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Abstract

Mixture model clustering is applied to Northern Hemisphere (NH) 700-mb geopotential
height anomalies. A mixture model is a flexible probability density estimation technique,
consisting of a linear combination of k component densities. A key feature of the mixture
modeling approach to clustering is the ability to estimate a posterior probability distribution
for fc, the number of clusters, given the data and the model, and thus objectively determine
the number of clusters that is most likely to fit the data.

A data set of 44 winters of NH 700-mb fields is projected onto its two leading empirical
orthogonal functions (EOFs) and analyzed using mixtures of Gaussian components. Cross-
validated likelihood is used to determine the best value of k, the number of clusters. The
posterior probability so determined peaks at /: = 3 and thus yields clear evidence for 3
clusters in the NH 700-mb data. The 3-cluster result is found to be robust with respect to
variations in data preprocessing and data analysis parameters. The spatial patterns of the
3 clusters' centroids bear a high degree of quaJitative similarity to the 3 clusters obtained
independently by X. Cheng and J. M. Wallace, using hierarchical clustering on 500-mb NH
winter data: A for Gulf-of-Alaska ridge, G for high over southern Greenland, and R for
enhanced climatological ridge over the Rockies.

Separating the 700-mb data into Pacific (PAC) and Atlantic (ATL) sector maps reveals
that the optimal fc-value is 2 for both the PAC and ATL sectors. The respective clus
ters consist of M. Kimoto and M. Ghil's Peicific/North-American (PNA) and reverse PNA
(RNA) regimes, as well as the zonal (ZNAO) and blocked (BNAO) phases of the North
Atlantic Oscillation (NAG). The connections between our sectorial and hemispheric results
are discussed from the perspective of large-scale atmospheric dynamics.
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1 Introduction and motivation

Reliable identification of multiple regimes in hemispheric circulation patterns is a problem
that has attracted considerable interest in studies of atmospheric low-frequency variability.
We revisit here the specific problem of determining whether or not regime-like behavior
can be identified from estimates of the probability density function (PDF) in the large-
scale atmospheric flow's phase space. In particular, we use mixture modeling techniques to
perform probabilistic clustering in the space spanned by the leading empirical orthogonal
functions (EOFs) of the data. A data set comprised of 44 winters of Northern Hemisphere
(NH) 700-mb geopotential height anomalies is used in the present study.

Early work on this problem (Rex 1950a, b; Namias 1982) was based on fairly subjective
criteria, using synoptic pattern recognition or ad hoc quantitative criteria. More recent
work used increasingly objective and sophisticated criteria for clustering (Dole and Gordon
1983; Benzi et al. 1986; Ghil 1987; Mo and Ghil 1988; Molteni et al. 1988; Vautard 1990;
Hannachi and Legras 1995). There are essentially three issues involved: (i) is the total
number of clusters k equal to 1, 2 or more; (ii) if > 2, can we describe, stably and reliably,
the multiple clusters; and (iii) having done so, what are the dynamical mechanisms giving
rise to the clusters so described? The purpose of the present paper is to address issues (i)
and (ii).

Within the context of the first issue, Michelangeli et al. (1995; MVL hereafter) have
addressed specifically the problem of finding an objective criterion to determine the number
k of clusters. They used the framework of the dynamic cluster method (Diday and Simon
1976), which is a variant of the well-known A:-means clustering algorithm, and 44 winters
(1949-1992) of 700-mb height maps, classified separately over the Atlantic (ATL) and Pacific
(PAC) sector. They proposed the use of a classifiability index which measures the "stability"
of the cluster solution, as a function of A;, across different initial data for the algorithm. Such
an index does provide some idea of the cluster structure in the data; still, this technique and
related approaches, such as using the Davies and Bouldin (1979) index, may not perform
well in the presence of strongly overlapping clusters (e.g., Jain and Dubes 1988, Fig. 4.13;
Edlund 1997). Furthermore, there is no general theory supporting the use of one particular
"stability" index over any other.

As for the second issue, the closest degree of reproducibility so far of the same (subset
of) clusters by two independent methods applied to distinct data sets was obtained by
Cheng and Wallace (1993; CW hereafter), who applied hierarchical clustering (see also
Legras et al. 1988) to 40 NH winters (1946-1985) of 500-mb height data, and Kimoto and
Ghil (1993a, b), whoapplied visual inspection (Kimoto and Ghil 1993a; KGI hereafter) and
"bump hunting" (Kimoto and Ghil, 1993b; KGII hereafter) to the estimated PDF for 37
winters (1949-1986) of 700-mb heights.

Even though greater reliability and reproducibility were achieved in the recent work
just reviewed, there is still a degree of subjectivity left in the application of these clustering
techniques. In particular, none of the methods above havea completely satisfactory solution
to the problem ofdetermining in an algorithmic manner how many clusters exist in a given
data set, hemispheric or sectorial. Thus, the two problems of just how many different
regimes can be reliably identified in the multidecadal NH 700-mb record, and what exactly
they look like, bears further investigation.

The mixture model approach adopted here, unlike the previously used approaches, is



based on an explicit, fully consistent probabilistic model. This model has two primary
features:

1. Each cluster is defined as a unimodal ("component") PDF. Thus, points which lie
within the overlap region of different density functions can have a degree of member
ship (a probability) for each cluster, allowing for uncertainty in cluster membership
to be handled in a natural way.

2. It leads to a well-defined, built-in criterion for determining how many clusters should
be fitted to the data, which does not require additional, ad hoc assumptions or null
hypotheses. The information on which this criterion is based is simply contained in
the posterior probability distribution for k, the number of clusters. If the distribution
peaks sharply about a particular value of k, there is strong evidence for that value;
if the distribution is rather fiat, it follows that the data set at hand cannot provide
enough evidence for a particular value of k. The difficult part of the problem is
that of estimating this posterior distribution for k given the data. We disci^ the
methodology for doing so in some detail.

The paper is organized as follows. In Section 2 the 700-mb data set and data prepro
cessing steps are briefly described. Section 3 is an introduction to and review of the basic
concepts of mixture models, including a discussion of maximum-likelihood techniques for
model parameter estimation and a cross-validation methodology for estimating the posterior
distribution of k. Further methodological details are presented in three appendices.

Section 4 contains a detailed description of the application of the mixture modeling
methodology to the problem of cluster analysis in the subspace of the NH 700-mb anomalies'
leading EOFs. Strong evidence for the data's supporting the existence of 3 regimes is
presented. Robustness of this result with respect to variations in cross-validated partitions
and number of EOFs retained is investigated and discussed. The maps corresponding to
the 3 clusters found by mixture modeling are compared to the 3 significant maps found by
CW and a remarkable degree of similarity is found to exist.

The application of the mixture modeling methodology to the PAC and ATL sectors is
described in Section 5 and results in the selection of 2 clusters in each sector. The PAC

clusters resemble the well-known pacific/North-American (PNA) and reverse PNA (RNA)
regimes and the ATL clusters resemble the well-known blocked and zonal phases of the
North-Atlantic Oscillation (NAG). Both hemispheric and sectorial results are summarized in
Section 6, followed by a discussion of their Implications for the understanding and prediction
of low-frequency, intraseasonal variability of large-scale atmospheric flows.

2 Data set

The data set used in this paper is similar to that used by KGI and KGII and consists of twice-
daily "analyzed" (i.e., model-interpolated) fields of NH 700-mb heights compiled at NCAA's
Climate Prediction Center. The only difference between the two data sets is that in this
paper 44 winters are used, starting on 1 December 1949and extending through March 1993.
Kimoto and Ghil's data began on the same date but contained only 37 winters, through
March 1986. NH winter is defined as the 90-day sequence beginning on 1 December of each
year. AH the analyses below were performed on the winter data, namely the 44 x 90 = 3960
daily maps so defined. The preprocessing also follows KGI and is summarized below.



The original data set is based on the routine processing of raw NH observations — via
model assimilation of the data (e.g., Daley 1991; Ghil and Malanotte-Rizzoli 1991) — into
analyzed fields, carried out by the U. S. National Centers for Environmental Prediction
(NCEP, previously the National Meteorological Center), on a 10° x 10° diamond grid north
of 20°N. The 541 points of this grid are thinned out to be more nearly representative of
equal-area surface elements, thus yielding 358 grid points. For each one of these points,
the seasonal cycle is removed by averaging 5-day running means over the 44 years, thus
providing what we shall call the unfiltered height anomalies. A further 10-day low-pass
filter is then applied to these anomalies to obtain (low-pass) filtered anomalies.

