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Temporal lobe epilepsy (TLE) is characterized by debilitating and progressive cognitive 

impairment, but there is significant variability in the nature and severity of impairment across 

patients. Cognitive phenotyping is a promising approach for understanding the heterogeneity 

within TLE. This 3-paper dissertation aimed to identify the neural correlates associated with 

cognitive phenotypes, investigate methods for defining phenotypes, and examine epilepsy and 

health-related factors associated with each phenotype. Study 1 (Reyes et al., 2019) identified four 

distinct cognitive phenotypes in TLE (N = 70; 36.14 average age; 13.34 average education; 52% 

female) based on neuropsychological measures of memory and language. Each phenotype was 

associated with a unique pattern of white matter (WM) abnormalities. Patients with generalized 

impairment demonstrated widespread WM alterations, those with domain-specific impairment 
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demonstrated regional WM alterations, and those with no impairment demonstrated WM patterns 

similar to controls. Study 2 (N = 407; 36.36 average age; 13.22 average education; 55% female; 

Reyes et al., 2020) compared phenotype classifications based on a neuropsychological approach 

(clinically-driven) versus cluster analysis (data-driven). Both approaches identified three unique 

cognitive phenotypes with strong agreement (kappa=.716); however, cluster analysis misclassified 

12% of impaired patients as having normal cognition. These findings led to the question: could a 

more robust, person-centered, data-driven approach improve phenotyping? Study 3 (N = 1,178; 

37.76 average age; 13.94 average education; 57% female; Reyes et al., under review) used latent 

profile analysis (LPA) to test several models of cognitive phenotyping and adjudicate the impact 

of missing data to identify the “best” taxonomy. LPA revealed that the three-class model was the 

optimal solution (entropy=.816) and the most robust to missing data with a 98.98% agreement 

with an imputed dataset (kappa=.983). Preliminary analyses revealed lower subcortical volumes 

in patients with generalized impairment and higher intracranial volumes in those with an intact 

profile. There was a differential association between hyperlipidemia and cognitive performance 

across phenotypes. These studies demonstrate unique cognitive phenotypes exist within TLE that 

are stable across investigations and approaches and are characterized by distinct neural signatures. 

Knowledge of these phenotypes could drive cognitive and neuroanatomical taxonomies in epilepsy 

and enhance individualized prediction of cognitive trajectories. 
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Chapter 1: 

 Introduction 

Epilepsy  

Epilepsy is the fourth most common neurological disorder following migraine, dementia, 

and stroke, affecting approximately 50 million people worldwide (G. S. Bell, Neligan, & Sander, 

2014). Epilepsy is defined as “a disorder of the brain characterized by an enduring predisposition 

to generate epileptic seizures and by the neurobiologic, cognitive, psychological, and social 

consequences of this condition” (Fisher et al., 2005). Thus, the epilepsy-related comorbidities 

associated with cognition, psychiatric health, vascular health, and psychosocial outcomes are now 

part of the definition of epilepsy  (Keezer, Sisodiya, & Sander, 2016). Given that cognitive 

impairment has been associated with poorer quality of life, decreases in functional independence, 

lower educational and occupational attainment, and overall significant life burden (Mitchell, 

Kemp, Benito-León, & Reuber, 2010), understanding the impact of epilepsy and epilepsy 

treatment on cognition has been an area of research inquiry for over a century. Specifically, the 

National Institute of Neurological Disorders and Stroke has developed benchmarks for 

epilepsy research and one of these benchmarks is to “Limit or prevent adverse consequences of 

seizures and their treatment across the lifespan” (Poduri & Whittemore, 2020). Although 

significant progress has been made in our understanding of the cognitive comorbidities of epilepsy, 

patients with epilepsy continue to be impacted by cognitive dysfunction. As such this area of 

research continues to be a priority in order to inform clinical care and outcomes and improve the 

quality of life of individuals living with epilepsy.  

Cognitive dysfunction in temporal lobe epilepsy  
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Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy and it is 

characterized by seizures originating from the temporal lobes with the most common pathology 

being mesial temporal sclerosis (MTS; atrophy and gliosis of the hippocampus) (Engel Jr, 1996). 

TLE is the most refractory to antiseizure medications (ASM) which means that a large proportion 

of patients experience recurrent seizures, making TLE a chronic neurological condition (Tellez-

Zenteno & Hernandez-Ronquillo, 2012). For many of these patients, epilepsy surgery which 

consists of resection of the epileptogenic brain tissue is a treatment option to ameliorate seizure 

frequency (Choi et al., 2008).  

Cognitive dysfunction is a highly prevalent and debilitating comorbidity in patients with 

TLE (B. Bell, Lin, Seidenberg, & Hermann, 2011; Saling, 2009; Stretton & Thompson, 2012). For 

example, up to 80% of patients with TLE demonstrate impairments in at least one cognitive domain 

including language, memory, and executive function, with a subset of patients demonstrating 

progressive cognitive deterioration (C. Helmstaedter, Hermann, B., Lassonde, M., Kahane, P., & 

Arzimanoglou, A, 2011; C. Helmstaedter, Kurthen, Lux, Reuber, & Elger, 2003; B. P. Hermann 

et al., 2006). Furthermore, TLE is associated with accelerated brain and cognitive aging, placing 

patients are increased risk for developing dementia later in life, including Alzheimer’s disease 

(Sen, Capelli, & Husain, 2018). In addition, patients with TLE who undergo unilateral anterior 

temporal lobectomy (ATL) or other surgical procedures to reduce seizure frequency are at risk for 

additional cognitive decline (C. Helmstaedter, 2013; C. Helmstaedter et al., 2003).  

Beyond the Lesion/localization Model  

 The lesion model which assumes a direct relationship between brain structure and behavior 

has been the predominant approach to studying cognition in epilepsy (B. P. Hermann et al., 2021). 

This approach presumes that for the focal epilepsies (i.e., seizures originating from a specific area 
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in the brain) the effects of seizures on brain structure and function are restricted to the epileptogenic 

zone (Hennric Jokeit & Schacher, 2004). This approach yielded syndrome-specific cognitive 

profiles based on the location of the seizure origin (Figure 1.1).  For example, in TLE cognitive 

impairments were predicted to be restricted to domains associated with temporal structures such 

as episodic memory (Saling, 2009). Other syndrome-specific cognitive profiles include executive 

dysfunction in frontal lobe epilepsy (FLE; Milner, 1975), visuospatial and constructive disorders 

in parietal lobe epilepsy (Hennric Jokeit & Schacher, 2004), and visuoperceptual and spatial 

impairments in occipital epilepsy (Germanò et al., 2005). The lesion model approach has been 

important for the fields of neuropsychology and neuroscience, as the study of brain-behavior 

relationships arose from lesion studies. For example, patient H.M. the most studied individual in 

the fields of neuropsychology and neuroscience, received bilateral ATL (i.e., removal of both 

hippocampi) to ameliorate his seizures due to TLE, however, this led to profound amnesia (Squire, 

2009). Through H.M.’s unfortunate outcome the field has established key principles on memory 

organization and many other lesion studies have provided important insights into brain 

organization and function.  

However, decades of research in the neuropsychology of epilepsy have demonstrated that 

the cognitive impairment in the focal epilepsies are more generalized and widespread than 

hypothesized by the lesion/localization model. For example, patients with TLE also demonstrate 

impairments in language and executive function (B. Bell et al., 2011; Sherman et al., 2011; Stretton 

& Thompson, 2012) and those with FLE demonstrate deficits in language (Arrotta et al., 2021; 

Stretton & Thompson, 2012), all cognitive abilities associated with brain structures beyond the 

temporal and frontal lobes, respectively. Furthermore, patients with seizures originating from the 

non-dominant hemisphere (i.e., hemisphere not critical for language function) also demonstrate 
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deficits in the domain of language (B. P. Hermann, Seidenberg, Schoenfeld, & Davies, 1997; 

Kaestner et al., 2019). There is also considerable variability in the nature and severity of cognitive 

impairments observed across patients with the same epilepsy disorder with some demonstrating 

generalized impairment and others showing relatively normal cognitive profiles (Arrotta et al., 

2021; Dabbs, Jones, Seidenberg, & Hermann, 2009; B. Hermann, Seidenberg, Lee, Chan, & 

Rutecki, 2007; B. P. Hermann et al., 1997). Lastly, there are overlapping features in the 

neuropsychology profiles observed across epilepsy disorders despite patients demonstrating very 

different clinical syndromes (B. P. Hermann et al., 2021). These findings highlight that the lesion 

model fails to capture the heterogeneity in cognitive and behavioral disturbance observed across a 

range of epilepsy syndromes.  

Underlying neurobiological networks in epilepsy  

Perhaps the most compelling evidence that the lesion/localization model may no longer be 

applicable in the study of the neurobehavioral comorbidities of epilepsy, are neuroimaging and 

neuropathological findings demonstrating brain abnormalities beyond the epileptogenic focus in 

the focal epilepsies (Allone et al., 2017; Hatton et al., 2020; B. P. Hermann et al., 2021; Christopher 

D Whelan et al., 2018). For example, TLE is now understood to represent a network disorder given 

the brain abnormalities observed that extend far beyond the temporal lobe (B. Bell et al., 2011; 

Bernasconi et al., 2004; Leyden et al., 2015; C. D. Whelan et al., 2018). Specifically, patients with 

TLE demonstrate widespread alterations in white matter (WM) (Hatton et al., 2020; Leyden et al., 

2015), cortical thinning (McDonald et al., 2008; Mueller et al., 2009; C. D. Whelan et al., 2018), 

reduced regional brain activity (Reyes et al., 2016), and glucose hypometabolism (Arnold et al., 

1996). Neuropathological studies have also demonstrated extratemporal pathology in postmortem 

brains of patients with TLE, including the prefrontal and orbitofrontal cortices (Blanc et al., 2011). 
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Importantly, studies of structure-function relationships in TLE have also shown that these diffuse 

brain abnormalities are associated with a wide range of cognitive deficits (Allone et al., 2017; 

Leyden et al., 2015). Similar widespread neuroimaging findings have been found in other focal 

epilepsies and a series of investigations through the Enhancing NeuroImaging and Genetics 

through Meta- Analysis (ENIGMA- Epilepsy) initiative have demonstrated shared similarities in 

brain abnormalities across a range of epilepsy disorders (Hatton et al., 2020; C. D. Whelan et al., 

2018). Although advanced neuroimaging has enhanced our understanding of the extent of 

epileptogenic networks in the brain, the relationship between these network alterations and the 

heterogeneity in cognitive impairment observed across epilepsy disorders is less understood.  

Cognitive Phenotyping: Towards a New Taxonomy 

 An alternative approach to studying the neurobehavioral comorbidities of epilepsy is to 

aggregate patients with the same epilepsy syndrome into distinct groups based on their patterns of 

cognitive impairment (B. P. Hermann et al., 2021). In this approach, latent groups or cognitive 

phenotypes are identified by either data-driven methods such as cluster analyses or by utilizing a 

clinical cognitive criteria where patients are assigned to groups based on a priori defined 

classification (e.g., patients with impairments in memory). The relationships between epilepsy-

related clinical features, cognition, and neuroimaging correlates are then examined within each 

unique phenotype (Figure 2.1). Inferences from the distinct phenotypes can then be applied to 

individual patients that demonstrate similar cognitive profiles. This innovative approach aligns 

with precision medicine which is defined as "an emerging approach for disease treatment and 

prevention that takes into account individual variability in genes, environment, and lifestyle for 

each person" (Josephson & Wiebe, 2021). Importantly, this approach allows for the integration of 

other factors known to impact cognition (e.g., vascular risk factors, cognitive reserve factors, social 
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determinants of health) providing a method to holistically study the heterogeneity of cognitive 

impairment in epilepsy which can inform the development of interventions aimed at reducing the 

negative impact of cognitive decline on quality of life and functional independence (Figure 1.3).  

The study of cognitive phenotypes in epilepsy was pioneered by  Dr. Bruce Hermann, and 

in his first study, he and his colleagues identified three major cognitive phenotypes in a group of 

patients with TLE (B. P. Hermann et al., 2006). These cognitive phenotypes included a group of 

patients with generalized impairment (i.e., impairment across multiple cognitive domains 

assessed), a group of patients with domain-specific impairments (i.e., language and memory), and 

a minimally impaired group. They also demonstrated that patients with generalized impairments 

were older, had longer disease duration, and were taking more anti-seizure medications (ASMs) 

relative to patients with minimally impaired profiles. These patients also showed abnormal brain 

volumes and had the most cognitive progression over a four-year course. Thus, a greater disease 

burden was associated with widespread cognitive deficits and brain abnormalities. In a follow-up 

study, these same cognitive phenotypes demonstrated unique patterns of cortical thinning, with 

patients with generalized cognitive impairment exhibiting the most cortical thinning and atrophy 

in subcortical structures relative to healthy controls (Dabbs et al., 2009). Interestingly, patients 

with minimally impaired profiles showed the least cortical thinning and atrophy. These findings 

highlight that aggregating patients into one group based on their epilepsy syndrome may obscure 

important neuroanatomical correlates that are more evident when patients are grouped based on 

their cognitive profiles. Given the role of neuroimaging in epilepsy surgical decision making, 

identifying unique neuroanatomical signatures within each phenotype can inform treatment 

decisions and the prediction of clinical postoperative outcomes.  



  7 
 

Looking Beyond Epilepsy: Utilizing Phenotyping to Identify Unique Factors Impacting 

Cognition  

 As mentioned above, the phenotype approach provides a framework that incorporates other 

risk and protective factors known to impact cognition rather than attributing the cognitive deficits 

to the epilepsy syndrome alone (B. P. Hermann et al., 2021). The epilepsy literature has identified 

several clinical factors that are associated with cognitive dysfunction in epilepsy, including the 

presence of MTS or other structural pathology on MRI (Wieser & Epilepsy, 2004), the type and 

frequency of seizures (C. Helmstaedter et al., 2003; Majak & Pitkanen, 2004), age of seizure onset 

(B. Hermann et al., 2002), duration of disease (Oyegbile et al., 2004),  and the effects of ASM 

(Meador, 2002). However, very little is known about other health-related or individual factors that 

may contribute to the variability observed in the neuropsychological syndrome of TLE. Via the 

phenotyping approach researchers can identify both the risk and protective factors associated with 

cognitive functioning within each phenotype, providing more precise information on cognitive risk 

for each individual patient. For example, one can hypothesize that patients with generalized 

impairments may present with health-related risk factors that are further exacerbating the epilepsy 

burden and those with relatively intact cognitive profiles may present with increased cognitive or 

brain reserve, mitigating the impact of epilepsy on cognition.  

There is a growing literature focused on identifying risk factors for cognitive decline in 

healthy individuals and clinical populations. Specifically, vascular, inflammatory, and metabolic 

biomarkers have been shown to be associated with accelerated cognitive aging and dementia 

(Barnes & Yaffe, 2011; Baumgart et al., 2015; Daviglus et al., 2010; Knopman et al., 2001; Norton, 

Matthews, Barnes, Yaffe, & Brayne, 2014). Despite some evidence that patients with TLE are at 

increased risk for progressive neurophysiological and structural brain changes that result in 
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reduced brain health and early cognitive decline (B. P. Hermann et al., 2006; H. Jokeit & Ebner, 

1999), the effects of important health-related risk factors on cognition are rarely examined in TLE 

or epilepsy in general (Baxendale et al., 2015; Hamed, 2014; B. Hermann, Loring, & Wilson, 2017; 

B. P. Hermann, Sager, Koscik, Young, & Nakamura, 2017). Hermann et al. (B. P. Hermann et al., 

2017) found that aging adults with chronic epilepsy demonstrate abnormalities in vascular, 

inflammatory, and metabolic biomarkers that are associated with poorer performance on 

neuropsychological measures of memory, psychomotor speed, and working memory. The authors 

emphasized that although the available literature has focused on epilepsy-specific factors that 

impact cognition, research should shift attention to health-related risk factors that are modifiable 

in nature. There is an emerging interest in understanding the effects of modifiable factors such as 

hypertension, obesity (Beydoun, Beydoun, & Wang, 2008; Sellbom & Gunstad, 2012), physical 

inactivity (Hamer & Chida, 2009; Rolland, Abellan van Kan, & Vellas, 2008), and smoking 

(Anstey, von Sanden, Salim, & O'Kearney, 2007; Zhong, Wang, Zhang, Guo, & Zhao, 2015) on 

accelerated cognitive aging in the general population and other neurological disorders. These 

factors would not only improve overall health and cognition but could also improve patients’ 

quality of life.  

In a postoperative study, I demonstrated that cerebrovascular risk factors (CVRFs) were 

associated with greater postoperative verbal memory decline in a group of patients with TLE 

(Reyes, Lalani, et al., 2020). Specifically, we showed that higher body mass index (BMI) was 

associated with greater memory deficits across different dimensions of memory and that BMI 

mediated the relationship between hippocampal volume and memory performance. Obesity is one 

of the modifiable risk factors that has been shown to directly impact brain structure leading to 

lower hippocampal volumes (Fotuhi, Do, & Jack, 2012). As such, these findings suggest that 
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targeted patient interventions may benefit from the inclusion of modifiable health-related risk 

factors such as weight management, healthy eating, and physical activity that may improve 

cognitive health and reduce the risk for further cognitive decline. In another study of older adults 

with TLE, we demonstrated that patients that met criteria for a cognitive disorder of aging had 

elevated CVRFs including hypertension, diabetes, hyperlipidemia, and abnormal white matter 

changes on brain imaging (Reyes et al., 2021). To date, no studies have utilized the phenotype 

approach to examine if there are unique health-related risk factors associated with different 

cognitive profiles across cognitive phenotypes in epilepsy. Given that several investigations have 

identified cognitive phenotypes with unique clinical and sociodemographic profiles, it is possible 

that these patients also present with unique comorbidities that may be further exacerbating the 

epilepsy burden. 

There is a burgeoning literature exploring protective factors that can alter the response to 

pathology and influence the relationship between brain pathology and clinical phenotypes. The 

concept of cognitive reserve refers to a protective mechanism that allows individuals to cope with 

brain pathology by using residual brain resources more efficiently (Stern, 2002). Several factors 

have been identified to be related to cognitive reserve, including pre-morbid intelligent quotient 

(IQ), high education, complex occupational attainment, and bilingualism (Ghaffar, Fiati, & 

Feinstein, 2012; Guzman-Velez & Tranel, 2015; Whalley, Deary, Appleton, & Starr, 2004). 

Despite the well-established cognitive impairments found in TLE, surprisingly few studies have 

examined cognitive reserve in this clinical population. Jokeit et al. (H. Jokeit & Ebner, 1999), 

found that higher educational attainment in patients with TLE was an indicator of higher cognitive 

reserve, delaying the onset of cognitive decline. Oyegbile et al. (Oyegbile et al., 2004) also found 

that the effects of the duration of epilepsy on cognitive function were less apparent for individuals 
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with higher education, thus higher education appeared to be protective against epilepsy-related 

cognitive dysfunction. Additionally, bilingualism has been associated with enhanced executive 

functioning in healthy individuals as well as delayed onset of clinical symptoms associated with 

Alzheimer’s disease (AD) and cognitive decline in aging (Guzman-Velez & Tranel, 2015). The 

cognitive advantage that bilingualism may confer has been most commonly studied with respect 

to executive functioning, wherein executive control abilities observed in bilinguals are thought to 

result from the strengthening of the executive control system, which is continuously recruited to 

manage attention to the target language and simultaneously inhibit the non-target language 

(Bialystok, Craik, Green, & Gollan, 2009; Grundy, Anderson, & Bialystok, 2017; Guzman-Velez 

& Tranel, 2015). My own work has provided initial support for bilingualism as a protective factor 

in TLE, demonstrating enhanced executive functions in bilinguals with TLE despite increased 

levels of frontotemporal white matter pathology (Reyes et al., 2018). However, investigations of 

protective factors in cognitive phenotypes remain to be explored. Examining protective factors in 

patients that demonstrate intact cognitive profiles despite having chronic epilepsy, can provide 

insight into the brain’s resilience to epilepsy pathology.  

Overall Approach to Dissertation  

This staple dissertation will be the first to integrate neuroimaging data, cognitive data, and 

health-related risk factors and protective factors in an effort to unravel the heterogeneity of 

cognitive impairment in TLE (Figure 1.4). Previous findings in cognitive phenotypes and my own 

work on health-related risk and protective factors in epilepsy lay the groundwork for the current 

studies to examine (1) how regional and network-based measures of brain pathology can help to 

delineate cognitive phenotypes in TLE; (2) which methodology provides the most robust and 

rigorous approach to cognitive phenotyping; and (3) whether and how unique risk and protective 
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factors contribute to cognitive functioning in TLE phenotypes. Findings from this dissertation will 

provide greater insight into the heterogeneity observed across patients and will therefore inform 

clinical diagnostic frameworks, treatment approaches across epilepsy subtypes, and individualized 

interventions targeted at reducing risk for cognitive decline. Furthermore, this work can inform the 

identification of cognitive phenotypes in other neurological disorders.  

Rationale for Study 1 

Only three studies prior to Study 1 of this staple dissertation project have focused on 

identifying the neuroanatomical correlates of cognitive phenotypes in TLE (Dabbs et al., 2009; B. 

Hermann et al., 2007; Rodriguez-Cruces et al., 2018). These studies revealed that patients with 

generalized cognitive impairment demonstrate widespread cortical thinning (Dabbs et al., 2009) 

and decreased diffuse WM integrity (Rodriguez-Cruces et al., 2018), whereas patients with 

relatively normal cognitive profiles demonstrate the least structural abnormalities. The aim of 

Study 1 was to identify cognitive phenotypes in a group of patients with TLE and examine the 

underlying brain network changes that are associated with each cognitive phenotype. A clinical 

approach was used to derive the cognitive phenotypes based on neuropsychological measures of 

memory and language. These actuarial neuropsychology criteria consists of a priori definition of 

impairment and patients are assigned to phenotypes based on their patterns of impairment. 

Defining cognitive phenotypes based on individual performance has been widely used within the 

Alzheimer’s and dementia literature, given its clinical utility and comparability across different 

studies (Edmonds et al., 2016; Snowden et al., 2007). Although prior work has examined the WM 

integrity across cognitive phenotypes (Rodriguez-Cruces et al., 2018), this was done at the regional 

level and within conventional white matter tracks. The present study adds to the literature by 

examining both regional and network WM changes, including alterations in microstructure within 
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the superficial WM, which has been shown to be critical for cortico-cortical connectivity (Nazeri 

et al., 2015). Given that TLE is now considered a network disorder, examining network 

abnormalities within cognitive phenotypes can provide greater insight into subtle differences in 

neuroanatomical correlates across phenotypes that may not otherwise be observed with more 

traditional metrics of WM integrity.  

Rationale for Study 2 

 There has been variability across cognitive phenotypes studies, including the number and 

nature of the phenotypes identified and the clinical and neuroimaging characteristics associated 

with each phenotype (B. P. Hermann et al., 2021). This may, in part,  be due to single-site studies, 

the methodology used to derive the phenotypes, and variability in the assessments employed. Most 

of the phenotype literature has utilized data-driven approaches such as cluster analysis which has 

its advantages as it identifies groups from the data without restrictions imposed by the user. 

However, utilizing a specific neuropsychological criterion such as the one used in Study 1 can 

inform the translation of these phenotypes into clinical diagnostic criteria given its clinical utility 

(Edmonds et al., 2016; Snowden et al., 2007). In order to derive clinically significant phenotypes 

that are interpretable and comparable across different studies, consensus on the appropriate method 

to phenotyping is needed. In Study 2, we compare clinically-driven and data-driven methods in a 

sample of 407 patients with TLE, test the utility and reproducibility of each method, and expand 

on Study 1 by including tests of verbal memory, language, executive function, and psychomotor 

speed.  

