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RESEARCH Open Access

Identification of global regulators of
T-helper cell lineage specification
Kartiek Kanduri1,2, Subhash Tripathi1, Antti Larjo2, Henrik Mannerström2, Ubaid Ullah1, Riikka Lund1,
R. David Hawkins1,3,4, Bing Ren5,6, Harri Lähdesmäki2*† and Riitta Lahesmaa1*†

Abstract

Background: Activation and differentiation of T-helper (Th) cells into Th1 and Th2 types is a complex process
orchestrated by distinct gene activation programs engaging a number of genes. This process is crucial for a robust
immune response and an imbalance might lead to disease states such as autoimmune diseases or allergy.
Therefore, identification of genes involved in this process is paramount to further understand the pathogenesis of,
and design interventions for, immune-mediated diseases.

Methods: We aimed at identifying protein-coding genes and long non-coding RNAs (lncRNAs) involved in early
differentiation of T-helper cells by transcriptome analysis of cord blood-derived naïve precursor, primary and
polarized cells.

Results: Here, we identified lineage-specific genes involved in early differentiation of Th1 and Th2 subsets by
integrating transcriptional profiling data from multiple platforms. We have obtained a high confidence list of genes
as well as a list of novel genes by employing more than one profiling platform. We show that the density of
lineage-specific epigenetic marks is higher around lineage-specific genes than anywhere else in the genome. Based
on next-generation sequencing data we identified lineage-specific lncRNAs involved in early Th1 and Th2
differentiation and predicted their expected functions through Gene Ontology analysis. We show that there is a
positive trend in the expression of the closest lineage-specific lncRNA and gene pairs. We also found out that there
is an enrichment of disease SNPs around a number of lncRNAs identified, suggesting that these lncRNAs might play
a role in the etiology of autoimmune diseases.

Conclusion: The results presented here show the involvement of several new actors in the early differentiation of
T-helper cells and will be a valuable resource for better understanding of autoimmune processes.

Background
CD4+ T-helper (Th) cells are critical players in adaptive
immune responses and protect the host against various
pathogens. Naive CD4+ T cells are multi-potent in
nature and have an ability to differentiate into distinct
effector and regulatory subtypes that express lineage-
specific regulators, including transcription factors and
signature cytokines. For example, Th1 cells express the
master transcription factor gene TBX21 and secrete
interferon γ and Th2 cells express GATA3 and secrete

interleukin (IL)4 and IL13 cytokines. Because these ef-
fector T-helper cell lineages are crucial for mounting
distinct immune responses, inappropriate execution of
their differentiation processes may result in imbalance
between T-helper cell subsets and ultimately lead to
various inflammatory autoimmune diseases and allergic
responses [1–3]. To understand and develop potential
therapeutic treatment regimes, it is important to get a
high-resolution map of regulators involved in T-helper
cell differentiation. Previous studies have identified ele-
ments involved in T-helper cell differentiation [4–8].
Lineage-specificity is a dynamic process that involves

molecular mechanisms resulting in the expression of
genes that establish lineage-specific gene expression
and/or suppress alternative developmental fates. Tran-
scriptional regulation is one way of achieving lineage-

* Correspondence: harri.lahdesmaki@aalto.fi; riitta.lahesmaa@btk.fi
†Equal contributors
2Department of Computer Science, Aalto University School of Science,
Espoo, Finland
1Turku Centre for Biotechnology, University of Turku and Åbo Akademi
University, Turku, Finland
Full list of author information is available at the end of the article

© 2015 Kanduri et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kanduri et al. Genome Medicine  (2015) 7:122 
DOI 10.1186/s13073-015-0237-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-015-0237-0&domain=pdf
mailto:harri.lahdesmaki@aalto.fi
mailto:riitta.lahesmaa@btk.fi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


specificity. Only a small portion of RNA is translated
into proteins, although vast chunks of human DNA are
transcribed [9, 10]. These translated mRNAs are desig-
nated protein-coding genes. Epigenetic mechanisms rep-
resent the second layer of lineage-specific gene expression
and involve histone modification, DNA methylation and
non-coding RNAs [11–14]. We have previously shown
that lineage-specific enhancer elements are at work in
driving the expression of lineage-specific genes in Th1
and Th2 cells [15]. Long non-coding RNAs (lncRNA)
are non-coding RNAs that are more than 200 nucleo-
tides in length and do not have an open reading
frame [16]. Recent studies show that non-coding
RNAs that are not translated appear to be part of the
vast regulatory machinery [17, 18].
In this study, we aimed at identifying lineage-specific