EOF analysis (Preisendorfer 1988) was applied to the filtered anomalies in the standard
manner to determine the leading EOFs — that is, the eigenvectors of the covariance matrix
that are associated with the largest eigenvalues (i.e., variances) — of the spatial data set
(see KGI). In this manner one can reduce the dimensionality of the data set from the
original 358 dimensions of the grid space by projecting onto a few leading EOFs that retain
a significant fraction of the original variance. Such projections are useful for visualization,
density estimation, and clustering methods, all of which are easier to carry out in low-
dimensional spaces. Projections used in the analyses below range from the first 2 to the
first 12 EOFs.

3 Clustering methodology

a. An introduction to finite mixture models

A finite mixture model is a PDF composed of a linear combination of "component" density
functions. As an example consider the synthetic 2-D data set shown in Fig. 1. These
data have been generated from a mixture model containing 3 Gaussian components, having
distinct means and covariances, with components weighted equally. The means of the 3
Gaussians and the ellipses are overlaid on the scatter plot in Fig. 2; the semi-major axes
of each ellipse correspond in direction with the eigenvectors and in length with three times
the singular values of the associated covariance matrix, i.e., three times the corresponding
standard deviations.

Figure 3 shows a contour plot of the PDF. Note the non-Gaussian, multimodal nature of
this contour plot. The ability to model such multi-modal density functions is a key feature
of the mixture approach.

Let X be a d-dimensional random variable and let x represent a particular value of X,
e.g., a data vector with d components. A finite mixture PDF for X, having k components,
can be written as

/W(x|<l>) =^a,Si(x|0j), (1)
where each of the gj is a component density function. Each 6j represents the parameters
associated with density component gj and the aj are the relative "weights" for each com
ponent jy where > 0» 1 < i < ^ ; the set of parameters for the overall
mixture model is denoted by 0 = {ai,...,ajt;^i,...,

The component density functions are often assumed to each be a multivariate Gaussian,



and we shall do so here. Specifically, the jth component density is given by

where Hj and Cj are the mean and covariance matrix, respectively, and Oj = {ftj, Cj}. The
mean fij specifies the location of the jth density's centrold and the covariance matrix Cj
prescribes how the data belonging to component j are scattered around fj.j.

Diaconis and Freedman (1984) showed that most low-dimensional projections of a high-
dimensional data set that has an arbitrary multivariate PDF will result in data with an
approximately Gaussian PDF in the lower-dimensional space. Thus, for the EOF-subspace
projections discussed in this paper, one might postulate the "null hypothesis" that the data
will be Gaussian in any low-dimensional projection. The search for mixtures of Gaussians,
with A: = 2,3, components, is thus a natural step beyond the A: = 1 hypothesis in the
search for multivariate structure in this context.

The flexibility and simplicity of the mixture model has led to its widespread application
in applied statistics as a density estimation and clustering tool (Titterington et al. 1985;
McLachlan and Basford 1988). Historically, the earliest application of mixture modeling is
credited to Pearson (1894). Crutcher and Joiner (1977) and Crutcher et al. (1982) applied
Gaussian mixtures to meteorological data, using hypothesis tests based on likelihood ratios
to determine the number of components k in the mixture models. Titterington et al. (1985)
showed, however, that the statistics of the likelihood ratio are not well behaved for mixture
models, and thus the application of likelihood ratios for choosing k Is not recommended.

6. Estimating mixture model parameters from data

Let D = {xi,.. .,XAr} be a data set of length N with d-dimensional multivariate observar
tions Xn, I < n < N. Given D, one seeks a set ofparameter estimates <i> ofthe true mixture
parameters <l> which characterize the PDF model assumed to have generated the data; hats
C') will be used to denote all estimated parameter values. At first, we assume that the
number of components k In the mixture model Is known and fixed: the generalization to
estimating k from the data is discussed in Section 3d.

The maximum-likelihood principle states that one should seek the parameter estimates
which maximize the likelihood of the parameters given the data (or equivalently the log
arithm of the likelihood). This implies searching over parameter space to maximize log-
likelihood by treating the observed data D as fixed. For mixture models the log-
likelihood, assuming independent observations, equals

= ^log/('=)(x„|4.)
71=1

N / k

71=1 ^j=l ^

Taking partial derivatives with respect to each parameter in the set <i> yields a set of
coupled nonlinear equations. Thus, direct maximization in closed form is not feasible when
d or A: is large. In fact, the numberp of independent parameters for a A;-component Gaussian



mixturegrows like A:[d(d+l)/2+fi4-l] —!> which scales asp kd?. Thus, evenfor problems
of reasonably low input dimensionality d of the data's feature space (such as d = 5), the
dimensionality p of the parameter space will be quite large, and a global maximum of the
likelihood function quite hard to find. In addition, the mixture's log-likelihood surface
can have many local maxima; this makes the search for parameters that insure globally
maximum likelihood even more difficult when p is large.

Much of the popularity of mixture models in recent years is due to the existence of
efficient iterative estimation techniques for maximizing the log-likelihood. In particular,
the expectation-maximization (EM) procedure (Dempster et al. 1977) is a general technique
for obtaining maximum-likelihood parameter estimates in the presence of missing data. In
the mixture model context, the "missing data" are interpreted as the unknown or hidden
labels that identify which data points originated from which mixture component. The
EM procedure guarantees convergence in parameter space to a local maximum of the log-
likelihood function, but there is no guarantee of global convergence. Hence, the procedure
is often initialized from multiple randomly chosen initial estimates and the largest of the
resulting set of maxima is chosen as the final solution. The EM procedure for Gaussian
mixtures is described in detaU in Appendix A and is used for all of the results contained in
this paper.

Applying the EM procedure to the 600 data points shown in Fig. 1 results in the par
rameter estimates shown in Fig. 4. The differences between the estimated parameters (Fig.
4) and the true parameters (Fig. 2) are quite small and only discernible by actual superpo
sition of the two figures. Thus, the EM procedure is quite efficient at recovering the true
locations and shapes of the component densities which generated the data in Fig. 1, even
when N is not very large compared to p, 600 vs. 17 in this instance.

c. Clustering via mixture models

There is a long tradition in the statistical literature of using mixture models to perform prob
abilistic clustering-, see Everitt and Hand (1981), Titterington et al. (1985), and McLachlan
and Basford (1988) for a historical perspective. Clustering, in this mixture model context,
proceeds as follows:

1. Assume that the data are generated by a mixture model, where each component is
interpreted as a cluster or class Wj and it is assumed that each data point must have
been generated by one and only one of the classes ujj.

2. Given a data set where it is not known which data points came from which compo
nents, infer the characteristics (the parameters) of the underlying density functions
(the clusters).

Given estimated parameters 4> = {di,...,ajt; 0i,..one can calculate the proba
bility that data point x belongs to one of the k classes ujj by Hayes' rule:

P(a,,|x)= l<j<k, (4)
E/=i ocigiM^i)



i.e., one can probabilistically assign data points x to clusters. Here, oij = is an
estimate of the marginal or prior probability for each cluster. In the next subsection, we
shall allow P = to depend on k as well, which is still kept fixed (and known)
here.

The mixture model approach to clustering has the advantage that it treats the clustering
problem in an explicit statistical context, allowing full treatment of uncertainty in the
inference process. For example, uncertainty about the cluster locations and shapes, such as
probabilistic class membership and class overlap, can be easily handled. In fact, it can be
shown that mixture model clustering is a strict generalization of the well-known A-means and
related algorithms that are based on finding cluster centerswhich minimize a least-squares
objective function (Duda and Hart 1973). The mixture model is a generalization in the
sense of modeling the shapes of the clusters (instead of just the centers), as well as allowing
class overlap. It is clearly an agglomerative method, as compared to hierarchical clustering
methods (such as CW's) that are based on pairwise distance measurements between data
points. A potential disadvantage of the mixture model approach is the a priori assumption
of a given functional form for the component densities. Thus, while Gaussian components
are widely used, they are not necessarily always the most suitable choice; see, for instance,
the possible emergence of nonconvex clusters when using search methods based on simulated
annealing (Hannachi and Legras 1995).

d. Estimating the number k of clusters

So far we have assumed that fc, the number of clusters, is known a priori. Often one would
like to determine k from the data, if at all possible. A case in point is the multidecadal
NH 700-mb height data set, given the considerable prior work on trying to determine how
many regimes can be reliably identified in these data.