Rationale for Study 3 
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 Findings from Study 2 demonstrated that there was good concordance between cluster 

analysis and the clinical criteria, however, cluster analyses misclassed 12% of patients with 

clinically-defined impairment as having normal cognition (Reyes, Kaestner, et al., 2020). This 

misclassification may impact clinical care, as false negatives can prevent the identification of 

patients that are at increased risk for cognitive progression. Furthermore, cognitive phenotypes 

have been shown to be useful in predicting postoperative cognitive outcomes (Baxendale & 

Thompson, 2020). The prediction and evaluation of postoperative cognitive decline has been a 

critical component of epilepsy care and one that continues to evolve. As such, identifying the most 

rigorous and robust clustering methodology will be imperative for the translation of cognitive 

phenotypes into clinical care. Study 3 aims to address the disadvantages and pitfalls of cluster 

analysis, by utilizing latent profile analyses, a person-centered approach that 1) identifies groups 

with a greater level of certainty, 2) handles missing data, and 3) provides the probability of group 

membership. We also adjudicate the impact of invariably missing data in order to identify the 

“best” taxonomy using the most rigorous clustering method. Furthermore, Study 3 represents the 

largest investigation of cognitive phenotypes across the entire epilepsy literature with a sample of 

1,178 patients with TLE. Lastly, the overarching aim of Study 3 is to inform future phenotyping 

investigations in epilepsy and other neurological disorders.  

Rationale for Preliminary Analyses for Future Study 

 One of the aims of the staple dissertation was to examine the effects of modifiable risk 

factors and protective factors on cognition and brain structure across phenotypes. Due to 

recruitment issues as a result of the COVID-19 pandemic, the prospective collection of modifiable 

risk factors and protective factors came to a halt. Furthermore, we were able to amass the largest 

sample of patients with TLE across multiple epilepsy centers which address the lack of 



  14 
 

generalizability from single-site data. However, many of these patients did not have health-related 

vascular or neuroimaging data available at the time of analyses, and acquisition and collection of 

data are still ongoing. The current sample with available data includes 205 patients (17.4% of 

Study 3 sample) with neuroimaging data, 196 patients (16.6% of Study 3 sample) with health-

related vascular data, and 390 patients (33.1% of Study 3 sample) with language information 

available to ascertain bilingualism status. As such, additional analyses with these data were not 

included in Study 3 to keep the focus on examining the methodology in a more comprehensive 

manner. Rather, I provide preliminary analyses that will inform the preparation of a future 

manuscript.  
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Figures 

          

Figure 1.1: Paradigm shift in the localization model of cognition in epilepsy. Historically, the lesion-model 
or localization approach hypothesized that there was a direct relationship between the focal epilepsy 
syndrome and expected cognitive dysfunction. Specifically, the lesion-model presumed that cognitive 
dysfunction was restricted to the epileptogenic zone. This approach yielded syndrome-specific cognitive 
profiles based on the location of the seizure origin. For example, patients with temporal lobe epilepsy were 
thought to have deficits in memory and those with frontal lobe epilepsy were expected to have deficits in 
executive function. This direct relationship between seizure origin and cognitive function has been 
challenged by a plethora of investigation demonstrating that the cognitive dysfunction in the focal epilepsies 
are more widespread than hypothesized. For example, patients with TLE present with impairments in 
language and executive function, and those with FLE show deficits in language and learning.  
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Figure 1.2: Traditional versus phenotype model to study cognition in epilepsy. In the traditional lesion-
model, patients are aggregated into a group based on their epilepsy syndrome, and the impact of epilepsy 
and epilepsy treatment on brain structure and function is examined at the group level. Inferences from these 
investigations are then applied to individual patients. By contrast, in the phenotype model, patients are first 
grouped into classes or phenotypes based on their pattern of cognitive impairment. The impact of epilepsy 
on brain structure and function is examined within each phenotype and across phenotypes. In this approach, 
findings for each phenotype can then be applied to individual patients that demonstrate similar cognitive 
profiles.   
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Figure 1.3: Beyond the epilepsy: Examining factors that impact cognition. The phenotype approach places 
cognitive dysfunction at the forefront of investigations. This, in turn, allows researchers to investigate other 
factors that may be impacting cognitive abilities in patients with epilepsy. Specifically, by identifying 
subgroups of patients with unique cognitive profiles, researchers can examine factors contributing to 
cognitive dysfunction at the phenotype level. Factors for investigation can include examining medical and 
psychological risk (e.g., health-related comorbidities, depression/anxiety), social determinants of health 
(e.g., economic deprivation, impact of education), and determining the impact of cognitive assessment 
methods. This approach aligns with precision medicine and provides a method to develop patient-centered 
interventions.  
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Figure 1.4: Hypothesized model to cognitive phenotypes in epilepsy. This dissertation aimed to investigate 
the factors associated with different cognitive profiles in temporal lobe epilepsy. In addition to investigating 
the clinical features associated with cognitive dysfunction, brain abnormalities, health-related risk factors, 
and protective factors were examined at the phenotype level. This approach improved the identification of 
unique brain signatures within each phenotype that better map onto the cognitive dysfunction observed. 
Other factors that may be moderating or mediating the brain-behavior relationship were also examined, 
arriving at patient-centered cognitive risk.  
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Abstract  

Objective: To identify distinct cognitive phenotypes in temporal lobe epilepsy (TLE) and evaluate 

patterns of white matter (WM) network alterations associated with each phenotype.  

Methods: Seventy patients with TLE were characterized into four distinct cognitive phenotypes 

based on patterns of impairment in language and verbal memory measures (Language & Memory 

Impaired, Memory Impaired only, Language Impaired only, No Impairment).  Diffusion tensor 

imaging was obtained in all patients and in 46 healthy controls (HC).  Fractional anisotropy (FA) 

and mean diffusivity (MD) of the WM directly beneath neocortex (i.e., superficial WM; SWM) 

and of deep WM tracts associated with memory and language were calculated for each phenotype. 

Regional and network-based SWM analyses were performed across phenotypes.  

Results:  The Language & Memory Impaired group and the Memory Impaired group showed 

distinct patterns of microstructural abnormalities in SWM relative to HC. In addition, the 

Language & Memory Impaired group showed widespread alterations in WM tracts and altered 

global SWM network topology. Patients with isolated language impairment exhibited poor 

network structure within perisylvian cortex, despite relatively intact global SWM network 

structure, whereas patients with no impairment appeared similar to HC across all measures. 

Conclusions: These findings demonstrate a differential pattern of WM microstructural 

abnormalities across distinct cognitive phenotypes in TLE that can be appreciated at both the 

regional and network levels. These findings not only help to unravel the underlying neurobiology 

associated with cognitive impairment in TLE, but they could also aid in establishing cognitive 

taxonomies and/or in the prediction of cognitive course in TLE. 
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Introduction  

Cognitive dysfunction is a highly prevalent and debilitating comorbidity in patients with 

temporal lobe epilepsy (TLE; Bell, Lin, Seidenberg, & Hermann, 2011; Saling, 2009). Up to 80% 

of TLE patients demonstrate impairments in at least one cognitive domain, most frequently in 

language and/or memory (C. Helmstaedter, Hermann, B., Lassonde, M., Kahane, P., & 

Arzimanoglou, A, 2011; C. Helmstaedter, Kurthen, Lux, Reuber, & Elger, 2003; B. P. Hermann 

et al., 2006). Despite the high prevalence of cognitive dysfunction in TLE, there is considerable 

variability in the nature and severity of impairments observed across patients, some demonstrating 

generalized impairment, some specific cognitive deficits, and others with normal cognition 

(Oyegbile et al., 2004).  

Recently, studies have attempted to understand the heterogeneity in TLE by identifying 

cognitive phenotypes and examining the neuroanatomical correlates associated with each subtype 

(Dabbs, Jones, Seidenberg, & Hermann, 2009; B. Hermann, Seidenberg, Lee, Chan, & Rutecki, 

2007; Rodriguez-Cruces et al., 2018). These studies have revealed that patients with generalized 

cognitive impairment demonstrate widespread cortical thinning (Dabbs et al., 2009), subcortical 

atrophy (B. Hermann et al., 2007), and diffuse white matter (WM) compromise (Rodriguez-Cruces 

et al., 2018), whereas patients with normal cognitive profiles demonstrate minimal structural 

abnormalities. These studies revealed that the type and degree of cognitive impairment are 

associated with the extent of brain abnormalities in TLE.  However, more precise characterization 

of patients according to domain-specific cognitive impairment is warranted and could provide new 

insights into the neuroanatomical substrates of cognitive dysfunction in TLE.  

In this study, we identify unique cognitive phenotypes in TLE based on patterns of language 

and memory impairment and examine microstructural alterations associated with each phenotype. 
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We accomplish this by evaluating patterns of WM disruption within deep, long-range association 

tracts and within the WM directly beneath the cortex, using both a regional and a network-based 

approach. We hypothesize that distinct cognitive phenotypes can be identified with unique patterns 

of network disruption that underlie the neuropsychological heterogeneity of TLE. Specifically, 

patients with isolated memory or language impairment will demonstrate significant mesial versus 

lateral temporal pathology, respectively, whereas those with impairment in both domains will 

demonstrate widespread fronto-temporal pathology that is more pronounced within the left 

hemisphere. Finally, we anticipate patients with no impairment will show minimal regional or 

network-based pathology.   

Methods  

Participants  

 This study was approved by the Institutional Review Boards at UC San Diego and UC San 

Francisco, and informed consent was collected from all participants.  Seventy patients with TLE 

and 46 healthy controls (HC) met inclusion/exclusion criteria for the study. All patients were 

recruited through referral from the UC San Diego or UC San Francisco Epilepsy Centers. Inclusion 

criteria for patients included a TLE diagnosis by a board-certified neurologist with expertise in 

epileptology, in accordance with the criteria defined by the International League Against Epilepsy, 

and based on video-EEG telemetry, seizure semiology, and neuroimaging evaluation. The 

presence of mesial temporal sclerosis (MTS) was determined by inspection of MRI images by a 

board-certified neuroradiologist. In 35 patients, MRI findings suggested the presence of ipsilateral 

MTS and the remaining patients demonstrated normal MRI. Patients were excluded if there was 

evidence on video-EEG of extratemporal seizure onset or the presence of a mass lesion on MRI. 

HC were included if they were between the ages of 18 and 65 and had no reported history of 

neurological or psychiatric disease. 
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Neuropsychological measures 

 Neuropsychological data were available for all patients and HC. Verbal memory was 

evaluated with the California Verbal Learning Test-Second Edition  (CVLT-II; Delis, Kramer J. 

H. , Kaplan E., & Ober, 2000) long delayed free recall (CVLT- LDFR) and the Wechsler Memory 

Scale-Third Edition (WMS-III) Logical Memory delayed (LM Delayed) and Verbal Paired 

Associates delayed (VPA Delayed; Wechsler, 1997). Language ability was also evaluated with the 

Boston Naming Test (BNT; Kaplan, 2001), Auditory Naming Test (ANT; Hamberger & Seidel, 

2003), and Category Fluency subtest of the Delis-Kaplan Executive Function System (D-KEFS; 

delis, Kaplan, & Kramer, 2001). 

Cognitive Phenotyping   

 The cognitive phenotypes were derived using the three measures of verbal memory and 

three measures of language described above. Raw scores for all patients’ neuropsychological data 

were converted into z-scores based on the mean of the HC data. Impairment was defined as 1.5 

standard deviations below the mean of the HC. According to procedures outlined by Edmonds et 

al. (Edmonds et al., 2016), patients were determined to be impaired in a given domain (i.e., 

memory or language) if two or more of the three cognitive tests fell within the impairment range. 

Four distinct cognitive phenotypes were derived: 1) patients impaired on both language and 

memory measures (Language & Memory Impaired); 2) patients impaired on memory measures 

only (Memory Impaired); 3) patients impaired on language measures only (Language Impaired); 

and 4) patients with no evidence of impairment on language or memory measures (No Impairment) 

(Fig 1). Twenty-four percent of patients were impaired in both language and memory, 20% were 

impaired in memory only, 29% were impaired in language measures only, and 27% were not 

impaired in either domain.  
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MRI acquisition  

 MRI data were collected on a General Electric (GE) Discovery MR750 3T scanner with an 

8-channel phased-array head coil at the Center for Functional MRI at UC San Diego or the Surbeck 

Laboratory for Advanced Imaging at UC San Francisco. Image acquisitions on the 3T scanner 

were identical at both centers and included a conventional three-plane localizer, GE calibration 

scan, a T1-weighted 3D customized FSPGR structural sequence (TR = 8.08 ms, TE = 3.16 ms, TI 

= 600 ms, flip angle = 8°, FOV = 256 mm, matrix = 256 x 192, slice thickness = 1.2 mm), and for 

diffusion MRI, a single-shot pulse-field gradient spin-echo EPI sequence (TR = 8000 ms, TE = 

82.9 ms, flip angle = 90°, FOV = 240 mm, matrix = 96 x 96m, slice thickness = 2.5 mm, echo-

spacing = 588 ms). Diffusion data used for the DTI analysis were acquired with b-value= 0 and 

1,000 s/mm2 with 30 unique gradient directions. For use in nonlinear B0 distortion correction, two 

additional b=0 volumes were acquired with either forward or reverse phase-encode polarity. 

DTI Processing 

 Preprocessing of the diffusion data included corrections for distortions due to magnetic 

susceptibility (B0), eddy currents, and gradient nonlinearities, head motion correction and 

registration to the T1-weighted structural image. For B0 distortion correction, a reverse gradient 

method was used (Holland, Kuperman, & Dale, 2010). A detailed description of the image 

processing is provided elsewhere (McDonald et al., 2014).  DTI-derived fractional anisotropy (FA) 

and mean diffusivity (MD) were calculated based on a tensor fit to the b = 1,000 data. 

SWM calculations 

 Individual T1-weighted MRIs were used for cortical surface reconstruction and 

parcellation using FreeSurfer, 5.3.0 (Dale, Fischl, & Sereno, 1999). FA and MD for the SWM 
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were calculated by sampling 1 mm below the pial surface normal at each vertex. To improve 

signal-to-noise ratio, all surface-based measures were smoothed on the average surface using a 20-

mm full width at half maximum Gaussian kernel. Vertex-wise maps of FA and MD for the SWM 

were created for each individual and then averaged into a spherical representation to align sulcal 

and gyral features allowing for accurate matching of FA and MD measurement locations at the 

individual level, while minimizing metric distortion (Fischl, Sereno, & Dale, 1999). 

Fiber tract calculations  

 Fiber tract FA and MD values were derived using a probabilistic diffusion tensor atlas that 

was developed using in-house software written in MATLAB, which has been validated in HC and 

patients with TLE (Hagler et al., 2009). For each participant, T1-weighted images were used to 

nonlinearly register the brain to a common space, and diffusion tensor orientation estimates were 

compared to the fiber tract atlas to obtain a map of the relative probability of a voxel belonging to 

a particular fiber tract, given the location and similarity of diffusion orientations. Voxels identified 

with FreeSurfer as cerebrospinal fluid or cortical gray matter were excluded from the fiber regions 

of interest (ROIs). Fiber tracts were segmented in this way for each individual, and mean FA and 

MD values were calculated based on that participant’s diffusion data. A full description of the atlas 

is described elsewhere (Hagler et al., 2009). In the current study, the method described above was 

used to reconstruct the following tracts because they are among the most frequently implicated in 

verbal memory and language processing and are often reported to be compromised in TLE (Allone 

et al., 2017; Leyden et al., 2015): arcuate fasciculus (ARC), uncinate fasciculus (UNC), fornix 

(FX), inferior longitudinal fasciculus (ILF) and parahippocampal cingulum (PHC) (Figure 2.2). 

Furthermore, decreases in FA and increases in MD within these tracts have been associated with 

impairment in language and memory in TLE and are sensitive to axonal loss and demyelination, 
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respectively (Allone et al., 2017; Leyden et al., 2015; Song et al., 2003).  

Network Analysis 

 Due to evidence that patients with TLE show less efficient network integration and over-

segregation of cortical and subcortical networks relative to HC (Bernhardt, Bonilha, & Gross, 

2015), graph theoretical analysis was applied to the SWM data to determine whether cognitive 

phenotypes differ in their network microstructure covariance (Bahrami et al., 2017; Bernhardt, 

Chen, He, Evans, & Bernasconi, 2011; Carmeli, Fornari, Jalili, Meuli, & Knyazeva, 2014). 

Estimates of FA were measured within 33 gyral-based ROIs per hemisphere (Desikan et al., 2006) 

that were based on average estimates obtained from the unsmoothed data at each vertex within a 

given SWM ROI. A 66 x 66 symmetric-weighted matrix of the structural connectivity in the whole 

brain was constructed using Pearson Correlations for each phenotype group and the HC as well as 

for the pooled group of all TLE patients. Each correlation value in this matrix represents the 

covariance strength between two related nodes (i.e., ROIs).  

 For this study, we analyzed differences in four network-based measures: global efficiency, 

local efficiency, transitivity, and modularity, due to evidence that these measures are (1) sensitive 

to global and local network-changes in TLE (Bernhardt et al., 2015; Bernhardt et al., 2011) or (2) 

implicated in cognitive functioning (Brier et al., 2014; de Haan et al., 2012). Group differences in 

each measure were tested over a wide range of network densities, 0.1 ≤ Sthr ≤ 0.5, with the threshold 

incremented by 0.05, using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). Global 

efficiency is a measure of global network integration and is defined as the average inverse shortest 

path length (Latora & Marchiori, 2001). Local efficiency is calculated using the global efficiency 

from the adjacent subgraph of the node and can be interpreted as local network connectivity 

representing regional topological changes (Rubinov & Sporns, 2010); the local efficiencies across 
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all nodes are then averaged to estimate the total network local efficiency. Transitivity is a measure 

of network segregation, such that greater transitivity indicates a tendency for nodes to be highly 

integrated within their local cluster (Newman, 2003). This measure is similar to clustering 

coefficient. However, unlike clustering coefficient, transitivity is normalized collectively for all 

nodes and therefore is not influenced by the number of nodes in the network (Rubinov & Sporns, 

2010). Finally, modularity describes the degree to which a network may be divided into 

nonoverlapping groups with a high number of within-module connections and a low number of 

between-module connections (de Haan et al., 2012; Newman, 2006).  A detailed description of 

these graph theoretic measures, as well as the toolbox used to calculate them are described in a 

review by Rubinov and Sporns (Rubinov & Sporns, 2010).  

Statistical analysis  

 Independent t-tests and Fisher’s tests were used to test differences in demographic 

variables between patients and HC. Analysis of variance (ANOVA) was conducted to compare 

clinical and demographic variables across the four cognitive phenotypes. Vertex-wise t-tests were 

used for surface-based comparisons between each cognitive phenotype group and HC and 

corrected for multiple comparisons using a false discovery rate (FDR). ANOVA was conducted to 

compare FA and MD of fiber tracts across the four cognitive phenotypes and HC, correcting for 

multiple comparisons using FDR. When results from the ANOVA were significant, group 

contrasts were assessed using post-hoc pairwise tests with Bonferroni correction.  

For the graph theoretic measures, a sub-sampling methodology (Bahrami et al., 2017) was 

used to estimate a spread of values for the HC group for each measure at each network density 

level. Patient group values outside of the .0005 and .9995 percentile range (corresponding to a p-

value of .001) were considered significantly different from HC. Because the individual phenotype 
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groups had less patients per group than the number of HC, to create the HC spread of values, a 

sub-sample of 18 HC, corresponding to the average size of the phenotype groups, was sampled 

4000 times.  

Data Availability Statement 

Authors have full access to all study data and participant consent forms and take full 

responsibility for the data, the conduct of the research, the analysis and interpretation of the data, 

and the right to publish all data.  

Results 

Demographics and patient clinical variables       

 There were no differences in age [t (114) = -.020, p = .984] or sex distribution (Fisher’s 

Exact = .383, p = .571) between patients with TLE and HC; however, as expected, HC had more 

years of education [t (114) = -5.715, p < .001] (Table 2.1). There were no differences in age ( F 

(3, 66) = .869, p = .462), education (F (3, 66) = .329, p = .805),  sex distribution (Fisher’s Exact = 

4.087, p = .699), handedness (Fisher’s Exact = 6.61, p = .083), duration of epilepsy (F (3, 66) = 

2.15, p = .102), seizure frequency (F (3, 61) = 1.308, p = .280), number of  antiepileptic drugs 

(AEDs; F (3, 66) = 1.73, p = .169 ), MTS status (Fisher’s Exact = 2.162, p = .533) or side of seizure 

onset (Fisher’s Exact= 3.975, p = .707) across the four cognitive phenotype groups. However, 

there were differences in age of seizure onset (F (3, 66) = 7.02, p < .001), with the Memory 

Impaired group demonstrating an older age of seizure onset relative to the Language & Memory 

(p = .023) and the Language Impaired (p < .001) groups.  

Surface-based SWM abnormalities across Cognitive Phenotypes  

 The results of the surface maps for SWM FA and MD are presented in Figure 2.3. Relative 

to HC, the Language & Memory group showed widespread reductions in FA in lateral temporal, 
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parietal, frontocentral/cingulate, and lateral prefrontal regions bilaterally, coupled with highly left 

lateralized increases in MD that were pronounced within lateral temporal and orbitofrontal SWM. 

In the Memory Impaired group, higher MD was observed in the inferior and medial temporal lobe 

regions bilaterally, including parahippocampal, entorhinal, fusiform, and temporal pole, as well as 

the cingulate cortices (Figure 2.3A). The Language Impaired and the No Impairment group (not 

depicted) showed no differences in SWM FA or MD relative to HC that survived FDR-correction.  

Post-hoc comparisons across the cognitive subgroups revealed higher MD in the Language & 

Memory group compared to the No Impairment group within left lateral temporo-parietal regions 

(Figure 2.3B).  

Differences in FA/MD of deep white matter fiber tracts 

ANOVA revealed group differences in FA and MD of the ARC and ILF bilaterally and in 

FA of the left UNC (Table 2.2). Pairwise comparisons revealed that the Language & Memory 

group had lower FA of the left and right ARC (Left ARC: p = .004; Right ARC: p = .018), the left 

and right ILF (Left ILF: p = .005; Right ILF: p = .011), and the left UNC (p < .01) relative to HC.  

They also showed higher MD of the left ILF relative to HC (p = .002). The Memory Impaired 

group showed higher MD of the right ILF relative to HC (p = .034) and the Language Impaired 

group demonstrated lower FA of right ILF relative to HC (p = .045). 

Post-hoc comparisons across the patient subgroups showed that the Language & Memory 

group had lower FA of the left UNC relative to the Language Impaired group (p = .013). This 

group also showed higher MD of the left ARC relative to the No Impairment group (p = .024), and 

a trend for higher MD of the left ILF relative to the No Impairment group (p = .062). Given that 

patients in the Memory Impaired group had an older age of seizure onset and a trend for a longer 

duration of disease, we conducted a secondary analysis controlling for age of seizure onset and 
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disease duration for WM tracts that were significant in the primary analysis. Similar results were 

obtained in this analysis, with the exception that the finding of higher MD of the left ARC in the 

Language & Memory Impaired relative to the No Impairment Group only approached significance 

(p = .064).  No other patient subgroups comparisons were significant.  

Global and local network analysis  

Whole-group analysis 

 When treated as a single group, patients with TLE showed decreased global efficiency 

across a consecutive range of network densities (10-to-35; p < .001), as well as increased 

transitivity (network densities: 15-to-50; p < .001) and decreased modularity (network densities: 

10-to-20; p < .001) relative to HC (Fig 2.4A).  

Cognitive phenotypes analysis 

 When analyzing the data separately for each cognitive phenotype, only the Language & 

Memory and Memory Impaired groups showed significant differences from HC. The Language & 

Memory group showed decreased global efficiency (network densities: 10-to-45; p < .001), 

increased transitivity (network densities: 15-to-50; p < .001), and decreased modularity (network 

densities: 10-to-30; p < .001). The Memory Impaired group demonstrated decreased global 

efficiency relative to HC at a network density of 30 (p < .001). Neither the No Impairment nor the 

Language Impaired group displayed any significant differences in global network structure from 

HC.  

 Given that the Language Impaired group failed to show any differences in the regional or 

global network SWM analyses, a post-hoc sub-network analysis was performed to determine if the 

Language Impaired group differed in their network structure within classic language (i.e., 



 38 

perisylvian) regions. For this analysis, local efficiency was selected and tested within the pars 

triangularis (pTRI)/pars opercularis (pOPC), superior temporal gyrus (STG), and supramarginal 

gyrus. One region, the STG, displayed significantly decreased local efficiency for the Language 

Impaired group, bilaterally (p < .05; Figure 2.5A-B). No other group differed from HC across 

perisylvian regions.  