mRNAs and lncRNAs participating in early differenti-
ation (72 h) of Th1 and Th2 cells by comparing them to
naïve (Thp) and activated CD4+ T cells (Th0). We uti-
lized transcriptional profiling data from three different
profiling platforms to get a high-confidence list of genes
involved in T-helper cell lineage specification. By
employing next-generation sequencing techniques, we
were able to identify genes that were not previously
known in the context of T-helper cell differentiation.
Utilizing the same sequencing data, we were able to de-
termine lineage-specific lncRNAs involved in early T-
helper cell differentiation. We observed that there is a
positive trend in the expression of lineage-specific
lncRNAs lying in the vicinity of lineage-specific genes.
In addition, using genome-wide data on histone modifi-
cations from Th1 and Th2 cells at 72 h, we also found
that lineage-specific enhancers and promoters are more
preferentially located around lineage-specific genes/
lncRNAs than anywhere else in the genome. This shows
the highly selective nature of the regulatory elements in-
volved in T-helper cell differentiation. In addition, we
further characterized lineage-specific lncRNAs for their
predicted functions through Gene Ontology (GO) ana-
lysis using an lncRNA–mRNA co-expression network.
This will be a valuable resource for further studies since
the function of majority of lncRNAs is unknown.

Methods
Ethics statement
This study was approved by the Ethics Committee of the
Hospital district of Southwest Finland in line with the
1975 Declaration of Helsinki. Informed consent was ob-
tained from each donor.

Human cord blood CD4+ T-cell isolation and culturing
Naive CD4+ T cells were isolated from human umbilical
cord blood of healthy neonates born in Turku University
Central Hospital. Mononuclear cells were isolated using

Ficoll-Paque gradient centrifugation (Amersham Phar-
macia Biotech, Uppsala, Sweden) and CD4+ T cells were
purified using positive selection (Dynal CD4 Positive Iso-
lation Kit, Invitrogen, Carlsbad, CA, USA). CD4+ T cells
from several individuals were pooled after the isolation.
Purified CD4+ T cells were cultured in Yssel’s medium
(Iscove’s modified Dulbecco’s medium supplemented with
Yssel medium concentrate plus penicillin/streptomycin)
supplemented with 1 % human AB serum (Red Cross
Finland Blood Service). Cells were activated with plate-
bound anti-CD3 (2.5 μg/ml) and soluble anti-CD28
(500 ng/ml; both were from Immunotech, Marseille,
France). Simultaneously, Th1 polarization was initiated
with 2.5 ng/ml IL12 and Th2 neutralizing antibody anti-
IL4 (1 μg/ml); Th2 differentiation was promoted using
10 ng/ml IL4 plus Th1 neutralizing antibody anti-
interferon γ (1 μg/ml) (all antibodies from R&D Systems,
Minneapolis, MN, USA); or cells were cultured with only
neutralizing antibodies (anti-interferon γ and anti-IL4) and
without polarizing cytokines (Th0 cells). IL2 (40 U/ml,
R&D Systems) was added on the second day of culture.
Further, cells were supplemented with media and divided
every second day to keep the polarizing conditions during
the culture until day 7. The polarization was verified by
checking the expression of polarization marker genes for
Th1 and Th2 subsets.

RNA isolation and transcriptional profiling
Total RNA was extracted from naïve precursor human
cord blood CD4+ T cells, activated Th0 cells, and differ-
entiated Th1 and Th2 cells at 72 h using Trizol reagent
(Invitrogen). For hybridization on the Affymetrix Human
Genome U133 Plus 2.0 array, 250 ng of total RNA was
used as starting material and was processed with an
Affymetrix GeneChip 3’ IVT Express kit according to
the sample preparation guide. For hybridization on the
Illumina HumanHT-12 v4 Expression BeadChip, 300 ng
of total RNA was used as starting material and was proc-
essed with an Illumina TotalPrep RNA Amplification kit
according to the sample preparation guide. For sequen-
cing, 400 ng of total RNA was used as starting material
and libraries were prepared with an Illumina TrueSeq
RNA Sample Prep kit v2 according to the sample prep-
aration guide. The sequencing data were generated using
an Illumina HiSeq-2000 instrument and the number of
reads obtained can be found in Additional file 1. These
transcriptional profiling data have been deposited in
Gene Expression Omnibus (GEO) under accession
[GEO:GSE71646].