In a probabilistic context one would like an estimate of P(fc|D), the posteriorprobability
for k clusters given the data set D, I < k < fcmax- In the present work we use a robust
and consistent data-driven methodology based on cross-validated likelihood as the basis for
estimating F{k\D).

Cross-validation operates by repeatedly dividing the available data D into two disjoint
partitions (Stone 1974), fitting the model on one of the partitions, and estimating perfor
mance on the other (see also KGI for another application, to PDF estimation). After some
number ofsuch trials, the performanceestimates are averaged to get an "honest" estimate of
out-of-sample performance. Specifically in the mixture model context above, the procedure
is as follows:

1. Partition the data set D into a fraction (3 for model fitting, and a disjoint fraction
1 —/3 for performance estimation.

2. Fit a mixture model with k components (i.e., estimate its parameters) to the fraction
P of the data reserved for model fitting,

3. Estimate the log-likelihood [Eq. (3)] of these model parameters on the fraction 1 - /?
of the data reserved for performance estimation,

4. Repeat Steps 2 and 3 for a range of A:-values (usually for ifc = 1,..., k^ax)-



5. Repeat Steps 1 to 3 for a total number of M partitions (times), where each time the
data is randomly divided into two partitions as above. Let Lm^ be the estimated log-
likelihood ofthemth partition for a model with kcomponents, Lm^ =
1 < m < M; here = {cti,..., 0i,..., Ok], i.e., the set of parameters for a
mixture model with k components, where the dependence on k is now made explicit,
and the parameters are fitted via maximum likelihood on the mth training data set

6. Calculate the average log-likelihood (over the M runs) for each of the different /fc-values
to obtain the cross-validated log-likelihood

iiS' = (l/M) E £«. 1 < < ^max-

7. Obtain estimates of the posterior distribution for k by calculating

P{k\D) = exp{Llv)
1 < A: < Ajmax;

Eq. (6) follows from Bayes' rule by assuming equal priors on different values of k.

In practice the method is not sensitive to the exact values of /3 or Af when the data
set is relatively large compared to the complexity of the fitted models. This is the case for
the geopotential height data discussed in the next section. Thus, default values of /? = 0.5
and M = 20 are used throughout. A discussion of the theoretical properties of the above
cross-validation method is provided in Appendix B.

To illustrate the method. Table 1 shows the cross-validated likelihoods and estimated
posterior probabilities obtained from running the cross-validation procedure on the data
shown in Fig. 1. There is clear evidence that A; = 3 is the best model given the cross-
validation information. Nonetheless, the fact that P{k > 3) ^ 0 demonstrates that inferring
the correct number of components from such data is nontrivial. In general, the ability of
this method (or indeed any purely data-driven method) to automatically infer the "true"
number of clusters present in a data set will improve as the amount of data increases relative

to the complexity of the cluster model; "complexity" in this context is taken to mean both
the number of clusters and the degree of overlap (or closene^) among them.

4 Hemispheric results

a. Cross-validated clustering results

Following the approach of KGI and others, we are interested in determining the cluster
structure, if any, of the NH height anomaly data described earlier, as it appears in a low-
dimensional subspace of leading EOFs. We applied the mixture model clustering method
outlined in Section 3 to the 44-winter set of NH height anomalies presented in Section 2.
The unfiltered anomalies were projected onto the first two EOFsof the filtered data set (see
Section 2). A scatter plot of the resulting projection is shown in Fig. 5.

We ran the mixture model cross-validation method on this two-dimensional (2-D) data
set. The algorithm described in Section 3d was modified so that random partitions were



chosen based on winters rather than days, i.e., half of the 44 winters were placed in the
training set and the remainder in the test set. This modification is necessary to ensure that
the training and test partitions are truly independent (and, thus, guarantee the theoretical
consistency of the method as described in Appendix B).

The number k of clusters (i.e., mixture components) was allowed to take on all values
from 1 through 15. The log-likelihoods for A: > 7 were invariably much lower than those for
A; < 6 so we present, for clarity, only the results for A; = 1,..., 6. The posterior probabilities
and cross-validated log-likelihoods are tabulated in Table 2. The posterior probabilities
provide clear evidence for the data supporting exactly 3 clusters, i.e., the cross-validation
estimate of the posterior probability for 3 clusters is effectively 1 and all others are effectively
zero.

Note that the absolute values of the log-likelihoods are irrelevant — strictly speaking,
likelihood is only defined within an arbitrary constant. More precisely, let ^be the cross-
validated likelihood for some particular value of A: = fc* as defined by Eq. (5). Subtracting

i/iu ^from each of the cross-validated likelihoods 1 < A: < A:niaxi tioes not affect the
posterior probability estimates in Eq. (6) since it is equivalent to multiplying above and
below by exp(—£cS to yield

exp - lit
1 < A; < Ajmax.

Thus, it is the differences between the log-likelihoods that matter.
Choosing k* = 3, Table 3 shows the differences between the log-likelihoods for a given k

and that for A:* = 3 in the case of each partition. Larger log-likelihood differences are better,
i.e., the relative likelihood of the highlighted column is stronger. Since A; = 3 is always zero,
negative log-likelihoods for any entry mean that for that partition m and value of k, the log-
likelihood was less than that for k —Z. The number of partitions A: = 3 clearly dominates:
it yields the highest-likelihood model in 15 out of 20 cases, with k = 2 "carrying the day"
in 4 cases and A: = 1 in only one. Considerable variability occurs between partitions since
estimates of likelihood can be sensitive to outliers. But it is the cross-validated likelihood

fit)
LW, calculated as the mean of the individual likelihoods on each partition, which matters
in finally determining the number of clusters (see again Table 2).

b. Robustness with respect to partition choices and dimensionality

We carried out numerous runs on the same data with different randomly chosen parti
tions among the 44 winters and using exactly the same parameters as described before
(/3 = 0.5,M = 20). All these runs provided the same result, namely an estimated poste
rior probability of P{k = 3) w 1. The cross-validated likelihood value and the estimated
probability of A; = 3 for each such run is shown in Table 4.

We also investigated the robustne^ of the method with respect to the number of lead
ing EOFs retained, i.e., to the dimensionality of the large-variance subspace in which the
mixture model is constructed and tested. The unfiltered 700-mb height anomalies were
projected onto the first d EOFs, d = 2,..., 12. As a function of the dimensionality d, the
posterior probability mass was highly concentrated at A: = 3, i.e., P(k = 3) « 1, until d = 6;
at this point the mass "switched" to become concentrated at A: = 1, i.e., P(k = 1) « 1.
It follows that, as the dimensionality increases beyond d = 6, the cross-validation method



does not provide any evidence to support a model more complex than a single Gaussian
bump. This is to be expected since the number of parameters p in a fc-component Gaussian
mixture model grows in proportion to k(P (see Section 3b). Thus, for example, in d = 10
dimensions, there are p = 168 parameters for a 3-component model but only 56 parameters
for a single-component model. In contrast, in 5 dimensions, the 3-component model needs
only 48 parameters.

Since the total amount of data to fit the models is fixed, as the dimensionality d increases
the estimates of the more complex models become less reliable and cannot be justified
by the data. This is consistent with fairly general considerations of accurate and robust
PDF estimation in d dimensions (see KGI, Section 5, and references there) and with the
theoretical arguments given in Appendix B that cross-validation will pick the best mixture
model which can be fit to a finite set of data. If the data are sufficient in number N, this best
model will correspond to the true model; if there are too few data (relative to the complexity
of the models being fit), on the other hand, the method will be more conservative and choose
a simpler model that can be supported more reliably by the data. Another interpretation of
this result is that empirical support of the 3-component model in higher dimensions would
require records on the order of a few hundred years long, rather than the 44 years of data
currently available [compare also Lorenz (1969)].