Discussion  

 In this study, we identify four distinct cognitive phenotypes within TLE and demonstrate 

that each phenotype is associated with a unique pattern of WM abnormalities. Specifically, we 

show that patients in the Language & Memory and Memory Impaired groups show pronounced 

microstructural changes within widespread SWM regions and deep WM association tracts 

implicated in language and memory (Leyden et al., 2015).  These findings were particularly 

pronounced for those in the Language & Memory Impaired group at both the regional and global 

network levels.  Finally, we show that patients in the Language Impaired group show abnormal 

network structure within perisylvian SWM, despite relatively intact global network structure. 

Collectively, our findings suggest that distinct cognitive phenotypes exist in TLE that are not 

differentiated or explained by known clinical characteristics. Rather, these different phenotypes 

appear to be characterized by underlying neurobiological differences in their regional WM 

microstructure and network topology.  

 Cognitive dysfunction is the most common comorbidity in TLE, with impairments in 

language and memory accounting for a majority of this comorbidity (Bell et al., 2011; B. P. 

Hermann et al., 2006; Oyegbile et al., 2004; Saling, 2009; Stretton & Thompson, 2012). A number 

of factors have been identified as playing a pivotal role in the cognitive dysfunction observed in 

TLE, including the presence of MTS (Wieser & Epilepsy, 2004), the type and frequency of seizures 
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(C. Helmstaedter et al., 2003) , age of seizure onset (B. Hermann et al., 2002), duration of disease 

(Oyegbile et al., 2004),  and the effects of AEDs (Meador, 2002). Interestingly, not all patients 

with TLE demonstrate cognitive dysfunction, even when they share similar clinical characteristics 

to those that do. In our study, 1/4 of the patients were impaired in both language and memory, 

while approximately one half of the sample had isolated memory or language impairment and the 

remaining patient sample demonstrated a relatively normal cognitive profile. In particular, patients 

who were impaired in both language and memory showed the poorest performance across all 

measures, indicating more pervasive cognitive dysfunction relative to those with domain-specific 

impairments (i.e., Memory Impaired and Language Impaired).  This group of patients may reflect 

those described as having “generalized impairment” in Hermann et al. (B. Hermann et al., 2007), 

where approximately 29% of patients in their study demonstrated impairment in memory, 

language, executive function, and processing speed.  Of interest, this patient group was at risk for 

cognitive progression over a 4-year interval, whereas their other groups (i.e., memory impaired, 

minimally impaired) showed minimal progression over time.  In addition, we replicate their prior 

findings of a subgroup of patients with isolated memory deficits (20%) and of a sizable group with 

no significant impairments (27%).  Importantly, we expand this literature by further characterizing 

cognitive profiles in a large cohort of patients using a priori neuropsychological criteria that have 

been shown to produce meaningful cognitive subtypes in other neurological disorders (Edmonds 

et al., 2016; Snowden et al., 2007). By doing so, we were able to identify a unique group (Language 

Impaired) that constituted 29% of our sample and may be best described as harboring a significant 

anomia (see Figure 2.1). Despite the range in cognitive performances across the four phenotypes, 

our groups demonstrated relatively similar clinical features (Table 2.1). Therefore, we purport that 

the nature and extent of cognitive dysfunction observed in TLE cannot be fully explained by 
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common clinical characteristics (i.e., MTS, side of onset, AEDs), and that treating patients with 

TLE as a single group may obscure important cognitive and neuroanatomical variability across 

patient samples. In addition, given the evidence that different cognitive phenotypes may be at 

differential risk for cognitive progression (B. Hermann et al., 2007), the cognitive course of 

patients with normal cognitive profiles or with generalized impairments may not be fully 

appreciated when comparing these patients to the “average” cognitive profile described in the TLE 

literature. Therefore, a finer characterization of cognitive phenotypes is warranted and could aid 

in the prediction of individual cognitive trajectories. 

 The white matter directly beneath the cortex (i.e., the SWM) has been shown to be 

particularly important for cognition given its key role in maintaining cortico-cortical connectivity 

(Nazeri et al., 2013; Nazeri et al., 2015; Ouyang, Kang, Detre, Roberts, & Huang, 2017). 

Furthermore, there is evidence that the SWM is highly sensitive to TLE-related pathology and may 

be an important predictor of post-operative outcomes (Liu et al., 2016). Here, we demonstrate a 

differential pattern of SWM alterations across unique cognitive phenotypes. Specifically, the 

Language & Memory Impaired group showed decreases in FA throughout frontocentral and lateral 

temporal regions bilaterally, coupled with highly left lateralized increases in MD that were 

pronounced within lateral temporal and orbitofrontal SWM. Conversely, the Memory Impaired 

group showed increased MD that was particularly pronounced within the cingulate and medial 

temporal lobes, bilaterally. Notably, a dissociative pattern emerged between these groups, where 

impairments in both language and memory were associated with SWM alterations that 

encompassed perisylvian regions, whereas isolated memory impairments were associated with 

changes in SWM within medial temporal structures critical to memory (Squire & Zola-Morgan, 

1991). An unexpected finding was the lack of regional changes in SWM microstructure in patients 
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with isolated language impairment. Interestingly, this group did not differ from the other groups 

in the number of AEDs or other identifiable clinical characteristics. A post-hoc analysis also 

demonstrated that this group of patients was not more likely to be bilingual (25%), nor were they 

more likely to be on topiramate (10%) or zonisamide (10%) (all chi-square p-values > .05)—all of 

which may contribute to language impairments in TLE (Gollan, Montoya, Fennema-Notestine, & 

Morris, 2005; Ojemann et al., 2001). Rather, results from a sub-network analysis (discussed below) 

indicate that the Language Impaired group may harbor subtle changes within perisylvian network 

structure that are not apparent in traditional regional analysis. As anticipated, we found no 

significant changes in SWM microstructure in patients with normal cognitive profiles. Despite a 

prolonged course of epilepsy and having a clinical profile known to affect cognition, the patients 

in the No Impairment group showed a similar neuropsychological and microstructural profile to 

HC. Altogether, these findings further highlight the importance of the SWM to cognition and 

reveal that cognitive phenotypes in TLE have unique SWM signatures.  

 Alterations in deep WM tracts are often associated with impairments in memory and 

language in TLE (Allone et al., 2017; Leyden et al., 2015). In our study, patients demonstrating 

impairment in both language and memory showed reductions in FA of the ARC and ILF bilaterally, 

and left UNC, and increases in MD of the left ARC and ILF. These findings suggest that a worse 

cognitive phenotype is associated with widespread WM alterations in both short-range U-shaped 

fibers connecting adjacent gyri (Ouyang et al., 2017) and long-range association tracts connecting 

distal cortical regions. Interestingly, the Memory Impaired group showed minimal alterations in 

deep WM tracts relative to HC despite showing diffuse SWM MD changes within inferior and 

mesial temporal structures. Although several studies have found an association between 

compromise to our selected frontotemporal and medial temporal lobe tracts and both language and 
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memory impairment in TLE (McDonald et al., 2008; McDonald et al., 2014), it is possible that 

microstructural loss restricted to the SWM within the medial temporal lobe is more likely to result 

in an isolated memory impairment. In particular, the SWM beneath the entorhinal cortex includes 

the perforant path, which provides afferent input to the hippocampus (CA3/dentate) (Witter, 2007) 

and is known to be critical to verbal memory, but not necessarily to language (McDonald et al., 

2014; Yassa, Mattfeld, Stark, & Stark, 2011). Therefore, while we found more restricted alterations 

in deep WM tracts in the domain-specific groups, it is possible that damage to multiple deep 

association tracts leads to impairment in both cognitive domains.  

 Given that TLE is now understood to represent a network disorder with alterations in 

whole-brain network topology (Bernhardt et al., 2015), we applied a graph theory approach to 

explore whether distinct cognitive phenotypes demonstrate unique SWM network organization. 

First, we replicate previous findings (Bernhardt et al., 2015; Bernhardt et al., 2011) demonstrating 

that patients with TLE display disrupted integration (i.e., lower global efficiency) and increased 

segregation (i.e., increased transitivity) at the whole group level. However, our subgroup analysis 

revealed that these topological differences were primarily driven by the Language & Memory 

Impaired group, with minimal differences observed in the other groups at the global network level. 

These findings mirror the regional analysis and indicate that more pervasive cognitive deficits are 

associated with pronounced alterations of SWM network structure.  

Previous studies using network analyses in TLE have found consistent increases in path 

length and clustering coefficient (Bernhardt et al., 2015; Bernhardt et al., 2011), suggesting a more 

regularized network configuration that may be less resilient to epilepsy-related pathology. In our 

study, we found decreases in global efficiency (i.e., increased path length) in patients with 

language and memory impairment, as well as increases in transitivity (i.e., increased coefficient). 
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These alterations in global topology have been characterized as reflecting a “lattice-like” network 

configuration (Bernhardt et al., 2011) that may lead to reduced efficiency in information transfer, 

contributing to the cognitive dysfunction in this clinical population. Thus, the broad cognitive 

impairment observed in the Language & Memory Impaired group may, in part, be due to an altered 

global topology within SWM networks. We also found decreases in modularity and increases in 

transitivity in patients in the Language & Memory Impaired group relative to HC. Modularity 

describes the extent to which networks are organized into smaller sub-groups (Bullmore & Sporns, 

2009; de Haan et al., 2012). A highly modular brain may offer a high level of local specialization 

needed for the demands of different cognitive processes. In support of this, De Haan et al. (de 

Haan et al., 2012) found decreases in modularity to be associated with poorer language and 

memory performances in patients with Alzheimer’s Disease (AD).  Decreases in modularity have 

also been linked to more advanced clinical status in AD (Brier et al., 2014). Our results in the 

Language & Memory Impaired group provide further evidence that decreases in modularity may 

result in disruption in intermodular communication and lead to pervasive cognitive deficits in TLE.  

 As described above, patients with isolated language impairment showed intact global 

network structure but decreased local efficiency within the left and right STG, suggesting less 

integration of the STG with other brain regions. Given that the STG is a critical node within the 

perisylvian network, a less well integrated STG may lead to isolated language impairment in some 

patients in the absence of other cognitive or microstructural changes and suggests avenues for 

further inquiry. Collectively, these results demonstrate unique changes in network organization 

within specific cognitive phenotypes. Specifically, more pervasive language and memory 

impairments are associated with widespread WM pathology that leads to altered segregation and 
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integration of WM networks, whereas isolated language impairment may be associated with 

disruption of local nodes within perisylvian networks.  

Our study has several important limitations that should be noted. First, we only included 

neuropsychological measures of language and memory. While impairments in language and 

memory account for the most pervasive and problematic cognitive comorbidities in patients with 

TLE (Bell et al., 2011), impairments in executive function and processing speed are also present 

in some patients and could help to further subdivide our phenotypes. Future studies with a broader 

examination of different cognitive domains are warranted. Second, we used specific 

neuropsychological criteria to define impairment and to derive our phenotypes, whereas previous 

studies (Dabbs et al., 2009; B. Hermann et al., 2007; Rodriguez-Cruces et al., 2018) in TLE have 

relied on a data-driven approach (i.e., cluster analysis). Defining cognitive phenotypes based on 

individual test performance has been widely used within the mild cognitive impairment and AD 

literature, given its clinical utility, interpretability, and comparability across different studies 

(Edmonds et al., 2016; Snowden et al., 2007). However, a comparison of clinically-driven and 

data-driven methods is needed to test the utility and reproducibility of each method. Nonetheless, 

our study adds to an emerging literature demonstrating that TLE is associated with distinct 

cognitive phenotypes with unique underlying neuroanatomical signatures. Knowledge of these 

phenotypes not only helps to improve cognitive and neuroanatomical taxonomies in TLE, but it 

may also enhance individualized prediction of cognitive trajectories and yields a different 

perspective on the cognitive consequences of the TLE.  Additional longitudinal studies such as 

Hermann et al. (B. Hermann et al., 2007) will improve our understanding of whether these distinct 

phenotypes portend differential patterns of cognitive impairment progression and whether 

epilepsy-related clinical variables (e.g., seizure frequency, number and type of AEDs) impact such 



 45 

progression. Furthermore, knowledge about these phenotypes and their underlying neurobiology 

could be used in combination with clinical data to help predict risk for cognitive decline associated 

with aging or medical/surgical interventions in TLE. As the field of epilepsy is moving towards 

establishing more meaningful cognitive and neurobehavioral taxonomies, identifying syndrome-

dependent and syndrome-independent phenotypes and understanding their accompanying 

neurobiology could improve our ability to match patients to treatments and improve a range of 

epilepsy-related outcomes.  
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Figures 

Figure 2.1: Distribution of language and memory performance across cognitive phenotypes. Mean z-scores 
on measures of language and memory across cognitive phenotypes. Error bars represent standard 
deviations.  Impairment was defined as 1.5 SD below the mean of HC (represented as horizontal black line). 
LM= logical memory; VP= verbal paired associates; CVLT LDFR= California Verbal Learning Test—
Long delayed free recall; BNT= Boston Naming Test; ANT= Auditory Naming Test. 
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Figure 2.2: Deep white matter tracts of interest. A) Coronal and B) Sagittal rendering of the arcuate 
fasciculus (ARC), uncinate fasciculus (UNC), fornix (FX), parahippocampal cingulum (PHC), and inferior 
longitudinal fasciculus (ILF) derived from AtlasTrack projected onto a T1-weighted image for a single 
individual. The corpus callosum is portrayed in light gray in order to provide additional spatial information.  
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Figure 2.3: Surface-based superficial white matter abnormalities across cognitive phenotypes. A) Surface-
based mapping of SWM FA and MD differences across cognitive phenotypes relative to HC after correcting 
for multiple comparisons, PFDR < .05. The color bar shows patients with either lower values than controls 
in blue/cyan, or greater value than HC in red/yellow. B) Post-hoc comparison between the Language & 
Memory impaired group and the No Impairment group in SWM MD. Increases in MD in the Language & 
Memory group are shown in red/yellow.  
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Figure 2.4: Global network measures. A) Plots show differences in global efficiency, transitivity, and 
modularity between healthy controls (HC) and the whole TLE group across network densities. Shaded areas 
represent the upper and lower bounds of each measure in HC. B) Differences in global efficiency, 
transitivity, and modularity between HC and each cognitive phenotype. Colored circles represent significant 
difference between HC and patients. 
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Figure 2.5: Local efficiency differences within perisylvian regions. A) Local efficiency differences between 
HC and each cognitive phenotype in pars triangularis (pTRI)/pars opercularis (pOPC), superior temporal 
gyrus (STG), and supramarginal gyrus (SMG). Significant differences from HC are depicted in gray/blue 
within each region of interest. B) Differences in local efficiency within the left and right STG between HC 
and each cognitive phenotype across different network densities. Shaded areas represent the upper and 
lower bounds in local efficiency for HC. 
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Tables 
 

Table 2.1: Demographics and clinical variables 

 
 
 

  

 TLE HC 
N 70 46 
Age 36.14 (13.66) 36.19 (14.13) 
Education  13.34 (2.26) 15.80 (2.33) 
Sex: M/F 33/37 19/27 
 Language & 

Memory Impaired 
Memory 
Impaired Language Impaired No Impairment 

N 17 14 20 19 
Age (years) 36.06 (15.51) 40.14 (14.56) 32.60 (13.06) 37.00 (11.86) 
Education (Years) 13.00 (2.85) 13.71 (2.19) 13.15 (2.28) 13.58 (1.57) 
Sex: M/F 8/9 10/4 10/10 5/14 
Handedness: L/R/A 2/14/1 2/11/1 1/19 2/17 
MTS: Yes/No 11/6 8/6 8/11 9/10 
Side: L/R/Bilateral 8/8/1 7/7 8/9/3 8/10 
Age of Onset  17.82 (12.08) 32.07 (16.50) 11.25 (12.12) 20.68 (14.17) 
Duration (years) 18.24 (19.22) 8.07 (8.87) 21.35 (13.47) 16.32 (16.89) 
Number of AEDs 1.88 (.857) 2.35 (.633) 2.45 (.887) 2.36 (.83) 
Seizure frequency* 6.10 (5.72) 6.83 (5.63) 4.47 (4.23) 4.05 (2.34) 
TLE: temporal lobe epilepsy; F: females; M: males; L: left; R: right; A: ambidextrous; MTS: mesial 
temporal sclerosis; AEDs: antiepileptic drugs; standard deviations are presented inside the parentheses 
* Number of seizures per month. Patients with 2 standard deviations above the mean of the entire TLE 
group were removed from analysis 
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Table 2.2: FA and MD group comparisons 

 
 

 

 

 

  

 
Language & 

Memory 
Impaired 

Memory 
Impaired 

Language 
Impaired 

No 
Impairment HC ANOVA 

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) F-value  p-value 
ARC        
Left        

FA 0.449 (0.044) 0.473 (0.028) 0.467 (0.031) 0.466 (0.029) 0.480 (0.024) 3.600 0.008 
MD 0.762 (0.030) 0.757 (0.025) 0.735 (0.025) 0.720 (0.082) 0.732 (0.025) 3.478 0.010 

Right        
FA 0.436 (0.033) 0.459 (0.029) 0.448 (0.039) 0.448 (0.024) 0.462 (0.023) 3.147 0.017 

MD 0.740 (0.049) 0.747 (0.036) 0.737 (0.040) 0.718 (0.089) 0.725 (0.030) 1.063 0.378 
UNC        
Left        

FA 0.380 (0.062) 0.416 (0.033) 0.423 (0.031) 0.408 (0.046) 0.431 (0.028) 5.663 <0.001 
MD 0.832 (0.088) 0.815 (0.028) 0.795 (0.038) 0.793 (0.085) 0.779 (0.046) 2.858 0.027 

Right        
FA 0.388 (0.049) 0.409 (0.027) 0.398 (0.030) 0.396 (0.039) 0.414 (0.255) 2.553 0.044 

MD 0.778 (0.098) 0.816 (0.032) 0.793 (0.060) 0.787 (0.111) 0.777 (0.064) 0.821 0.515 
FX        
Left        

FA 0.304 (0.037) 0.295 (0.037) 0.291 (0.039) 0.297 (0.043) 0.307 (0.030) 0.876 0.481 
MD 1.216 (0.346) 1.33 (0.357) 1.259 (0.261) 1.212 (0.197) 1.187 (0.231) 0.964 0.430 

Right        
FA 0.314 (0.080) 0.318 (0.037) 0.290 (0.050) 0.298 (0.032) 0.313 (0.033) 1.336 0.261 

MD 1.147 (0.333) 1.332 (0.355) 1.233 (0.262) 1.226 (0.189) 1.234 (0.250) 0.902 0.466 
PHC        
Left        

FA 0.326 (0.085) 0.347 (0.063) 0.342 (0.046) 0.327 (0.056) 0.367 (0.051) 2.488 0.047 
MD 0.876 (0.241) 0.846 (0.062) 0.802 (0.088) 0.811 (0.121) 0.777 (0.111) 2.038 0.094 

Right        
FA 0.332 (0.112) 0.330 (0.046) 0.337 (0.079) 0.327 (0.079) 0.370 (0.075) 1.597 0.180 

MD 0.870 (0.265) 0.889 (0.067) 0.800 (0.146) 0.804 (0.185) 0.755 (0.173) 2.248 0.068 

ILF        

Left        
FA 0.440 (0.029) 0.459 (0.037) 0.454 (0.034) 0.462 (0.036) 0.471 (0.022) 3.623 0.008 

MD 0.853 (0.050) 0.847 (0.027) 0.827 (0.044) 0.805 (0.091) 0.797 (0.056) 5.361 0.001 
Right        

FA 0.438 (0.027) 0.451 (0.022) 0.445 (0.029) 0.449 (0.029) 0.463 (0.022) 3.703 0.007 
MD 0.809 (0.066) 0.840 (0.022) 0.820 (0.076) 0.784 (0.097) 0.782 (0.044) 3.196 0.016 

HC= healthy controls; ARC= arcuate; UNC= uncinate fasciculus; FX= fornix; PHC= parahippocampal cingulum; ILF = 
inferior longitudinal fasciculus; FA= fractional anisotropy; MD= mean diffusivity; SD= standard deviation  
Bold signifies significance at an FDR correction of q*= 0.02 
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Chapter 3: 

Study 2 

The content within this section, titled “Chapter 3: Study 2,” reflects material from a paper 

that has been published in Epilepsia. The proper citation is as follows: 

Reyes, Anny, Kaestner, Erik, Ferguson, Lisa, Jones, Jana E., Seidenberg, Michael, Barr, William 

B., Busch, Robyn M., Hermann, Bruce P. & McDonald, Carrie R. (2020). Cognitive phenotypes 

in temporal lobe epilepsy utilizing data‐and clinically driven approaches: Moving toward a new 

taxonomy. Epilepsia, 61(6), 1211-1220. 
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Objective: To identify cognitive phenotypes in temporal lobe epilepsy (TLE) and test their 

reproducibility in a large, multisite cohort of patients using both data-driven and clinically-driven 

approaches. 

Method: Four-hundred and seven patients with TLE who underwent a comprehensive 

neuropsychological evaluation at one of four epilepsy centers were included. Scores on tests of 

verbal memory, naming, fluency, executive function, and psychomotor speed were converted into 

z-scores based on 151 healthy controls (HC). For the data-driven method, cluster analysis (k-

means) was used to determine the optimal number of clusters. For the clinically-driven method, 

impairment was defined as greater than 1.5 standard deviations below the mean of the HC, and 

patients were classified into groups based on the pattern of impairment.  

Results: Cluster analysis revealed a 3-cluster solution characterized by 1) generalized impairment 

(29%), 2) language and memory impairment (28%), and no impairment (43%). Based on the 

clinical criteria, the same broad categories were identified, but with a different distribution; 1) 

generalized impairment (37%), 2) language and memory impairment (30%), and 3) no impairment 

(33%). There was an 82.6% concordance rate with good agreement (kappa=.716) between the 

methods. Forty-eight patients classified as having a normal profile based on cluster analysis, were 

classified as having generalized impairment (n=16) or an isolated language/memory impairment 

(n=32) based on the clinical criteria. Patients with generalized impairment had a longer disease 

duration and patients with no impairment had more years of education. However, patients 

demonstrating the classic TLE profile (i.e., language & memory impairment) were not more likely 

to have an earlier age of onset or mesial temporal sclerosis. 
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Significance:  We validate previous findings from single-site studies that have identified three 

unique cognitive phenotypes in TLE and offer a means of translating the patterns into a clinical 

diagnostic criteria, representing a novel taxonomy of neuropsychological status in TLE.  

Key Words: cognitive phenotypes, epilepsy, taxonomy 

Key Points 

• In a large, multi-site study of 407 patients with TLE, we validate smaller single-site studies 

identifying three unique cognitive phenotypes in TLE.   

• We demonstrate that these phenotypes are robust to the methods employed, including 

clinically-driven and data-driven approaches.  

• The data-driven approach misclassified 12% of the patients with clinically-defined 

significant impairment as having normal cognition.  

• Both approaches produce groups that differed in important clinical and demographic 

characteristics known to impact cognition.   

• Cognitive phenotypes offer a new classification framework that considers the individual 

variability observed within and across epilepsy syndromes. 
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Introduction  

 Cognitive impairment is the most prevalent comorbidity in patients with temporal lobe 

epilepsy (TLE), with many patients demonstrating impairments in language, memory, and 

executive function (Bell, Lin, Seidenberg, & Hermann, 2011; Saling, 2009; Stretton & Thompson, 

2012). In a subset of patients, these impairments have been shown to be progressive in nature (C. 

Helmstaedter, Hermann, B., Lassonde, M., Kahane, P., & Arzimanoglou, A, 2011; C. 

Helmstaedter, Kurthen, Lux, Reuber, & Elger, 2003; B. P. Hermann et al., 2006; Thompson & 

Duncan, 2005). Furthermore, patients with TLE who undergo unilateral anterior temporal 

lobectomy (ATL) or other surgical procedures are at risk for additional cognitive decline (C. 

