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ARTICLE OPEN

Using a smartwatch and smartphone to assess early
Parkinson’s disease in the WATCH-PD study
Jamie L. Adams 1,2✉, Tairmae Kangarloo3, Brian Tracey 3, Patricio O’Donnell 3,4, Dmitri Volfson3, Robert D. Latzman 3, Neta Zach3,
Robert Alexander3,5, Peter Bergethon6, Joshua Cosman7, David Anderson8, Allen Best 8, Joan Severson8, Melissa A. Kostrzebski1,2,
Peggy Auinger1,2, Peter Wilmot1, Yvonne Pohlson1, Emma Waddell 1, Stella Jensen-Roberts1, Yishu Gong 3,
Krishna Praneeth Kilambi 9,10, Teresa Ruiz Herrero11, E. Ray Dorsey 1,2 and the Parkinson Study Group Watch-PD Study Investigators
and Collaborators*

Digital health technologies can provide continuous monitoring and objective, real-world measures of Parkinson’s disease (PD), but
have primarily been evaluated in small, single-site studies. In this 12-month, multicenter observational study, we evaluated whether
a smartwatch and smartphone application could measure features of early PD. 82 individuals with early, untreated PD and 50 age-
matched controls wore research-grade sensors, a smartwatch, and a smartphone while performing standardized assessments in the
clinic. At home, participants wore the smartwatch for seven days after each clinic visit and completed motor, speech and cognitive
tasks on the smartphone every other week. Features derived from the devices, particularly arm swing, the proportion of time with
tremor, and finger tapping, differed significantly between individuals with early PD and age-matched controls and had variable
correlation with traditional assessments. Longitudinal assessments will inform the value of these digital measures for use in future
clinical trials.

npj Parkinson’s Disease            (2023) 9:64 ; https://doi.org/10.1038/s41531-023-00497-x

INTRODUCTION
Parkinson’s disease (PD) is the world’s fastest-growing neurologi-
cal disorder1. Despite increasing prevalence and substantial
investment from private and public funders, however, therapeutic
breakthroughs have been scant this century, especially for early
disease2. While rating scales have improved, they still provide
subjective, episodic, and largely insensitive assessments contri-
buting to large, lengthy, expensive trials that are prone to
failure3,4. Moreover, scales like the Movement Disorders Society
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Part III have
high inter-observer variability and have faced challenges in
detecting disease progression in neuroprotective trials5. In
addition, these scales may not accurately assess the patient
experience. Better measures could lead to more efficient, patient-
centric, and timely evaluation of therapies.
Digital tools can provide objective, sensitive, real-world

measures of PD4,6–8. A smartphone research application, pre-
viously used in phase 1 and 2 clinical trials, differentiated
individuals with early PD from age-matched controls through
finger tapping and detected tremor not apparent to investiga-
tors9,10. Similarly, a smartwatch measured tremor and detected
motor fluctuations and dyskinesias11.
Despite this promising pilot data, few studies have assessed

multiple digital devices in a multicenter study that replicates a
clinical trial setting in individuals with early, untreated PD. We
sought to evaluate the ability of research-grade wearable sensors,
a smartwatch and a smartphone to assess key features of PD. We
used a platform specifically designed to incorporate several
assessments that map directly onto the MDS-UPDRS, providing an

objective digital analog to subjective clinical measurements. We
aimed to determine the specific disease features these digital
tools can detect, whether the measures differed between
individuals with early PD and age-matched controls, and how
well the digital measures correlated with traditional ones. Here, we
report the results of the baseline analyses of a 12-month
longitudinal study, focused on the smartphone application and
smartwatch results from the first in clinic visit and at-home passive
monitoring period following that visit.

RESULTS
Study participants
Eighty-two individuals with early, untreated PD and 50 age-
matched controls completed informed consent to participate in
this WIRB-Copernicus Group (WCG)TM Institutional Review Board
approved study at 17 research sites between June 2019 and
December 2020 (Supplemental Fig. 1). Participants with PD were
more likely to be men and were similar to those in the PPMI study
(Table 1)3,12–15.