For the 3-component Gaussian model, we also investigated the variability in the physical
maps obtained as cluster centroids when retaining different numbers of leading EOFs. The
unfiltered height anomalies were projected onto the first d EOFs for d = 3,..., 12 and a
Gaussian mixture model with k = 3 components was fit to the data for each case. For
each value of d, 3 maps of 700-mb height anomalies were obtained from the centers of
the 3 Gaussians. The pattern correlations [as defined in Mo and Ghll (1988), CW or
KGI] were then calculated between each of these maps (obtained in d dimensions) and the
corresponding 3 maps obtained when using d = 2 (see Section 4a). The results, shown
in Table 5, indicate that the correlations between the 2-D EOF maps and maps obtained
in up to 12 EOF dimensions are very high. One can conclude that the dimensionality of
the high-variance EOF subspace does not affect the qualitative patterns of the geopotential
height maps in any significant manner, when using the mixture model clustering procedure
applied here. Our results are also robust with respect to the preprocessing of the data, as
shown in Appendix C.

c. Comparison with CW's results and interpretation

Given that there is strong evidence for 3 Gaussian clusters, we fit a 3-component Gaussian
model to the entire set of 44 winters in the 2-D EOF space (rather than partitioning into
halves as before) and examine the results. Figure 6 shows the location of the means of
the Gaussians and the three-standard-deviation ellipses associated with their covariance
matrices, superposed on a scatter plot of the data projected onto the first 2 EOFs. The
resulting contour map of the bivariate-mixture PDF is shown in Fig. 7.

The means of the 3 Gaussians fitted in Fig. 6 have a natural interpretation as the centers
of 3 Gaussian data clusters. Figure 8 presents the 3 maps corresponding to our 3 cluster
means on the left and the 3 maps corresponding to CW's most reproducible hierarchical
clusters on the right [fromFig. 11 of Wallace (1996)]. CW labeled both the maps in question
and the clusters they represent A (for Alaska), G (for Greenland), and R (for Rockies).
Their maps and ours have a high degree of pairwise qualitative similarity in terms of the



spatial patterns, while the size of the associated anomalies differs, as discussed further below.
The upper (A) maps both clearly possess a distinctive ridge over the Gulf of Alaska. The
middle (G) maps exhibit a strong high over southern Greenland. The bottom (R) maps
are characterized by an intensification of the Pacific jet stream and an enhancement of the
climatologicaJ mean ridge over the Rockies.

Note that CW and the present study use two distinct, and rather different, methodolo
gies (mixture modeling here and hierarchical clustering in CW), as well as two somewhat
different data sets (700-mb vs. 500-mb data over slightly different time spans) and differ
ent preprocessing of the data (the work in this paper was in an EOF subspace, while CW
clustered the anomaly maps directly). CW's methodology for arriving at 3 distinct, highly
significant clusters was based on a combination of sophisticated resampling of the data and
subjective judgment. In their own words, "the more reproducible clusters are strung out
along three well-defined 'branches' of the family tree" (see especially Fig. 15 of CW). The
cross-validation results described here can be viewed as an independent and totally objec
tive validation of CW's "3-cluster" result, confirmed also, less independently, by Wallace's
(1996) extension ofthe CW analysis to 1989. It isquite reassuring that both methodologies
permit us to conclude that 3 distinct regimes dominate the NH wintertime low-frequency
variability over the past half-century and that the maps corresponding to the centroids of
these regimes — as obtained by either one of the two — are qualitatively quite similar.

There is an important qualitative difference between the mixture model clusters found
here and clusters found by partition-based methods such as the "fuzzy clusters" of Mo and
Ghil (1998) or the hierarchical clusters of CW. Each mixture model cluster corresponds to
a component in the mixture density function, and thus, the sum of their contributions is
a well-defined PDF in the large-scale atmosphere's phase space. Equivalently, the mixture
components must "account" for all of the data, i.e., the model covers the system's entire
phase space, as sampled by the available observations, and not just a portion of it. In
contrast, the hierarchical clusters found by CW are local in nature. Thus, for the mixture
model, the component weights aj are constrained to sum to 1, and the componentcovariance
matrices Cj are constrained by the overall covariance structure of the entire data set. Most
importantly, the means are also subject to a "global" constraint imposed by the overall
mean of the data equaling zeroand by a somewhat indirect couplingto the overall covariance
structure.

The directions of the mean vectors from the origin in phase space, i.e., the overall mean
of the data set, however, are relatively unconstrained. It is, therefore, the angles of the
centroids - and, in turn, the associated spatial patterns on the grid - that are the most
directly determined by the data, while the distances from the origin (the amplitude scale
of the maps), the component covariances, and the component weights are less data-driven
and more constrained by the model. This observation provides a more rigorous basis for
the heuristic choice of Mo and Ghil (1988) and KGII to concentrate on angular PDFs. It
also explains why the maps found by CW's clustering and our cluster centers have very
similar spatial patterns but are scaled differently (see Fig. 8), i.e., the cluster centroids lie,
in either case, along the same directions from the origin in phase space, but at different
distances, due to different constraints in the respective (Euclidean-distance) models.

This point is reinforced by comparing the location of the centers in Fig. 7 here with
the center locations In CW's Figure 15a; the polarity is reversed, since our EOFs and CW's
came out to have opposite sign. Cluster A for example is further from theorigin in CW than



in this paper; it is clear, however, from CW's Figure 15a that the hierarchical clustering
algorithm produced a "trajectory" of clusters, one of which was chosen as the definitive
cluster by CW's method.

In summary, the mixture model's cluster centroids are constrained to be closer to the
origin than is the case in methods which seek local structure in a Euclidean phase space.
Nonetheless, it is clear from a comparison of CW's r^ults and those here that the angles
from the origin, and hence the spatial patterns of the associated regimes, are essentially the
same in both analyses.

The A, G, and R patterns also bear a close resemblance to some of the clusters identified
by KGI and by Molteni et al. (1990). In particular, the match of map A here (and in CW)
with KGI's RNA is almost perfect and that between map R and KGI's PNA quite good,
but slightly less so over the Atlantic-European sector. The similarity between G here (and
in CW) with KGI's Blocked NAO (BNAO) is again excellent over the areas of strongest
anomalies, in the Atlajitic-European sector this time, but not as good in the complementary,
Pacific/North-American sector. This slight mismatch is essentially due to the fact that —
as Mo and Ghil (1988) observed (their Figs. 4 and 13) and CW and Kimoto and Ghil
(1993a,b) corroborated (see especially Fig. 17 in CW and Fig. 11 of KGI) — EOFs 1 and 2
of the NH wintertime height anomalies are roughly determined by the patterns of positive
and negative PNA and positive and negative NAO. We refer to these earlier papers, and
further references therein, for a more complete synoptic description of the spatial patterns
involved and their climatological importance.

KGI — by using a less rigorous clustering method than the one applied here, namely
visual inspection of the bivariate PDF derived from a kernel density estimation method
— found 4 clusters: PNA and RNA, BNAO and zonal NAO (ZNAO), the last of which is
missing in CW and the analysis here. The cluster centroids with (approximately) opposite
polarities for the PNA and NAO, respectively, did not exhibit in KGI (nor do the A and R
maps here and in CW) quite the same spatial patterns (with the sign of the local anomalies
reversed); likewise, these centroids do not have simply the sign-reversed coordinates of PNA
and NAO, respectively, in the subspace of the two leading EOFs (in the case of RNA-PNA
and ZNAO-BNAO in KGI and of A-R only here and in CW). Still, to first order, the
present analysis is consistent with the view that the hemispheric regimes arise, pairwise,
from sectorial regimes that correspond to an intensification or weakening of zonal flow in
the ATL or PAC sector. The coordinates of our centroids are A^ (—297 m, 42 m), R^
(226 m, 181 m), and G= (130 m, —487 m), with the first coordinate along EOF 1 and
the second along EOF 2. The Pacific/North-American sector features of G are obviously
distorted with respect to KGI's BNAO since A and R are forced to carry also, between the
two of them, the features of ZNAO in that sector. This issue is clarified further in Section
5.

5 Sectorial results

We applied the mixture model clustering method of Section 3 separately to the (a) Pacific
(PAC) sector (120°E - 60°W) and (b) Atlantic (ATL) sector (60°W - 120®E). The data
were preprocessed as described in Section 2 (see also KGII) and separate sets of EOFs were
estimated in each sector. The 179(= 358/2) spatial data points for each day in either sector
were projected onto the first 4 EOFs, as in KGII. The mixture model clustering procedure



was applied to the data in each sector, with k ranging from 1 to 10, = 0.5, and M —20.

a. PAC sector

The estimated posterior probabilities on k are P(k = 2) = 0.980 and P{k = 3) = 0.020; all
the probabilities for other values of k are zero. Thus, cross-validated likelihood points to
A: = 2 as the most likely model to fit the data by far; a very slight ambiguity in the result
appears when compared to the hemispheric analysis of Section 4, where the probabilities
were essentially zero except for k = S.