Helmstaedter, 2013; C. Helmstaedter et al., 2003). Despite patients with focal TLE having seizures 

arising from temporal lobe regions, there is variability in the nature and severity of cognitive 

impairment observed across patients, with some demonstrating generalized impairment, some 

showing a profile of focal cognitive deficits, and others showing relatively intact cognitive profiles 

(Elverman et al., 2019; B. Hermann, Seidenberg, Lee, Chan, & Rutecki, 2007; Reyes et al., 2019).  

 In efforts to unravel the heterogeneity of cognitive impairment in TLE, studies have shifted 

from examining TLE patients in aggregate to identifying latent profiles, or cognitive phenotypes, 

within TLE (Dabbs, Jones, Seidenberg, & Hermann, 2009; Elverman et al., 2019; B. Hermann et 

al., 2007; Kaestner et al., 2019; Reyes et al., 2019; Rodriguez-Cruces et al., 2018). The first study 

of its kind identified three distinct cognitive phenotypes using cluster analysis, which included a 

group of patients with isolated memory impairment, a second group with minimal impairment, and 

a third group with more generalized and pervasive impairment (B. Hermann et al., 2007). Follow-

up studies have identified similar cognitive phenotypes and shown that these phenotypes are 

associated with unique patterns of structural and functional abnormalities, with more pervasive 
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cognitive impairment associated with distributed brain abnormalities and isolated deficits 

associated with restricted regions of brain dysfunction (Dabbs et al., 2009; B. Hermann et al., 2007; 

Bruce P. Hermann et al., 2019; Reyes et al., 2019; Rodriguez-Cruces et al., 2018). However, there 

is some variability in the phenotypes described across studies, as well as the clinical characteristics 

and neuroimaging findings associated with each phenotype. This may be due to characteristics of 

single site data, methods used to derive the phenotypes, the limited sample sizes available, and/or 

the extent of the cognitive assessment employed (limited versus extensive), and the variability in 

tests administered across studies. As this literature continues to develop, it is critical to further 

validate the clinical utility of the cognitive phenotypes derived from data-driven approaches by 

establishing diagnostic criteria that can be used in clinical practice.  

 The neuropsychological approach to determining cognitive impairment in clinical practice 

includes a comprehensive review of all test scores with the operational definition of impairment 

typically ranging from 1 to 2 standard deviations (SD) below normative means. This approach is 

employed in presurgical evaluations aimed at estimating risk for postoperative cognitive decline 

and for determining overall cognitive trajectories in TLE. Recently, our group has utilized a 

modified clinically-driven method adopted from the mild cognitive impairment (MCI) literature 

(Kaestner et al., 2019; Reyes et al., 2019) where phenotypes are derived by considering impairment 

profiles across multiple tests within each cognitive domain. In this approach, impairment is defined 

as greater than 1-1.5 SD below the normative mean on two or more measures within each domain 

and patients are grouped into phenotypes based on the pattern of impairment. Conversely, the most 

common approach in research studies of phenotyping in TLE has been to derive groups based on 

cluster analysis (Dabbs et al., 2009; Elverman et al., 2019; B. Hermann et al., 2007; Rodriguez-

Cruces et al., 2018), a data-driven method where objects (e.g., individuals) are portioned into 
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groups based only on information found in the data. The goal of this method is to produce 

empirically meaningful groups that share common characteristics without restrictions imposed by 

the user (e.g., clinician).   

 Given the common use of data-driven approaches in research, we sought to validate the 

cognitive phenotypes reported in the literature using cluster analysis and then to determine whether 

the derived data-driven phenotypes are concordant with those identified using a 

neuropsychological diagnostic approach commonly used in clinical practice. We test both 

approaches in a large, multi-center cohort of patients with TLE and identify the clinical profiles 

associated with each phenotype for each approach. Second, we compare the concordance rate 

between our data-driven and clinical approaches. Based on the existing literature, we predicted 

that both approaches would yield three phenotypes including a group of patients with generalized 

impairment, a group with primarily verbal memory and/or language deficits, and third group with 

normal cognition.  

Methods  

Participants  

 This study was approved by the Institutional Review Boards at UC San Diego, UC San 

Francisco, University of Wisconsin Madison, and Cleveland Clinic. Informed consent was 

collected from patients and healthy controls (HC) at UC San Diego, UC San Francisco, and 

University of Wisconsin Madison. At Cleveland Clinic, data were collected as part of an IRB-

approved data registry. Four-hundred ninety-four patients with TLE and 150 HC met inclusion 

criteria for the study. Patients were included in the study if they had a diagnosis of TLE by a board-

certified neurologist with expertise in epileptology, in accordance with the criteria defined by the 

International League Against Epilepsy, and based on video-EEG telemetry, seizure semiology, 
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and/or neuroimaging evaluation. The presence of mesial temporal sclerosis (MTS) was determined 

by inspection of MRI images by a board-certified neuroradiologist. Healthy controls were recruited 

through community and patient networks were included if they were between the ages of 18 and 

65 and had no reported history of neurological or psychiatric disease. 

Neuropsychological measures 

 All patients and HC completed neuropsychological testing. The following tests were 

common across the sites and were selected based on recommendations from the National Institute 

of Neurological Disorders and Stroke (NINDS) Epilepsy Common Data Elements (CDE; Loring 

et al., 2011) and the ILAE Neuropsychology Task Force Diagnostic Methods Commission 

(Baxendale et al., 2019). In addition, measures of motor dexterity and processing speed were 

included based on previous studies demonstrating that these skills are often impaired in TLE 

patients with generalized impairment (Elverman et al., 2019; B. Hermann et al., 2007). Verbal 

memory was evaluated with Wechsler Memory Scale-Third Edition (WMS-III) Logical Memory 

(LM) and Verbal Paired Associates (VPA; Wechsler, 1997); language ability was evaluated with 

the Boston Naming Test (BNT; Kaplan, 2001) and letter fluency; executive function was measured 

with the Trail Making Test B (TMT-B); processing speed was measured with TMT-A; fine motor 

dexterity was measured with Grooved Pegboard [Peg dominant (PegD) and non-dominant hand 

(PegND)]. Age-corrected scaled scores were calculated for LM and VPA based on normative data 

provided by the test manual. Age, education, and sex-corrected T-scores were calculated for the 

BNT, letter fluency, TMT-A, TMT-B, and the Grooved Pegboard based on normative data from 

expanded Halstead-Reitan Battery (Heaton, Miller, Taylor, & Grant-Isibor, 2004). Although letter 

fluency has both a language and an executive function component, in our sample letter fluency 

scores showed a stronger correlation with BNT scores (r = .499, p < .0001) than TMTB (r = .353, 
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p < .001); therefore, we included letter fluency in the language domain. For verbal memory, 

immediate and delayed memory indices were created by summing the scaled scores for LM I and 

VPA I immediate total recall scores and LM II and VPA II for delayed total recall, respectively. 

From a total of 494 TLE patients, 87 patients had missing individual data points on the 

neuropsychological battery and were therefore excluded from analysis. Case-wise exclusion of 

patients was necessary given that cluster analysis cannot accommodate missing data. We compared 

important demographic and clinical variables between the 87 patients that were excluded and the 

remaining 407 patients. There were no differences in education, age, age of onset, duration of 

epilepsy, presence of MTS or seizure side (all p-values >.05). Scores for the remaining 407 patients 

were converted into z-scores based on the HC data. No patients were removed based on outlier 

detection.  

Data-driven: Cluster analysis  

 Patients’ z-scores were subjected to k-means clustering, an algorithm that defines groups 

in terms of a centroid, which is typically the mean of a group of points (e.g., cognitive test scores). 

We tested whether a 3-cluster solution from Hermann et al. (B. Hermann et al., 2007) was optimal 

in our dataset by using the NbClust R package (Charrad M, 2013), which provides 23 indices for 

determining the number of clusters and proposes the optimal number of clusters from the different 

results obtained by varying all combinations of number of clusters, distance measures, and 

clustering methods. To further evaluate the clustering algorithm, the Dunn Index was calculated 

(Dunn, 1973; Dunn†, 1974). The Dunn Index is the ratio of the smallest distance between 

observations not in the same cluster to the largest intra-cluster distance. The Dunn Index has a 

value between zero and infinity, with a higher value indicating better clustering.  

 Clinically-driven: Neuropsychological criteria 
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 For the clinical approach, we defined impairment as greater than 1.5 standard deviations 

below the mean of the HC for each test. This impairment cut-off has been shown to be sensitive 

enough to detect impairment while maintaining specificity (Jak et al., 2009). Second, patients were 

grouped into phenotypes based on the number of impaired tests and the pattern of impairment, 

which based on the previous literature was hypothesized to fit three diagnostic cognitive patterns 

(B. P. Hermann et al., 2006).  Generalized impairment was defined as having impairment in at 

least four of the seven tests, with at least one test per cognitive domain impaired. The domain-

specific group was defined as having impairment in verbal memory and/or language, with 

impairment in either the two tests of verbal memory (i.e., immediate and delayed memory) or the 

two tests of language (i.e., BNT, letter fluency); for patients with impairment in both domains, 

they had to be impaired in at least three out of the four tests of verbal memory and language. The 

normal cognitive profile included patients who met impairment criteria on only one or none of the 

7 measures. Several studies have demonstrated that impairment on one test is common among 

individuals with no neurological or psychiatric disorders (Binder, Iverson, & Brooks, 2009).  

Statistical Analysis  

 Independent t-tests and Fisher’s Exact tests were used to test for differences in 

demographic variables between patients and HC. An analysis of agreement using the Cohen’s 

Kappa statistic was performed to determine the consistency of impairment classification between 

the two approaches. To determine if the two approaches yield different clinical profiles, analysis 

of variance (ANOVAs) were conducted to compare clinical and demographic variables across the 

clinical phenotypes and the clusters, respectively. Benjamini-Hochberg false discovery rate was 

used to correct for the multiple comparisons across the ANOVAs conducted.  

Results 
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Demographics and patient clinical variables 

 There were no differences in age [t (555) = .88, p = .38] or sex distribution (Fisher’s Exact 

= 1.29, p = .289) between patients with TLE and HC; however, as expected, HC had more years 

of education [t (555) = -6.01, p < .001] (Table 3.1).  

Cluster analysis 

 Ten out of the 23 indices from NbClust R package indicated that a 3-cluster solution was 

an optimal number of clusters for portioning the data. The DI for a 3-cluster solution was DI= 

0.098. Cluster 1 was comprised of 29% of patients, Cluster 2 included 28% of the patients, and 

Cluster 3 was comprised of 43% of the patients (Figure 3.1). Regarding the pattern of impairment 

within clusters, patients in Cluster 1 demonstrated impairments across all domains (Cluster-Gen), 

patients in Cluster 2 showed predominantly impairments in language and/or verbal memory 

(Cluster-LM), and patients in Cluster 3 demonstrated minimal impairment at the group level 

(Cluster-MI). Table 3.2A shows differences in clinical and demographic variables across the 

clusters. Patients in the Cluster-LM were younger than patients in the Cluster-MI (p<.001) and 

Cluster-Gen groups (p<.001). Patients in the Cluster-MI had more education relative to the 

Cluster-LM (p<.001) and the Cluster-Gen (p=.004) groups. Patients in the Cluster-MI also had an 

older age of seizure onset compared to the Cluster-LM (p <.001), but not with the Cluster-Gen. 

Patients in the Cluster-Gen had a longer disease duration relative to the Cluster-MI (p=.011) and 

Cluster-LM (p=.018). The Cluster-MI group had a comparable number of right and left TLE 

patients, while the Cluster-LM and Cluster-Gen groups both had a greater number left TLE 

patients.  

Clinical criteria 
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 Based on the clinical approach, 37% percent of patients met diagnostic criteria for having 

a generalized impairment profile (Generalized), 30% were impaired on verbal memory and/or 

language measures (Language & Verbal Memory), and 33% did not meet criteria for impairment 

and were classified in the no impairment group (No Impairment). No patients showed isolated 

executive function or processing speed impairments. Out of those patients in the No Impairment 

group, 52 patients had impairment on one test and 70 patients did not demonstrate impairment on 

any test. Table 3.2B shows differences in clinical and demographic variables across the clinically-

derived phenotypes. Patients in the No Impairment group had greater years of education relative 

to the Language & Verbal Memory (p=.001) and Generalized groups (p=.040). Patients in the No 

Impairment group also had an older age of seizure onset compared to the Language & Verbal 

Memory (p =.040) and Generalized groups (p= .004). There was a trend for patients in the 

Generalized group to have a longer disease duration relative to the No Impairment group (p=.050). 

Information on MTS status was available for 77% of the patient sample. There was a trend for 

patients in the No Impairment group to have fewer patients with MTS (40%) relative to the other 

two patient groups.  

Concordance  

 Cohen’s Kappa statistic revealed moderate agreement between the two approaches (κ = 

.716 p < .001), with an 82.6% concordance rate. Forty-eight patients classified into Cluster-MI 

(i.e., minimal impairment) met clinical criteria for having verbal memory and language impairment 

(n=32) or generalized impairment (n=16) (Figure 3.2). Table 3 shows the clinical characteristics 

of the clinically-impaired patients that were classified as Cluster-MI with cluster analysis. As 

expected, these patients demonstrated more subtle or circumscribed impairments across the tests. 

Specifically, the mis-classified Verbal Memory & Language impaired patients tended to show 
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subthreshold impairment in immediate (z = -1.16) and delayed (z = -1.23) memory rather than in 

naming (-1.18) or fluency (-.86) (i.e., an isolated verbal memory deficit), and the mis-classified 

Generalized impairment patients showed impairment in executive functioning (z= -1.85), with 

more subtle deficits in other domains.  

Alternative clusters 

In a more recent paper, Elverman et al. (Elverman et al., 2019) found a 4-cluster solution 

to be clinically meaningful, where two groups of patients with focal impairment emerged. 

Therefore, we also tested the robustness of a 4-cluster solution to examine whether we could 

identify sub-groups of patients with more focal impairments (see supplemental Figure available 

online). The 4-cluster solution produced one group that was minimally impaired (26%), one group 

that showed only language and/or verbal memory impairment (21%), and two groups that showed 

generalized impairment, but with one disproportionately impaired in language & verbal memory 

relative to the other (34% and 19%, respectively).  However, the latter two groups showed 

overlapping patterns across most tests. Therefore, the 3-cluster solution produced more distinct, 

interpretable phenotypes. 

Discussion  

  In a large, multi-site study of 407 patients, we validate previous findings from single-site 

studies that have identified unique cognitive phenotypes in TLE. We add to this literature by 

demonstrating the robustness of these phenotypes across data-driven and clinically-driven 

approaches and, for the first time, show how established neuropsychological criteria can be applied 

to identify phenotypic impairment at the individual patient level. Previous studies have identified 

the same general pattern of impairment across phenotypes in TLE: a group with domain-specific 

impairments in verbal memory and language, a group of patients with broad and pervasive 
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impairment, and a group of patients with intact cognition (Elverman et al., 2019; B. Hermann et 

al., 2007; Reyes et al., 2019). While these studies have been pivotal for discovering these 

phenotypes in independent datasets, they have not offered a means of translating the patterns into 

the clinical diagnostic setting. Here, we demonstrate that both approaches identified the same 

broad phenotypes with moderate agreement. Overall, these findings offer validation that 1) 

cognitive phenotypes are stable across TLE samples and 2) specific neuropsychological criteria 

can be applied to re-create these clusters and diagnose impairment profiles at the individual patient 

level.  

Implications of a network disorder in cognitive taxonomy 

 The traditional view of TLE as characterized by focal, often unilateral, medial temporal 

lobe dysfunction has been replaced by one that appreciates TLE as a network disorder with 

widespread abnormalities, including bilateral temporal and extra-temporal cortical thinning (Lin 

et al., 2007; McDonald et al., 2008; Whelan et al., 2018), widespread alterations in deep white 

matter tracks (Leyden et al., 2015; Otte et al., 2012) and superficial white matter (Chang et al., 

2019; Liu et al., 2016; Reyes et al., 2019), and increased large-scale network disruption (Bernhardt, 

Chen, He, Evans, & Bernasconi, 2011; van Diessen et al., 2014). More importantly, studies of 

structure-function relationships in TLE have shown that these diffuse brain abnormalities are 

associated with a wide range of cognitive deficits (Allone et al., 2017; Bell et al., 2011; Leyden et 

al., 2015). However, there are inconsistencies across neuroimaging studies in the nature and 

strength of these associations which may, in part, reflect studies aggregating all patients into one 

group. We replicate smaller studies that have identified three major cognitive phenotypes within 

the syndrome of TLE (Dabbs et al., 2009; Elverman et al., 2019; B. Hermann et al., 2007; Reyes 

et al., 2019). Studies examining the neural correlates associated with each phenotype have found 
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that patients with generalized impairment have brain abnormalities that are widespread in nature, 

those with syndrome-specific memory and language deficits have circumscribed alterations within 

the temporal lobes, and patients with intact cognition have brains comparable to healthy controls 

(Reyes et al., 2019; Rodriguez-Cruces et al., 2018). Therefore, treating all patients with TLE as a 

single group may obscure important cognitive and neuroanatomical variability across patient 

samples that are important for our understanding of the impact of TLE on cognition, which may 

hamper precision neuropsychology---the diagnosis and treatment of cognitive impairment in 

patients with epilepsy at the individual patient level.  

Clinical features associated with cognitive phenotypes 

 Approximately 25% of patients across recent phenotype studies have demonstrated specific 

impairments in memory and/or language (Dabbs et al., 2009; Elverman et al., 2019; B. Hermann 

et al., 2007; Reyes et al., 2019). We found that both approaches identified a similar proportion of 

patients with language and verbal memory impairment, with cluster analysis classifying 28% of 

patients and the clinical criteria identifying 30% as language/verbal memory impaired. Despite 

these patients demonstrating the traditional cognitive profile associated with TLE, they comprised 

the smallest group across both approaches. Furthermore, these patients did not demonstrate the 

traditional clinical profile associated with TLE; for example, they were not more likely to have an 

earlier age of seizure onset or a greater proportion of patients with MTS than the other groups.  

Our generalized group represented 40% of the patients when classified with the clinical criteria. 

These patients had longer disease duration (20 years on average) relative to patients with isolated 

verbal memory and language impairment and those with minimally impaired profiles. Longer 

disease duration has been associated with worse cognition and adverse long-term cognitive 

outcomes (C. Helmstaedter & Elger, 2009; C. Helmstaedter et al., 2003; B. P. Hermann et al., 
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2006). Hermann et al. (B. Hermann et al., 2007) demonstrated that patients with generalized 

impairment and longer disease duration were at increased risk for an abnormal cognitive trajectory 

compared to patients with domain-specific impairment over a 4-year interval. These findings 

suggest that cognitive phenotyping may not only explain the underlying neurobiology, but may 

also be important for predicting clinical course. However, disease duration alone may not explain 

the pervasive cognitive dysfunction observed in these patients given that other studies have not 

found this association (Elverman et al., 2019; Reyes et al., 2019). Given some evidence that 

patients with TLE are at increased risk for progressive neurophysiological and structural brain 

changes, it is possible that patients with generalized impairment represent a group of patients with 

co-morbid non-epilepsy pathology, elevated health-related risk factors, greater generalized tonic-

clinic seizures or low brain reserve. Finally, patients with minimally impaired profiles may 

represent a group of individuals with higher brain reserve given their intact cognition despite 

having similar clinical features to those with cognitive dysfunction. In our study, these patients 

had greater years of education, which has been hypothesized to be protective against epilepsy-

related cognitive dysfunction (Jokeit & Ebner, 1999; Oyegbile et al., 2004). Importantly, both 

approaches produce groups that differed in important clinical and demographic characteristics 

known to impact cognition.   

Misclassification  

 Although cluster analysis was able to correctly classify 82% of the patients based on their 

clinically-identified profiles, approximately 12% of patients with clinically significant impairment 

were classified as having a minimally impaired profile. These patients at the group level had more 

subthreshold anomalies than those who were classified into the other two groups. These results 

suggest that cluster analysis may be less sensitive for detecting complex patterns of impairment 
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within smaller samples. It is also possible that given our limited number of tests per domain, we 

were not able to capture the full pattern of impairment of these patients across all cognitive 

domains. Notably, cluster analysis is very sample-dependent given that it portions the data based 

on the information that is available and therefore, it is possible that these patients could have been 

classified into different solutions if we had a more comprehensive test battery. By contrast, the 

clinical criteria employed in our study are uniform in nature and are robust to different samples.  

 Given that Elverman et al. (Elverman et al., 2019) identified two subgroups of patients with 

isolated language and memory impairment and isolated executive function and processing speed, 

respectively, we ran a 4-cluster solution to determine whether these groups would emerge from 

those patients that were miss-classified. From our 4-cluster solution, two groups of patients with 

generalized impairment emerged, with one group demonstrating greater impairment in verbal 

memory relative to the other group. However, all other tests scores were highly overlapping, 

limiting the distinctness of these groups.  The other two groups identified in the 4-cluster solution 

were similar to those identified in the 3-cluster solution, which included a group with isolated 

verbal memory and language impairment and a group with minimal impairment. A potential 

explanation for the discrepancy between the two studies is that the patients in our study were more 

impaired, on average, compared to the patients in Elverman et al. In fact, the phenotypes in their 

study were not clinically impaired but overall demonstrated low scores across multiple domains.  