Gait
Smartphone data were available for gait analysis for 72
participants with PD and 41 controls; smartwatch data were
available for at least 59 PD participants and at least 31 controls.
Based on data from the baseline clinic visit, one gait parameter
from the smartwatch and five from the phone best differentiated
those with PD from controls. The magnitude of arm swing (Fig. 1a),
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as measured by the smartwatch, was smaller in PD than controls
(27.8 [17.0] degrees vs 49.2 [21.8] degrees; P < 0.001). The
smartphone detected increased stance time, slower gait cadence,
increased total double support time, and increased turn duration
among PD participants (Fig. 1b–e). Gait speed (Fig. 1f) did not
differ between the two groups (1.03 [0.15] m/s vs 1.05 [0.24] m/s;
P= 0.13). The smartphone also detected increased initial double
support time in individuals with PD (data not shown). Only the
magnitude of arm swing (P < 0.001) and stride length variability
(P= 0.01) showed separation between controls and PD when
grouped based on the MDS-UPDRS part III gait score (item 3.10).
The gait differences observed between PD participants and
controls were generally smaller among women than men (data
not shown). Gait parameters derived from the smartwatch and
smartphone showed moderate to very strong correlations
(0.36 < r < 0.79) with comparable metrics from the research-grade
wearable sensors.

Psychomotor function
Smartphone data were available for analysis for 78 participants
with PD and 45 controls for finger-tapping, and 82 participants

with PD and 49 controls for the fine motor task. Finger tapping in
the dominant and nondominant hand was slower in PD
participants than controls (104.5 [40.5] taps per 30 s vs 130.2
[40.9] taps per 30 s; P < 0.001; and 106.4 [39.9] taps vs 122.2 (34.6)
taps; P= 0.02, respectively) (Fig. 2a). Significant differences in total
taps were also seen in PD participants when looking at most
affected versus least affected side (98.6 [37.9] versus 112.3 [42.2];
P < 0.05). The inter-tap interval, or time between each tap, was
longer in individuals with PD than controls in their dominant
(169.9 [68.2] ms vs 137.3 (38.4) ms; P= .008) and nondominant
hand (173.0 [67.7] ms vs 141.9 (32.1) ms; P= 0.02). The inter-tap
interval coefficient of variation was also greater in PD in the
dominant (50.4% [0.2] vs 32.1% [0.1]; P < 0.001) and non-dominant
hand (50.8% [0.2] vs 36.2% [0.1]; P < 0.001). Slower tapping speeds
very weakly correlated with higher scores on the MDS-UPDRS
finger tapping for the right (r=−0.19) and left (r=−0.10) hands.
The number complete in the fine-motor test was significantly less
in individuals with PD than controls in their dominant (3.4 [1.7] vs
4.6 [1.9]; P < 0.001) and non-dominant hand (3.4 [1.7] vs 4.0 [1.9];
P < 0.05) (Fig. 2b). There were no significant differences in PD
participants in total complete when examining most affected
versus least affected side.

Table 1. Baseline characteristics of research participants in this study and de novo Parkinson’s disease participants in the Parkinson’s Progression
Markers Initiative.

Characteristic PD cohort
(n= 82)

Control cohort
(n= 50)

p value PPMI de novo cohort
(n= 423)

Demographic
characteristics

Age, y 63.3 (9.4) 60.2 (9.9) 0.07 61.7 (9.7)

Male, n (%) 46 (56) 18 (36) 0.03 277 (65)

Race, n (%) 0.81

White 78 (95) 48 (96) 391 (92)

Black or African American 0 (0.0) 0 (0) 6 (1)

Asian 3 (4) 1 (2) 8 (2)

Not specified 1 (1) 1 (2) 18 (4)

Hispanic or Latino, n (%) 3 (4) 1 (2) 0.99 9 (2)

Education >12 Years, n (%) 78 (95) 48 (96) 0.99 347 (82)

Clinical characteristics Right or mixed handedness, n (%) 74 (90) 47 (94) 0.53 385 (91)

Parkinson’s disease duration, months 10.0 (7.3) N/A N/A 6.7 (6.5)

Hoehn & Yahr, n (%) <0.001

Stage 0 0 (0) 49 (100) 0 (0)

Stage 1 19 (23) 0 (0) 185 (44)

Stage 2 62 (76) 0 (0) 236 (56)

Stage 3-5 1 (1) 0 (0) 2 (0.5)

MDS-UPDRS

Total Score 35.2 (12.4) 5.9 (5.3) <0.001 32.4 (13.1)

Part I 5.5 (3.6) 2.8 (2.6) <0.001 5.6 (4.1)

Part II 5.6 (3.8) 0.4 (1.0) <0.001 5.9 (4.2)