Figure 9 showsthe location of the meansand three-standard-deviation covariance ellipses
of the estimated Gaussian components for k = 2, superposed on a scatter plot of every 10th
day projected onto the first 2 EOFs. Figures 10a and b show the maps corresponding to
the centroids of the 2 clusters. The spatial pattern in panel (a) clearly resembles the PI
regime and that in panel (b) the P2 regime of KGII's sectorial analysis; our 2 PAC clusters
also resemble CW's sectorial clusters R and A, respectively. These 2 PAC regimes are the
sectorial counterpart of the hemispheric PNA and RNA clusters, here as well as in CW
and KGI. Following CW, we use italics to distinguish between the sectorially defined PNA
(panel a) and RNA (panel b) and the hemispheric regimes.

Projecting the data onto the first 2 EOFs, rather thaji the first 4 EOFs as above,
produces estimated posterior probabilities of P{k = 2) = 0.824 and P{k = 3) = 0.176,
while projection onto 3 EOFs produces P(k = 2) = 0.970 and P{k = 3) = 0.030. The
nonzero probabilities for the 2-D case here are quite similar to those obtained for the
synthetic 3-cluster case in Table 1, except that the distribution here peaks at A; = 2. For
both ATL cases, of 2 and 3 EOFs, the cluster centroids correspond to the same PNA and
RNA patterns. The somewhat larger probability for A; = 3 in the 2-D subspace suggests
that more complex structure (i.e., A: > 2) may be present, as apparent in KGII and MVL,
but this structure is not fully supported by the current data.

b. ATL sector

For the ATL sector, the posterior probabilities on A; - when projecting the data onto the
4 leading EOFs - are essentially zero except for P{k = 2) = 0.991 and P{k = 3) = 0.009.
Again, as in the PAC sector, there is a very slight ambiguity as to the true number of
clusters.

Figure 11 shows the location of the means and three-standard-deviation covariance el

lipses of the estimated Gaussian components for Ar = 2, superposed on a scatter plot of
every 10th day projected onto the first 2 EOFs. Figures 10c and d show the height anomaly
maps that correspond to the centroids of the 2 clusters from the A; = 2 solution. They bear
a close resemblance to the Al and A5 regimes of KGII and to the G-f and G- clusters of
CW's sectorial analysis. We label them as BNAO and ZNAO, respectively.

Projecting the data onto the leading 2 EOFs, rather than 4 EOFs (see also Section 5a),
produces estimated posterior probabilities of P(k = 2) = 0.002 and P(k = 3) = 0.998;
projecting onto the first 3 EOFs yields P{k = 2) = 0.174 and P{k = 3) = 0.825. Thus, for
the ATL sector, the data projectionontoeither a 2-Dor 3-D subspace supports a model with
A: = 3. From a statistical-estimation viewpoint it is not surprising that in lower dimensions
the data can support a more complex model, since there are fewer parameters to be fitted
than in the 4-D case (see discussion in Section 4b). It is, therefore, even more remarkable



that the hemispheric A: = 3 result is quite stable for dimensionality d ranging from 2 to 12,
and the PAC result is also stable for 2 < d < 4 (see Sections 4b and 5a, respectively).

While the ATL-sector results are more ambiguous, the cluster centroids that correspond
to the k = 3 model (in both 2-D and 3-D subspaces) display continuity with respect to
the k = 2 model in the 4-D EOF space, namely both the BNAO and ZNAO clusters are
retained. The third cluster for both subspaces has essentially the same spatial pattern, and
is quite similar to the A2 pattern in KGII and to MVL's second ATL cluster.

c. Comparison with previous results

Using hierarchical clustering on the sectorial data, CW obtained 2 most reproducible clusters
in each sector: A and R in the PAC sector and C-f and G- in the ATL sector (see their
Figs. 8 and 9, respectively). KGII, on the other hand, found as many as k = 7 clusters for
the PAC sector and k —6 clusters for the ATL sector (see their Figs. 5 and 6, respectively),
using bump-hunting on estimated angular PDFs.

MVL introduced a classifiability index into their dynamical clustering, based on similar
ity of partitions to which the algorithm converges, when started with the same number k of
seed points, but different sets of such points. The maximum value of this index, for either
sector, occurred for A; = 2 (their Fig. 2). Not satisfied with this result, they introduced
an extraneous "null hypothesis" of the daily maps being generated by a first-order vector
Markov process built on the leading 8 EOFs of the data set and with the same covariance
matrix as the data at lag 0 and 2 days. The classifiability index was significantly distinct
from its distribution - as given by 100 Monte Carlo simulations of this process with the same
length as the data set - for A; = 3 in the PAC sector and A: = 4 in the ATL sector. Still the
spatial patterns of the centroids obtained in the 2 sectors (their Figs. 7 and 4, respectively)
corresponded fairly closely to a subset of KGIPs and included, in particular, CW's pair A~R
(or, equivalently, KGII's pair P2-P1) in the PAC sector, as well as the G-|-(CW)/A5(KGn)
pattern in the ATL sector. Furthermore the 3 PAC and 4 ATL clusters of MVL could be

clearly "parsed" into the pair of clusters per sector associated with the "opposite phases"
of the PNA and NAO (their Fig. 10).

In faot, in our sectorial results the two centroids of the pairs A-R and G-f-G- are
essentially mirror images of each other. This mirroring is clearly visible in the locations
of the means in Figs. 9 and H. Indeed, as discussed already in Section 4c, the mixture
model imposes certain constraints on the possible cluster centroids which are fitted to the
data. In particular, with k = 2 and zero-mean data (as is the case with the PAC and
ATL sectors), it is straightforward to show from Eqs. (1) and (2) that /ij = r/Xj, where
r = —02/ai, i.e., the two centroids must have the same spatial pattern and opposite sign,
with possibly different scales (if a2 ^ oi). An immediate consequence of this property of
Gaussian mixture models is that significant skewness with respect to two intersecting axes
will result in nonvanishing probability of A: > 3 clusters; this is the case for our NH results
and 2 < d < 12 (shown for d = 2 in Fi^.5-7), as well as for the ATL results in 2-D (not
shown).

The cluster results for the PAC and ATL sectors across different studies clearly point to
multimodality in the PDFs. There remains some uncertainty as to the precise number of
regimes which can be reliably identified in each of the sectors. The mixture model results
here are consistent with previous studies in the sense that they consistently recover the
well-known sectorial features of the PNA, RNA, BNAO, and ZNAO patterns. The present



model results also seem to support, to a greater degree in the ATL and lesser in the PAC
sector, the possibility of more complex structure in the sectorial PDFs. At the same time,
they indicate that we do not yet have sufficient data to confirm with complete confidence
mixture models for such greater complexity than A; = 2 in either sector.

6 Concluding remarks

a. Summary

Probabilistic clustering, using finite mixture models, was introduced and described for the
purposes of automatically clustering 44 winters of NH 700-mb height anomaly data. After
projecting the anomalies onto the data set's leading EOFs in the standard manner, we used
a mixture model clustering algorithm to determine what cluster structure - if any - existed
in the NH data. There is clear evidence that the last half-century of upper-air data sup
ports exactly 3 distinct clusters. A feature of the present method, compared to alternative
clustering methodologies, is precisely its ability to objectively answer the question "how
many clusters are justified by the data?" On examination, the patterns associated with
the 3 clusters found by the mixture approach have a very close correspondence to the 3
cluster patterns found by Cheng and Wallace (1993; throughout CW) using hierarchical,
non-probabilistic clustering on a comparable data set of NH 500-mb height anomalies. The
three common clusters A for a pronounced ridge over the Gulf of Alaska, G for an anti-
cyclonic feature over southern Greenland, and R for an enhancement of the climatological
ridges over the Rocky mountains. The three clusters also agree well with KGI's RNA,
BNAO and PNA regimes, while KGI captured a hemispheric ZNAO regime as well.

