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Abstract. Thermal corrections have an important effect on modulus
stabilization leading to the existence of a maximal temperature, beyond which the
compact dimensions decompactify. In this paper, we discuss the generality of our
earlier analysis and apply it to the case of flux compactifications. The maximal
temperature is again found to be controlled by the supersymmetry breaking scale,
Tcrit ∼

√
m3/2MP.
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In string theory gauge and Yukawa couplings are dynamical quantities whose values are
determined by expectation values of scalar fields (moduli). In perturbation theory their
potential is flat, and their stabilization is a topic of central importance in string theory.
Recently, it has been proposed that a complete stabilization of all modulus fields [1] is
possible using a combination of fluxes [2] and non-perturbative effects such as D-brane
instantons and gaugino condensation [3].

The moduli potentials receive important thermal corrections [4, 5]. These corrections
destabilize the moduli at sufficiently high temperature, i.e. drive them to the ‘run-
away’ minimum [6] where the compact dimensions decompactify. In order to avoid this
cosmological disaster the temperature in the early universe has to be smaller than a
maximal temperature Tcrit.

In the following we discuss the generality of our previous analysis [5] on dilaton
destabilization by thermal effects and apply it to the KKLT scenario [1]. We find
again that, generically, the maximal temperature is given by the scale of supersymmetry
breaking, i.e., Tcrit ∼ √

m3/2MP. Temperature effects in some field theoretical flux
compactifications have recently been considered in [7].

1. Modulus destabilization at high temperature

In thermal field theory, the free energy F plays the role of an effective potential. For a
Yang–Mills theory at high temperature T , the free energy has a perturbative expansion
in terms of the gauge coupling g,

F (g, T ) = −π2T 4

24
{α0 + α2g

2 + O(g3)}. (1)

The crucial point of our subsequent discussion is that F increases with increasing g.
For a supersymmetric SU(Nc) gauge theory with Nf matter multiplets, one has (cf [8])
α0 = N2

c + 2NcNf − 1 and

α2 = − 3

8π2
(N2

c − 1)(Nc + 3Nf) < 0. (2)

To order O(g2) the free energy is determined by one- and two-loop diagrams (cf figure 1).
The qualitative behaviour of the free energy, ∂F/∂g2 > 0, is also valid at higher-loop level
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Figure 1. Examples of two-loop diagrams contributing to the effective potential.
Wavy lines represent gauge fields, while matter fields are indicated by solid and
dashed lines.

and even non-perturbatively for g = O(1) [5]. Furthermore, it holds for Abelian theories
and for Yukawa couplings.

In string theory the gauge coupling is related to some modulus Φ,

g2 =
κ

Φ
, (3)

where κ is a constant. Since thermal effects increase the effective potential, they will drive
the modulus towards larger values, corresponding to smaller couplings, and eventually
destabilize the system. From equation (1) one obtains

Vth(Φ, T ) ≡ T 4vth(Φ) = T 4

(
a0 + a2

1

Φ
+ · · ·

)
, (4)

where a0 and a2 are constants, with a2 > 0. Clearly, the minimum of this potential is at
Φ → ∞.

The effective potential for Φ is the sum of the zero-temperature potential V and the
thermal correction,

Veff(Φ, T ) = Vth(Φ, T ) + V (Φ). (5)

The supergravity potential V (Φ) for moduli is generated non-perturbatively. In known
examples, it is related to supersymmetry breaking at least for some moduli. Such
potentials allow one to stabilize the moduli at appropriate values, yet there is always
the ‘run-away’ minimum at Φ → ∞, which is separated from the local minimum by a
barrier related to SUSY breaking (figure 2).

Clearly, when the temperature is high enough, the thermal potential (4) will dominate
and drive Φ to infinity. Since the size of the potential near the local minimum is
O(m2

3/2M
2
P), this occurs at the critical temperature

Tcrit ∼
√

m3/2MP, (6)

where m3/2 is the gravitino mass and MP = 2.4 × 1018 GeV. An example of moduli
destabilization by thermal corrections is shown in figure 3.

The critical temperature is defined by the appearance of a saddle point at some value
Φcrit:

V ′
eff(Φcrit, Tcrit) = 0,

V ′′
eff(Φcrit, Tcrit) = 0,

(7)
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Figure 2. Typical supergravity potential for the modulus Φ. The local minimum
is separated from the ‘run-away’ one by a barrier related to SUSY breaking.

