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Generalizing to new geometries with Geometry-Aware
Autoregressive Models (GAAMs) for fast calorimeter
simulation

Junze Liu,𝑎 Aishik Ghosh,𝑏,𝑐 Dylan Smith,𝑏 Pierre Baldi,𝑎 Daniel Whiteson𝑏

𝑎Department of Computer Science, University of California, Irvine, CA 92697, USA
𝑏Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
𝑐Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: junzel1@uci.edu

Abstract: Generation of simulated detector response to collision products is crucial to data analysis
in particle physics, but computationally very expensive. One subdetector, the calorimeter, dominates
the computational time due to the high granularity of its cells and complexity of the interactions.
Generative models can provide more rapid sample production, but currently require significant effort
to optimize performance for specific detector geometries, often requiring many models to describe
the varying cell sizes and arrangements, without the ability to generalize to other geometries. We
develop a geometry-aware autoregressive model, which learns how the calorimeter response varies
with geometry, and is capable of generating simulated responses to unseen geometries without
additional training. The geometry-aware model outperforms a baseline unaware model by over 50%
in several metrics such as the Wasserstein distance between the generated and the true distributions
of key quantities which summarize the simulated response. A single geometry-aware model could
replace the hundreds of generative models currently designed for calorimeter simulation by physicists
analyzing data collected at the Large Hadron Collider. This proof-of-concept study motivates the
design of a foundational model that will be a crucial tool for the study of future detectors, dramatically
reducing the large upfront investment usually needed to develop generative calorimeter models.
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1 Introduction

Collision of particles at high-energy, such as those at the Large Hadron Collider (LHC), provide
clues about the fundamental nature of matter and its interactions. A crucial tool in experimental
design and data analysis is the production of vast samples of high-fidelity simulations of the detectors
which observe those collisions. Samples of simulated collisions allow for characterization of the
expected response of future detectors as well as simulation-based-inference in data analysis, which
often require billions of samples. The highest-fidelity simulations, via Geant4 [1–3], are produced
by detailed time-evolution of individual particles and the microphysics of their interactions with
detector elements, which can produce showers of additional particles. The exponentially increasing
number of particles results in large computational expense, limiting the production of samples of
simulated collisions. Efficiency of sample generation will become increasingly vital as the LHC
enters an era of high-intensity beams which will produce higher volumes of data. However, the full
time evolution of the shower is not observed or recorded, and strategies which directly generate the
final cell responses can be significantly cheaper. Deep generative models (DGM) are a promising
approach to automatically learning such a response function.
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(a) (48, 48) (b) (12, 12) (c) (48, 24) (d) Boundary Region

Figure 1: Simulated calorimeter response to a 65 GeV photon for four distinct calorimeter cell
segmentations. Shown is the energy deposited per cell, for various segmentations in (𝜂, 𝜙). The
Boundary Region is (24, 48) for 𝜂 < 0 and (12, 48) for 𝜂 > 0.

Machine learning has been increasingly useful to solve challenging particle physics problems [4–
8]. Many experiments, including those at the LHC, have already invested resources in developing
DGMs designed to produce shower images for their own calorimeters [9–12]. However, the
calorimeter geometries (i.e., the shape, position, and size of cells and their relative arrangements)
not only differ greatly between experiments but can also vary widely from region to region within
the same detector. As a result, experiments have to spend significant human resources developing
DGM architectures for their specific calorimeter geometries. For example, the ATLAS experiment
developed hundreds of generative networks to span different regions of their calorimeter [10].
Further, the geometry-specific generative model architectures developed by each experiment vary
considerably. While there has recently been significant innovation aimed at improving the accuracy of
shower simulations using DGMs for fixed calorimeter geometries [13–18], the key challenge remains
the development of models capable of generating samples for varying calorimeter geometries, which
is essential to scale these proof-of-concept demonstrations to a deployed product. This learning
task has no analogy in natural images, where pixel sizes are uniform, and no off-the-shelf machine
learning solutions are available. This problem requires a novel approach.