Previous work (KGII, MVL) had suggested that the NH winter upper-air data support a
more complex classification when examined separately over the Atlantic (ATL) and Pacific
(PAC) sector. We applied the same mixture model methodology to the sectorial data. Two
clusters ecLch emerge for the PAC sector, PNA and RNA, and for the ATL one, ZNAOznd
BNAO. These correspond to zonal and blocked fiow over the sector under study. PNA and
RNA capture the sectorial PAC features of CW's and the present paper's hemispheric R
and A clusters, while ZiVAOand RAAO capture the ATL ones of KGI's hemispheric ZNAO
and BNAO. It thus appears, as suggested by Mo and Ghil (1988) and KGI-II, that the
hemispheric clusters are manifestations of the sectorial ones. The tentative explanation for
the ZNAO's "missing" in the CW analysis and that of Section 4 here is provided next.

b. Discussion

A striking feature of the sectorial ATL results is the closeness of the ZNAO centroid to
the origin. This is consistent with the predominantly positive anomaly (zonal phase) of
the NAO index over the last half-century (Hurrell 1995). This index is defined as the sea-
level pressure difference between the Acores and Iceland and measures the intensity of the
westerly jet across the North Atlantic basin. Its consistently zonal character during the
last few decades helps explain the absence of a stable ZNAO cluster from the hemispheric
analysis of CW and present paper.

Interdecadal changes in the large-scale atmosphere's intraseasonal, 10-100 day low-
frequency variability seem to manifest themselves more in changes of the relative number of
days of residence in each cluster than in changes of the clusters' spatial patterns (Robertson



et al. 1997). This would lead us to suspect that an analysis of hemispheric upper-air data
- if they were available - over the first half of the 20th century might yield four regimes,
rather than three, as ZNAO's centroid could move more farther away from the 2-D phase
space's origin, due to the distribution of days between it and BNAO becomes better bal
anced. Indeed, the main physical cause for the existence of multiple regimes, sectoriai and
hence hemispheric, appears to lie in the nonlinear dynamics of the westerly jet in either
sector. The dynamics involves the linear instabilities - barotropic and baroclinic, exponen
tial and oscillatory - of the jet and their nonlinear saturation, as well as their interaction
with zonally asymmetric lower boundary conditions, topographic and thermal. The sim
plest manifestation of this complex dynamics - and the elementary proof for its nonlinear
character - is the sectoriai bimodality demonstrated herein.

This bimodality is distinct from the hemispheric one claimed by Benzi et al. (1986)
and Hansen and Sutera (1986), as the latter requires preferred simultaneity of the blocked
vs. the zonal circulation phases in the two sectors. Such simultaneity is the rule in simple
models with identical sectors (Legras and Ghil 1985) and in laboratory devices that are a
"wet" version of such models (Tian 1997; Weeks et al. 1997) but occurs only rarely in the
existing atmospheric upper-air data (KGII and here, not shown). The generally observed
lack of simultaneity between the two sectors could arise from slightly different periods of
the two sectors' oscillatory instabilities (Marcus et al. 1996) and the occasional "phase
locking" between the two from different initial data available early in each winter, when the
oscillations become eictive (Strong et al. 1995). The available half century of upper-air data
is rather short to permit the more detailed examination of these theoretical conjunctures
and we shall have therefore to undertake extended simulations of the atmospheric circulation
with fairly detailed and realistic models in order to verify or falsify them.
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APPENDIX A

The EM Procedure for Gaussian Mixtures

The Expectation-Maximization (EM) procedure is an iterative method for mixture mod
eling whereby the parameters at iteration r + 1 are updated based on parameter estimates
from iteration r. For a general discussion of the theoreticaJ basis of the method see, for
example, Dempster et al. (1977); we provide here only a brief summary of the procedure in
the context of Gaussian mixtures.

For Gaussian mixtures the parameter set <t> consists of weights cvj, the d-dimensional
means fij, and the d x d covariance matrices Cj, for each component 1 < i < A;. There
are N data points {xi,...,Xn,...,x^r}, each being represented by a d-dimensional x,-. The
procedure is initialized by randomly choosing the mean vectors /ij and initializing the other
parameters appropriately. At iteration r, let

^ Q;gj(xn|A;.c;)
1 < i < A;, 1 < n < AT, (A.1)

be the probability that data point Xn belongs to component density j, given the parameters
aj, CJ for k multivariate Gaussian density functions gj as defined in Eq. (2).

At the next iteration (r -1-1), the parameter estimates are:

-r+l _ (A.3)

These update equations have the simple interpretation of being standard maximum-likelihood
estimates for membership, mean, and covariance parameters respectively, modified to weight
the data points by their membership probabilities (i.e., to use, in a sense, "fractional" data
points).

A basic property of the EM procedure is that the likelihood is a nondecreasing function
of r, i.e., the procedure is guaranteed to converge to a fixed point, provided the sequence of
estimated parameters ranges over a compact (i.e., closed and bounded) p-dimensional
set. This fixed point in parameter space need not be a global maximum and is a function
of the initial guess 0°. Thus, in practice, several different initial guesses can be tried and
the maximum likelihood among these selected. For the results reported here, 10 different,
randomly selected initial parameter sets were chosen for each run of the EM procedure. The
different initial parameter sets were found by running the A:-means algorithm (e.g., Duda
and Hart 1973), using different random starting points for the k means. This initialization
procedure is common practice in the application of EM to mixture model clustering.

Note that the fixed point obtained by the EM procedure may be a singular solution
for which one of the mixture components is centered on a particular data point and the
determinant of the associated covariance matrix approaches zero. This type of singularity



results in a likelihood which approaches (positive) infinity. Such solutions are typically not
of interest and in practice are discarded. Singularities of this type occur at the boundaries
of the relevant compact set in parameter space and can be avoided by restricting the search
for model parameters to a compact set that lies within the full set and has a boundary
that is bounded away from the singularities. For data sets where N is large relative to it,
singular solutions are rarely a problem in practice. Indeed, in the results reported in this
paper no such singular solutions were ever generated.

APPENDIX B

Cross-Validated Likelihood for the Number of Clusters k

From a statistical viewpoint, the most consistent approach for finding k is the full
Bayesian solution where the posterior probability of each value of k is calculated given the
data, priors on the mixture parameters, and priors on k itself. The posterior distribution for
k contains, in principle, the necessary information for deciding how manyclusters are justi
fied by the data. If the posterior is peaked about a particular k then the data provide strong
evidence for that value of k. On the other hand, if the posterior is "spread out" among
different k values (high entropy), the data cannot discriminate which k is most likely. A po
tential difficulty with this approach is the computational complexity of integrating over the
parameter space to calculate the posterior distribution on k. Various analytic approxima
tions (Chickering and Heckerman, 1997) or Monte-Carlo sampling approximations (Robert
1996) have been used to get tractable estimates for this posterior distribution.

A different approach to this problem is to obtain a data-driven estimate of the posterior
distribution on k using cross-validated likelihood (Smyth 1996). Cross-validated likelihood
is asymptotically consistent in the sense that it will always choose the correct model in the
limit of increasing data set sizes. In practice, it has beenshownto work well empirically on a
variety ofsimulated and real data sets, performingas well as variousBayesian approximation
methods (Smyth 1996). It has certain distinct advantages over the Bayesian approximation
approach. It is conceptually simpler to interpret and easier to implement. In addition it
does not rely on approximations whose impact (in the Bayesian case) on the quality of the
posterior probability estimates can be difficult to determine.

Let /(x) be the true PDF for x. Let D = {xi,.. .,x/,r} be a random sample from /.
Consider a set of finite mixture models with k components beingfitted to D, where k ranges
from 1 to kmax- Thus, we have an indexed set of estimated models, /^*)(x|̂ I*'̂ ), 1 < fe <
^maxi where each /^*'̂ (x|0^^)) has been fitted to data set D.

Let be the parameters for the fcth mixture model obtained by maximizing the
likelihood as described in Section 2b using the data D. As k increases, the log-likelihood
/,(*=)(4)(*=)ID) [as defined in Elq. (3)], is a nondecreasing function of fc, since the increased
flexibility of more mixture components allows a better fit to the data (increased likelihood).
Thus, cannot provide any clues as to the true mixture structure in the data,
if such a structure does exist.

