5 1 0.5

Akan 2 1 0 0

Shona 2 1 0 0

Chichewa; Chewa; Nyanja 0 0 1 0.5

Kirundi 1 0.5 0 0
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8.2 Comparison of WER across three automated transcription services

Figure 8.1 presents word error rate (WER) of examinees’ speech, based on three of the largest

automated transcription services (Microsoft, Amazon, and Google). WER is presented separately

for younger examinees (grade band 2–3) and older examinees (grade band 9–12). Results are

present in aggregate, as well as disaggregated by gender and L1.

Trends are similar across the three services. In particular, older examinees with Vietnamese L1

backgrounds have a higher WER, on average. Although WER is lower for Arabic examinees, it

reaches statistical significance only for Amazon’s automated transcription service.

Automated transcripts were generated from October 7–12, 2022 (for Google and Amazon) and

from November 12–13, 2022 (for Microsoft). Transcript requests were sent using Microsoft, Ama-

zon, and Google APIs for Python 3.8.12 (Python Software Foundation, 2022). Default settings were

used for all services. Output language code was set to “en-US” for all three providers. Microsoft

required several additional settings: The profanity filter was set to “None,” and punctuation mode

was set to “Automatic.” Microsoft and Amazon provided multiple transcripts by default; in both

cases, the most probable transcript was selected for analyses.
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Figure 8.1: Average WER estimates produced by Microsoft, Amazon, and Google automated

transcription services for grade bands 2–3 and 9–12.
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8.3 Comparison of WER across datasets

L2-ARCTIC is a publicly available L2 English speech corpus (Zhao et al., 2018a). Similar to the

subsample of ELPA21, subjects in L2-ARCTIC were sampled so as to be balanced in terms of

gender and L1. Descriptive statistics of the L2-ARCTIC, alongside ELPA21, are presented in Table

8.2. L2-ARCTIC includes a total of 27.1 hours of speech from 24 adults across 6 different L1

(Table 8.2). L2-ARCTIC is comprised of scripted speech: Speakers were asked to read the ARCTIC

prompts, a selection of out-of-copyright text curated to be phonetically balanced (Kominek and

Black, 2003).

In the English speech assessment data (ELPA21), across all three services (Microsoft, Amazon,

Google), native Vietnamese speakers had a higher WER, on average, compared to other L1s (Figure

8.2). In contrast, native Arabic speakers had a lower WER compared to other L1s. Hindi speakers

also had a lower WER; however, this finding was statistically significant only for transcripts

generated by Microsoft.

Some L1 biases were consistent with findings from L2-ARCTIC data. In particular, Vietnamese

speakers still had a higher WER, on average, in L2-ARCTIC data—at least for transcripts generated

by Microsoft and Amazon. Native Hindi speakers, too, were found to have lower WERs, on average,

across all three services in the L2-ARCTIC data. Although neither of these comparisons was found

to be statistically significant in all 6 cases, when taken together, these findings seem quite robust.

We were not able to corroborate the finding that native Arabic speakers had a lower WER. In

L2-ARCTIC data, native Arabic speakers were not found to have a lower WER than other L1s, on

average.
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Table 8.2: Descriptive statistics of ELPA21 and L2-ARCTIC datasets, with means and standard

deviations (in parentheses), overall and disaggregated by gender and L1

ELPA21 L2-ARCTIC

n

Avg.

Words

Avg.

Seconds

Avg.

Proficiency n

Avg.

Words

Avg.

Seconds

All 1000 34 (27) 24 (15) 0.04 (1.09) 24 9940 (356) 4061 (518)

L1

Vietnamese 100 35 (24) 26 (16) 0.15 (0.97) 4 10052 (1) 4320 (280)

Mayan 100 19 (17) 18 (12) -1.10 (1.13) – – –

Mandarin 100 42 (35) 29 (21) 0.63 (0.97) 4 10038 (13) 4309 (322)

Persian 100 43 (25) 27 (13) 0.64 (0.83) – – –

Spanish 100 32 (24) 23 (12) 0.01 (1.03) 4 9767 (557) 4221 (649)

Russian 100 35 (22) 24 (13) 0.28 (0.90) – – –

Marshallese 100 29 (25) 22 (18) -0.24 (0.90) – – –

Swahili 100 40 (35) 28 (19) 0.16 (0.94) – – –

Korean – – – – 4 10049 (4) 4092 (502)

Hindi 100 34 (22) 24 (13) -0.28 (1.10) 4 10046 (4) 3477 (334)

Arabic 100 34 (22) 23 (11) 0.10 (0.98) 4 9689 (692) 3947 (641)

Gender

Male 500 32 (25) 23 (14) -0.03 (1.07) 12 9950 (321) 4178 (410)