Analysis of Affymetrix microarray data
The R statistical environment was used for analysis.
Affymetrix microarray data were normalized using the
robust multi-array average algorithm implemented in
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the affy package [17]. Duplicate and un-annotated
probes were removed using the genefilter package [19].
The probeset with the highest inter-quartile range was
retained in case of duplicates. Present and absent calls
for probesets were generated by fitting the chip-wide
log2-transformed expression data to a two-component
Gaussian distribution function, using the standard Ex-
pectation-Maximization (EM) algorithm implemented in
the mixtools package [20]. A probeset was defined to be
present if the corresponding data point had a higher likeli-
hood for the Gaussian component with a higher mean
value in all the replicates of the sample subtype [21]. Differ-
ential expression analysis was done using moderated
unpaired t-test as implemented in limma [22]. The
genes were considered as differentially expressed if
the Benjamini-Hochberg adjusted p value < 0.05 and
log2 fold-change < −1 or > 1.

Analysis of Illumina microarray data
The R statistical environment was used for analysis. Illu-
mina microarray data were preprocessed, including back-
ground adjustment, variance stabilization transformation
and quantile normalization as implemented in the lumi
package [23]. Duplicate and un-annotated probes were re-
moved using the genefilter package [19]. The probeset
with the highest inter-quartile range was retained in case
of duplicate probesets. Present and absent calls were ob-
tained using the detection p value. A probeset was defined
to be present if the detection p value < 0.01 in all the repli-
cates of a sample subtype. Differential expression analysis
was performed as described in analysis of Affymetrix
microarray data.

Analysis of RNA-sequencing data for gene expression
The quality of sequenced reads was checked using
FastQC [24] and the reads were mapped to the hg19 ref-
erence transcriptome and genome build using TopHat
[25]. Gene counts were obtained using the htseq-count
script included in the htseq tool. Raw counts were nor-
malized and variance-stabilized values were obtained
using methods implemented in the DESeq package [26]
in R. Present and absent calls were generated by fitting
the normalized values to a two-component Gaussian dis-
tribution function using the EM algorithm implemented
in the mixtools package in R [20]. A gene was defined to
be present if the corresponding data point had a higher
likelihood for the Gaussian component with a higher
mean value in all the replicates of the sample subtype.
Differential expression analysis was done on raw counts
using the default settings in the DESeq package. The
genes were considered to be differentially expressed if
the Benjamini-Hochberg adjusted p value < 0.05 and
modified log2 fold-change < −1 or > 1. The resulting

genes were refined using the previously generated
present and absent calls.

Analysis of RNA-sequencing data to identify lncRNAs
Using the reads mapped to the hg19 reference genome,
we estimated the expression levels of lncRNAs using the
htseq-count script included in the htseq tool by providing
the genomic features from the GENCODE v16 catalog of
lncRNAs [27] along with the transcriptome. Differential
expression of lncRNAs was done on raw counts using the
default settings in the DESeq package [26]. The lncRNAs
were considered to be differentially expressed if the
Benjamini-Hochberg adjusted p value < 0.05 and modified
log2 fold-change < −1 or > 1. We define a lineage-specific
lncRNA to be in the vicinity of a lineage-specific gene if it
is within 5 kb upstream or 30 kb downstream of the gene.

Lineage-specific genes or lncRNAs
We selected all the genes that are differentially expressed
in Thp versus Th0, Th1 and Th2 subsets from the three
platforms and made a confident list of differentially
expressed genes by checking that each gene was differ-
entially expressed in at least two or more platforms with
the same directionality in their fold change. In cases of
novel genes or lncRNAs, we used the above comparisons
from next-generation sequencing data only. We defined
a feature to be Th1- or Th2-specific if it is uniquely dif-
ferentially expressed in only Thp versus Th1 or Thp ver-
sus Th2 comparisons, respectively, but not differentially
expressed in Thp versus Th0.