Part III 24.1 (10.2) 2.7 (3.5) <0.001 20.9 (8.9)

Montreal Cognitive Assessment 27.6 (1.4) 28.1 (1.5) 0.04 27.1 (2.3)

Parkinson’s Disease Quality of Life
Questionnaire

7.7 (6.7) N/A N/A N/A

Geriatric Depression Scale (Short Version) 1.6 (1.9) 1.0 (1.2) 0.05 2.3 (2.4)

REM Sleep Behavior Disorder Questionnaire 4.4 (3.1) 2.7 (2.0) <0.001 4.1 (2.7)

Epworth Sleepiness Scale 4.9 (3.2) 4.6 (3.7) 0.66 5.8 (3.5)

Scale for Outcomes in Parkinson’s Disease for
Autonomic Symptoms

9.1 (5.1) 5.3 (4.2) <0.001 9.5 (6.2)

PD Parkinson’s disease, PPMI Parkinson’s Progression Markers Initiative, N/A Not available, MDS-UPDRS Movement Disorder Society-Unified Parkinson’s Disease
Rating Scale.
Results are mean (standard deviation) for continuous measures and n (%) for categorical measures.
One control cohort participant is missing the Hoehn & Yahr and MDS-UPDRS scores and one additional is missing the MDS-UPDRS part III and total scores.
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Tremor
Passive tremor classification data from the smartwatch were
available for 44 participants with PD and 22 controls for the at-
home monitoring period following the baseline visit. The
proportion of time with tremor (“passive tremor fraction”) was
significantly higher among participants with PD (15.9% (16.3))
compared to controls (0.6% (0.5); P < 0.001) (Fig. 3a). Among PD
participants, the tremor fraction measured correlated moderately
with self-reported tremor severity (MDS-UPDRS part II, item 10,
r= 0.43, p= 0.003), very strongly with clinician-reported upper

extremity rest tremor amplitude (MDS-UPDRS part III, item 17,
r= 0.86, p < 0.001), and strongly with rest tremor constancy (MDS-
UPDRS part III, item 18, r= 0.79, p < 0.001, Fig. 3b–d).

Cognition
Data on smartphone cognitive tests were available for 82
participants with PD and 49 controls. PD participants performed
worse on the Trail Making Test Part A (54.5 (23.8) vs 48.0 (36.0)
seconds; P < 0.05) and had fewer correct responses (18.3 (8.2) vs
20.4 (8.9); P= 0.05) on the Symbol Digit Modalities Test than

Fig. 1 Comparisons of gait features derived from a smartphone and smartwatch. Box plots for (panel a) Arm swing (deg), (panel b) Stance
(s), (panel c) Cadence (steps/min), (panel d) Double support (s), (panel e) Turn duration (s), and (panel f) Gait speed (m/s) between those with
and without Parkinson’s disease and by MDS-UPDRS part III gait item 3.10. MDS-UPDRS Movement Disorder Society-Unified Parkinson’s
Disease Rating Scale.

J.L. Adams et al.
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controls. Higher scores on the Montreal Cognitive Assessment
correlated weakly with decreased time to complete Trails A
(r=−0.20, P= 0.14) and Trails B (r=−0.38, P < 0.01), more correct
matches on the Symbol Digital Modalities Test (r= 0.25, P < 0.05),
and the proportion of correct answers on the Visuospatial Working
Memory Test (r= 0.18, P= 0.16).

Speech
Baseline reading task data were available from 79 PD participants
and 46 controls. Phonation task data were analyzed for 53 PD

participants and 41 controls. In the reading task, the average pitch
range (measured in semitones) for PD participants was reduced
compared to controls (4.6 [1.2] vs 5.6 [1.2]; P= 0.00004) (Fig. 4).
This was also true for individuals with PD who were rated as
having “normal” speech on the MDS-UPDRS, (4.9 [1.2] vs 5.6 [1.2];
p= 0.015). Speech from reading and phonation tasks differed
between those with and without PD (Supplemental Table 1). The
most distinctive speech features varied with sex. For women, the
median pause duration in the reading task best distinguished PD
from controls (AUC= 0.72). For men, this distinction was best
made by pitch semitone range in the reading task (AUC= 0.79).

Fig. 2 Comparisons of psychomotor function derived from a smartphone. Box plots for (panel a) number of total finger taps and (panel b)
number of objects successfully manipulated on a smartphone between those with and without Parkinson’s disease by dominant and non-
dominant hand.