Imagine instead that one had a large test data set which is not used in fitting
any of the models. Let be the log-likelihood as defined in Eq. (3), where
the parameters are estimated from D as above, but the likelihood is evaluated relative
to We can view this likelihood as a function of the "parameter" k, keeping all
other parameters and D*®®* fixed. Intuitively, this "out-of-sample likelihood" should be a
more honest estimator than the training-data likelihood for comparing mixture models with



different numbers of components.
It is straightforward to show that

=/ /(X) log+const., (B.l)

i.e., the expected value of (scaled appropriately), with respect to different test-
data sets drawn randomly from the true distribution /, is the cross-entropy between between
/(x) and plus an arbitrary constant. Thus, the out-of-sample log-likelihood

is an unbiased estimator of this cross-entropy. The cross-entropy in turn func
tions as a distance measure of how far the model is from the true /: cross-
entropy is strictly positive unless = / above. Thus, choosing the k which
minimizes the out-of-sample likelihood is equivalent (on average) to choosing the model
(within the model family under consideration) which is closest in a cross-entropy sense to

/.
However, in practice, one cannot afford or does not have available a large independent

test set such as A standard technique in such situations is to estimate the out-
of-sample performance using cross-validation. The algorithmic procedures for repeatedly
partitioning the data in random fashion and calculating the cross-validated log-likelihood
are described in Section 3d.

Since the log-likelihood estimate for each cross-validation partition of the data is based
on data which is independent from that used to fit the model, each such estimate is an
unbiased estimator of the cross-entropy between the model and the true density /. In turn,
since expectation is a linear operator, the average of these estimates (namely the cross-
validated likelihood estimates) is in turn unbiased. Thus, finding the maximum over k of

Lc? will on average select the model which is closest (in cross-entropy distance) to the true
density /.

APPENDIX C

Robustness with Respect to Preprocessing
CW performed their hierarchical clustering by subsampling the days (choosing every

5th day) and also by using filtered anomalies. In contrast, in the experiments described in
the main text we used unfiltered anomalies and all of the days. To test the sensitivity of the
results to these modest changes in the data, we fitted the 3-component Gaussian mixture
model in the 2-D EOF space to 3 different permutations of the original data described
above; i) unfiltered anomalies for every 5th day; ii) filtered anomalies for all days; and iii)
filtered anomalies for every 5th day. The EOFs onto which these 3 additional data sets
were projected were not changed from the basic experiments in Section 3c, i.e., they were
determined using all 3960 filtered daily maps.

For each type of data we obtained the height-anomaly maps corresponding to the mean
of each Gaussian component density. The correlation coefficient between these maps and the
corresponding map obtained using unfiltered anomalies for all days (as in Fig. 8) was then
calculated. The results are shown in Table 6 and clearly indicate that the maps obtained
using any of these methods are all virtually identical.
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Table Captions

Table 1. Cross-validated log-likelihood and posterior probabilities P(k\D0)y as

a function of the number k of Gaussian clusters, when applying cross-validation to the

mixture modeling algorithm (with /3 = 0.5, M = 20) for the 600 synthetic data points

shown in Fig. 1.

Table 2. Cross-validated log-likelihood and estimated posterior probabilities, as a

function of k, when applying the mixture model to 20 random partitions of the 44 winters

of NH 700-mb geopotential height anomalies (unsealed).

Table 3. Out-of-sample log-likelihoods for each of M" = 20 random partitions of 44

unsealed winter anomalies, normalized so that the log-likelihood for A: = 3 is zero on each

run. The most likely value (of log-likelihood and hence of k) is displayed in bold font for

each partition.

Table 4. Cross-validated log-likelihood values as a function of k and the estimated

posterior probability of A: = 3 from 10 different experiments, each using M = 20 rcindomly

chosen partitions of the 44 winters.

Table 5. Pattern correlation coefRcients between maps fitted using the data projected

onto d EOFs, 3 < d < 12, and maps fitted using d = 2 EOFs. The maps corr^pond to

centers of a mixture model based on 3 Gaussians, fitted by the EM procedure (see section

3b) as applied to all of the data in the d-dimensional EOF subspace.

Table 6. Pattern correlation coefficients between maps fitted on unfiltered anomalies

for all 3960 days and (a) filtered anomalies, (b) unfiltered anomalies using only every 5th

day, and (c) filtered anomalies using only every 5th day. All maps were fitted to the data

projected into the first 2 EOFs.



Tables

Table 1: Cross-validated log-likeiihood i/U' and posterior probabilities P{k\D^)^ as a
function of the number k of Gaussian clusters, when applying cross-validation to the mixture
modeling algorithm (with 0 = 0.5, M = 20) for the 600 synthetic data points shown in Fig.
1.

k = l k = 2 k = Z k = 6

Cross-validated log-likelihood -1287.9 -1258.8 -1249.5 -1251.0 -1253.4 -1256.1

Estimated posterior probability 0.000 0.000 0.809 0.175 0.015 0.001

Table 2: Cross-validated log-likelihood and estimated posterior probabilities, as a
function of when applying the mixture model to 20 random partitions of the 44 winters
of NH 700-mb geopotential height anomalies (unsealed).

Cross-validated log-likelihood
Estimated posterior probability

k = l

-29153

0.0



Table 3: Out-of-sample log-likelihoods for each of Af = 20 random partitions of 44 unsealed
winter anomalies, normalized so that the log-likelihood for fc = 3 is zero on each run. The
most likely value (of log-likelihood and hence of k) is displayed in bold font for each partition.

Partition

-45.191

-37.846

-57.364

-21.119

10.010

-13.887

-27.765

-38.394

-17.916

-35.180

-32.176

-45.422

-34.579

-73.393

-23.255

-37.655

-26.943

-47.595

-25.255

-59.862

-12.149

-22.652

-27.430

1.347

-9.627

-3.715

5.486

-23.947

-21.546

-17.886

-25.935

-14.198

-3.821

-32.027

3.829

-14.835

-12.028

-21.178

19.984

-25.430

0.000

0.000

0.000

0.000

0.000

IKIIIIII

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-26.448

-7.408

-3.884

-7.309

-11.397

-14.096

-18.068

-24.390

-1.403

-11.161

-7.085

-27.905

-9.015

-10.719

3.651

-5.341

-16.692

-8.777

-0.826

-7.868

-29.415

-26.484

-0.930

-30.879

-20.534

-15.132

-19.443

-50.935

-18.528

-14.403

-6.152

-20.066

-13.695

-6.973

-7.438

-11.913

-31.922

-8.039

-2.744

-10.584

k = Q

-40.189

-32.172

-11.788

-20.495

-26.423

-18.936

-37.717

-61.827

-34.125

-20.805

-8.757

-20.023

-11.574

-15.963

-8.352

-26.378

-37.397

-12.653

-8.372

-32.612



Table 4: Cross-validated log-likelihood values as a function of k and the estimated posterior
probability of k —3 from 10 different experiments, each using M = 20 randomly chosen
partitions of the 44 winters.

Experiment

-27831

-27858

-27819

-27843

-27825

-27864

-27811

-27818

-27844

-27856

k = 2 ifc = 3 k = 4 /b = 5

1
815

835

799

-27825

-27808

-27846

-27792

-27805

-27824

-27837

-27808

-27827

-27789

-27812

-27801

-27839

-27783

-27787

-27803

-27829

-27821

-27810

-27846

-27792

-27801

-27817

-27854

-27797

-27807

-27817 -27817

-27841 -27845

-27814

-27837

-27824

-27860

-27807

-27811

-27822

-27853

1.000

1.000

1.000

1.000



Table 5: Pattern correlation coefficients between maps fitted using the data projected onto
d EOFs, 3 < d < 12, and maps fitted using d = 2 EOFs. The maps correspond to centers
of a mixture mode! based on 3 Gaussians, fitted by the EM procedure (see section 3b) as
applied to all of the data in the d-dimensional EOF subspace.

I d II n I To I Ta IT\

0.974

0.947

0.946

0.945

0.931

0.938

0.946

0.927

0.945

r2

0.961

0.960

0.957

0.946

0.951

0.946

0.953

0.951

0.943

0.946

rz

0.998

0.999

0.976

0.957

0.945

0.938

0.941

0.949

0.934

0.935

Table 6: Pattern correlation coefficients between maps fitted on unfiltered anomalies for all
3960 days and (a) filtered anomalies, (b) unfiltered anomalies using only every 5th day, and
(c) filtered anomalies using only every 5th day. All maps were fitted to the data projected
into the first 2 EOFs.

Type of Data

Unfiltered anomalies, every 5th day
Filtered anomalies, all days

Filtered anomalies, every 5th day

ri 1 ^2 1 ^3

.9810 mi.9990

.9948 mmm.9966

.9922 0.9727 0 .9975



setup for Figure Captions

Figure Captions

FIG. 1. Scatter plot of 600 data points generated from a mixture of 3 equally weighted

Gaussian densities, having distinct means and covariances.