Th1- and Th2-specific enhancer and promoter marks
around lineage-specific genes/lncRNAs
We overlaid enhancer marks found in Th1 and Th2 cells
from a previously published study [15] on lineage-specific
genes/lncRNAs obtained in this study. We define an en-
hancer mark to be in the vicinity of a lineage-specific fea-
ture if it is within 125 kb upstream or downstream of the
transcription start site of the feature. We also overlaid
promoter marks found in Th1 and Th2 cells obtained
from the same dataset on lineage-specific genes/lncRNAs.
We define a promoter mark to be in the vicinity of a
lineage-specific feature if it is within 2.5 kb upstream or
downstream of the transcription start site of the feature.
For randomization tests, we randomly (n = 10,000) picked
the same number of genes as that of a lineage-specific set
from anywhere else in the genome and quantified the
overlap of enhancer and promoter marks around them.
The p values were computed with respect to this ran-
domly generated null distribution.

Prediction of GO terms for lncRNAs
In order to predict GO terms for lncRNAs, we constructed
a co-expression network of lncRNAs and protein-coding
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genes. We defined a lncRNA to be co-expressed with a
protein-coding gene if the absolute Pearson’s correlation
coefficient between their expression is greater than 0.9. For
each group of protein-coding genes which are co-
expressed with a particular lncRNA gene, we performed a
topology based GO enrichment test as implemented in the
topGO package in R [28]. Specifically, we used Fisher’s
exact test and then attributed the enriched GO terms with
a p value of < 0.01 to that specific lncRNA.

Disease-associated single nucleotide polymorphism
analysis
Disease-associated single nucleotide polymorphism (SNP)
data were obtained from the National Center for Biotech-
nology Information (http://www.ncbi.nlm.nih.gov/projects/
gapplusprev/sgap_plus.htm). All SNPs with a p value > 1e-
5 were excluded from further analysis. A gene was defined
to be associated with a SNP if it is within ±100 kb of the
SNP. Enrichment analysis of traits was performed using
hypergeometric distribution.

Results
Transcriptional analysis of Th1- and Th2-specific genes
Cellular differentiation to a specific subset requires activa-
tion of cell type-specific genes and suppression of genes of
alternative lineages. To identify the lineage-specific genes,
we analyzed transcriptional data for differential gene
expression for Thp versus Th0, Th1 and Th2 subsets
(Additional file 2). The number of genes determined to be
present and available for analysis was 11,753 for Affyme-
trix arrays, 9210 for Illumina arrays and 13,744 for Illu-
mina Sequencing (Figure S2a in Additional file 3). The
transcriptomic platform comparison results are provided
in Figure S2b, c in Additional file 3, and in Additional files
4, 5, and 6. According to our definition of lineage specifi-
city and based on the data from the three platforms, there
are 249 Th1-specifying genes and 491 Th2-specifying
genes (Fig. 1; Additional file 7). These are confident lists
of lineage-specific genes and have been internally validated
as they are obtained from multiple sources. We also
obtained a novel list of lineage-specific genes using
next-generation sequencing data, in which there are
189 Th1-specific genes and 272 Th2-specific genes
(Additional file 8). Among the lineage-specific genes, our
analysis identified those encoding cytokines, chemokines,
chemokine receptors, enzymes and transcription factors.
Additionally, we found a panel of genes that were up-
regulated and down-regulated in a lineage-specific man-
ner. The Th1-specific ones include genes with both known
and novel roles in Th1 cell differentiation. For example,
GIMAP4, CCL3, CXCR5, FUT7, IL21, TBKBP1, ABHD5
and APOBEC3G were up-regulated and BACH2, CSTL,
AFF3, TGFB3 and MAL were down-regulated specifically
in the Th1 cell lineage. FUT7, an enzyme that catalyzes