Limitations  

 There are several limitations to our study. First, we had an appropriate but somewhat 

limited number of tests per domain and therefore we could not further divide the patients into finer 

subgroups (i.e., verbal memory only, language only). Second, we did not have common visual 

memory and visuospatial tests across all three sites and therefore could not include these two 
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domains in our analyses. We recognize that not including a non-verbal memory test in the 

characterization of TLE phenotypes limits the generalizability of our findings. However, available 

non-verbal memory tests have shown poor sensitivity to right medial temporal lobe dysfunction in 

epilepsy (Barr, 1997; Barr et al., 1997; Saling, 2009; Vaz, 2004). This poor sensitivity of non-

verbal memory measures is reflected in the NINDS Epilepsy CDEs, which do not recommend any 

specific tests for this domain.  Furthermore, the visuospatial domain is included as an optional 

domain to include and is very seldom impaired in TLE (Barr, 1997; Tallarita, Parente, & 

Giovagnoli, 2019; Vaz, 2004), even in patients with generalized impairment (Elverman et al., 

2019; B. Hermann et al., 2007). However, future research incorporating protocols that include 

multiple non-verbal tests that are sensitive to non-dominant hemisphere dysfunction could help to 

refine cognitive phenotypes in TLE and other epilepsy syndromes. Third, we did not have 

neuroimaging data on our patients and therefore could not explore brain abnormalities associated 

with each phenotype. Future studies of brain-behavior relationships with large samples such as 

ours are warranted to replicate the findings in the literature on a large scale. Fourth, we had to 

remove 87 patients from the analysis given that cluster analysis does not handle missing data. In 

the future, we plan to explore the misclassification patterns of cluster analysis by comparing this 

method to other data-driven approaches robust to missing data. Fifth, our patient group consisted 

of mostly drug-resistant TLE, which may not generalize to all patients with TLE. However, the 

stability of these three phenotypes has recently been identified in a cohort of patients with mostly 

well-controlled TLE (Bruce P. Hermann et al., 2019). Finally, there are other epilepsy-related 

clinical variables (i.e., number and types of seizures, life-time number of GTC seizures, history of 

AEDs) that were not available in our dataset that may further differentiate the phenotypes 

identified.  
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Conclusion 

 We demonstrate the clinical translation of more than a decade of research into cognitive 

phenotypes in TLE. Specifically, in a large, multi-center sample, we propose a diagnostic approach 

for characterizing phenotypic patterns of impairment at the individual patient level. This 

classification framework not only helps to establish more meaningful cognitive and 

neurobehavioral taxonomies, but it could improve our ability to predict individual cognitive 

trajectories and/or match patients to individual treatments in order to improve a range of epilepsy-

related outcomes. While studying cognitive dysfunction based on epilepsy syndromes has 

expanded our understanding of the impact of epilepsy-related pathology on cognition, the 

phenotyping approach has offered a new classification framework that considers the individual 

variability observed within and across epilepsy syndromes. Further studies evaluating cognitive 

phenotypes in other epilepsy syndromes (e.g., frontal lobe epilepsy, genetic generalized epilepsy, 

juvenile myoclonic epilepsy) are needed in order to identify syndrome-dependent and syndrome-

independent phenotypes that could improve our ability to match patients to treatments and improve 

epilepsy-related outcomes.  
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Figures 

 

Figure 3.1: Distribution of cognitive scores across groups for the cluster analysis and clinical criteria. 
Scores are represented as mean z-scores and error bars represent standard deviations.  
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Figure 3.2: Distribution of z-scores for patients that were mis-classified as having minimal impairment 
based on cluster analysis. 
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Tables 
  
 
Table 3.1: Demographics and clinical variables 

  

 All TLE HC 
N 407 150 
Age 36.36 (12.29) 35.31 (13.26) 
Education  13.22 (2.4) 14.61 (2.5) 
Sex: M/F 182/225 59/91 
TLE: temporal lobe epilepsy; F: females; M: males; L: standard deviations are presented inside the 
parentheses 



 

 

 

80 

 
Table 3.2: Demographics and clinical variables clusters and clinical phenotypes  

 

A) Demographics and clinical variables across clusters 

 Cluster 1-Gen Cluster 2-LM Cluster 3-MI  

n 118 113 176 ANOVA p-value 
Age (years) 36.15 (12.44) 34.92 (11.68) 37.43 (12.29) 1.467 .232 
Education (Years) 12.97 (2.39) 12.76 (2.19) 13.67 (2.43) 6.012 .003 
Age of Onset 15.54 (12.66) 16.89 (12.88) 19.97 (13.91) 4.322 .014 
Duration (years) 20.59 (12.82) 18.01 (12.16) 17.43 (12.83) 2.316 .100 

    Fisher’s Exact p-value 

Sex: M/F 48/70 60/53 74/102 4.46 .109 
Handedness: L/R/A 17/97/3 17/92/4 22/148/6 3.15 .909 
Side: L/R/Bilateral 68/35/4 69/32/4 77/67/7 6.89 .135 
MTS: Yes/No 53/39 54/41 48/74 9.43 .009 
B) Demographics and clinical variables across clinical phenotypes 
 No 

Impairment 
Language & 
Verbal Memory Generalized  

n 133 121 153 ANOVA p-value 
Age (years) 37.53 (12.65) 35.56 (12.17) 35.98 (12.09) .928 .396 
Education (Years) 13.80 (2.43) 12.72 (2.16) 13.10 (2.4) 6.95 .001 
Age of Onset 20.99 (13.67) 16.86 (13.61) 15.86 (12.51) 5.81 .003 
Duration (years) 16.51 (12.12) 18.69 (12.76) 20.11 (12.94) 2.905 .056 
    Fisher’s Exact p-value 
Sex: M/F 61/72 60/61 61/92 2.69 .254 
Handedness: L/R/A 20/108/5 15/102/4 21/127/4 2.39 .975 
Side: L/R/Bilateral 58/49/3 68/41/4 88/44/8 5.29 .257 
MTS: Yes/No 36/54 58/45 61/55 5.53 .063 
F: females; M: males; L: left; R: right; A: ambidextrous; MTS: mesial temporal sclerosis; MI: minimal 
impairment; LM: language & memory; Gen: generalized; standard deviations are presented inside the 
parentheses 
Bold: significant with FDR correction 
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Table 3.3: Demographics and clinical variables across clinically impaired patients classified as 
having a normal profile with cluster analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

  

 Language &  
Verbal Memory Generalized  

N 32 16 
Age (years) 36.09 (13.19) 37.82 (10.66) 
Education (Years) 13.13 (2.34) 14.00 (2.556) 
Age of Onset  17.00 (13.82) 16.81 (14.15) 
Duration (years) 19.09 (14.27) 21.01 (14.02) 
Sex: M/F 13/19 3/13 
Handedness: L/R/A 1/30/1 1/14/1 
Side: L/R/Bilateral 15/13/2 7/6/2 
MTS: Yes/No/Unknown 9/17/6 4/6/6 
Neuropsychological Profile 
Immediate Memory -1.16 (.626) -.74 (.816) 
Delayed Memory -1.23 (.571) -.771 (.515) 
BNT -1.18 (.1.12) -1.15 (.928) 
Letter Fluency -.861 (1.09) -1.02 (1.22) 
TMT-A -.568 (.663) -1.16 (.867) 
TMT-B -.546 (1.24) -1.85 (.428) 
Peg Dominant -.714 (.828) -.865 (.901) 
Peg Non-Dominant -.538 (.898) -.849 (.777) 
F: females; M: males; L: left; R: right; A: ambidextrous; MTS: mesial temporal 
sclerosis; BNT: Boston Naming Test; TMT-A: Trail Making Test condition 
A; TMT-B:  Trail Making Test condition B; Peg: Grooved Pegboard; standard 
deviations are presented inside the parentheses 
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J., Roesch, Scott, & McDonald, Carrie R. Moving towards a taxonomy of cognitive impairments 

in epilepsy: Application of latent profile analysis to 1,178 patients with temporal lobe epilepsy. 
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Abstract  

Background: Utilize latent profile analysis (LPA) to test several models of cognitive phenotypes 

in a large multicenter sample of patients with temporal lobe epilepsy (TLE) and evaluate their 

demographic and clinical profiles. To examine the added value of replacing missing data and 

examine factors that may be contributing to missingness.  

Method: A sample of 1,178 participants met inclusion criteria for the study, which included a 

diagnosis of TLE and availability of comprehensive neuropsychological data. Models with 2-5 

classes were examined using LPA and the optimal model was selected based on fit indices, 

posterior probabilities, and proportion of sample sizes. The models were also examined with 

imputed data to investigate the impact of missing data on model selection.  

Results: Based on the fit indices, posterior probability, and distinctiveness of the latent classes, a 

3-class solution was the optimal solution. This 3-class solution was comprised of a group of 

patients with multidomain impairments, a group with impairments predominantly in language, and 

a group with no impairments. Overall, the Multidomain group demonstrated a worse clinical 

profile and was comprised of a greater proportion of patients with mesial temporal sclerosis, longer 

disease duration, and higher number of antiseizure medications. The 4-Class and 5-Class solutions 

demonstrated the lowest probabilities of group membership. Analyses with imputed data 

demonstrated that the 4-Class solution was the optimal solution; however, there was weak 

agreement between the missing and imputed datasets for the 4-Class solutions (κ = .288, p < .001).  

Conclusions: This study represents the first to use LPA to test and compare multiple models of 

cognitive phenotypes in TLE, and to determine the impact of missing data on model fit. We found 

that the three-phenotype model was the most meaningful based on several fit indices and produced 

phenotypes with unique demographic and clinical profiles. Our findings demonstrate that LPA is 
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a rigorous method to identify phenotypes in large, heterogeneous epilepsy samples.  Furthermore, 

this study highlights the importance of examining the impact of missing data in phenotyping 

methods. Our LPA-derived phenotypes can inform future studies aimed at identifying cognitive 

phenotypes in other neurological disorders.  

 
Abbreviated summary: Reyes et al. utilize latent profile analyses to derive cognitive phenotypes 

in a large, multi-site study of 1,178 patients with temporal lobe epilepsy. The authors found that 

the three-phenotype model was the most meaningful based on several fit indices, the most robust 

to missing data, and produced phenotypes with unique demographic and clinical profiles.  

Key words: temporal lobe epilepsy, cognitive phenotype, taxonomy, latent profile analyses, data-
driven approach, memory, language 
 
Running title: Utility of latent profile analyses  
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Introduction  
 

The cognitive comorbidities of epilepsy have been an area of research inquiry for over a 

century (David W Loring, 2010) and are now part of the formal definition of epilepsy (Robert S 

Fisher et al., 2005). Historically, the lesion model has been used to examine the relationship 

between epilepsy pathology and cognition, yielding syndrome-specific cognitive profiles (B. P. 

Hermann et al., 2021). However, a myriad of studies have demonstrated that cognitive impairments 

in epilepsy are more widespread and generalized than hypothesized by the lesion model (Allone 

et al., 2017; B. Bell, J. J. Lin, M. Seidenberg, & B. Hermann, 2011). For example, patients with 

temporal lobe epilepsy (TLE) demonstrate impairments in domains that are not typically 

associated with temporal lobe damage (i.e., executive function), and those with frontal lobe 

epilepsy demonstrate impairments in “non-frontal” functions (i.e., memory) (Arrotta et al., 2021; 

Centeno, Thompson, Koepp, Helmstaedter, & Duncan, 2010; Helmstaedter, Kemper, & Elger, 

1996; Stretton & Thompson, 2012). Further, there is significant variability within epilepsy 

syndromes with some patients demonstrating generalized impairment while others have minimally 

impaired profiles despite having similar clinical features (Arrotta et al., 2021; B. Hermann, 

Seidenberg, Lee, Chan, & Rutecki, 2007; B. P. Hermann et al., 2021; Reyes et al., 2019; Reyes et 

al., 2020).   

 In efforts to better understand the cognitive heterogeneity within and across epilepsy 

syndromes, an emerging taxonomy has been proposed and validated in several independent 

samples. The phenotyping approach identifies latent groups or phenotypes that share similar 

patterns of performance across a series of neuropsychological tests. To date, 18 studies have 

identified phenotypes based on objective or subjective cognitive impairments across a range of 

epilepsy disorders (for a review see B. P. Hermann et al., 2021). Several of these studies have also 
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found neuroimaging correlates that are unique to each phenotype and more directly map on to the 

pattern of cognitive impairment that is otherwise obscured by the lesion-based model (Dabbs, 

Jones, Seidenberg, & Hermann, 2009; B. Hermann et al., 2020; Reyes et al., 2019; Rodríguez-

Cruces, Bernhardt, & Concha, 2020; Rodriguez-Cruces et al., 2018).  Furthermore, this approach 

has been shown to be useful in examining cognitive progression (B. Hermann et al., 2007) and 

postoperative cognitive decline (Baxendale & Thompson, 2020). Importantly, this new taxonomy 

allows for the integration of non-epilepsy factors that are known to impact cognition and 

exacerbate existing neurological disorders and may further explain the heterogeneity in cognitive 

impairment observed within epilepsy syndromes (B. P. Hermann et al., 2021).  

In TLE specifically, 3-5 phenotypes have been identified, with three consistent groups 

across studies: a group of patients with generalized impairment, a group with a more domain-

specific profile (e.g., memory and language), and a subgroup with minimally impaired cognitive 

profiles (Elverman et al., 2019; Garcia-Ramos et al., 2021; B. Hermann et al., 2020; B. Hermann 

et al., 2007; Reyes et al., 2019; Reyes et al., 2020; Rodriguez-Cruces et al., 2018). The generalized 

and intact phenotypes have been uniformly described across studies, however, there has been 

substantial variability in the number and nature of the “focal” or domain-specific phenotypes 

across investigations. Thus, a final or definitive taxonomy remains to be determined. The 

variability in the domain-specific group may in part be due to differences in the methodology used 

across investigations. Methods to cognitive phenotyping have included data-driven approaches 

such as cluster analysis as well as actuarial approaches, which consist of establishing and applying 

a priori criteria for impairment. Our group has demonstrated that there is high concordance 

between phenotypes derived from cluster analysis and actuarial neuropsychology criteria; 

however, cluster analysis tends to misclassify patients with clinically-defined cognitive 
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impairments as having intact cognition (Reyes et al., 2020). Furthermore, many of the phenotype 

studies have been conducted in single epilepsy centers with modest samples sizes which could 

have impacted the number and nature of the derived phenotypes. We argue that studies with large 

samples and rigorous methodology are needed in order to derive at a definitive taxonomy, 

particularly as we are to translate these research-based phenotypes into clinical practice or deploy 

our model for international use.  

The utility of the cognitive phenotyping approach has been evaluated in other neurological, 

developmental, and psychiatric disorders including multiple sclerosis (De Meo et al., 2021; 

Leavitt, Tosto, & Riley, 2018), Parkinson’s disease (Barvas et al., 2021; Kenney et al., 2022), 

Autism Spectrum Disorder (Charman et al., 2011), and childhood psychiatric disorders 

(Kavanaugh et al., 2016). These studies have demonstrated that deriving more clinically 

meaningful cognitive phenotypes leads to a better understanding of the pathophysiological 

mechanisms underlying these conditions. Importantly, cognitive phenotyping is a patient-centered 

approach that could eventually inform personalized treatments for a variety of neurological, 

psychiatric, and developmental disorders.  

Although several phenotype models have been reported in the epilepsy literature, this 

represents the first study to use latent profile analyses (LPA) to consider and compare multiple 

models. LPA is a person-centered statistical technique that classifies individuals into groups based 

on their patterns of responses to a set of observed variables (Conte, Heffner, Roesch, & Aasen, 

2017; Spurk, Hirschi, Wang, Valero, & Kauffeld, 2020). The primary goal of LPA is to maximize 

both the homogeneity within groups and the heterogeneity among groups. The selection of the 

optimal number of groups or classes is based on probabilities and objective and rigorous fit indices. 

Unlike other data-driven approaches, such as cluster analysis, that assign an individual to one 
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group only, LPA examines the probability of membership to each cluster or class. Thus, LPA can 

inform the definition of mutually exclusive taxonomies with a greater level of certainty. First, we 

test several models and use a variety of fit indices to derive with the most meaningful model. 

Second, we test the added value of replacing missing data and examine factors that may contribute 

to missingness. Finally, we examine the demographic and clinical profiles of the cognitive 

phenotypes. Epilepsy syndromes offer an opportunity to examine methods of cognitive 

phenotyping as they represent a neurological condition with both focal and generalized pathology, 

thus providing insight into brain-behavior relationships within phenotypes. As such, information 

gained from this study can be applied to other neurological conditions that may have underlying 

cognitive phenotypes.  

Materials and Methods  

Participants  

 This study was approved by the Institutional Review Boards at UC San Diego, UC San 

Francisco, University of Wisconsin Madison, Cleveland Clinic, Emory University, Columbia 

University, and New York University. Informed consent was collected from patients at UC San 

Diego, UC San Francisco, Emory University, Columbia University, and University of Wisconsin 

Madison. At Cleveland Clinic and New York University, data were collected as part of IRB-

approved data registries. Patients were included in the study if they had a diagnosis of TLE 

including unilateral and bilateral TLE by a board-certified neurologist with expertise in 

epileptology, in accordance with the criteria defined by the International League Against Epilepsy 

(R. S. Fisher et al., 2017), and based on video-EEG telemetry, seizure semiology, and/or 

neuroimaging evaluation. The presence of mesial temporal sclerosis (MTS) was determined by 

inspection of MRI images by a board-certified neuroradiologist. Information on other types of 
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pathology was not systematically available across sites and therefore excluded from analyses. One-

thousand four-hundred and twenty-five patients with TLE met inclusion criteria for the study. 

Although LPA handles missing data, a cut-off of 6 out of the 8 neuropsychological tests was used 

to minimize the number of missing data points per patient. This resulted in the inclusion of 1,178 

patients for the final analysis (72%= 8 tests, 24% = 7 tests, 4%= 6 tests). There were no differences 

in demographic or clinical variables between the included and excluded cases (all p-values >.05). 

Average age of the final sample was 37.76 (SD=12.14), average education 13.94 (SD= 2.806); the 

sample was 57% female; and self-identified race distribution was as follow: 79.6% Non-Hispanic 

White, 9.3% Non-Hispanic Black, 2.9% Asian, 0.3% Native American, 1.9% Multiracial, and 

5.9% unknown/not reported. Approximately 2.3% of the total sample self-identified as 

Hispanic/Latinx.  

Neuropsychological measures 

The following tests were common across the sites and were selected based on 

recommendations from the National Institute of Neurological Disorders and Stroke Epilepsy 

Common Data Elements (CDE; D. W. Loring et al., 2011) and the ILAE Neuropsychology Task 

Force Diagnostic Methods Commission (Baxendale et al., 2019). In addition, measures of motor 

dexterity and processing speed were included based on previous studies demonstrating that these 

skills are often impaired in TLE patients with generalized impairment (Elverman et al., 2019; B. 

Hermann et al., 2007). Verbal memory was evaluated with the Wechsler Memory Scale-Third or 

Fourth Edition Logical Memory (LM) immediate (LM1) and delayed recall (LM2) (Wechsler, 

1997). The CDE recommends list learning measures to assess verbal memory, however, there was 

variability in the tests administered across sites and therefore list learning was not included in this 

study. Language ability was evaluated with the Boston Naming Test (BNT; Kaplan, 2001) and 
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letter (F-A-S) and animal fluency; mental flexibility/set-shifting was measured with the Trail 

Making Test B (TMT-B); processing speed was measured with TMT-A; fine motor dexterity was 

measured with the Grooved Pegboard to obtain a proxy for medication effect (Eddy, Rickards, & 

Cavanna, 2011; David W Loring, Marino, & Meador, 2007). There were limited common 

visuospatial tests across sites, which has been a limitation across other multi-center studies in 

cognitive phenotypes (McDonald et al., 2022; Reyes et al., 2020). Given that the scores for the 

dominant and non-dominant hands were highly correlated (r=.532, p<.001) in our sample, scores 

from the dominant hand were selected to reduce collinearity. Although letter fluency has both a 

language and an executive function component, it showed a strong correlation with BNT (r= .395, 

p <.001) and animal fluency performance (r= .605, p <.001) at the TLE group level. Age-corrected 

scaled scores were calculated for LM1 and LM2 based on normative data provided by the test 

manual. Race, age, education, and sex-corrected T-scores were calculated for the BNT, letter 

fluency, animal fluency, TMT-A, TMT-B, and PegD based on normative data from the expanded 

Halstead-Reitan Battery (Heaton, Miller, Taylor, & Grant-Isibor, 2004). All scores were converted 

to T-scores for interpretability. The distribution of missing data across tests was animal fluency 

(n=209), letter fluency (n=63), PegD (n=39), TMT-B (n=24), BNT (n=13), TMT-A (n=8), LM2 

(n=6), and LM1 (n=5).  

Statistical Analysis  

Latent profile analysis  

Latent profile analysis was conducted using Mplus Version 8 (Muthén & Muthén, 2010). 

The following continuous variables were included in the model: LM1, LM2, BNT, animal fluency, 

letter fluency, TMT-A, TMT-B, and PegD. Although LPA handles missing data, the models were 

also evaluated with imputed data using multiple imputations in SPSS (Nie, Bent, & Hull, 1975; 
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van Ginkel & van der Ark, 2005). Missing scores were replaced with the average score across five 

imputed datasets. There were 853 (73%) patients with a complete dataset. There were differences 

in missingness across the sites (Fisher’s Exact= 496.27, p<.001), with UCSF, Cleveland Clinic, 

and UCSD having the most missing data. There were differences in age [t (523.39) =1.996, p=.023] 

and education [t (681.16) = -6.479, p<.001] between the patients with complete data and those 

with missing data. Patients with complete data were younger in age (Mean= 37.26, SD= 12.59) 

and had greater years of education (Mean=14.25, SD = 2.87) relative to patients with missing data 

(Age mean= 39.17, SD=14.40; Education mean= 13.16, SD=2.45). However, effects sizes 

calculated with Cohen’s d were in the small range (Age d=.138; Education d=.394). There were 

no differences in the distribution of sex, age of epilepsy onset, and duration of disease (all p-values 

> .05).  

The following model indices were evaluated to determine the optimal number of 

classes/profiles: Lo–Mendell–Ruben Adjusted Likelihood Ratio Test (LMRT; Lo, Mendell, & 

Rubin, 2001), Bootstrapped Likelihood Ratio Test (BLRT; Arminger, Stein, & Wittenberg, 1999; 

McLachlan, Lee, & Rathnayake, 2019; Ramaswamy, DeSarbo, Reibstein, & Robinson, 1993), 

Akaike Information Criteria (AIC; Akaike, 1974), Bayesian Information Criterion (BIC; Schwarz, 

1978), sample size-adjusted BIC (Schwarz, 1978), and entropy (Ramaswamy et al., 1993). The 

LMRT provides an indication of statistically significant improvement by comparing the solution 

being evaluated with a more complex solution; significant LMRT indicates that a more complex 

solution (e.g., 4-class) provides better fit relative to a less complex model (e.g., 3-class). Similar 

to the LMRT, the BLRT statistically compares a more complex model to a less complex one by 

using repeated sampling methods. The AIC, BIC, and size-adjusted BIC are each based on the log 

likelihood function for each individual model and lower values indicate better relative fit. Entropy 
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is a measure on how well the classes/profiles can be distinguished and is calculated from the 

posterior probabilities. Each individual is assigned a posterior probability for each class rather than 

being assigned to one and only one class. Entropy is therefore the aggregate of the posterior 

probabilities and it ranges from 0 to 1, with higher values (>.80) indicating that the classes can be 

highly distinguished. In addition to the indices described above, each class sample size was 

evaluated. The interpretability of each class was evaluated to determine if a specific class solution 

was consistent with previous research.  

An analysis of agreement using the Cohen’s Kappa statistic was performed to determine 

the consistency of impairment classification between missing data and imputed data. Discriminant 

function analyses (DFA) were conducted to further validate the distinctiveness of the latent classes. 

The R3Step approach in MPlus was used to compare categorical and continuous sociodemographic 

and clinical variables associated with class membership (Asparouhov & Muthén, 2014; Collier & 

Leite, 2017). This approach simultaneously estimates the best-fitting solution while evaluating the 

associations between class membership and variables of interest, thus accounting for potential 

misclassification in class membership. The DCON command was used for continuous variables 

and DCAT for continuous variables. Analysis of covariance (ANCOVA), controlling for age, sex, 

and education were conducted to compare neuropsychological performance (T-scores) across 

groups. When results from the ANCOVA were significant, group contrasts were assessed using 

post-hoc pairwise tests with Bonferroni correction. Multiple comparisons were corrected using 

Benjamini-Hochberg false discovery rate (Benjamini & Hochberg, 1995). 

Data Availability Statement 
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Authors have full access to all study data and participant consent forms and take full 

responsibility for the data, the conduct of the research, the analysis and interpretation of the data, 

and the right to publish all data.  

Results 

Latent Profile Analysis 

Table I demonstrates the fit indices and sample sizes across the different class solutions for 

both the missing data and imputed data. For the dataset with missing data (Table 1A), the best 

fitting and most substantively meaningful solution had 3 classes based on entropy, fit statistics, 

and pattern of scores. For the 3-Class solution, entropy was .816 but dropped below .80 when 

increasing to a 4-Class solution; and LMRT test went from significant with the 3-class solution 

(p<.01) to non-significant when moving to the 4-class solution (p=.116). Figure 1 shows the pattern 

of impairment for each class without the imputed data. Impairment was defined as one standard 

deviation below the mean (T-score<40). For the 3-Class solution, Class 1 demonstrated 

impairments across most tests (7/8 tests) with predominant memory and language impairments, 

Class 2 demonstrated predominantly impairments in language and Class 3 demonstrated no 

impairments at the group level with relatively high scores in memory. The models were also tested 

with the sample that had at least 7 out of the 8 tests available and the results were consistent with 

the above sample. 

For the imputed dataset (Table 2B), the 4-Class solution was the best fitting given that 

entropy was the highest and the LMRT was significant when moving to a 4-Class solution from a 

3-Class solution, but non-significant when moving to a 5-Class solution. Figure 2A shows the 

pattern of impairment for each class across the 4-Class solution based on the imputed data. Class 

1 demonstrated impairment across most tests (7/8) with predominant deficits in memory and 
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language; Class 2 demonstrated impairments in language and borderline impairments delayed 

memory; Class 3 showed mainly impairments in naming (BNT); and Class 4 had an overall intact 

profile. Fine motor dexterity was impaired across Classes 1-3. Given that the language measures 

had the most missing data, the distribution of scores were plotted for BNT (Fig 2B), animal (Fig 

2C), letter fluency (Fig 2D), with individual data points coded by whether they were raw values 

versus imputed values.  

Agreement between missing data and imputed data 

Cohen’s Kappa statistic revealed an almost perfect agreement between the dataset with 

missing data and the imputed data for the 2-Class (κ = .985, p < .001; 99.23% concordance rate) 

and 3-Class (κ = .983 p < .001; 98.98% concordance rate) solutions. A weak agreement was found 

for the 4-Class (κ = .288, p < .001; 47.37% concordance rate) and the 5-Class (κ = .120, p < .001; 

28.9% concordance rate) solutions. Further examination of the 4-Class solutions demonstrated that 

misclassification was mostly between Class 2 (49% misclassified as Class 3 with the imputed data) 

and Class 3 (50% misclassified as Class 2 with the imputed data). Subsequent analyses were 

conducted on the dataset with missing data points to demonstrate the utility of LPA with handling 

missing data.  