Figure 3. Modulus destabilization by temperature corrections. (a) Supergravity
potential, (b) potential induced by thermal corrections, (c) evolution of the full
potential with increasing temperature: T < Tcrit (dash–dotted curve), T = Tcrit

(solid curve), and T > Tcrit (dashed curve).
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where the prime indicates differentiation with respect to Φ. Usually V (Φ) is a steep
function, with exponential field dependence, while Vth(Φ) varies rather slowly. Thus, Vth

can be well approximated by a linear term in the region of interest and one obtains

V ′′(Φcrit) = 0,

Tcrit =

(
− V ′(Φcrit)

v′
th(Φcrit)

)1/4

.
(8)

Note that V ′(Φcrit) is the maximal slope of the supergravity potential.
It is important to realize that the moduli are not in thermal equilibrium. On the

contrary, the modulus interaction rate ΓΦ ∼ T 3/M2
P is much smaller than the Hubble

parameter H ∼ T 2/MP. Hence, the moduli never reach thermal equilibrium. In particular,
they do not attain a thermal mass3. Rather, they behave as classical backgrounds. This is
analogous to the behaviour of the gravitational metric in a thermal bath where the thermal
expectation value of the energy momentum tensor drives the cosmological expansion. On
the other hand, gauge and/or matter fields are in thermal equilibrium and contribute to
the effective potential through loops. In this way, the gauge plasma exerts a force on the
classical backgrounds and drives the moduli.

Let us summarize the conditions under which equation (6) for the critical temperature
in the radiation dominated phase applies.

(i) The modulus Φ is related to some coupling g.

(ii) The barrier separating a local minimum in Φ from the ‘run-away’ minimum is related
to SUSY breaking.

(iii) Gauge and matter fields which couple with strength g are in thermal equilibrium.

A few comments are in order. First, g is not necessarily the gauge coupling. For instance,
the Yukawa couplings of twisted states are functions of the T -moduli, Y ∼ e−αT . Then
figure 1(c) generates an effective potential for these moduli, as long as the matter fields
are in thermal equilibrium. Second, if g is a gauge coupling, Φ is not necessarily the
dilaton. It can, for instance, be a volume modulus, as happens in D-brane models.
Third, equation (6) holds for positive, negative or zero cosmological constant, as long as
condition (ii) is satisfied.

2. Critical temperature in the KKLT scenario

Background fluxes induce a potential which can stabilize the dilaton and the complex
structure moduli at appropriate values [2]. However, at least one Kähler modulus,
corresponding to the overall volume, is not affected by the fluxes and remains
undetermined. The volume can be stabilized by non-perturbative contributions to the
superpotential such as D-brane instantons or gaugino condensation [1]. The result is a
supersymmetric AdS vacuum.

In order to lift the negative cosmological constant of the AdS vacuum to a small
positive value, extra contributions are added to the scalar potential. These can be due

3 This is one of the main differences between our results and those of [9].
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to the presence of D3-branes, as in the original KKLT model, or SUSY breaking D-
terms [10]. A common feature of these modifications is that the new vacuum is separated
from the ‘run-away’ vacuum [6] by a barrier whose height is given by the SUSY breaking
scale (cf. figure 2).

In D-brane models, the gauge and matter fields of the standard model and the
hidden sector can live on D3 or D7 branes [11]. At high temperature, thermalized gauge
and matter fields of unbroken gauge groups on D7-branes will contribute to the scalar
potential of the volume modulus. Depending on the D-brane model, the thermalized fields
can belong to the standard model or to additional gauge groups for which no gaugino
condensation occurs. This will lead to the existence of a maximal temperature beyond
which the volume modulus is destabilized. In the following we calculate this critical
temperature.

The superpotential and the Kähler potential for the volume modulus ρ = σ + iα are
given by [1]

W = W0 + Ae−aρ,

K = −3 ln(2σ).
(9)

Here W0 is a constant induced by the fluxes, and W − W0 represents a non-perturbative
contribution to the superpotential due to D-brane instantons or gaugino condensation. In
the latter case the exponent is given by the β-function of the corresponding gauge group,
4πa = 3/(2β). The effective 4D Yang–Mills gauge coupling on the D7-branes is related
to σ as

σ =
4π

g2
. (10)

We can always choose the constant W0 to be real and negative. α = Im(ρ) is then
stabilized at a value where the remaining potential for σ = Re(ρ) reads

V0 =
aAe−aσ

2σ2

[
1

3
aAσe−aσ + W0 + Ae−aσ

]
, (11)

with A real and positive. V0 has an AdS minimum. This potential is amended by a
supersymmetry breaking term,

V = V0 +
Dn

σn
. (12)

Here n = 3 corresponds to the KKLT potential [1], which can be realized as a Fayet–
Iliopoulos D-term term [10], whereas n = 2 occurs for the explicitly SUSY breaking
contribution of an D3-brane [12].