This paper addresses this crucial computational challenge, presenting a generative model which
learns to interpolate across a training set with varying calorimeter geometries and is capable of
zero-shot generalization to new geometries on which it has not been trained. This is achieved by
training an autoregressive model that is aware of the properties of the calorimeter cell, adjusting
the energy deposition based on the size and position of that cell. Such a model could reflect a
generalized understanding of calorimeter response, to be shared across experiments with distinct
geometries. This would enable individual experiments to fine-tune the model to their specific
calorimeter, requiring smaller training samples and fewer computing resources to rapidly generate
the samples of simulated collisions needed for data analysis. In addition, such a model would allow
to rapidly characterize the scientific potential of future detectors. Such general-purpose, pre-trained
models are often called ‘foundational models’.

The rest of this paper is organized as follows. Sec. 2 discusses related work, Sec. 3 describes
the dataset used for training and evaluation, Sec. 4 details the ML methods compared, and Sec. 5
discusses the results, including success with interpolation and failure with extrapolation on novel
geometries. The paper ends with a conclusion and future outlook in Sec. 6.
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2 Context and Related Work

The ATLAS electromagnetic calorimeter has a complex geometry, and the simulation of its response
is a computational bottleneck, motivating physicists to develop faster simulations. Early versions
approximated the calorimeter response with parameterized response functions [19]. There has been
significant innovation in developing DGMs for particle physics calorimeters using fixed output
geometries, including with Generative Adversarial Networks (GAN) [13, 14], Variational Auto-
Encoders (VAE) [15], Normalizing Flows (NF) [16, 17], and most recently diffusion models [18].

Conditional generative models have been explored, such as an early effort by the ATLAS
collaboration [9], which attempts to condition a GAN on the entire calorimeter geometry at once.
This ambitious effort faces the challenge of the enormous number of possible three-dimensional
geometries, which requires generating a vast training dataset in Geant4, and presents difficulties
in conditioning the GAN. On the other hand, training hundreds of GANs [10] for small sections
of the calorimeter with fixed geometries raises questions about the sustainability of validating and
maintaining so many models. Experiments like CMS and LHCb have also studied DGMs for their
calorimeters [11, 12], and related studies have been made for non-LHC experiments [20].

Instead of conditioning a DGM on all possible unique geometries, it is more natural to condition
it on the properties of individual calorimeter cells. In this way, the model can be expected to
interpolate between different cell sizes and positions that it has encountered in training, and learn from
multiple cells in the same image. An autoregressive algorithm, which generates cells sequentially,
provides an efficient solution by conditioning the model solely on the properties of the cell being
generated and its neighbors. This cell-by-cell approach enables the model to learn more efficiently
how the properties of each cell affect its energy distribution. Recently, Sparse Autoregressive Models
were studied for simulating sparse calorimeter images of a fixed geometry, in which the model learns
the sparsity of the model with a tractable likelihood [21]. This model serves as the inspiration for
our work. The details of the construction of the model are described in Sec. 4.

3 Dataset

Samples of simulated electromagnetic calorimeter response are generated using Geant4 [1–3], in an
ATLAS-like configuration modified from that used to generate earlier datasets [22]. The detector
transverse segmentation (coordinates 𝜂 and 𝜙) was modified, to significantly increase the granularity
of the calorimeter, up to 16 fold, and approximate the granularity of potential future detectors.
Several different configurations were used to generate responses from a wide set of hypothetical
geometries. These configurations were inspired by the most challenging geometry configurations
seen in the ATLAS electromagnetic calorimeter [23, 24].

The calorimeter comprises three longitudinal layers referred to as ‘inner,’ ‘middle,’ and ‘outer’
layers and denoted by 𝑧 = 1, 2, 3, each with area 48 × 48 cm2. The layers have a length of 5mm,
40mm, and 80mm in 𝜂, 160mm, 40mm and 40mm in 𝜙 and a depth of 90mm, 347mm and 43mm
respectively. For further details about the detector design, refer to Ref [22]. The calorimeter layers
are segmented into various rectangular cells using a grid in (𝑛𝜂 , 𝑛𝜙), the number of cells along
the 𝜂 and 𝜙 directions, respectively; see Table 3. In one particular configuration, the middle layer
is structured with two different cell sizes to represent a boundary between detector regions which
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presents a difficult challenge for any generative model. In this non-uniform1 (36, 48)* geometry,
the right half of the image is segmented into a (12, 48) grid and the left half into (24, 48) cells in
(𝑛𝜂 , 𝑛𝜙). The outermost layer had a consistent shape of (24, 24).