Probability of group membership 

Figure 3 shows the distribution of probability of group membership for each class solution. 

Average probabilities were as follows: 2-Class (mean=.933, SD= .121; range= .51-1); 3-Class 

(mean=.914, SD= .129; range= .51-1); 4-Class (mean=.848, SD= .173; range= .35-1); 5-Class 

(mean=.877, SD= .149; range= .36-1). A cut-off of above 80% was considered good probability 

of group membership. The percentage of patients with a probability lower than 80% was the lowest 
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for the 2-Class solution (12.8%), followed by 3-Class (17.1%), 5-Class (24.9%) and highest in the 

4-Class solution (32.2%).  

Discriminant function analysis 

To further validate the distinctiveness of the latent classes, DFA was performed with the 

cognitive scores as predictors of latent class membership. The DFA indicated that 97.9% of cases 

were correctly classified in the 2-Class solution; 96.2% for the 3-Class solution; 95.9% for the 4-

Class solution; and 95.8% for the 5-Class solution. Figure 4 shows the scatter plots of individuals 

on the discriminant dimensions for the 3-, 4-, and 5-Class solutions.   

Selection of most meaningful solution  

Based on the fit indices, posterior probability, and distinctiveness of the latent classes, a 3-

class solution was selected. This was further supported by the patterns of cognitive impairment 

observed, which were similar to what has been reported on prior literature on cognitive phenotypes 

in TLE (Elverman et al., 2019; Garcia-Ramos et al., 2021; B. Hermann et al., 2020; B. Hermann 

et al., 2007; Reyes et al., 2019; Reyes et al., 2020).  As described, patients in Class 1 demonstrate 

a profile characterized by impairments across most tests with prominent impairments in verbal 

learning and memory and language and are labeled the Multidomain phenotype hereafter. Class 2 

showed a predominantly language impaired profile and will be labeled Language phenotype 

hereafter. Patients in Class 3 showed a profile characterized by no measurable impairments across 

tests and are labeled the No Impairment phenotype.  

Differences in demographics, clinical, and neuropsychological variables 

Table 2 shows differences in demographic and clinical variables across phenotypes for the 

3-Class solution and table 3 shows the follow-up group contrasts. There were differences in age, 

education, age at onset of epilepsy, disease duration, and number of antiseizure medications 
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(ASM) across phenotypes. The Multidomain group had a younger age, lower years of education, 

younger age of epilepsy onset, and longer disease duration relative to the Language Impaired and 

the No Impairment phenotypes. The Multidomain phenotype also had a greater number of ASMs 

relative to the No Impairment phenotype. The Language phenotype had a younger age, lower years 

of education, younger age of epilepsy onset, longer duration, and a greater number of ASM relative 

to the No Impairment phenotype. There were differences in the presence of MTS, with the No 

Impairment group having fewer patients with MTS (26.4%) relative to the Multidomain (38.5%) 

and Language phenotype (35.9%). There were no other differences across phenotypes.  

There were differences across all neuropsychological measures (Table 4A). Group 

contrasts revealed significant differences between phenotypes for all test except for TMT-A. For 

TMT-A there were no differences between the Language and No Impairment groups (p=.079). 

Cohen’s d effect sizes were calculated to determine the difference in magnitude between groups 

(Table 4B). Effect sizes between groups ranged from small to large and the pattern of effect sizes 

was consistent across groups.   

Discussion  

This study utilized a robust and rigorous statistical method to derive cognitive phenotypes 

in a large, multi-site study of 1,178 patients with TLE in order to adjudicate among published 

findings which have produced variable results, and to arrive at a definitive taxonomy of 

neuropsychological status in this common and problematic epilepsy syndrome. First, we found 

that the three-phenotype model was the most meaningful based on several fit indices and pattern 

of impairment; it was the most robust to missing data; and the demographic and clinical profiles 

were consistent with prior literature. Second, we demonstrated the importance of examining the 

factors associated with missing data and determined whether different phenotype models are 
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robust to the missingness. Third, we provide methods to examining the stability of the phenotypes 

including examining the probability of group membership provided by LPA. As the cognitive 

phenotyping approach continues to gain traction in the neuropsychology literature, utilizing 

rigorous, person-centered methods such as LPA will inform the generalizability of the phenotypes 

and the translation of the cognitive phenotypes into clinical diagnostic criteria.  

Determining the Optimal Solution  

An advantage of LPA is that individuals are assigned into classes based upon membership 

probabilities estimated directly from the model (Spurk et al., 2020). Further, LPA provides several 

fit indices that can help the researcher determine the optimal solution with a greater level of 

certainty. In our study, we tested five solutions (2-5 classes) based on prior literature with and 

without imputed data. Based on the fit indices described above, the 3-Class solution was the 

optimal solution with the raw dataset. We also examined the posterior probabilities, which provide 

information on the probability of an individual belonging to the group to which they were assigned. 

We found that for models with multiple classes (e.g., 4-Class and 5-Class), the probability of group 

membership decreases. In fact, for the 4-Class solution approximately 4% of the sample had a 

probability of group membership below 50% and Class 3 and 4 within this model had a large 

proportion of patients with poor probability of group membership. This may suggest that with finer 

characterization of phenotypes (e.g., domain-specific) it is more difficult to distinguish the groups 

as individual patients may have overlapping features across classes. Given that we had a limited 

number of tests per cognitive domain, it is possible that with a more comprehensive battery (i.e., 

more tests per domain) or potentially more sensitive measures (i.e., list learning instead of story 

recall) LPA will be able to classify individuals with greater level of certainty. We also used 

discriminant function analysis to further examine the distinctiveness of the groups and again we 
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found that correct classification using the cognitive scores only was lower for the 4-Class and 5-

Class models. Overall, this suggests that in order to further divide patients into finer subgroups 

using data-driven approaches (i.e., verbal memory only, language only), large samples with 

comprehensive batteries of tests may be required. Notably, using clinical criteria may allow for 

the characterization of finer groups such as the single-domain impaired phenotype described in 

harmonized, actuarial approaches, such as the International Classification of Cognitive Disorder 

in Epilepsy (IC-CoDE) framework (McDonald et al., 2022; Norman et al., 2021).  

The Impact of Missing Data 

Given the nature of clinical research, missing neuropsychological data may be unavoidable. 

However, missing data may lead to bias and loss of information when utilizing data-driven 

approaches and this is particularly important for the phenotyping literature as groups are derived 

based on the data that are available (Ibrahim, Chu, & Chen, 2012; Sterne et al., 2009). Although it 

is difficult to determine if neuropsychological data are missing at random or not at random, 

systematically examining the characteristics of the samples may provide valuable information and 

inform the generalizability of the findings. In our sample, there were no significant differences in 

demographic and clinical variables between the final sample (N=1,178) and the patients that were 

excluded due to missing a substantial amount of data (N=247). When examining the final sample, 

the patients with incomplete data had fewer years of education and were older in age.  Notably, 

although this was statistically significant, the magnitude of the difference was small and not 

clinically meaningful. Interestingly, post-hoc analyses revealed differences in the proportion of 

patients with incomplete data across the 3-Class solution (FE= 14.44, p=<.001), with the No 

Impairment phenotype having fewer patients with missing data (17%) relative to the Multidomain 

(30%) and Language (30%) phenotypes. Therefore, it is possible that older age and fewer years of 
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education were contributing factors to the missing data or that greater cognitive impairment led to 

incomplete testing. Although it is not possible to determine whether these factors truly explain the 

missing data, this suggests that the data are not missing at random and that there may be factors 

(e.g., patient or study-specific) explaining the missingness. Therefore, future studies in cognitive 

phenotyping should examine contributing factors to missing data given their potential impact on 

the generalizability of the phenotypes.  

Unlike cluster analysis, which cannot handle missing data, missing data in latent class 

indicators is generally acceptable in LPA. To address any pitfalls in our analyses, we replaced 

missing values with values imputed from the data that were available and ran the models with the 

imputed datasets. Results from these analyses suggested that the 4-Class solution was the most 

meaningful solution. The groups in this solution were less distinct based on the clinical 

interpretation of their cognitive profiles. Based on prior literature (Elverman et al., 2019; Reyes et 

al., 2020), the pattern of impairment with four groups or more are less consistent across studies 

and this may be due to the number and type of tests selected, the degree of cognitive impairment 

across patient samples, and the method used to derive the phenotypes. Further, there was perfect 

agreement between the missing and imputed datasets for the 2-Class and 3-Class but weak 

agreement for the 4-Class and 5-Class solutions. Further examination of the 4-Class solutions 

demonstrated that misclassification was most common between Classes 2 and 3, which shared 

similar features in their cognitive profiles. Thus, the imputed data had a greater impact when 

deriving finer characterizations of cognitive phenotypes and thus future studies must consider the 

impact of missing data and the methods for replacing the missing data when examining more than 

three phenotypes. Lastly, these findings suggest that the three cognitive phenotypes described 
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across several studies are relatively stable and are more robust to missing data compared to models 

with four or more classes. 

Optimal solution 

Similar to prior studies (B. Hermann et al., 2020; B. Hermann et al., 2007; B. P. Hermann 

et al., 2021; Reyes et al., 2020; Rodriguez-Cruces et al., 2018), the 3-Class model consisted of a 

group of patients with multidomain impairments (30%), a sizable group with focal deficits in 

language (53%), and a third group with relatively intact cognitive profile (16%). The proportion 

of patients in the Multidomain and Language phenotypes fell within the range reported in the 

literature for generalized impairment (9-29%) and focal deficits (24-54%) (B. P. Hermann et al., 

2021). Surprisingly, the No Impairment group was relativity smaller compared to other 

investigations reporting 27 to 54% of their samples with intact profiles. Most recently, the 

cognitive phenotyping literature has informed the development of the IC-CoDE initiative aimed at 

developing a consensus-based classification system for cognitive disorders in epilepsy(Norman et 

al., 2021). The IC-CoDE leveraged results from the cognitive phenotyping and neuropsychology 

literature more broadly, to develop a framework for diagnostic decisions that utilizes the number 

of impaired domains to derive cognitive phenotypes. This framework includes four cognitive 

phenotypes: 1) generalized impairment (i.e., 3 more domains impaired), 2) bi-domain, 3) single-

domain, 4) cognitively intact (McDonald et al., 2022). However, given that the initial purpose of 

the IC-CoDE was to provide a framework for research, more rigorous methods and external 

validation will be needed to determine its clinical utility and LPA provides a promising 

methodology to achieve this goal.  

A major interest in the phenotype literature is relating the derived clusters or classes to 

sociodemographic and clinical variables, neural correlates, and treatment outcomes. We used a 
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robust method to examine differences in demographic and clinical variables across phenotypes, 

which reduces bias by accounting for the uncertainty of the best-fitting class solution (Asparouhov 

& Muthén, 2014). These analyses revealed that the No Impairment phenotype had more years of 

education, which has been shown to serve as a protective factor against epilepsy-related pathology 

(Jokeit & Ebner, 1999; Oyegbile et al., 2004). This group also demonstrated less disease burden 

relative to the other two groups including less duration of disease, fewer ASMs, and fewer patients 

with MTS. All of these factors have been associated with increased risk of cognitive impairment 

(Brian Bell, Jack J Lin, Michael Seidenberg, & Bruce Hermann, 2011; Elger, Helmstaedter, & 

Kurthen, 2004; B. P. Hermann et al., 2021). Thus, this smaller subgroup of patients in our sample 

may represent a group with a combination of protective factors and less disease burden. Notably, 

our sample consisted of mostly drug-resistant TLE, which based on the epilepsy literature is 

associated with poorer cognitive profiles than those who are drug-responsive (Brian Bell et al., 

2011; B. P. Hermann et al., 2021). However, given that most neuropsychological studies in 

epilepsy aggregate all patients into one group, patients with drug-resistant epilepsy, but with intact 

cognitive profiles have not been well characterized until recently.  

Further, the Multidomain group is another unexpected phenotype based on the lesion-

model that has been hypothesized to represent a group of patients with potential co-morbid non-

epilepsy pathology, elevated health-related risk factors, greater generalized tonic-clinic seizures or 

lower brain reserve (B. P. Hermann et al., 2021). In our study, this group had less years of 

education, younger onset of epilepsy, longer duration of disease, were taking more ASMs, and had 

a greater proportion of patients with MTS. Other studies have also found that phenotypes with 

generalized impairment have less years of education (Elverman et al., 2019; Rodriguez-Cruces et 

al., 2018), younger age of onset (Elverman et al., 2019; Reyes et al., 2020; Rodriguez-Cruces et 
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al., 2018), longer disease duration (B. Hermann et al., 2007), were taking more ASMs (B. Hermann 

et al., 2007), and had greater portion of patients with MTS (Rodriguez-Cruces et al., 2018). In 

more benign forms of TLE (B. Hermann et al., 2020), patients with multidomain impairments had 

lower years of education as did their parent, which has been suggested to be a potential 

socioeconomic indicator. Finally, the Language phenotype also demonstrated greater disease 

burden relative to the No Impairment phenotype. It is noteworthy to mention that there were no 

differences in the side of seizure onset across the phenotypes, which has been a consistent finding 

across studies (B. Hermann et al., 2007; Reyes et al., 2019; Reyes et al., 2020; Rodriguez-Cruces 

et al., 2018). Although this may at first appear surprising, this complements a growing literature 

that demonstrates a pattern of bilateral and often widespread brain abnormalities in patients with 

drug-resistant TLE, likely leading to a “non-lateralized” pattern of impairment even in patients 

with a unilateral seizure onset.  This again highlights how a simple lesion-model fails to capture 

the complexity of cognitive impairments experienced by patients with TLE and lends support for 

network-based approach. However, we did not have information on hemispheric language 

dominance and therefore could not determine if patients had epilepsy in the dominant hemisphere 

which warrants further investigation.  Lastly, it is possible that our tests of language lack the 

sensitivity to capture subtle lateralizing deficits in language (i.e., those that would reveal greater 

deficits in patients with left or language-dominant TLE) or that there are other factors (e.g., number 

and type of ASM, bilingualism) explaining the language deficits in patients with non-dominant 

hemisphere epilepsy.  

When examining the extent of the cognitive impairments, differences among the three 

groups were greater in the areas of memory and language regardless of group membership. In fact, 

patients in the No Impairment group had scores in immediate and delayed memory that were 
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approximately one standard deviation above the mean of a healthy normative sample. Although 

this group had the least number of patients with MTS, we tested memory with prose recall, which 

has been shown to be less sensitive to memory impairments relative to list-learning (McDonald et 

al., 2022). In the IC-CoDE application study, the base rates of impairment ranged from 22-24% 

for prose recall (i.e., LM1 and LM2) but were higher for list learning and memory (27-43%) 

depending on the test and impairment threshold used. Thus, it is possible that the high scores in 

the No Impairment group reflect the lower sensitivity of prose recall in detecting memory 

impairments in TLE. Furthermore, it is possible that finer phenotypes could emerge with the use 

of more sensitive tests, by considering specific test indices (e.g., recognition scores for memory, 

reaction times for naming), or by further deconstructing test impairment patterns (e.g., impact of 

ASMs).  

The Multidomain phenotype had impaired scores in language tests that were lower than the 

Language phenotype, suggesting that this group represents patients with more pervasive 

impairment that may be explained by factors beyond epilepsy-related pathology (e.g., ASMs). The 

pattern of impairment for the Language phenotype was surprising given that focal or domain-

specific phenotypes have been described to have impairments in both memory and language (B. 

P. Hermann et al., 2021; Reyes et al., 2020). Although we did not have comprehensive EEG data, 

information on other types of pathology, or detailed ASM information available, this group of 

patients may represent a group with greater pathology in the lateral temporal lobe or those taking 

ASMs known to affect language function such as topiramate or zonisamide (Ojemann et al., 2001). 

Furthermore, it is possible that due to the lower sensitivity of logical memory we did not capture 

many patients with both language and more subtle memory impairments within this focal group.  
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Interestingly, naming had the lowest scores across all three groups regardless of the level 

of impairment, which is consistent with findings in the IC-CoDE validation study which included 

a subset of the patients from this study (McDonald et al., 2022). In the IC-CoDE study, deficits in 

BNT were the most commonly observed with 53-67% of the patients demonstrating impairments 

depending on the impairment cutoff applied. Lastly, the pattern of scores across tests of processing 

speed, mental flexibility/set-shifting, and fine motor dexterity were similar across groups, 

contributing less to the distinctiveness of the phenotypes.  

Strengths and Limitations  

 This study represents the first and largest investigation of cognitive phenotypes in TLE 

utilizing LPA. We provide a detailed description of LPA and apply additional statistical tests that 

investigators in this area can use to validate the stability of cognitive phenotypes in other 

neurological disorders. We also examined the utility of different metrics provided by LPA, which 

can inform future studies in cognitive phenotyping across the neuropsychology literature. Lastly, 

we explore the missing data in our sample as this could have an impact on the development and 

applicability of cognitive phenotypes.  

Nonetheless, there are several limitations to our study that should be addressed in future 

investigations. First, given the multicenter aspect of our study, we had a limited number of tests 

per domain and did not include tests in visual memory and visuospatial domains. The lack of  

visual memory and visuospatial tests has been a limitation across many studies in epilepsy 

phenotyping given a) variability across tests given within these domains, 2) poor sensitivity of 

these tests in detecting right hemisphere and right medial temporal dysfunction (Vaz, 2004), and 

3) base rates of impairment across these domains are lower relative to other domains. The 

application of the IC-CoDE which includes a subset of the patients from this study, included a 
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visuospatial domain and demonstrated that this domain was less commonly available across six 

major epilepsy centers in the U.S, with many cases missing visuospatial data. Furthermore, the 

visuospatial domain was the least impaired across a sample of 2,485 with drug-resistant TLE. 

Nonetheless, it is possible that the Multidomain phenotype in our study had intact or minimally 

impaired visuospatial abilities, representing a phenotype with primarily verbal-based impairments.  

 Second, we did not include measures of list learning, which have been shown to be 

sensitive to medial temporal dysfunction. In the IC-CoDE study, there were differences across 

sites on the type of measure given for list learning, with some sites utilizing the California Verbal 

Memory Test (CVLT) and other sites the Rey Auditory Verbal Learning test (RAVLT).  It has 

been shown that standard scores for the CVLT are significantly lower relative to the RAVLT 

(Stallings, Boake, & Sherer, 1995) and therefore harmonizing methods between these two tests are 

needed to reduce the missingness in future studies. Third, we excluded 247 patients due to having 

a significant amount of missing data. Our study demonstrated that there were some differences in 

demographic and clinical characteristics between patients with complete data and those missing 

tests. This suggest that there is a subset of patients that are not being captured in the cognitive 

phenotyping literature due to missing data and therefore findings from these studies may not be 

applicable to this subset of patients. Fourth, we did not have comprehensive information on other 

non-epilepsy comorbidities or language status (i.e., bilingualism) that may further explain the 

heterogeneity observed as proposed by other studies. Determining the impact of bilingualism on 

these phenotypes will be important given the heavy verbal demands of the tests used to determine 

the phenotypes. Finally, although our sample was somewhat diverse in terms of race/ethnicity, we 

did not have the power to examine the phenotypes within each group separately to determine if 

there are unique demographic and clinical characteristics that may explain the extent of cognitive 
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impairment for each population. Future work in this area should validate the cognitive phenotypes 

in large, more racially/ethnically and linguistically diverse samples to improve the generalizability 

of the findings. Furthermore, the cognitive phenotypes should be examine utilizing different 

clinical neuropsychological measures testing similar constructs to address the generalizability of 

the findings and its international applicability.   

Conclusion 

The process of cognitive phenotyping based on heterogeneous tests is not intended to 

replace single or multi-cohort studies that are designed to dissect the neuroanatomy of TLE.  

Rather, cognitive phenotyping leads to an improved understanding of the presence and frequency 

of combinations of impairments that characterize TLE and the opportunity to determine the 

underlying factors that drive phenotypic membership. The cognitive phenotype approach can also 

help to provide a framework for large-scale collaborative efforts that will have to rely on different 

tests and languages, and address cross-cultures issues in the neuropsychology of epilepsy.  
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Figures 
 
 

 
Figure 4.1: Cognitive scores across class solutions. Each panel shows the average T-scores across tests for 
each class. The solid line represents average scores and the dashed line represents impairment at one 
standard deviation below the mean of a healthy normative sample. Abbreviations: LM1: Logical Memory 
Immediate Recall; LM2: Logical Memory Delayed Recall; BNT: Boston Naming Test; LF: Letter Fluency; 
TMT-A: Trail Making Test condition A; TMT-B: Trail Making Test condition B; PegD: Grooved Pegboard 
dominant hand 
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Figure 4.2: Class-4 solution with imputed data. Panel A shows the average T-scores across tests for each 
class utilizing the imputed data. Panels B-D shows the distribution of scores for measures of language for 
each class within the 4-Class Solution. The raw data points are colored in bright yellow-green and imputed 
data points are colored in black. The solid line represents average scores and the dashed line represents 
impairment at one standard deviation below the mean of a healthy normative sample. Abbreviations: LM1: 
Logical Memory Immediate Recall; LM2: Logical Memory Delayed Recall; BNT: Boston Naming Test; 
LF: Letter Fluency; TMT-A: Trail Making Test condition A; TMT-B: Trail Making Test condition B; PegD: 
Grooved Pegboard dominant hand 
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Figure 4.3: Distribution of probability of group membership. For each class solution, the probability of 
group membership is shown for each class. The solid line represents a probability of group membership 
below 0.80.  
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Figure 4.4: Scatterplot of canonical discriminant function analysis. A) 3-Class Solution, B) 4-Class 
Solution, and C) 5-Class Solution.  
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Table 4.1: Fit indices across class solutions 

 

 

 

 

 
 
 
 
  

Table 1A: Fit indices across class solutions with missing data 

 AIC BIC sBIC Entropy LMRT (p) BLRT  Sample per class 
2- Classes 69278.61 69405.40 69325.99 0.775 1269 (<.001) <.001 1=528; 2=650 
3- Classes 68803.56 68976.01 68868.01 0.816 485 (<.001) <.001 1=361; 2=630; 3=187 
4- Classes 68570.14 68788.21 68651.63 0.737 247 (.116) <.001 1=312; 2=328; 3=312; 4=226 

5- Classes 68289.12 68552.84 68387.67 0.807 225 (.35) <.001 1=136; 2=206; 3=447; 4=131; 5=258 

Table 1B: Fit indices across class solutions with imputed data 

 AIC BIC sBIC Entropy LMRT (p) BLRT Sample per class 
2- Classes 71859.50 71986.29 71906.88 0.776 1260 (<.001) <.001 1=527; 2=651 
3- Classes 71363.22 71535.66 71427.66 0.823 506 (<.001) <.001 1=358; 2=638; 3=182 
4- Classes 71059.93 71278.01 71141.42 0.834 316 (<.001) <.001 1=217; 2=380; 3=448; 4=133 
5- Classes 70857.37 71121.09 70955.92 0.807 217 (.23) <.001 1=138; 2=207; 3=254; 4=450; 5=129 

AIC: Akaike’s Information Criterion; BIC: Bayesian Information Criterion; sBIC: size-adjusted-Bayesian Information 
Criterion; LMRT: Lo–Mendell–Ruben Adjusted Likelihood Ratio Test; BLRT: Bootstrapped Likelihood Ratio Test 
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Table 4.2: Clinical and demographic characteristics across phenotypes for the 3-Class Solution 

 
 
 
  

 Multidomain Language No Impairment p-value 
N 361 630 187 - 
Percent of Sample 30% 53% 16% - 
Age  35.56 (.66) 38.13 () 40.57 (.96) <.001 
Education 12.84 (.13) 13.93 (.10) 15.84 (.23) <.001 

Age of Onset 15.14 (.65) 20.76 (.61) 26.63 (1.22) <.001 

Duration (years) 20.37 (.76) 17.44 (.54) 13.69 (.86) <.001 

Current # of ASMs* 2.19 (.06) 2.07 (.05) 1.79 (.07) <.001 

    p-value 

Sex    .317 

Male 163 (45%) 264 (42%) 80 (43%)  