J.L. Adams et al.
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DISCUSSION
In this multicenter study, a commercially available smartwatch and
a smartphone research application captured key motor and non-
motor features of early, untreated PD. These measures differed
from age-matched controls, had variable correlation with tradi-
tional measures, and offer the promise of objective, real-world
measures of the disease for use in future studies.
Compared to other digital studies in PD, this study has several

strengths. The study population, which came from a network that
often conducts PD trials, consisted of individuals with early,
untreated PD, a target population for disease-modifying therapies.
This study focused on deriving key features from a specialized
software battery of assessments installed on commercially
available devices, which have several advantages16,17. The devices
are familiar to many, user friendly, have standardized software
upgrades, enable remote data capture, and can inform individuals
of results11. Devices and data plans were provided to minimize the
effects of variable access to technology or the internet based on
socioeconomic status or geographic location. Perhaps reflecting
these advantages, interest among sites and participants was high,

and enrollment was completed in a timely manner despite the
COVID-19 pandemic. Finally, using a combination of devices both
in the clinic and at home, the study collected a wide range of
digital measures, which longitudinally evaluate a broad spectrum
of motor and non-motor symptoms.
The study results are largely consistent with previous studies

using other digital devices. For example, the reduced arm swing is
a common early feature of PD that has been detected by sensing
cameras and may even be a prodromal feature that can be
measured with wearable sensors18,19. Similarly, slower finger
tapping, increased tremor, worse cognition, and speech changes
in PD compared to controls have all been demonstrated by
different devices9,11,20–23.
Consistent with a previous study, digital devices were more

sensitive than rating scales for some measures24. For example, the
smartphone application detected abnormalities in speech even
when it was rated “normal” by investigators. The better sensitivity
of digital measures may explain the variable correlation with
traditional clinical measures. For instance, the “inter-tap interval
coefficient of variation” is not reliably weighed on the MDS-

Fig. 3 Comparisons of tremor scores derived from continuous passive tremor data from a smartwatch. Box plots for passive tremor
fraction between (panel a) those with and without Parkinson’s disease and by (panel b) MDS-UPDRS part II tremor, (panel c) MDS-UPDRS part
III rest tremor amplitude (right + left), and (panel d) MDS-UPDRS part III rest tremor constancy. MDS-UPDRS Movement Disorder Society-
Unified Parkinson’s Disease Rating Scale.
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UPDRS, which does not separate speed from dysrhythmia. This
study, like others, also found differences by sex, including in
speech, and shows the value of connected speech tasks25,26. More
research is needed, including longitudinal analysis from this study,
to determine which measures are most sensitive to change
over time.
This study was limited by missing data, wearing of the watch on

different sides, lack of familiarity with some tasks, the homo-
geneous study population, and questions about the meaningful-
ness of the measures. Digital devices provide large volumes of
data, but like imaging studies, can be prone to missing data27. For

some assessments, data from more than half of the participants
were not available. The biggest loss was due to device permissions
restrictions, which were inadvertently turned off in some devices,
impeding the transfer of passive data from the smartwatch to the
analytical database. This shortcoming limits statistical power and
highlights the need for rigorous data management and monitor-
ing throughout the study.
In WATCH-PD, the smartwatch was worn on only one wrist. The

side worn by PD participants (more affected side) and controls
(individual preference) differed and at times was inconsistent with
actual use. Standardizing wear for all participants to one side may

Fig. 4 Comparisons of speech performance derived from a smartphone. Box plots for pitch range (in semitones) between (panel a) those
with and without Parkinson’s disease and by (panel b) MDS-UPDRS speech item 3.1. MDS-UPDRS Movement Disorder Society-Unified
Parkinson’s Disease Rating Scale.