A sample of 10,000 simulated photons with energy of 65 GeV are directed at the center of the
calorimeter. The photon interaction with the material generates a shower of electrons and photons
which deposit energy in each layer. The middle layer receives the largest fraction of the photon
energy, while the outer receives the least. The simulated response to a photon for four example
calorimeter geometries are shown in Fig. 1, demonstrating the dramatic impact of the geometry.

Layer Calorimeter Segmentation

Inner
(48,4), (48,12), (48,24), (48,48),

(192,4), (192,12), (192,24), (192,48)

Middle (12,12), (48, 24), (48,48), (36,48)*

Outer (24,24)

Table 1: Segmentation of each layer of the simulated calorimeters used in training, indicated by
(𝑛𝜂 , 𝑛𝜙), the number of cells in 𝜂 and 𝜙, respectively. Several configurations are used, including
one (marked with a *) in which the cell division is not uniform. See text for details.

In addition, a second set of configurations is prepared and photon events simulated, but which
is held out of the training set in order to test the generalization to new geometries. Configurations
with a middle layer segmentation of (24, 24) or (24, 12) are generated to test the ability of the model
to interpolate. Configurations with a middle layer segmentation of (96,24), (6,6) or (9, 12)* are
generated to test the ability of the model to extrapolate beyond its training range (summarised in
Table 3).

Interpolation Extrapolation

(24,24), (24,12) (96,24), (6,6), (9, 12)*

Table 2: Segmentation of interpolation and extrapolation middle layer geometries of the simulated
calorimeters used in evaluation, indicated by (𝑛𝜂 , 𝑛𝜙), the number of cells in 𝜂 and 𝜙, respectively.
Several configurations are used, including one (marked with a *) in which the cell division is not
uniform. See text for details.

4 Generative Models

Generative models, both conditioned on the geometry and unconditioned, are developed. Both are
described below.

1All non-uniform geometries are marked with a *.
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(a) GAAM (b) Spiral order

Figure 2: (a) The ARM architecture in GAAM takes a starting value 𝑥0 and cell size (Δ𝜂, Δ𝜙) as
inputs, which are aggregated to the MADE network. The parameters 𝜃i represent the categorical
distribution model (with 𝑁 +1 discrete energy categories) that has been learned, and the 𝑚−1 output
calorimeter cell energies are sampled from this distribution. (b) The two-dimensional calorimeter
layer matrix is flattened along a spiral path.

4.1 Geometry-Aware Autoregressive Model (GAAM)

The GAAM is a framework based on autoregressive models (ARM) that can efficiently learn to
generate 3D calorimeter images. It comprises three ARMs, each generating an individual 2D layer of
the calorimeter (see Figure 2). Each ARM is constructed with Masked Autoencoder for Distribution
Estimation (MADE) [25]. Unlike traditional autoregressive models that sequentially generate output
cells depending on preceding cells, MADE generates all desired parameters in a single pass through
the regular autoencoder. This enables parallel computation on GPUs for faster training.

To generate the inner calorimeter layer, an ARM is employed consisting of one masked fully-
connected layer and one 1D convolutional layer. For the middle and outer calorimeter layers, ARMs
are used comprising five masked fully-connected layers and one 1D convolutional layer. Each of
them uses GELU [26] activation functions. The output of the model is discrete energy (with 𝑁 + 1
possible values) of 𝑚 cells, and each generated cell energy deposit is represented as a categorical
distribution (see Sec. 4.3 for the details about the preprocessing of cell energies). A softmax layer
is applied to generate these discrete outputs into 𝑁 + 1 categories, where 𝑁 is the closest integer
greater than the maximum cell energy in the training data.