Female 198 (55%) 366 (58%) 107 (57%)  

Handedness    .267 

Left 46 (13%) 77 (12%) 26 (14%)  

Right 309 (86%) 535 (85%) 154 (82%)  

Ambidextrous 5 (1%) 16 (3%) 7 (4%)  

Mesial temporal sclerosis     .040 

Yes 124 (39%) 199 (36%) 39 (26%)  

No 198 (61%) 355 (64%) 109 (74%)  

Onset Side 202/107/40 365/182/54 113/46/15 .431 

Left 202 (58%) 365 (61%) 113 (65%)  

Right 107 (31%) 182 (30%) 46 (26%)  

Bilateral 40 (11%) 54 (9%) 15 (9%)  

ASM: antiseizure medications  
Standard deviations are presented inside the parentheses 
* More than 20% of data is missing  
Bold signifies statistical significance using the R3Step approach 
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Table 4.3: Group contrasts for demographic and clinical variables using R3Step approach   
 

Multidomain vs 

Language 

Multidomain v No 

Impairment 

Language vs No 

Impairment 

Age .002 <.001 .025 

Education <.001 <.001 <.001 

Onset <.001 <.001 <.001 

Duration .002 <.001 <.001 

Current # of ASMs .155 <.001 .002 

MTS .655 .015 .025 

ASM: anti-seizure medications; MTS: mesial temporal sclerosis 
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Table 4.4: Neuropsychological differences across phenotypes for the 3-Class solution (4A) and Cohen’s 
D effect sizes across phenotypes (4B) 

 
 
  

Table 4A: Neuropsychological differences across phenotypes for the 3-Class solution 
 

Multidomain Language No Impairment ANCOVA p-value 

LM1 32.13 (6.15) 46.95 (5.49) 60.61 (5.48) 1445.94 <.001 

LM2 30.85 (6.29) 45.76 (5.55) 59.17 (5.51) 1387.49 <.001 

BNT 28.79 (9.09) 35.79 (9.88) 43.20 (11.03) 135.43 <.001 

Animal Fluency 30.71 (13.1) 38.78 (11.4) 47.84 (10.8) 108.21 <.001 

LF 34.14 (11.2) 39.28 (10.9) 47.79 (10.6) 69.53 <.001 

TMT-A 40.74 (14.1) 43.12 (11.9) 45.58 (13.2) 7.82 <.001 

TMT-B 38.82 (13.1) 42.63 (12.1) 46.50 (12.6) 28.09 <.001 
PegD 33.34 (10.8) 39.26 (11.7) 42.10 (10.6) 36.75  <.001 
Table 4B: Cohen’s D effect sizes across phenotypes 

 
Multidomain vs 

Language 
Multidomain v No 

Impairment 
Language vs No 

Impairment 

LM1 2.58 4.80 2.49 

LM2 2.56 4.70 2.42 

BNT .73 1.46 .73 

Animal Fluency .67 1.39 .81 

LF .47 1.25 .78 

TMT-A .18 .35 .20 
TMT-B .32 .61 .48 

PegD .52 .82 .41 
Estimated marginal means and standard error with covariates of education, age, and sex 
Bold signifies average T-score below the impairment cut-off (<40) 
 
Covariates: age, education, sex 
 
Cohen’s D effect sizes: small= .2; medium= .5; large= .8 
 
LM1: Logical Memory Immediate Recall; LM2: Logical Memory Delayed Recall; BNT: Boston 
Naming Test; LF: Letter Fluency; TMT-A: Trail Making Test condition A; TMT-B: Trail Making 
Test condition B; PegD: Grooved Pegboard dominant hand 
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Chapter 5: 

Preliminary Analyses for Future Study 

Rationale  

Given the chronic nature of epilepsy, many patients with epilepsy present with an 

accumulation of health-related risk factors including cerebrovascular risk factors (CVRFs), 

comorbid neurologic conditions (e.g., migraines), altered lifestyle (e.g., sedentary lifestyle), 

psychiatric conditions (e.g., depression, anxiety), somatic disorders, among others (Keezer, 

Sisodiya, & Sander, 2016; Seidenberg, Pulsipher, & Hermann, 2009). In fact, approximately 50% 

of adults living with epilepsy have at least one comorbid medical condition (Forsgren, 1992; 

Keezer et al., 2016). Prospective studies have demonstrated altered cognitive trajectories in 

patients with chronic TLE that are not well explained by traditional epilepsy-related factors, 

suggesting that other factors may be explaining the extent and severity of cognitive dysfunction 

(Hermann et al., 2008). Despite the high prevalence of comorbid disorders in epilepsy, many 

known to impact cognition, the impact of these comorbid disorders on cognitive trajectories or 

their mediating effect on epilepsy burden are not well understood.  

Furthermore, there are fewer investigations identifying factors that increase the brain’s 

resilience to epilepsy-related pathology. The aging literature has demonstrated that the 

identification of resilience or protective factors is crucial for intervention and prevention (Montine 

et al., 2019). My work on the protective effects of bilingualism in TLE is one of the few studies in 

epilepsy examining the concepts of brain and cognitive reserve in epilepsy (Reyes et al., 2018). 

Other identified factors include higher global ability (Rzezak, Guimarães, Guerreiro, & Valente, 

2017) and education (Jokeit & Ebner, 1999; Oyegbile et al., 2004).   
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 I propose that using the cognitive phenotype approach can provide an avenue to investigate 

the impact of the health-related factors on cognitive risk and whether and how they further 

exacerbate epilepsy burden. Furthermore, this approach can also aid in the identification of 

protective factors mitigating the impact of epilepsy on cognitive trajectories. Specifically, 

examining these factors at the cognitive phenotype level rather than at the syndrome level (i.e., all 

patients with TLE) can delineate the factors unique to each cognitive profile. For example, patients 

with Multidomain impairments may present with other comorbidities that are leading to 

widespread cognitive dysfunction, and patients with No Impairment profiles may present with 

protective factors that are increasing their cognitive or brain reserve (Figure 5.1).  

As previously mentioned, examining the impact of health-related risk factors and 

protective factors on cognition across phenotypes was one of the aims of the dissertation. However, 

due to issues with data collection and acquisition, these analyses were excluded from Study 3 as 

the current sample with these data available ranged from 16% to 42% of the original sample. 

Importantly, given that this study can inform patient-tailored interventions, examining these 

factors in a large and representative sample will have a greater impact on clinical outcomes. Here, 

I provide preliminary analyses examining 1) structural brain changes across phenotypes, 2) the 

presence of CVRFs across phenotypes, and 3) the contribution of CVRFs and bilingualism to 

cognitive performance. Mood (e.g., depression and anxiety) has been shown to have an adverse 

effect on cognitive function in patients with epilepsy (Paradiso, Hermann, Blumer, Davies, & 

Robinson, 2001).  However, the impact of mood on cognition has not been investigated at the 

cognitive phenotype level. As such, I also examine both depressive and anxiety symptoms across 

cognitive phenotypes.  

Methods  
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Cerebrovascular risk factors, mood, and bilingualism  

For all TLE patients, epilepsy-related clinical variables (i.e., age of seizure onset, duration 

of disease, antiseizure medication: ASM, mesial temporal sclerosis: MTS) and CVRFs were 

collected during a standard clinical examination. CVRFs included diagnoses of hypertension, 

hyperlipidemia, diabetes mellitus, and/or obesity defined by a body mass index (BMI; mass [kg]/ 

height [m]2 ) ≥ 30. Bilingualism status was obtained during the neuropsychological evaluation. For 

the purpose of these analyses, patients were considered bilinguals if their first language was 

another language other than English. Patients with mood assessments available completed the 

Beck Depression Inventory second edition (BDI-II; Beck, Ward, Mendelson, Mock, & Erbaugh, 

1961) and the Beck Anxiety Inventory (BAI; Beck, Epstein, Brown, & Steer, 1988). The BDI-II 

is a 21-item self-report measure of common depressive symptoms, with higher scores indicating a 

greater number and severity of depressive symptoms. Scores ranging from 0-13 indicate minimal 

symptoms; 14-19 indicate mild symptoms; 20-28 indicate moderate symptoms, and 29-63 indicate 

severe symptoms of depression. The BAI is a 21-item self-report measure of common anxiety-

related symptoms. Scores ranging from 0 - 7 indicate minimal symptoms; 8 – 15 indicate mild 

symptoms; 16 - 25 as moderate; and 26 - 63 severe symptoms.  

Imaging acquisition  

A subset of patients (n=205, 17.4% of original sample) had imaging data available. All 

TLE T1 MRI data were acquired without gadolinium contrast at each of the 4 epilepsy centers. 

Healthy control MRI data were collected at UC San Diego. The typical scan at UC San Diego was 

T1-weighted 3D customized FSPGR structural sequence, at 1.5T the scan parameters were TR = 

10.73 ms, TE = 4.87 ms, TI = 1000 ms, flip angle = 8°, FOV = 256 mm, matrix = 256 x 192, slice 

thickness = 1.0 mm and at 3T the scan parameters were TR = 8.08 ms, TE = 3.16 ms, TI = 600 
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ms, flip angle = 8°, FOV = 256 mm, matrix = 256 x 192, slice thickness = 1.0 mm. The typical 

Cleveland Clinic scan parameters at 3T were TR = 1,860 ms, TE = 3.4 ms, TI = 1,10ms, flip angle 

= 10°, matrix = 256 x 256, slice thickness = 0.94 mm and at 1.5T the scan parameters were TR = 

11 ms, TE = 4.6 ms, flip angle = 20°, matrix = 256 x 256, slice thickness = 1.25 mm. The typical 

scan at Emory University at 3T scan parameters were TR = 2300 ms, TE = 3 ms, TI = 1100 ms, 

flip angle = 8°, FOV = 256 mm, matrix = 256 x 240, slice thickness = 1 mm.  

Cortical and Subcortical MRI Procedures 

All image processing and analyses were performed at the Center for Multimodal Imaging 

and Genetics Laboratory at UC San Diego using the exact same imaging analysis stream. 

FreeSurfer v5.3 software was used to obtain cortical thickness estimates and subcortical volumes, 

using validated procedures as previously described (Desikan et al., 2006; Fischl & Dale, 2000). 

The cortical surface was reconstructed and parcellated using FreeSurfer. A local quality check was 

performed by visual inspection of all images to identify topological defects, which were 

subsequently edited using established software guidelines. Quantification of cortical thickness 

estimates was determined by measurement of the distance between the white matter and the pial 

surfaces at each vertex. The cortical surface was then parcellated into regions of interest (ROIs) 

using the Desikan-Killiany atlas (Desikan et al., 2006), and average thickness was calculated 

within each ROI. Cortical thickness estimates were computed point-by-point across the cortical 

mantle, then averaged to create gyral-based ROIs. In order to control for differences in brain size, 

subcortical volumes were represented as a ratio to total intracranial volume. 

Image harmonization 

 The batch-effect correction tool, ComBat, was used to harmonize the MRI data, adjusting 

for between-site variations in cortical thickness and volume across the epilepsy centers. The 
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ComBat method globally rescales the data for each site using a z-score transformation map 

common to all features, as described in (Fortin et al., 2017). ComBat uses an empirical Bayes 

framework to improve the variance of the parameter estimates (Johnson, Li, & Rabinovic, 2007), 

assuming that all ROIs share the same common distribution. Therefore, all ROIs are used to inform 

the statistical properties of the site effects. Site was used as the batch effect. The ComBat approach 

has proven effective for harmonizing T1-weighted MRIs in multi-national imaging collectives 

such as ENIGMA (Radua et al., 2020) and has been used in TLE imaging data (Kaestner et al., 

2021).  

Statistical analyses  

Analysis of covariance (ANCOVA) were conducted to test for differences in mood 

symptoms (i.e., BDI-II and BIA scores) across phenotypes. Given differences in sample sizes, 

nonparametric tests were conducted to test for differences in test performance between 

monolingual and bilingual patients for each phenotype. Multiple stepwise linear regressions were 

conducted to evaluate the contribution of demographic, epilepsy-related clinical variables, and 

CVRFs to cognitive performance across phenotypes. ANCOVAs controlling for age, sex, field 

strength were conducted to compared ROI across groups (i.e., healthy controls, Generalized, 

Language, Minimally Impaired). Multiple comparisons were corrected using Benjamini-Hochberg 

false discovery rate (Benjamini & Hochberg, 1995) for left and right hemisphere ROIs, 

respectively. When results from the ANCOVA were significant, group contrasts were assessed 

using post-hoc pairwise tests with Bonferroni correction.  

Preliminary Results  

Health-related risk and protective factors 
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There were cerebrovascular risk factors (CVRFs) data available on a subset of patients 

(n=196) from Study 3. Table 5.1 shows the proportion of patients with hypertension, 

hyperlipidemia, diabetes, a history of smoking, and a BMI higher than 30. There was no significant 

difference in the proportion of patients with CVRFs across phenotypes.  

Approximately 26 to 42% (BDI-II n=499; BAI n=316) of the original Study 3 sample had 

BDI-II and BAI data available. Table 5.1 shows the percentage of patients with minimal to severe 

symptoms of depression and anxiety across phenotypes. There were differences in severity of 

depressive symptoms across phenotypes, with patients in the Multidomain phenotype endorsing 

more moderate to severe symptoms relative to the Language and No Impairment phenotypes. 

When examining the BDI-II and BAI scores as continuous variables, there were differences across 

phenotypes after controlling for age, education, and sex F (2, 493) = 4.84, p=.008. The 

Multidomain phenotype had higher BDI-II scores (Mean=14.94; Standard deviation (SD)= 10.78) 

relative to the Language phenotype (Mean=11.91; SD= 8.97); and higher scores compared to the 

No Impairment (Mean=12.63; SD= 9.29). There were no differences on BAI scores across the 

phenotypes F (2, 310) = .776, p=.461, [Multidomain (Mean=12.90; SD= 11.69); Language 

(Mean=11.10; SD= 10.06); No Impairment (Mean=10.76; SD= 8.172)].  

Regarding bilingualism, of the 390 patients with language information available, 22.1% of 

this sample was bilingual with Spanish being the most common language (51% of the bilingual 

subsample). There were no significant differences in the proportion of patients that were bilingual 

across phenotypes (Fisher’s Exact= 4.39, p=.109), however, within the Multidomain phenotype 

27.4% were bilingual, 22.3% within the Language phenotype, and 14.6% within the No 

Impairment group. Further examination revealed that 46.2% of the bilinguals in the Multidomain 
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group spoke Spanish, 61% of bilinguals in the Language phenotype spoke Spanish, and 70% of 

the bilinguals in the No Impairment phenotype were Spanish speakers.  

Differences in performance between monolingual and bilingual patients 

For the Multidomain phenotype, there were no differences across cognitive scores between 

monolingual and bilingual patients (all p-values >.05). For the Language phenotype, Mann- 

Whitney U revealed differences in BNT (U = 6021, p=<.001) and letter fluency (U = 4248, p=.017) 

scores between monolingual and bilingual patients. Bilingual patients (n=45) had lower BNT 

(Mean= 24.17, SD= 7.62) and letter fluency (Mean= 37.58, SD=12.73) scores. For the No 

Impairment phenotype there were differences in BNT scores (U = 566.5, p=.012) with the bilingual 

patients (n=11) demonstrating lower scores (Mean= 32.73, SD= 16.46). 

Contribution of demographic, clinical, CVRFs to cognitive impairment across phenotypes 

To reduce the number of variables included in the model, we conducted stepwise 

regressions to examine the differential contribution of demographics, epilepsy-related clinical 

variables, and CVRFs to each neuropsychological test performance. Models were conducted for 

each phenotype individually to identify factors that uniquely contribute to cognitive performance 

in each group. For Multidomain phenotype, female sex was associated with better performance in 

immediate memory (LM1) and set-shifting (TMT-B); and a higher number of ASMs and the 

presence of hyperlipidemia was associated with worse fine motor dexterity and speed (PegD). For 

the Language phenotype, female sex was associated with better performance in immediate (LM1) 

and delayed memory (LM2), and set-shifting (TMT-B); more years of education was associated 

with better performance in delayed memory (LM2) and fine motor dexterity and speed (PegD); 

hyperlipidemia was associated with worse performance in delayed memory (LM2); longer 

duration of disease was associated with poorer naming performance (BNT); and higher number of 
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ASM was associated with worse fine motor dexterity and speed (PegD). For the No Impairment 

phenotype, the presence of MTS was associated with poorer delayed memory (LM2); higher 

number of ASM was associated with worse processing speed (TMT-A); hyperlipidemia was 

associated with worse performance in set-shifting (TMT-B); and older age was associated with 

worse fine motor dexterity and speed (PegD). 

Cortical and volumetric differences across groups 

 There was a trend towards differences in intracranial volume (ICV) across groups F (3, 

252) = 2.621, p=.051 with the No Impairment demonstrating higher ICVs compared to the 

Multidomain phenotype (p=.075) and the Language phenotype (p=.065). Figure 5.1 shows the 

distribution of ICVs across groups. Cohen’s d revealed a medium effect size between the 

Multidomain and the No Impairment (d=.59) phenotypes after controlling for sex, age, education, 

and scanner strength. There was also a medium effect size between the Language and No 

Impairment (d=.56) phenotypes.  

 Table 5.3 shows significant differences in cortical regions across groups. After controlling 

for age, sex, education, and scanner strength, 11 left hemisphere ROIs and 15 right hemisphere 

ROIs were significantly different across groups. For all regions, healthy controls had thicker cortex 

relative to the phenotypes. The only significant difference between patient groups was between 

the Language and No Impairment phenotypes, with the Language group showing thicker cortex 

within right lateral occipital (p= .043) and right parahippocampal gyri (p= .033).  

 Table 5.4 shows comparisons in subcortical structures across groups. There were 

significant differences in the right amygdala, left and right putamen, left and right thalamus, and 

right pallidum, with patients having lower volumes relative to healthy controls. The Multidomain 

phenotype had reduced volumes relative to healthy controls in the right amygdala, left putamen, 
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left and right thalami, and right pallidum. The Language phenotype had reduced volumes 

compared to healthy controls in left and right putamen and left and right thalami. The No 

Impairment phenotype had lower volumes relative to healthy controls in left and right putamen. 

The Multidomain phenotype showed lower right amygdala volume relative to the No Impairment 

group.  

Summary 

 These preliminary analyses demonstrate 1) greater depressive symptoms in patients with 

Multidomain impairment; 2) differential contribution of demographic, clinical, and CVRFs to 

cognitive performance across phenotypes, with the presence of hyperlipidemia associated with 

worse cognitive performance; 3) lower language scores in bilingual patients across the Language 

and No Impairment phenotypes; 4) cortical thinning and subcortical atrophy compared to HC 

across phenotypes; 5) a pattern of lower subcortical volumes in the Multidomain phenotype; and 

6) although not statistically significant, higher ICVs in patients in the No Impairment group.  

 Depression has been associated with worse performance across a range of 

neuropsychological tests in TLE (Paradiso et al., 2001). These preliminary analyses revealed that 

patients with generalized impairment had more severe symptoms of depression with approximately 

13% of the patients endorsing severe symptoms. In TLE, depression has also been associated with 

poorer quality of life (Ehrlich et al., 2019) and mood outcomes after epilepsy surgery have been 

variable, with some studies reporting improvements in depressive symptoms (Blumer, Wakhlu, 

Davies, & Hermann, 1998; Reuber, Andersen, Elger, & Helmstaedter, 2004), while others 

reporting worsening of symptoms (Altshuler, Rausch, Delrahim, Kay, & Crandall, 1999; Glosser, 

Zwil, Glosser, O'Connor, & Sperling, 2000). Furthermore, it has been hypothesized that there is a 

bidirectional relationship between depression and epilepsy with shared underlying mechanisms 
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(Kanner, 2011). Given the prevalence of depressive disorders in epilepsy and this proposed 

bidirectional relationship, the treatment of depression has been a priority in epilepsy care 

(Cardamone, Salzberg, O'brien, & Jones, 2013). However, identifying patients at increased risk 

for postoperative depression or worsening of existing depressive symptoms has been more 

challenging. Efforts are underway to provide clinicians with tools to identify patients at increased 

risk (Doherty et al., 2021). Given that patients with Multidomain impairments demonstrated the 

most severe symptoms, studies are needed to systematically examine whether treating depression 

improves the cognitive impairments in this subgroup of patients.   

 These preliminary analyses also demonstrated a differential contribution of CVRFs to 

cognitive performance across phenotypes. Specifically, hyperlipidemia was associated with worse 

performance in all three phenotypes, however, the association was different for each phenotype. 

This suggests that there may be patient factors that are moderating or mediating the impact of these 

CVRFs on cognition. Given that the sample with CVRFs was modest, studies with large samples 

are needed to better delineate these patient factors. Furthermore, longitudinal studies examining 

whether treating the CVRFs improves cognition and/or reduces postoperative cognitive decline 

are warranted. Nonetheless, these findings highlight that the relationship between health-related 

risk factors and cognition in epilepsy may not be uniform across patient groups. 

 In the current sample, bilingual patients had poorer language scores within the Language 

and No Impairment phenotypes. Although this is an expected finding, as bilinguals tend to have 

lower language scores due to the competing demands of both languages (Gollan, Montoya, 

Fennema-Notestine, & Morris, 2005; Sandoval, Gollan, Ferreira, & Salmon, 2010), this 

association was not present in bilingual patients with the Multidomain phenotype. Assessing 

language in bilingual patients with TLE has been a challenge given that it is difficult to tease apart 
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the contribution of epilepsy pathology on language from the nonpathological effects of 

bilingualism (Gooding, Cole, & Hamberger, 2018). These preliminary findings may suggest that 

for patients with generalized impairment, the bilingual disadvantage on language may be 

attenuated by other factors impacting cognition. We did not find a bilingual advantage on measures 

of executive function (i.e., TMT-B) which has been previously found in TLE (Reyes et al., 2018). 

It is possible that we need more comprehensive tests to examine the possible advantage of 

bilingualism on different aspects of executive function across phenotypes.  

 Lastly, there were differences in structural brain integrity, with all phenotypes 

demonstrating greater cortical thinning relative to healthy controls; patients in the Multidomain 

phenotype showing greater subcortical atrophy; and patients in the No Impairment group showing 

a trend towards greater ICVs. Regarding cortical thinning, there was no evident pattern across 

phenotypes. A previous study demonstrated that patients with generalized impairment showed the 

most cortical thinning (Dabbs, Jones, Seidenberg, & Hermann, 2009); thus in our sample, this 

pattern did not emerge. However, a pattern was observed across subcortical volumes, with patients 

with Multidomain impairments showing the most atrophy across several structures. This is 

consistent with the previous findings demonstrating that patients with generalized impairment had 

the most subcortical atrophy (Dabbs et al., 2009). Another interesting finding that emerged, 

although not statistically significant, was greater ICVs in patients with No Impairment profiles. 

ICV has historically been used as a proxy for brain reserve and greater ICV has been shown to be 

associated with better cognitive performance (Van Loenhoud, Groot, Vogel, Van Der Flier, & 

Ossenkoppele, 2018). Therefore, these preliminary findings suggest that patients with minimal 

impairments may present with higher brain reserve mitigating the impact of epilepsy burden on 

cognition. Although these initial neuroimaging findings are promising, larger samples are needed 
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to further examine the contribution of these neural correlates to cognitive impairment while 

maintaining power and controlling for multiple comparisons.  