FIG. 2. The true means of component Gaussians (shown as stars) and the associated

covariance matrices, indicated by the corresponding ellipses (see text for details), superim

posed on the scatter plot of Fig. 1.

FIG. 3. Contour plot of the probability density function (PDF) corresponding to the

mixture model displayed in Fig. 2.

FIG. 4. The estimated means and covariance ellipses of component Gaussians super

imposed on the scatter plot in Fig. 1. Parameters were estimated using the expectation-

maximization (EM) procedure (see text for details).

FIG. 5. Scatter plot of NH height anomalies for 44 winters (December 1949-March 1993),

projected onto the 2 leading EOFs; the data have been normalized by dividing by the

standard deviation of EOF 1.

PIG. 6. The estimated means, indicated by asterisks, and covariance ellipses superimposed

on the scatter plot of Fig. 5, where only every 10th data point has been plotted for clarity.

The identities of the clusters - A, G, and R - are indicated beside the respective ellipses.

The parameters were estimated by the same EM procedure as for the synthetic data, using

a mixture model based on 3 Gaussian components. The estimated parameters for the 3

clusters are: (A) = 0.47, ftA = (-0.59,0.10), tan(^A) = 0.20, = 0.78, Xa2 = 0.47;

(G) do = 0.15, ftG = (0.32,-1.34), tan(^G) = 0.34, Xqi = 0.82, Xg2 = 0.24; and (R)

dfl = 0.38, p-R = (0.64,0.43) , tan(^R) = —0.71, Xri = 0.56, Xr2 = 0.36. Here a is the

weight assigned to the cluster in the mixture model, fi is the mean for the cluster, is the



rotation angle (anti-clockwise) from the i-axis of the first eigenvector for the covariance

matrix of each cluster, and the A's correspond to the two eigenvalues of the covariance

matrix.

FIG. 7. Contour plot of the PDF estimate provided by the mixture model of Fig. 6; the

asterisks and associated labels for the 3 clusters (A, G, and R) indicate the corresponding

centroids.

FIG. 8. Height anomaly maps for the 3 cluster centroids of the present mixture model

(left: panels a, c and e; labeled SGI) and of CW's hierarchical cluster model, as applied by

Wallace (1996) to a slightly longer data set (right: panels b, d and f; labeled CW). Pairs of

maps (a, b) correspond to CW's cluster A, (c, d) to G, and (e, f) to R (see text for details;

panels b, d and f reproduced by permission). Contour interval is 15 m for panels on the left

(SGI) and 50 m for panels on the right (CW).

FIG. 9. Same as Fig. 6 for the Pacific sector height anomalies projected onto the 2 leading

Pacific sector EOFs. The identities of the two clusters, RNA and PNA^ are indicated beside

the respective means, plotted as asterisks. The estimated parameters for the 2 clusters are:

(RTV^) aRNA = 0.55, [Irna = (-0.43,0.24), tan(^/j7v^) = 0.07, A, = 0.90, A2 = 0.71;

(PNA) apNA = 0.45, flpNA = (0.56, —0.28), tan(^f>;\^yi) = 0.61, Ai = 0.70, A2 = 0.28. Here

a, /i and fp are defined as in Fig. 6.

FIG. 10. Height anomaly maps for the clusters found by the mixture model from the

PAC and ATL sectorial analysis. Contour interval is 15m. The maps in panels (a) and (b)

resemble the PNA and RNA patterns respectively, while panels (c) and (d) resemble the

ZNAO and BNAO patterns respectively (see text for details).

FIG. 11. Same as Fig. 6 for the Atlantic sector height anomalies projected onto the 2

leading Atlantic sector EOFs. The identities of the two clusters, ZNAO and BNAO^ are

indicated beside the respective means, plotted as asterisks. The estimated parameters for



the 2 clusters are: {ZNAO) azNAO = 0.86, fizNAO = (-0.04,0.24), thXi^^zNAo) = 0.15,

Ai = 0.99, A2 = 0.61; (BNAO) oibnao —0.14, {lbnao —(0.21, -1.43), taii{^BNAo) = 0.24,

Ai = 0.99, A2 = 0.61.





dimension 1

Fig. 2: The true means of component Gaussians (shown as stars) and the associated covari-
ance matrices, indicated by the corresponding ellipses (see text for details), superimposed
on the scatter plot of Fig. 1.
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dimension 1

Fig. 3: Contour plot of the probability density function (PDF) corresponding to the
mixture model displayed in Fig. 2.



dimension 1

Fig. 4: The estimated meBns and covariance ellipses of component Gaussians superimposed
on the scatter plot in Fig. 1. Parameters wereestimated using the expectation-maximization
(EM) procedure (see text for details).



Fig. 5: Scatter plot of NH height anomalies for 44 winters (December 1949-March 1993),
projected onto the 2 leading EOFs; the data have been normalized by dividing by the
standard deviation of EOF 1.



Fig. 6: The estimated means, indicated by asterisks, and covariance ellipses superimposed
on the scatter plot of Fig. 5, where only every 10th data point has been plotted for clarity.
The identities of the clusters - A, G, and R - are indicated beside the respective ellipses.
The parameters were estimated by the same EM procedure as for the synthetic data, using
a mixture model based on 3 Gaussian components. The estimated parameters for the 3
clusters are: (A) aa = 0.47, fiA = (-0.59,0.10), tan(^^) = 0.20, A^i = 0.78, Xa2 = 0.47;
(G) aa = 0.15, fic = (0.32,-1.34), = 0.34, Xoi = 0.82, Xg2 = 0.24; and (R)
aji = 0.38, p.R = (0.64,0.43) , tan(0R) = —0.71, = 0.56, Ah2 = 0.36. Here a is the
weight assigned to the cluster in the mixture model, is the mean for the cluster, i}? is the
rotation angle (anti-clockwise) from the i-axis of the first eigenvector for the covariance
matrix of each cluster, and the A's correspond to the two eigenvalues of the covariance
matrix.



Fig. 7: Contour plot of the PDF estimate provided by the mixture model of Fig. 6; the
asterisks and associated labels for the 3 clusters (A, G, and R) indicate the corresponding
centroids.



a)A-SGI

c)G-SGI ^

i

Fig. 8: Height anomaly maps for the 3 cluster centroids of the present mixture model
(left: panels a, c and e; labeled SGI) and of CW's hierarchical cluster model, as applied by
Wallace (1996) to a slightly longer data set (right: panels b, d and f; labeled CW). Pairs of
maps (a, b) correspond to CW's cluster A, (c, d) to G, and (e, f) to R (see text for details;
panels b, d and f reproduced by permission). Contour interval is 15 m for panels on the left
(SGI) and 50 m for panels on the right (CW).
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Fig. 9: Same as Fig. 6 for the Pacific sector height anomalies projected onto the 2 leading
Pacific sector EOFs. The identities of the two clusters, UNA and PNA^ are indicated beside
the respective means, plotted as asterisks. The estimated parameters for the 2 clusters are:
(RNA) = 0.55, fiRi^A = (—0.43,0.24), tan(^/iAf/i) = 0.07, Ai = 0^90, A2 = 0.71;
{PNA) apNA = 0.45, fipNA = (0.56, —0.28), tan(i^p;v>i) —0.61, Aj —0.70, A2 = 0.28. Here
or, n and ip are defined as in Fig. 6.



Fig. 10: Height anomaly maps for the clusters found by the mixture model from the PAC
and ATL sectorial analysis. Contour interval is 15m. The maps in panels (a) and (b)
resemble the PNA and RNA patterns respectively, while panels (c) and (d) resemble the
ZNAO and BNAO patterns respectively (see text for details).
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Fig. 11: Same as Fig. 6 for the Atlantic sector height anomalies projected onto the 2
leading Atlantic sector EOFs. The identities of the two clusters, ZNAO and BNAO, are
indicated beside the respective means, plotted as asterisks. The estimated parameters for
the 2 clusters are: [ZNAO) azNAO = 0.86, ftzNAO = (-0.04,0.24), ta.n{ipzNAo) = 0.15,
Ai = 0.99, A2 = 0.61; {BNAO) aswAO = 0.14, jlsNAO = (0.21, -1.43),tan(^BArxo) = 0.24,
Ai = 0.99, A2 = 0.61.