In addition to the previous energy deposits, the ARM takes into account the cell sizes (Δ𝜂, Δ𝜙)
in the 𝜂 and 𝜙 dimensions, respectively, as conditioning features. This enables the model to
dynamically generate the energy distribution to accommodate different geometries (Figure 2a). By
learning to generate cell-by-cell, the model gains insight into how the spatial properties of each
cell impact the energy deposition. For instance, the model should learn to deposit more energy per
cell for a less granular geometry with bigger cells compared to a finer geometry with smaller cells,
as well as take into account where the cell is in the image. Consequently, the model learns from
multiple cells within each image, enhancing the learning efficiency. During the generation, each
ARM receives a starting value, the energy of a central cell. The energy of the central cell is sampled
from a known prior distribution. The generation process is initiated from this cell since the majority
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of the energy tends to be deposited near the center, providing a reliable starting point for the ARMs.
In addition to the central cell energy, the networks also receive two matrices describing the size of
the cells to be generated. The trained GAAM then generates the energy deposits in the remaining
cells by sampling from the learned categorical distribution.

4.2 Baseline: Unconditional ARM

As a comparison to the geometry-aware approach described above, a similar model is trained without
conditioning it to the properties of the calorimeter cells. This will serve as a baseline to understand
the improvement that comes purely from being able to condition the model on cell properties.

4.3 Preprocessing

Since an ARM requires an ordering of the calorimeter cells, the two-dimensional cell matrix is
flattened using a spiral counter-clockwise pattern (Figure 2b) so that cells remain close after flattening.
The ordering starts from a central cell, where most energy is deposited, and moves outwards. Given
the range in the distribution of energy depositions across cells spans several orders of magnitude,
applying a power transformation, 𝑥 = 𝑥1/𝑝, with 𝑝 = 2 during preprocessing is found to improve the
training. Furthermore, the value is then discretized by rounding it to the nearest integer.

The dataset is divided into training, validation, and test sets, with a ratio of 0.7:0.1:0.2,
respectively. Training the models is carried out in PyTorch [27] for up to 200 epochs, using the Adam
optimizer [28]. The negative log likelihood serves as the loss function. The training is performed on
two NVIDIA RTX 3090 GPUs.

5 Results

Performance of the conditional GAAM as well as the baseline unconditional model are presented both
qualitatively as well as quantitatively, for geometries with uniform or non-uniform cell segmentation,
and for geometries within the training sample as well as unseen geometries.

Qualitative analysis is via visualizations and inspection of generated samples. Quantitative
analysis is performed by measuring the distance between histograms of true and generated samples in
quantities which are important in a typical data analysis: energy weighted means, shower widths, and
distances between shower means across layers. The energy weighted means, 𝜂 and 𝜙 are computed
over all cells in an image:

𝜂 =

∑
𝑖 𝜂𝑖𝐸𝑖∑
𝑖 𝐸𝑖

, 𝜙 =

∑
𝑖 𝜙𝑖𝐸𝑖∑
𝑖 𝐸𝑖

(5.1)

where 𝐸𝑖 is the energy deposited in the 𝑖𝑡ℎ cell. The shower widths, 𝜎𝜂 and 𝜎𝜙 are calculated as:

𝜎𝜂 =

√√∑
𝑖 𝐸𝑖 (𝜂𝑖 − 𝜂)2

(𝑀−1)
𝑀

∑
𝑖 𝐸𝑖

, 𝜎𝜙 =

√√∑
𝑖 𝐸𝑖 (𝜙𝑖 − 𝜙)2

(𝑀−1)
𝑀

∑
𝑖 𝐸𝑖

(5.2)

where 𝑀 is the number of cells with non-zero energy. The inter-layer distance between mean
energy-weighted shower locations in the inner and middle calorimeter layers are computed as:

𝐶𝜂 = 𝜂inner − 𝜂middle, 𝐶𝜙 = 𝜙inner − 𝜙middle (5.3)

Distances between histograms are measured using the Wasserstein distance [29, 30]. The speed of
the GAAM is a function of the number of cells. Generation takes 2040.7 ms/shower for inner layers,
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(a) GAAM - Inner layer - (192, 12) (b) GAAM - Middle layer - (36, 48)*

(c) GAAM - Outer layer - (24, 24) (d) Unaware - Middle layer - (36, 48)*

Figure 3: Average generated calorimeter images from GAAM in (a) inner (b) middle or (c) outer
layers, or (d) from the geometry-unaware model middle layer, each compared the true images from
Geant4.

140.5 ms/shower for the middle and 9.6 for outer layers, compared to 2058 ms/shower with Geant4
for 65 GeV photons. However, this model had not yet been optimized for speed.