Next Steps  

 These preliminary findings highlight the need to examine health-related risk factors, 

resilience factors, mood, and neural correlates at the phenotype level rather than at the syndrome 

level (i.e., all TLE). As previously shown, aggregating patients into one group obscure subtle 

differences that can be appreciated at the phenotype level. Upon collection of the remainder of the 

data, these analyses will be replicated with the larger sample to achieve power, reduce type 1 and 

2 errors, and systematically control for multiple comparisons. The contribution of these factors to 

cognitive performance will be examined with regression analyses. Mediation analyses will also be 

conducted to examine the mediating effects of health-related risk factors and protective factors on 

the relationship between neural correlates and cognitive impairment.   
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Figure 5.1: Hypothetical model for patient-centered cognitive risk. The phenotype approach can provide a 
mechanism to examine comorbidities and protective factors associated with cognitive risk.  Rather than 
examining these factors at the syndrome level (i.e., all patients with TLE) which can obscure mediating 
effects, investigating these factors at the phenotype level (i.e., patients with generalized impairment vs 
patients with intact cognition) can provide patient-centered information on cognitive risk.   
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Figure 5.2: Distribution of Intracranial volume (ICV) across groups. Overall, the Multidomain (Class 1) 
and Language (Class 2) phenotypes demonstrated a wider distribution of ICV. Although not statistically 
significant, the Multidomain and Language phenotype had on average lower ICV relative to the No 
Impairment group with medium effects sizes calculated with Cohen’s d.  
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Tables 

Table 5.1: Preliminary data on vascular risk factors and mood symptoms on a subset of patients from Study 
3. There were no significant differences across phenotypes in the percentage of patients with vascular risk 
factors are represented.  

  

Cerebrovascular risk factors (n=196) 
 Class 1 Class 2 Class 3 Fisher’s Exact p-value 
N 69 101 26   
Hypertension: Y/N 11/58 17/87 6/20 .898 .649 
Hyperlipidemia: Y/N 6/47 12/69 4/19 .703 .664 
Diabetes: Y/N 1/68 3/101 1/25 .947 .827 
BMI Category: Y/N 43/25 57/40 15/10 .497 .813 
Smoking History: Y/N 21/48 26/75 9/17 1.08 .602 

Depressive (n=499) and Anxiety symptoms (n=316) 

Depression     14.7 .021 
Minimal 50% 63.3% 58.9% -- -- 

Mild 16.9% 19.1% 17.9% -- -- 
Moderate 20% 11.3% 17.9% -- -- 

Severe 13.1% 6.4% 5.4% -- -- 
Anxiety     9.49 .143 

Minimal 41.4% 45.5% 44.7% -- -- 
Mild 24.3% 29.9% 26.3% -- -- 

Moderate 17.1% 15.6% 26.3% -- -- 
Severe 17.1% 9% 2.6% -- -- 

Class 1: Multidomain; Class 2: Language; Class 3: No Impairment 
 
BMI category: Body mass index higher than 30 
 
BDI-II: Beck Depression Inventory Second Edition  
Minimal: 0-13; Mild: 14-19; Moderate: 20-28; Severe: 29-63 
 
BAI: Beck Anxiety Inventory 
Minimal: 0-7; Mild: 8-15; Moderate: 16-25; Severe: 26-63 
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Table 5.2: Contribution of demographic and clinical variables and CVRFs to cognitive impairment. The 
regression models were conducted for each phenotype independently to identify unique factors that are 
contributing to cognitive impairment. Stepwise regressions were used to reduce the number of variables in 
the model and demographic, clinical, and CVRFs were entered in separate blocks.   
 

 
 
 
 
 
 
 
 

Multidomain  Beta R2 R2 change F Change p-value 
LM1 Sex 3.61 .081 -- 4.26 .044 
TMT-B Sex 6.63 .093 -- 2.24 .030 
PegD ASM -4.38 .204 -- 11.8 .001 

Hyperlipidemia -7.71 .272 .067 4.14 .048 
Language       
LM1 Education .852 .080 -- 6.63 .012 

Sex 2.68 .131 .050 4.36 .040 
LM2 Sex 4.60 .074 -- 6.06 .016 

Education .968 .151 .078 6.86 .011 
Hyperlipidemia -4.18 .195 .044 4.04 .048 

BNT Duration -.179 .059 -- 4.77 .032 
TMT-B Sex -6.63 .085 -- 6.84 .011 
PegD Education 1.51 .103 -- 7.77 .007 

ASM -4.13 .186 .107 9.09 .004 
No Impairment       
LM2 MTS -4.52 .175 -- 4.47 .047 
TMT-A ASM -7.00 .147 -- 4.81 .040 
TMT-B Hyperlipidemia 15.13 .270 -- 7.78 .011 
Peg-D Age .238 .264 -- 7.18 .014 
Model 1- Demographic:  Age, education, sex (0=Male; 1=Female) 
Model 2- Clinical Variables: Duration, antiseizure medication (ASM), mesial temporal sclerosis 
(MTS; (0=not present; 1=present) 
Model 3- Cerebrovascular factors: Hypertension (0=not present; 1=present), hyperlipidemia 
(0=not present; 1=present), diabetes (0=not present; 1=present), body mass index (BMI; 
continuous) 
 
LM1: Logical Memory Immediate Recall; LM2: Logical Memory Delayed Recall; BNT: Boston 
Naming Test; LF: Letter Fluency; TMT-A: Trail Making Test condition A; TMT-B: Trail 
Making Test condition B; PegD: Grooved Pegboard dominant hand 
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Table 5.3: Differences in cortical thickness across groups. A total of 32 cortical thickness ROIs were 
examined for each hemisphere. The table includes the ROIs that were significantly different across groups. 
False-discovery rate was used to correct for multiple comparisons for each hemisphere. Age, sex, education, 
and scanner strength were entered as covariates in the model.  

 
 

 
 

  

 Class 1 Class 2 Class 3 HC ANCOVA Pairwise 
 Estimated 

Mean (SE) 
Estimated 
Mean (SE) 

Estimated 
Mean (SE) 

Estimated 
Mean (SE) 

F (p-value)  

Left Hemisphere       
Entorhinal 3.23 (.054) 3.28 (.043) 3.15 (.090) 3.48 (.064) 4.33 (.005) HC>1; HC>2; HC>3 
Fusiform 2.66 (.022) 2.68 (.017) 2.57 (.036) 2.73 (.026) 4.49 (.004) HC>3 
Inferior parietal 2.45 (.022) 2.48 (.017) 2.40 (.036) 2.55 (.026) 4.54 (.004) HC>1; HC>3 
Isthmus cingulate 2.44 (.027) 2.45 (.021) 2.38 (.045) 2.65 (.032) 12.6 (<.001) HC>1; HC>2; HC>3 
Lateral occipital 2.11 (.020) 2.13 (.016) 2.04 (.034) 2.22 (.024) 7.26 (<.001) HC>1; HC>2; HC>3 
Lingual 1.90 (.019) 1.90 (.015) 1.86 (.031) 2.08 (.022) 16.7 (<.001) HC>1; HC>2; HC>3 
Pericalcarine 1.53 (.020) 1.54 (.016) 1.51 (.033) 1.64 (.024) 5.63 (<.001) HC>1; HC>2; HC>3 
Posterior cingulate 2.48 (.023) 2.53 (.018) 2.47 (.038) 2.66 (.027) 8.82 (<.001) HC>1; HC>2; HC>3 
Precuneus  2.32 (.020) 2.34 (.016) 2.29 (.033) 2.42 (.024) 4.69 (.003) HC>1; HC>2; HC>3 
Superior parietal 2.20 (.021) 2.19 (.016) 2.16 (.034) 2.29 (.024) 4.93 (.002) HC>1; HC>2; HC>3 
Frontal pole 2.80 (.037) 2.85 (.029) 2.83 (.061) 2.99 (.043) 3.29 (.009) HC>1 
       
Right hemisphere       
Entorhinal 3.37 (.061) 3.41 (.048) 3.18 (.101) 3.65 (.072) 5.46 (.001) HC>1; HC>2; HC>3 
Fusiform 2.65 (.023) 2.68 (.018) 2.57 (.038) 2.76 (.027) 6.26 (<.001) HC>1; HC>3;  
Inferior parietal 2.49 (.023) 2.50 (0.18) 2.44 (.039) 2.62 (.028) 6.08 (<.001) HC>1; HC>2; HC>3 
Isthmus cingulate 2.40 (.028) 2.45 (.022) 2.35 (.046) 2.51 (.033) 3.58 (.014) HC>3 
Lateral occipital 2.19 (.022) 2.22 (.017) 2.11 (.036) 2.31 (.026) 7.44 (<.001) HC>1; HC> 2; HC>3; 2>3 
Lingual 1.91 (.017) 1.96 (.014) 1.90 (.029) 2.06 (.021) 11.7 (<.001) HC>1; HC>2; HC>3 
Middle temporal 2.88 (.024) 2.87 (.019) 2.84 (.039) 2.98 (.028) 4.29 (.006) HC>1; HC>2; HC>3 
Parahippocampal 2.68 (.037) 2.69 (.029) 2.69 (.029) 2.79 (.044) 5.20 (.002) HC>3; 2>3 
Paracentral 2.30 (.023) 2.32 (.018) 2.33 (.038) 2.43 (.044) 3.97 (.009) HC>1; HC>2 
Posterior cingulate 2.46 (.021) 2.51 (.016) 2.42 (.034) 2.58 (.025) 5.89 (<.001) HC>1; HC>3 
Precentral 2.41 (.025) 2.45 (.019) 2.46 (.041) 2.45 (.029) 3.77 (.011) HC>1 
Precuneus 2.33 (.020) 2.34 (.016) 2.29 (.033) 2.44 (.023) 6.24 (<.001) HC>1; HC>2; HC>3 
Superior parietal 2.18 (.021) 2.18 (.017) 2.14 (.035) 2.29 (.025) 5.31 (.001) HC>1; HC>2; HC>3 
Transverse temporal 2.32 (.033) 2.39 (.026) 2.39 (.055) 2.49 (.039) 4.02 (.008) HC>1; HC>2 
Class 1: Multidomain; Class 2: Language; Class 3: No Impairment 
 
Estimated means controlling for age, sex, education, and scanner strength 
 
SE: standard error; HC: healthy controls; ANCOVA: analysis of covariance 
 
False-discovery rate: 
Left hemisphere comparisons FDR corrected p-value: .0171875 
Right hemisphere comparisons FDR corrected p-value: .0234375 



 142 

Table 5.4: Comparison of subcortical structures across groups. All subcortical volumes were corrected for 
intracranial volume to adjust for differences in brain size.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ANCOVA 

HC vs 
Class 1 

HC vs 
Class 2 

HC vs 
Class 3 

Class 1 vs 
Class 2 

Class 1 vs 
Class 3 

Class 2 vs 
Class 3 

 F (p-value)       
Left hippocampus 1.98 (.117) 1.00 .942 1.00 1.00 .317 .193 
Right hippocampus 0.476 (.699) 1.00 1.00 1.00 1.00 1.00 1.00 
Left amygdala 2.35 (.073) .123 1.00 .329 .731 1.00 1.00 
Right amygdala 5.61 (<.001) .018 .597 1.00 .357 .002 .059 
Left putamen 6.41 (<.001) .005 .003 <.001 1.00 1.00 .776 
Right putamen 4.59 (.004) .264 .048 .003 1.00 .253 .423 
Left caudate 0.55 (.649) 1.00 1.00 1.00 1.00 1.00 1.00 
Right caudate 0.37 (.771) 1.00 1.00 1.00 1.00 1.00 1.00 
Left thalamus  4.14 (.007) .006 .016 .819 1.00 1.00 1.00 
Right thalamus 4.13 (.007) .009 .021 1.00 1.00 .583 1.00 
Left pallidum 2.76 (.043) .034 1.00 1.00 .304 .888 1.00 
Right pallidum 4.43 (.005) .002 .181 1.00 .252 .430 1.00 
Class 1: Multidomain; Class 2: Language; Class 3: No Impairment 
 
Covariates: age, sex, education, and scanner strength 
 
HC: healthy controls; ANCOVA: analysis of covariance 
 
Bold represents significance with a false-discovery rate correction of .025 
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Chapter 6: 

Integrated Discussion 

 As the field of medicine continues to move towards precision medicine, utilizing 

individualized approaches to studying neuropsychological syndromes will advance our 

understanding of brain-behavior relationships in the context of patient-specific factors. This staple 

dissertation 1) demonstrated that cognitive phenotypes in epilepsy are stable across studies; 2) 

provided detailed information on the most robust and rigorous methodology to phenotyping, thus 

informing future studies in this area; 3) demonstrated that cognitive phenotypes in temporal lobe 

epilepsy (TLE) have unique imaging signatures (i.e., WM, cortical thickness, subcortical volumes) 

that better explain the cognitive dysfunction observed within patient subtypes; and 4) demonstrated 

the utility of the phenotyping approach in studying the impact of health-related and protective 

factors on cognition. Work from this dissertation has informed international initiatives in this area 

and efforts are underway to continue expanding the findings from the current studies in larger, 

international, culturally, and linguistically diverse populations.   

Study 1: Unmasking phenotype-specific white matter microstructural networks  

 Study 1 provided initial findings of unique WM signatures across cognitive phenotypes in 

TLE that could be appreciated both at the regional and network level. Here, we show that the 

phenotyping approach reveals WM changes that more directly map on to the cognitive profiles 

observed across patient groups. Further, we were able to identify patients with unique cognitive 

profiles not well represented across the epilepsy literature (e.g., patients with intact cognition). 

Importantly, the cognitive phenotypes were not well differentiated based on classic epilepsy 

characteristics (i.e., MTS, duration of epilepsy, seizure frequency, number of ASMs) but instead 

demonstrated distinct patterns of regional and network WM microstructural abnormalities. For 
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example, patients with both language and memory impairments showed changes in superficial 

WM (SWM) within lateral temporal lobes encompassing perisylvian regions involved in language 

processing (Catani, Jones, & Ffytche, 2005). Whereas patients with isolated memory impairments 

demonstrated changes in SWM within medial temporal structures critical to memory (Squire & 

Zola-Morgan, 1991). Despite all patients in this study having chronic epilepsy, a modest sample 

of patients did not demonstrate any cognitive deficits and their WM networks were similar to 

healthy controls. These findings illustrate that aggregating patients into one group may obscure 

changes in microstructural integrity that can better explain cognitive deficits and inform patient 

outcomes. Thus, I argue that in order to systematically delineate the brain abnormalities associated 

with cognitive deficits in epilepsy, the phenotype approach should be implemented to better 

characterize structural and functional alterations that are unique to patient subtypes. Global 

research initiatives such Enhancing NeuroImaging and Genetics through Meta-Analysis 

(ENIGMA- Epilepsy) can provide the infrastructure and resources needed to replicate these 

findings in large, representative samples. Furthermore, most investigations in cognitive 

phenotypes in epilepsy have been conducted in the U.S. (B. P. Hermann et al., 2021), thus there is 

a need to replicate these phenotypes in international cohorts. 

Study 2: Examining the clinical utility of cognitive phenotypes 

 Although findings from Study 1 and other phenotype investigations (Sallie Baxendale & 

Pamela Thompson, 2020; Elverman et al., 2019; B. Hermann et al., 2020; B. Hermann, Seidenberg, 

Lee, Chan, & Rutecki, 2007; Rodríguez-Cruces et al., 2018) have identified a similar pattern of 

phenotypes (i.e., generalized group, focal group, and a minimally impaired group), there has been 

variability in the number and base rates of the phenotypes identified and the nature of the cognitive 

profiles. Importantly, the methods employed to derive the phenotypes have varied across studies. 
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Given that a major goal of this literature is to translate these cognitive phenotypes into clinical 

diagnostic criteria, determining the clinical utility of these phenotypes is paramount. As such, the 

aim of Study 2 was to conduct a head-to-head comparison between a data-driven approach and an 

actuarial clinical criterion that can be implemented into clinical diagnostic approaches. 

Specifically, I compare cluster analysis, one of the most commonly used data-driven clustering 

methods, to the clinical criteria used in Study 1. These clinical criteria are commonly used in the 

aging literature (Jak et al., 2009) and have been shown to derive cognitive subtypes in patients 

with mild cognitive impairment (MCI), the preclinical phase of Alzheimer’s disease (E. C. 

Edmonds et al., 2016).  

 Study 2 revealed that there was a good agreement between cluster analysis and the clinical 

criterion, however, cluster analysis misclassified ~12% of patients with clinically defined 

impairments as having normal cognition. This can present an obstacle to the translation of these 

phenotypes into clinical diagnostic frameworks. The impact of false-negative diagnostic errors in 

neuropsychology can have a direct impact on clinical practice. Edmonds et al. (Emily C Edmonds 

et al., 2016) emphasized that false-negatives among cases of MCI can result in missed 

opportunities for interventions, can lead to exclusion from beneficial treatments (e.g., clinical 

trials), and can impact the recommendations provided to patients and their families. In epilepsy 

specifically, a patient’s cognitive status has important implications for surgical decisions. 

Baxendale and Thompson (S. Baxendale & P. Thompson, 2020) utilized clinical criteria to 

ascertain risk for postoperative cognitive decline across cognitive phenotypes in TLE. In this study, 

they also identified a group of patients with generalized impairment, a second group with focal 

deficits in language and memory, and a group with intact cognitive function. They found that an 

intact phenotype was a risk for cognitive decline in visual learning. Although the authors did not 
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find associations between cognitive phenotypes and declines in other cognitive domains, these 

initial findings are promising and illustrate that cognitive phenotypes can provide another method 

to determining postoperative cognitive decline.  

Study 3: Can we arrive at the most robust and rigorous clustering method? 

 Findings from Study 2 revealed some disadvantages to clustering analysis that can 

potentially impact the translation of cognitive phenotypes into clinical practice. These findings led 

to the question “what is the optimal method for defining cognitive phenotypes across 

neuropsychological syndromes?” Given that the cognitive phenotype literature is gaining 

attraction across several neurological disorders, the aim of Study 3 was two-fold: 1) to test several 

models (i.e., 2-5 groups) of cognitive phenotypes in TLE using latent profile analysis (LPA) and 

2) demonstrate the utility of LPA to inform investigations of cognitive phenotypes across other 

neurological disorders. This study represents the largest, multicenter investigation with 1,178 

patients with TLE, building upon Study 2 which had 407 patients. LPA is a person-centered 

clustering method that maximizes the homogeneity within groups and the heterogeneity across 

groups while providing the probability of group membership. Here, we demonstrate that a 3-class 

(i.e., 3 phenotypes) model was the optimal solution based on several fit indices and it was the most 

robust to missing data. We also adjudicate the impact of missing data, demonstrating that missing 

data impacts clustering models with multiple phenotypes (i.e., 4-5), particularly phenotypes that 

share similar cognitive features (e.g., focal language deficits). These findings demonstrate that 

LPA is a more rigorous and robust clustering method and we advocate for its use to avoid the 

pitfalls of clustering analysis or other clustering methods that 1) do not handle missing data, 2) do 

not test the probability of group memberships, and 3) do not provide the user with several fit 

indices to inform decision making.  
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Beyond the seizures: The neglected comorbidities in epilepsy  

Although Study 3 had many strengths, there were some limitations that can inform future 

studies. First, the tests included had heavy verbal demands, and tests of visual memory and 

visuospatial abilities were not included due to lack of availability across epilepsy centers. A future 

study with a more comprehensive battery of tests is needed to determine if focal groups of patients 

with focal deficits in visual memory/abilities exist and whether patients with generalized 

impairments also have deficits in these domains. Second, we did not have comprehensive data on 

other factors that may explain the heterogeneity of the cognitive phenotypes which was an initial 

aim of the dissertation. An important feature of the cognitive phenotype approach is that it places 

the patient’s cognitive status and risk at the center of care, allowing researchers and clinicians to 

examine other comorbidities that may be contributing to the patient’s cognitive profile (see Figure 

5.1). The classic lesion model attributed the cognitive deficits in epilepsy to the location of seizure 

origin and other epilepsy-related variables (e.g., antiseizure medications, seizure frequency, 

duration of epilepsy, surgery). And although the comorbidities of epilepsy (e.g., vascular, 

psychiatric) and associated psychosocial outcomes have been well documented (Keezer, Sisodiya, 

& Sander, 2016; Seidenberg, Pulsipher, & Hermann, 2009), their effects on cognition has been a 

neglected area in epilepsy research and care. Furthermore, precision medicine considers 

“individual variability in genes, environment, and lifestyle for each person” and thus the inherited 

variability in cognitive deficits in epilepsy suggests that there are individual factors beyond the 

epilepsy disorder that must be considered. In epilepsy specifically, Josephson and Wiebe argue 

that identifying phenotypes in epilepsy “will, by nature, catalyze tailored treatments specific to 

individual, rather than population-level, traits” (Josephson & Wiebe, 2021).   
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The preliminary findings (Chapter 5) included in this dissertation demonstrated: 1) unique 

contributions of cerebrovascular factors to cognitive impairment across phenotypes; 2) moderate 

to severe depressive symptoms in patients with generalized impairment; 3) an expected bilingual 

disadvantage in language measures across the Language and No Impairment phenotype that was 

not present in those with Multidomain impairments; 4) cortical thinning across phenotypes with 

the Multidomain phenotype demonstrating the greatest subcortical atrophy; and 5) higher 

intracranial volume (a proxy for brain reserve) in patients with No Impairment. Although these 

findings must be replicated in the entire sample from Study 3, it highlights that the phenotype 

approach can disentangle patient-specific factors that as Josephson and Wiebe proposed, can 

catalyze tailored treatments specific to the patient. For example, patients with Multidomain 

impairments may benefit from aggressive treatment of depression which has been associated with 

poorer surgery outcomes and reduced quality of life (Reuber, Andersen, Elger, & Helmstaedter, 

2004).  

What can we learn from the intact phenotype?  

 The Intact or Minimally Impaired phenotype has been an unexpected group across 

phenotype investigations, as these patients present with chronic epilepsy and in some studies have 

indistinguishable clinical profiles compared to patients with cognitive dysfunction (Elverman et 

al., 2019; Reyes et al., 2019; Reyes et al., 2020). The aging literature has coined the term 

“superager” or older individuals (>80 years) that demonstrate superior cognitive abilities and 

therefore may present with increases in brain and/or cognitive reserve mitigating nonpathological 

and pathological mechanisms of aging (De Godoy et al., 2021). Thus, the finding of an “Intact 

Phenotype” across studies raises the question “Are there individuals with epilepsy that present with 

increased resilience to epilepsy-related pathology?” Investigating this group of patients can help 
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identify factors that can inform interventions, treatments, and health policies. For example, 

education has been found to be a protective factor against epilepsy pathology (Jokeit & Ebner, 

1999) and to reduce the risk of developing epilepsy (Wang et al., 2021). Patients in the No 

Impairment group (Study 3) had greater years of education and preliminary results (Chapter 5) 

demonstrated that greater years of education were associated with better performance across a 

range of tests.  Patients with epilepsy, particularly those that are diagnosed in childhood or 

adolescence, present with lower educational and occupational attainment which has been shown 

to lead to poorer quality of life and lower socioeconomic status (Jennum, Debes, Ibsen, & 

Kjellberg, 2021). Thus, there is an opportunity to develop and implement programs aimed at 

providing individuals with epilepsy the resources (e.g., tutoring, early educational programs) 

needed to achieve higher educational attainment. Given that patients with intact cognition also 

present with minimal brain abnormalities and therefore potential indicators of higher brain reserve, 

longitudinal studies following individuals with newly onset epilepsy as they age can provide 

insights into the mitigating effects of brain reserve on both cognitive and seizure outcomes.  

The future of epilepsy research and clinical care 
  
 Since the first cognitive phenotype publication in 2007, there have been over 17 

publications examining cognitive and behavioral phenotypes in epilepsy. In a recent review 

published in Nature Reviews Neurology, our group provided compelling evidence supporting the 

use of this new taxonomy and a detailed rationale as to why the lesion-model fails to capture the 

cognitive heterogeneity observed across patients. Furthermore, findings from Studies 1 and 2, 

along with other phenotype investigations have informed the development of an international 

initiative ¾ International Classification of Cognitive Disorders in Epilepsy (IC-CoDE) ¾ aimed 

at developing a consensus-based classification system for cognitive disorders in epilepsy that can 



 153 

be used in research investigations (McDonald et al., 2022; Norman et al., 2021). The IC-CoDE 

provides a diagnostic framework for classifying patients into cognitive phenotypes based on 

actuarial neuropsychological criteria. This initiative will facilitate international communication 

and collaborations and move the field of epilepsy toward precision neuropsychology. Importantly, 

there is a need to replicate these cognitive phenotypes in ethnoracially and linguistically diverse 

populations. Current efforts are underway to test the IC-CoDE in a Spanish-speaking sample of 

patients with TLE (Reyes, 2022) with the goal of validating the framework across a range of 

ethnoracial and linguistically diverse samples.  
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