J.L. Adams et al.
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be simpler and provide more consistent data. Some app tasks
were also new to participants. This novelty may have contributed
to more modest correlations than seen in previous studies and
could have benefitted from practice prior to the baseline
assessment9.
Like many other digital studies and PD trials, participants in this

study were overwhelmingly white and well-educated, and thus
not representative of the general population28–30. Empowering
participants with data and active study roles and ensuring that
investigators and sites are trustworthy, accessible, and represen-
tative of the broader population can make research more inclusive
and equitable31–33. Given that this study evaluated individuals
with early PD who had mild motor impairment and excluded
those with cognitive impairment, the digital tasks may not be
feasible in more advanced populations.
Regulators in Europe and the U.S. have recently accepted

measures of gait speed in Duchenne muscular dystrophy and
moderate to vigorous physical activity in idiopathic pulmonary
fibrosis as endpoints for clinical trials34,35. These endpoints, which
could be derived from this cohort, may also be valuable in PD.
Other measures not included in this study, like step counts or
words spoken, may also be collected by digital technologies and
are not easily measured clinically. For use as endpoints in clinical
trials, digital measures should be sensitive to change. Longitudinal
data from this study are forthcoming and will help determine each
measure’s sensitivity to change. Most importantly, digital mea-
sures must be meaningful. To determine which measures are
meaningful, the voice of the patient must be included. The U.S.
Food and Drug Administration has undertaken such efforts for
idiopathic pulmonary fibrosis, and we are conducting qualitative
research with participants from this study to understand what
digital measures are relevant to their symptoms36.
This multicenter study in early, untreated PD provides valuable

data on multiple digital measures derived from widely available
devices. We were able to detect motor and non-motor features
that differed between individuals with early PD and age-matched
controls. In some cases, the digital devices were more sensitive
than clinician-dependent rating scales. Longitudinal analysis as
well as participant input will help identify potential digital
measures to evaluate much-needed therapies for this rapidly
growing population.

METHODS
Study design
WATCH-PD (Wearable Assessment in The Clinic and at Home in
PD)(NCT03681015) is a 12-month, multicenter observational study
that evaluated the ability of digital devices to assess disease
features and progression in persons with early, untreated PD.

Ethics
The WCGTM Institutional Review Board approved the procedures
used in the study, and there was full compliance with human
experimentation guidelines.

Setting
The study population was recruited from clinics, study interest
registries, and social media and enrolled at 17 Parkinson Study
Group research sites. All participants with PD had diagnoses
confirmed clinically by a movement disorders specialist with
approximately half undergoing a screening dopamine transporter
imaging (DaTscan) to confirm diagnosis via imaging. Participants
were evaluated in clinic and at home. In-person visits occurred at
screening/baseline and then at months 1, 3, 6, 9, and 12. Due to
the COVID-19 pandemic, most month-3 visits were converted to

remote visits via video or phone, and participants could elect to
complete additional visits remotely.

Participants
We sought to evaluate a population similar to the Parkinson’s
Progression Markers Initiative (PPMI)37, which is a target popula-
tion of trials evaluating disease-modifying therapies. For those
with PD, the principal inclusion criteria were age 30 or greater at
diagnosis, disease duration less than two years, and Hoehn & Yahr
stage two or less. Exclusion criteria included baseline use of
dopaminergic or other PD medications and an alternative
parkinsonian diagnosis. Control participants without PD or other
significant neurologic diseases were age-matched to the PD
cohort. All participants provided written informed consent before
study participation.

Data sources/measurement
Supplemental Table 2 outlines the study’s gait, motor function,
tremor, cognitive, and speech assessments.
This study used three devices (Fig. 5): research-grade wearable

“Opal” sensors (APDM Wearable Technologies, a Clario Company),
an Apple Watch 4 or 5, and an iPhone 10 or 11 (Apple, Inc.)
running a smartphone application specifically for PD (BrainBase-
line™). Raw mobility and speech signals were recorded from
Apple’s native accelerometer (100 Hz sampling rate) and micro-
phone (32 kHz sampling rate) hardware configurations.
During in-clinic visits, six wearable sensors with an acceler-

ometer, gyroscope, and magnetometer were placed on the
sternum, lower back, and on each wrist and foot. Smartphone
application tasks were conducted at each clinic visit and at home
every two weeks on the smartphone. The smartphone was worn in
a lumbar sport pouch during gait and balance tests.
Gait features were extracted from the smartwatch and

smartphone using software developed in-house. Gait bouts were
identified after turns, and gait features during each bout were
extracted using open-source GaitPy38,39. Arm swing features were
calculated using rotational velocity from the smartwatch. Move-
ment data was collected from the wearable sensors using Mobility
Lab software (APDM Wearable Technologies, a Clario Company),
and measures were extracted using custom algorithms written in
Python (Wilmington, DE), available from the authors upon request.
After each in-person visit, participants wore the smartwatch on