5.1 Performance in uniform segmentation

Qualitative comparison of the generated images from the GAAM and the geometry-unaware model are
shown in Fig. 3 in each layer, for several example segmentations, and compared to the truth generated
by Geant4. The GAAM reproduces the features of the true images, while the geometry-unaware
model fails to do so.

Quantitative comparison are made between histograms of energy-weighted means (Fig. 4),
shower widths (Fig. 5), and inter-layer distances (Fig. 6). The Wasserstein distances between the
distributions are given in Table 3. In each case, the GAAM outperforms the geometry-unaware
model2, and achieves a small inter-layer distance. The inner layer is particularly challenging for
GAAM due to its high granularity.

5.2 Performance in non-uniform segmentation

A major challenge for implementing generative models is the non-uniform nature of the detector
segmentation, which becomes more coarse or irregular in some regions. Performance under
non-uniform cell divisions is studied in the configuration where the middle layer has segmentation
(36, 48)*, but non-uniform cell sizes along 𝜂. Demonstration of the GAAM’s ability to learn to
generate data with larger energy deposition in larger cells is shown in Fig 3b. The slight off-set of

2The outer layer has only a single geometry so no comparisons are made to a geometry-unaware model.
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(a) Inner layer - (192, 12) (b) Middle layer - (36, 48)*

(c) Middle layer - (48, 48) (d) Outer layer - (24, 24)

Figure 4: Distribution of the energy weighted means, 𝜂 and 𝜙, in samples generated by the GAAM,
the unconditional model and Geant4 (True), for several calorimeter layers with varying segmentation
in (𝜂, 𝜙). The GAAM outperforms the unconditional baseline model consistently.
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(a) Inner layer - (192, 12) (b) Middle layer - (36, 48)*

(c) Middle layer - (48, 48) (d) Outer layer - (24, 24)

Figure 5: Distribution of the shower widths, 𝜎𝜂 and 𝜎𝜙, in samples generated by the GAAM, the
unconditional model and Geant4 (True), for several calorimeter layers with varying segmentation in
(𝜂, 𝜙). The GAAM outperforms the unconditional baseline model consistently.

the peak to the right in the 𝜂 distribution in Fig. 4b is a feature of boundary regions of calorimeters
and therefore expected for the geometry (36, 48)* of the middle layer.

Such a task has never been attempted before with generative models, due to the challenges
it poses, as illustrated by the failure of the geometry-unaware model to accurately simulate the
calorimeter response in this scenario; see Figure 3d.
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Layer; segmentation Quantity Wasserstein distance
GAAM (Conditional) Baseline (Unconditional)

Inner; (192, 12)

𝜂 1.80 × 10−2 1.30 × 10−2

𝜙 8.50 × 10−4 1.36 × 10−3

𝜎𝜂 2.44 × 10−2 1.63 × 10−1

𝜎𝜙 2.71 × 10−3 6.45 × 10−3

Middle; (48,48)

𝜂 5.95 × 10−4 6.98 × 10−3

𝜙 4.05 × 10−4 2.61 × 10−3

𝜎𝜂 4.35 × 10−3 1.25 × 10−2

𝜎𝜙 7.07 × 10−3 1.00 × 10−2

Middle; (36,48)

𝜂 1.25 × 10−2 2.45 × 10−2

𝜙 4.54 × 10−4 5.58 × 10−4

𝜎𝜂 1.18 × 10−3 1.00 × 10−2

𝜎𝜙 1.24 × 10−3 5.60 × 10−3

Outer; (24,24)

𝜂 8.31 × 10−4 N/A
𝜙 1.12 × 10−3 N/A
𝜎𝜂 9.08 × 10−4 N/A
𝜎𝜙 9.71 × 10−4 N/A

Table 3: Quantitative evaluation of performance of the two generative models, the conditional
GAAM and the unconditional baseline model in generating simulated calorimeter response to a
photon. Shown is the Wasserstein distance between histograms of quantities important in data
analysis, displayed in Figs. 4-6. The testing geometry appears in the training set for these models.