synthesis of sialyl LewisX antigens, has been shown to be
expressed in CD4+ T cells [29]. Additionally it has binding
sites for both GATA-3 and T-bet, master transcription
factors for Th1 and Th2 cells where T-bet induces and
GATA-3 inhibits the transcription of the FUT7 gene [30].
CCL3 (MIP-1α) has previously been shown to be associ-
ated with the type 1 immune response [31]. CXCR5 is
a chemokine receptor expressed on follicular T-helper
cells. APOBEC3G expression is regulated in different
CD4+ T-helper cells and is critical for modulation of
HIV infectivity [32, 33]. TBKBP1 is involved in TNF-
α–NF-kB interaction and potentially has a critical role
in antiviral innate immunity [34]. Genes down-regulated
in response to Th1 differentiation and whose expression is
increased in alternative lineages include CSTL, AFF3, and
TGFB3, which are expressed in Th17 cells [35], and
BACH2 and MAL, which are expressed in Th2 cells [36].
Th2 marker genes include those encoding the transcrip-
tion factors GATA3 and GFI1 and lineage-specific cyto-
kines, e.g., IL13, CCL17, and CCL20 [37–40]. Other genes
include THY1, NOD2, SOCS1, ABHD6, PPP1R14A,
PPARG, and BCAR3. The role of THY1 and NOD2 has

Fig. 1 Th1- and Th2- specific genes and their associated epigenetic
marks in the human genome. Heatmap showing gene expression
and epigenetic profiles of Th1- and Th2-specific genes in T-helper
subsets. The figure shows both high confidence and novel genes.
Rows were first ordered based on log2 fold change and then by
expression value. Normalized expression from sequencing data was
standardized using Z-score for visualization purposes. In the case
of H3K4me1 and H3K4me3 marks, the ratio of tag counts at the
transcription start site between Th1 and Th2 is shown
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Fig. 2 Randomization test performed to check the density of lineage-specific epigenetic marks across the genome. a Randomization test reveals
that the number of lineage-specific enhancers around lineage-specific genes is more than anywhere else in the genome. b Randomization test
reveals that the number of lineage-specific promoters around the lineage-specific genes is more than anywhere else in the genome. These results
indicate the specific nature of regulatory elements involved in early T-helper cell differentiation. The distribution of enhancers or promoters in the
vicinity of genes in the genome was determined by randomly picking the same number of genes as in the lineage-specific set. The red dashed
line indicates the number of lineage-specific enhancers or promoters found in the vicinity of lineage-specific genes
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been documented in Th2 differentiation [41–43]. How-
ever, the role of ABHD6, PPP1R14A, PPARG, and BCAR3
in Th2 development remains to be determined.
We further validated the lineage specificity of these

genes using lineage-specific enhancers and promoters.
Enhancers and promoters were previously found to be dif-
ferentially methylated at lysine 4 of histone H3 proteins
[44]. We expected to find more active enhancer and pro-
moter marks around lineage-specific genes than anywhere
else in the genome. In order to determine the lineage-
specific enhancers around lineage-specific genes, we over-
laid lineage-specific enhancers from a previous study [15].
We found 508 Th1 enhancers around Th1-specific genes
and 731 Th2 enhancers around Th2-specific genes
(Fig. 2a). We then performed a randomization experiment
(10,000 times) to compare the density of lineage-specific
enhancers with that anywhere else in the genome. We
found that there are more lineage-specific enhancers
around lineage-specific genes than anywhere else in the
genome (Th1 p value = 0.0038; Th2 p value = 0.0196;
Fig. 2a). We repeated the same procedure with active
promoters and found out that there are 183 Th1 ac-
tive promoters, defined by the presence of both
H3K4me3 and H3K27ac marks, around Th1-specific
genes and 328 Th2 active promoters around Th2-
specific genes. Randomization test results showed that
there are more lineage-specific active promoters around
lineage-specific genes than anywhere else in the genome
(Th1 p value = 0.0003; Th2 p value < 10−4). These findings
suggest the specific nature of genes and their epigenetic
marks in T-helper cell differentiation.
We also looked for overlap between disease-associated

SNPs and lineage-specific genes found in this study to
explore their role in immune-mediated diseases. SNPs
belonging to immune-mediated diseases, including
asthma and Hodgkin disease, were found to be enriched
in Th2-specific genes. Additionally, we found that SNPs
belonging to other diseases were also enriched in Th1-
and Th2-specific genes (Table 1).