their more affected side and tracked symptoms on the
smartphone daily for at least one week. Accelerometry data and
tremor scores were collected from the smartwatch via Apple’s
Movement Disorders Application Programming Interface (devel-
oper.apple.com/documentation/coremotion/getting_movement_-
disorder_symptom_data). Tremor analysis was performed on
participants with at least 24 h of passive data over two weeks
after baseline. The Movement Disorders API (open source code
available at https://github.com/ResearchKit/mPower) generates
tremor classification scores (none, slight, mild, moderate, strong,
or unknown) for each 1-minute period, and the fraction of time
spent in each category was calculated for each participant.
Using the BrainBaseline™ App, a cognitive and psychomotor

battery was administered via the smartphone that included the
Trail Making Test, modified Symbol Digit Modalities Test,
Visuospatial Working Memory Task, and two timed fine motor
tests (Supplemental Fig. 1)40–42.
Speech tasks included phonation, reading and a diadochoki-

netic task (not analyzed here)43. Phonation and reading files were
processed using custom Python code (available from the authors
upon request) with features computed using the Parselmouth
interface to Praat and the Librosa library44,45. Common speech
endpoints, such as jitter, shimmer, pitch statistics and Mel
Frequency Cepstral Coefficients (MFCC), were computed. Speech

J.L. Adams et al.
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segmentation was performed and used to extract time-related
features for reading tasks46.
Participants also completed traditional rating scales including

the MDS-UPDRS Parts I-III, Montreal Cognitive Assessment 8.1,
Modified Hoehn and Yahr, Geriatric Depression Scale, REM Sleep
Behavior Disorder Questionnaire, Epworth Sleepiness Scale, Scale
for Outcomes in Parkinson’s Disease for Autonomic Symptoms,
and the Parkinson’s Disease Questionnaire-847–54.

Study size
The study was powered to detect a mean change over 12 months
for a digital endpoint with superior responsiveness to MDS-UPDRS
Part III. The mean change in part III from baseline to year one in
individuals with early, untreated PD in the PPMI study was 6.9 with
a standard deviation of 7.03. Allowing for up to half of the
participants to begin dopaminergic therapy over 12 months and
15% drop out, the study aimed to recruit at least 75 participants
with PD to yield 30 participants completing the study off
medication. The study had more than 95% power to detect a
true change of 6.9 units using a one-sample t-test and a two-tailed
5% significance.

Statistical methods
For each gait feature, PD participants were compared to controls,
and to gait scores from the MDS-UPDRS, using the Wilcoxon rank-
sum test. The relationships between the gait features derived from
smartwatch, smartphone and comparable features from the APDM
sensors were estimated using linear regression. The relationship
between the passive tremor fraction and tremor scores from the
MDS-UPDRS was estimated using linear regression. Pearson
correlations were determined to assess relationships between
the digital cognitive battery and traditional cognitive measures.
For each speech feature, normality was assessed using the
Shapiro-Wilk test and transformed if necessary55. Features within

each speech task with greater than 90% correlation were
eliminated and remaining features were analyzed, with sensitivity
analysis to understand sex differences. The AUC metric was used
to determine how well each feature separated PD and control
participants, and was computed for all participants by sex24,56.
Statistical analyses were performed using SAS v9.4, R v4.1, and

Python 3.8. P-values < 0.05 were considered statistically signifi-
cant. Results are considered exploratory and no adjustment for
multiple comparisons were made.

Missing data
If a participant had missing data for an outcome or as part of a
necessary algorithm, that person was excluded for that analysis.
Values of zero (i.e., did not attempt the task) were also excluded.
Detailed reasons for missing data are outlined in Supplemental
Table 3.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data are available to members of the Critical Path for Parkinson’s Consortium 3DT
Initiative Stage 2. For those who are not a part of 3DT Stage 2, a proposal may be
made to the WATCH-PD Steering Committee (via the corresponding author) for de-
identified baseline datasets.

CODE AVAILABILITY
Custom Python code used for feature extraction is available from the authors upon
request.

Fig. 5 Digital devices evaluated in-clinic and at-home during the study. MDS-UPDRS Movement Disorder Society-Unified Parkinson’s
Disease Rating Scale. Copyrighted images of BrainBaseline’s Movement Disorders Mobile Application were reprinted with permission by
Clinical ink (Horsham, PA). Copyrighted images of APDM Wearable Technology were reprinted with permission by APDM Wearable
Technologies, a Clario Company (Portland, OR).
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