For certain choices of the parameters, one can obtain dS vacua with a small
cosmological constant. An example is W0 = −10−4, A = 1, a = 0.1, D3 = 3 × 10−9

(D2 = 2.6 × 10−11); for n = 3 this is the KKLT potential. Both cases, n = 3 and n = 2,
are shown in figure 4. Numerically, they are almost indistinguishable. The local minimum
is at σmin � 115, corresponding to the gauge coupling g = 0.3.
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Figure 4. The KKLT potential.

To calculate the critical temperature, we need the first and the second derivative of
the potential. For σ � 1 and aσ � 1, V ′ and V ′′ are well approximated by

V ′ � −a3A2

3σ
e−2aσ − a2AW0

2σ2
e−aσ, (13)

V ′′ � 2a4A2

3σ
e−2aσ +

a3AW0

2σ2
e−aσ. (14)

Note that for the derivatives Dn/σn is negligible. Setting V ′′ = 0, which defines σcr, one
finds the maximal slope of the potential:

V ′
max � a3A2

3σcr
e−2aσcr . (15)

It is straightforward to relate the maximal slope to the scale of supersymmetry
breaking. Since the cosmological constant is negligibly small, the gravitino mass is given
by

m2
3/2 = eK |W |2

∣∣∣
min

= −1
3
V0(σmin)

� a2A2

18σmin
e−2aσmin . (16)

For the KKLT parameters the gravitino mass is very large, m3/2 ∼ 1010 GeV. Note that
in the case of explicit SUSY breaking m3/2 is not the physical gravitino mass but just
a parameter which controls the scale of SUSY breaking. Due to the steepness of the
potential, σmin and σcr are very close to each other. Hence, combining (15) and (16), one
obtains

V ′
max � 6am2

3/2. (17)

From equations (4) and (8) one now obtains for the critical temperature

Tcrit � c
√

m3/2, (18)

with c � |6a/v′
th(σcr)|1/4 = O(1). Note that this result holds both for δV ∝ 1/σ3 and

δV ∝ 1/σ2. Numerically, for m3/2 ∼ 100 GeV, the maximal temperature is

Tcrit ∼ 1010 GeV. (19)
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In the case of gaugino condensation one has 4πa = 3/(2β). Using 1/g2 = 4πσ,
equation (18) reads explicitly

Tcrit ∼ √
m3/2

(
2

B

)1/4 (
3

β

)1/4 (
1

g2

)3/8

, (20)

where B = (1/T 4)∂F/∂g(Φcrit) [5]. It is instructive to compare this result with racetrack
models, where the Kähler potential is also logarithmic and the superpotential is a sum of
two exponential terms. In this case the critical temperature is given by [5]

Tcrit ∼ √
m3/2

(
2

B

)1/4 (
3

β

)3/4 (
1

g2

)7/8

. (21)

Clearly, both expressions are very similar. The different powers of 1/β and 1/g2 reflect
the differences of the superpotential and Kähler potential in the two cases. For typical
values, e.g. 1/g2 � 2 and β = 0.1, the critical temperature in racetrack models is larger
by about a factor of five.

3. Discussion

The maximal temperature derived above places a bound on the temperature in the
radiation dominated phase of the early universe. In particular, it bounds the reheating
temperature,

Treheat < Tcrit. (22)

In addition, it places a bound on the maximal temperature in the preheating epoch [13],

Tpreheat = (T 2
reheatHinfMP)1/4 < Tcrit, (23)

unless the inflaton coupling to Φ is strong enough to overcome the destabilizing thermal
effects. This bound is usually more severe than (22), yet it is also less universal.

We note that these bounds on the temperature of the early universe, unlike the
gravitino bound, cannot be circumvented by late entropy production or other cosmological
mechanisms. They are also independent of the ‘overshoot problem’ [14], that during the
cosmological evolution a modulus with a steep potential may not settle in a shallow
minimum, but rather roll over the barrier to infinity. This problem can be solved by
tuning the initial conditions or by implementing a mechanism to slow down the modulus
(cf. [15] and references therein). In contrast, the constraint T < Tcrit is unavoidable since
there is no local minimum for T > Tcrit and the modulus inevitably runs away to infinity.

While finalizing this work we received a related paper by Kallosh and Linde [16]
which addresses modulus destabilization during inflation in KKLT models. The authors
also present a model where, at special points in parameter space, the size of the barrier
separating the physical vacuum from the unphysical one is unrelated to the gravitino mass.
However, for generic parameters, the barrier is related to the scale of supersymmetry
breaking and the analysis of the present paper applies.
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