Layer; segmentation Quantity Wasserstein distance
GAAM (Conditional) Baseline (Unconditional)

Middle; (24,24)

𝜂 2.90 × 10−4 7.74 × 10−3

𝜙 6.21 × 10−4 1.06 × 10−3

𝜎𝜂 8.98 × 10−3 1.63 × 10−2

𝜎𝜙 4.22 × 10−3 7.39 × 10−3

Middle; (24,12)

𝜂 4.77 × 10−4 7.74 × 10−3

𝜙 1.02 × 10−3 1.06 × 10−3

𝜎𝜂 8.98 × 10−3 1.63 × 10−2

𝜎𝜙 4.22 × 10−3 7.39 × 10−3

Table 4: Quantitative evaluation of performance of the two generative models, the conditional
GAAM and the unconditional baseline model in generating simulated calorimeter response to a
photon. Shown is the Wasserstein distance between histograms of quantities important in data
analysis, displayed in Fig. 8. The testing geometry does not appear in the training set for these
models, but requires interpolation.
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(a) Inner (48, 12) & middle (12, 12) layer (b) Inner (192, 48) & middle (36, 48)* layer

Figure 6: Distribution of the inter-layer distance of energy weighted means, 𝐶𝜂 and 𝐶𝜙, in samples
generated by the GAAM and Geant4 (True), for several calorimeter layers with varying segmentation
in (𝜂, 𝜙). The GAAM reproduces the truth reasonably well.

(a) Middle layer - (24, 24) (b) Middle layer - (24, 12)

Figure 7: Average generated calorimeter images from GAAM for two geometries, (a) (24, 24) and
(b) (24, 12), which do not appear in the training set and require interpolation. Each are compared to
the Geant4 truth.

5.3 Performance in unseen geometries

A crucial target of geometry-aware models is the ability to learn the dependence of the energy
deposition on the nature of the geometry and thus be able to generate simulated response for
calorimeters whose geometry do not appear in its training set. To explore this ability of the GAAM,
we evaluate its performance on unseen geometries which require interpolation within the training
set, as well as those which require extrapolation out of the training set.

Figure 7 shows the average generated and true images for two unseen geometries which are
bracketed by examples in the training set. Qualitatively, the GAAM has succeeded at interpolation.
A quantitative comparison is provided by examining the important physical quantities defined above;
see Figs. 8 and 9 for histograms and Table 4 for Wasserstein distances. The GAAM is able to
reasonably interpolate to unseen geometries, although it struggles to produce very narrow shower
widths.

Extrapolation beyond the training examples given is much more challenging. We present three
extrapolation geometries of the middle layer, which have cell sizes outside the range of the training
data: (6, 6), (96, 24), and (9, 12)*. The (6, 6) geometry is composed of larger cell sizes than the
largest cells in training data in both 𝜂-dimension and 𝜙-dimension. The (96, 24) geometry has a
similar cell segmentation, but with cells half the size of the smallest cells in training data in the
𝜂-dimension and twice the size of the smallest cells in training data in the 𝜙-dimension. Details about
the spiral ordering in such cases are provided in Appendix A. The (9, 12)* geometry is composed of

– 10 –



(a) Middle layer - (24, 24) (b) Middle layer - (24, 12)

Figure 8: Distribution of the energy weighted means, 𝜂 and 𝜙, in samples generated by the GAAM,
the unconditional model and Geant4 (True), for several calorimeter layers with unseen varying
segmentation in (𝜂, 𝜙), geometries which do not appear in the training set and require interpolation.
The GAAM outperforms the unconditional baseline model consistently.

(a) Middle layer - (24, 24) (b) Middle layer - (24, 12)

Figure 9: Distribution of the shower widths, 𝜎𝜂 and 𝜎𝜙, in samples generated by the GAAM,
the unconditional model and Geant4 (True), for several calorimeter layers with unseen varying
segmentation in (𝜂, 𝜙), geometries which do not appear in the training set and require interpolation.
The GAAM outperforms the unconditional baseline model but it also struggles to produce narrow
distributions.

two different cell sizes in the 𝜂-dimension, similar to the feature of boundary regions. The first six
cells from the left are of the same size of the largest cells seen in training, and the other three cells
are twice as large as the cells on the left. In the 𝜙-dimension, the cells are uniformly segmented. In
contrast to interpolation, samples for unseen geometries which require extrapolation show significant
differences between the generated and true images (Figure 10), with the GAAM failing to place the
maximum energy at the centre of the image in the third case. For the (6, 6) geometry, the GAAM
deposits insufficient energy in the central cells and too much in the exterior cells, and for (96, 24)
too there are visible artifacts. Quantitative comparisons, not shown, confirm what is clear in the
visualizations.