Identification of lineage-specific lncRNAs in Th1 and Th2
subsets
In order to find lineage-specific lncRNAs, we deter-
mined differentially expressed lncRNAs between Thp
versus Th0, Th1 and Th2 subsets. By our definition of
lineage specificity, there are 136 Th1 lineage-specific
lncRNAs and 181 Th2 lineage-specific lncRNAs (Fig. 3a;
Additional file 9). These lineage-specific lncRNAs can be
classified into antisense (152), intergenic (83), processed
transcript (62), sense intronic (15), sense overlapping (4)
and 3’ overlapping (1) based on their location in the gen-
ome. In accordance with previous studies [45], we ob-
served that lncRNAs have lower expression than protein
coding genes (Additional file 10). However, lineage-

specific lncRNAs are expressed at a higher level than the
rest of the lncRNAs (Additional file 10) as reported in a
recent study [46]. We then looked for lineage-specific
lncRNAs that are in the vicinity of lineage-specific genes.
There are 24 Th1 lineage-specific lncRNAs around Th1
lineage-specific genes and 47 Th2 lineage-specific
lncRNAs around Th2-specific genes (Additional file 11).
We observed a positive trend between the expression of
these lineage-specific lncRNAs and lineage-specific
genes (Fig. 3b).
We also looked at the relationship between lineage-

specific lncRNAs and epigenetic marks that lie in their
vicinity. We followed the same approach as that used for
lineage-specific genes to determine enhancers and the
epigenetic state of promoters around lineage-specific
lncRNAs; 392 Th1 enhancers and 53 Th1 promoters
were found in the vicinity of Th1-specific lncRNAs and
372 Th2 enhancers and 61 Th2 promoters were found
in the vicinity of Th2-specific lncRNAs. Interestingly,
the H3K4me1 and H3K4me3 histone mark maps in
Fig. 3a do not show such an obvious pattern associated
with differential gene expression as seen for lineage-spe-
cific coding genes (Fig. 1). However, randomization tests
revealed that the number of lineage-specific enhancers and
promoters around lineage-specific lncRNAs are highly
enriched compared with anywhere else in the genome (Fig-
ure S5a, b in Additional file 12). We then looked for over-
lap between disease-associated SNPs and lineage-specific
lncRNAs and found many disease-associated SNPs (includ-
ing immune-mediated diseases) that are enriched in the
vicinity of Th1- and Th2-specific lncRNAs, suggesting they
have a role in these diseases (Table 2).

Functional characterization of identified lncRNAs
Very little is known about the function of lncRNAs, but as
shown in previous studies [47], co-expressed genes

Table 1 Enrichment of disease-associated SNPs in Th1- and
Th2-specific genes

Disease P value

Th1-specific genes

Endometriosis 0.0016

Ovarian neoplasms 0.0087

Narcolepsy 0.0311

Th2-specific genes

Hodgkin disease 0.0119

Moyamoya disease 0.0256

Osteoarthritis 0.0256

Asthma 0.0259

Osteoarthritis, knee 0.0393

Diabetes mellitus, type 2 0.0481
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Fig. 3 (See legend on next page.)
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participate in similar functions. Therefore, we constructed
a co-expression network of lncRNAs and protein-coding
genes. We then looked for GO terms enriched among the
co-expressed genes and attributed the enriched GO terms
to the lncRNAs. The GO terms enriched in lineage-

specific lncRNAs are summarized in Additional file 13
and a complete list can be found in Additional file 14.
These GO terms aid in understanding the role of these
lncRNAs in various biological processes.

Discussion
T-helper cell differentiation is a complex process and
some previous studies have elucidated the genes in-
volved in it [4–8]. Since most of the previous studies
have used microarrays for global profiling of the tran-
scriptome, they are limited by factors such as pre-
selection bias and probe design [48]. In our study, we
use multiple transcriptional profiling platforms to gener-
ate a high-confidence list of genes that are involved in
T-helper cell speciation. In addition, we complement the
high-confidence list of genes with a novel list of genes
inferred from only next-generation sequencing data.
This novel list has many genes that are not previously
known in the context of T-helper cell differentiation.
In the process of obtaining these lineage-specific genes,