Female 500 37 (28) 26 (17) 0.11 (1.10) 12 9930 (403) 3944 (603)
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Figure 8.2: Average WER estimates produced by Microsoft, Amazon, and Google automated

transcription services for ELPA21 and L2-ARCTIC datasets.
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8.4 Human vs. BERT DIF for each item

Figure 8.3 presents the magnitude and direction of DIF of items 1–3 for grade bands 2–3 and 9–12,

based on gender and all nine L1 focal groups separately.
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Figure 8.3: Estimates of direction and magnitude of DIF for each of the 3 speaking items in grade

bands 2–3 and 9–12.
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8.5 Predicting gender and L1

Off-the-shelf (OOS) BERT models struggled to predict examinees’ gender and L1 from text

responses (Figures 6.3 and 6.4). This diffculty may signal that there is little gender or L1 information

in examinees’ responses, or it may indicate that BERT was poorly suited for the task. To help clarify

this ambiguity, the task (of predicting gender and L1) was replicated using a different model. In

this research context, the Naïve Bayes (NB) classifier well-suited for comparison: NB typically

performs well on smaller datasets, and it is conceptually transparent relative to BERT (Jurafsky and

Martin, 2023). All n-grams of length 1–2 were used as predictors during training. Training and

testing sets were identical to those used in Studies 2 and 3 (Section 3.6.2).

When it came to predicting gender, BERT outperformed NB with respect to accuracy in nearly

all cases, the one exception being item 3 in grade band 9–12 (Table 8.3). With respect to F1

scores, however, NB tended to outperform BERT, particularly in grade band 9–12, where the gender

imbalance was more acute (55.1% male in grade band 9–12, compared to 51.5% male in grade band

2–3; Table 3.1). NB achieved higher macro-average F1 scores, i.e. the mean of male and female F1

scores, as well as higher weighted-average F1 scores, i.e. the mean of male and female F1 scores

weighted by sample size.

These differences between BERT and NB are not surprising. BERT may attain higher accuracy

because it is trained to minimize cross-entropy loss against one-hot labels, which up-weights the

majority group even in the absence of informative text input; information in text input needs to be

strong enough to overcome class size imbalances. Although the prior in NB also up-weights the

majority group, NB is also more sensitive to features (in this case 1–2 grams) unique to minority

groups. Thus, NB predicts the minority group at a higher rate than BERT, resulting in higher F1

scores. It is unclear, however, why NB outperforms BERT on item 3 in grade band 9-12; further

research is required to investigate this anomaly.

The patterns in BERT and NB performance for predicting L1 groups are nearly identical to

those of gender. Table 8.4 shows that BERT, again, generally attains higher accuracy, whereas NB
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Table 8.3: Performance of predicting gender for items 1–3, comparing off-the-shelf BERT to a

Naïve Bayes classifier.

Grade Band 2–3 Grade Band 9–12

Acc. F1m F1w Acc. F1m F1w

Item B N B N B N B N B N B N

1 .518 .513 .514 .512 .515 .511 .566 .548 .515 .538 .531 .545

2 .603 .575 .600 .575 .601 .574 .584 .560 .538 .550 .553 .557

3 .560 .559 .554 .559 .556 .559 .570 .598 .543 .588 .555 .594

Note: “Acc.” refers to accuracy, “F1m” to macro-average F1 score, and “F1w” to weighted-average F1 score.

“B” refers to BERT, and “N” refers to “Naïve Bayes.” Performance was measured on the testing dataset.

attains higher F1 scores. Also consistent is the anomalous finding that NB outperform BERT on

item 3 in grade band 9-12.

The question of how much gender or L1 information is embedded in examinees’ responses

is model-specific. Neither BERT nor NB are able to predict gender or L1 with a high degree of

consistency. Yet NB does attain higher F1 scores, revealing that there are additional features in

examinees’ text input related to gender and L1 that are not learned by BERT. Other models may be

capable of identifying additional features beyond what BERT or NB is capable of.
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Table 8.4: Performance of predicting L1 group for items 1–3, comparing off-the-shelf BERT to a

Naïve Bayes classifier.

Grade Band 2–3 Grade Band 9–12

Acc. F1m F1w Acc. F1m F1w

Item B N B N B N B N B N B N

1 .502 .496 .067 .078 .336 .343 .525 .513 .071 .112 .364 .393

2 .502 .497 .067 .090 .336 .353 .523 .526 .069 .122 .365 .402

3 .502 .493 .067 .082 .337 .345 .525 .549 .071 .170 .365 .447

Note: “Acc.” refers to accuracy, “F1m” to macro-average F1 score, and “F1w” to weighted-average F1 score.

“B” refers to BERT, and “N” refers to “Naïve Bayes.” Performance was measured on the testing dataset.
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