6 Conclusion and Outlook

The Geometry-Aware Autoregressive Model is capable of learning how calorimeter cell response
varies with the detector geometry, allowing it to rapidly generate simulated responses to a wide array
of detector geometries, including those which do not appear in the training set. This capacity for
generalization eliminates the need to train and validate hundreds of models to describe the response
of a typical calorimeter. By conditioning the model on the properties of individual cells rather than
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Figure 10: Average generated calorimeter images from GAAM for two (𝜂, 𝜙) segmentations, (a) (6,
6), (b) (96, 24), and (c) (9, 12)*, which do not appear in the training set and require extrapolation.
Each is compared to the Geant4 truth. GAAM does not extrapolate beyond the range of cell sizes
seen in training.

the complete geometry [9], the GAAM has the capacity to scale to many geometry configurations.

Further work is needed to improve the overall fidelity of the simulation, particularly for the
high dimensional inner calorimeter layer. It may need to also be trained on data with a variable
position of the incident particle and boundary regions that are not always at the centre of the image
for real world applications. Additionally, one may compare such a geometry-aware approach with a
geometry-agnostic approach to shower simulation with point-cloud models [31–34] to determine the
suitability of each approach on a range of detector geometries. While the geometries investigated
were motivated by the ATLAS calorimeter, further work would be required to generalize to even
more diverse geometries such as hexagonal cells or varying number of calorimeter layers relevant
to other calorimeters such as in CMS. While not studied in this work, GAAM could be trained on
non-uniform segmentations in the 𝜙 direction if needed. As the first attempt at designing generative
models that can handle variable calorimeter geometries, this work did not focus on optimization of
the speed of the GAAM, which is left for future work. As with previous work such as CaloFlow [16]
and the faster CaloFlow II [17] or caloScore [18] and the faster caloScore v2[35], future work can be
expected to speed up geometry-aware models, for example with the use of ML-based dimensionality
reduction methods.

This study is also the first step towards building ‘foundational models’ in HEP, general purpose
machine learning models trained on large and diverse data, intended to be fine-tuned to individual
tasks. The GAAM demonstrates the feasibility of general purpose generative models for calorimeter
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simulation. These would act as foundational models, trained on various calorimeters and geometries,
and then shared between experiments. The experiments would only need to fine-tune the model to
their specific calorimeter, requiring far less training data, computing resources and human resources
compared to developing a generative model from scratch for their specific calorimeter.
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Appendix

A Spiral Ordering

There are special cases where the geometry does not fit perfectly into our data preprocessing approach.
For example, when the events have non-square geometries, such as in the inner layer, we have a
modified version of the spiral path shown in Figure 11. The spiral path will look the same for the
center square until it reaches the boundary in one dimension. Then, the spiral path will go left and
right in turn to cover the peripheral cells.

In another case, with an even number of cells in 𝜂 and 𝜙 direction, there are four cells closest to
the position of the shower center. We choose the top-left cell in the central four cells. The known
prior distribution is obtained by sampling from the training data.

24 16 6 5 4 15 23 31

25 17 7 0 3 14 22 30

26 18 8 1 2 13 21 29

27 19 9 10 11 12 20 28

Figure 11: Illustration of how the 2D image is flattened in a spiral order
when the image is non-square.

B Individual Shower Images

This section shows individual shower images in different geometries and for multiple calorimeter
layers. GAAM and Geant4 generated images are shown for the inner layer in Figure 12 and Figure 13,
middle in Figure 14 and Figure 15 and the outer layer in Figure 16 and Figure 17 respectively.
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Figure 12: Examples of individual events of the inner layer generated by GAAM
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Figure 13: Examples of individual events of the inner layer generated by Geant4
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Figure 14: Examples of individual events of the middle layer generated by GAAM
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Figure 15: Examples of individual events of the middle layer generated by Geant4
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Figure 16: Examples of individual events of the outer layer generated by GAAM
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Figure 17: Examples of individual events of the outer layer generated by Geant4
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