we also compared the transcriptomic profiling platforms
used. Our platform comparison results are in concordance
with previously published studies [49, 50]. The detection
range of Illumina arrays is narrow compared with that of
Affymetrix arrays and Illumina sequencing. These results
aid in future experimental design, e.g., a next-generation
sequencing platform is a good choice when one intends to
study low-abundance genes.
To distinguish genuine expression from background

noise, we generated present/absent calls for genes for
each platform. In the case of Illumina arrays, well-
defined negative probes enabled easy estimation of back-
ground and generation of detection p values. In the case
of Affymetrix arrays, the negative probes did not have a
desirable behavior. Therefore, we have used Gaussian
mixture modeling to estimate the probability of a gene
being genuinely expressed. In the case of Illumina se-
quencing data, we used normalized data obtained after
variance stabilization in estimating genuinely expressed
genes using Gaussian mixture modeling.
Since next-generation sequencing data can be lever-

aged to quantify other transcripts, such as lncRNAs, we
determined lineage-specific lncRNAs. Previous studies
[46, 51] identified lncRNAs in completely differentiated
T-helper cells but, to our knowledge, this is the first study
with global profiles of lncRNAs involved in early stages of

(See figure on previous page.)
Fig. 3 lncRNAs involved in early T-helper cell differentiation. a Heatmap showing expression and epigenetic profiles of Th1- and Th2-specific
lncRNAs in T-helper cell subsets. Rows were first ordered based on log2 fold change and then by expression value. Normalized expression data
from sequencing data were standardized using Z-score for visualization purposes. In the case of H3K4me1 and H3K4me3 marks, the ratio of tag
counts at the transcription start site between Th1 and Th2 is shown. b Correlation plots of lineage-specific lncRNAs and lineage-specific genes in
various T-helper cell subsets

Table 2 Enrichment of disease-associated SNPs in Th1- and
Th2-specific lncRNAs

Trait P value

Th1-specific lncRNAs

Biliary atresia 0.007

Hepatitis C 0.008

Breast neoplasms 0.009

Diabetes mellitus, type 1 0.015

Cleft palate 0.018

Ovarian neoplasms 0.023

Diabetes mellitus, type 2 0.026

Leukemia, lymphoid 0.026

Diabetic nephropathies 0.029

Hypothyroidism 0.042

Th2-specific lncRNAs

Cleft lip 0.001

Lupus erythematosus, systemic 0.002

Parkinson disease 0.003

Stroke 0.003

Inflammatory bowel diseases 0.003

Diabetes mellitus, type 2 0.005

Biliary atresia 0.009

Osteoarthritis 0.009

Colitis, ulcerative 0.01

Breast neoplasms 0.015

Thyroid neoplasms 0.019

Esophagitis 0.022

Gallbladder diseases 0.022

Arthritis, rheumatoid 0.027

Supranuclear palsy, progressive 0.028

Alzheimer disease 0.032

Rhinitis, allergic, seasonal 0.043

Coronary artery disease 0.046

Colorectal neoplasms 0.048
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human Th1 and Th2 cell differentiation. Additionally, our
analysis revealed the relationship between lineage-specific
lncRNAs and lineage-specific gene expression and found
that the lineage-specific lncRNAs and lineage-specific
gene expression are positively correlated. The finding led
us to speculate that some of the lncRNAs might be acting
as either enhancer elements during T-helper cell differen-
tiation as suggested by a previous study [9] or that the
lncRNA and gene pair can be regulated by another factor
as suggested by Hu et al. [51].
We also quantified the enrichment of disease SNPs in

the vicinity of lineage-specific genes and lncRNAs. SNPs
associated with both immune-mediated and non-
immune-mediated diseases were enriched around Th1-
and Th2-specific genes and lncRNAs. This suggests that
besides immune-mediated ones, these elements might also
be involved in other cellular processes. With recent ad-
vancements in genome-editing technologies like CRISPR/
Cas9, it will be possible to determine how a given SNP in
a regulatory region might influence cellular functions in-
volved in disease pathogenesis.

Conclusion
The results show the involvement of several new actors
in the early differentiation of T-helper cells and the rela-
tionship between epigenetic factors and lncRNAs and
their possible role in autoimmune diseases.
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