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ABSTRACT OF THE DISSERTATION 

 

Application of Systems Biology Approaches  

to Unveil the Pathogenic Mechanisms  

of Neuropsychiatric Disorders 

 

by 

 

Yanning Zuo 

Doctor of Philosophy in Neuroscience 

University of California, Los Angeles, 2021 

Professor Weizhe Hong, Co-Chair 

Professor Xia Yang, Co-chair 

 

 

Neuropsychiatric disorders are brain disorders involving complex genetics, molecular, cellular, 

and circuitry mechanisms. Recent advances in multimodal omics data and systems biology 

tools have enabled modeling and dissection of the underlying pathogenic mechanisms in silico. 

However, such approaches have not been widely adopted in the neuropsychiatric field. My 

dissertation focuses on the applications of various system biology approaches, especially 

network-based multi-omics integration methods, to unveil the pathogenic mechanisms of 

neuropsychiatric disorders. I firstly reviewed and surveyed the current state of network modeling 

usage in studying neuropsychiatric disorders. I then applied various system biology tools, 

including Mergeomics and WGCNA, to identify the molecular, network, cellular, and 

connectome basis of sex-specific transcriptional changes caused by chronic adolescent 

exposure to cannabis. I also expanded the network applications from tissue level to single-cell 
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resolution, and constructed cell-level networks informed by common genetic variants of autism 

spectrum disorder to predict potential key regulators of the affected networks for drug 

repurposing. In summary, my studies revealed novel pathogenic mechanisms across multiple 

levels of biological complexity, provided databases of networks and key regulators for query, 

and offered potential therapeutic targets for multiple neuropsychiatric disorders. 

  



 iv 
 

The dissertation of Yanning Zuo is approved. 

Roy Wollman 

David Krantz 

Xia Yang, Committee Co-chair 

Weizhe Hong, Committee Co-Chair 

 

 

University of California, Los Angeles 

2021 

  



 v 
 

DEDICATION 

 

This dissertation is dedicated to Jieming, Wanjie, Mingliang, Xiaochuan, Sveta, and Dave. 

  



 vi 
 

TABLE OF CONTENTS 

ABSTRACT OF THE DISSERTATION .........................................................................................ii 

DEDICATION ................................................................................................................................v 

LIST OF FIGURES..................................................................................................................... viii 

LIST OF TABLES ..........................................................................................................................x 

ACKNOWLEDGEMENTS ............................................................................................................xi 

VITA .......................................................................................................................................... xiii 

Chapter 1.     Introduction .............................................................................................................1 

Chapter 2.     Unveiling the Pathogenesis of Psychiatric Disorders Using Network Models ........4 

2.1     Introduction .............................................................................................................4 

2.2     The scope, characteristics, and genetic architecture of psychiatric disorders ........5 

2.3      From a polygenic model to an omnigenic network hypothesis of psychiatric 

disorders ...........................................................................................................................7 

2.4      Connecting disorder-related genetic architecture to network models.....................8 

2.5      A survey of current and potential network methods and applications in psychiatric 

research...........................................................................................................................10 

2.6     Conclusions and future directions...........................................................................26 

2.7     Tables.....................................................................................................................30 

2.8     Figures...................................................................................................................38  

Chapter 3. Chronic adolescent exposure to cannabis in mice leads to long-term sex-biased 

changes in gene expression networks across brain regions.......................................................44 

3.1     Introduction............................................................................................................44 

3.2     Methods.................................................................................................................45 

3.3     Results...................................................................................................................54 

3.4     Discussion..............................................................................................................63 



 vii 
 

3.5     Figures...................................................................................................................70 

Chapter 4.  Gene network perturbations and drug candidates for autism spectrum disorders 

based on multi-omics integration.................................................................................................89 

4.1     Introduction............................................................................................................89 

4.2     Methods.................................................................................................................90 

4.3     Results...................................................................................................................92 

4.4     Conclusion.............................................................................................................94 

4.5     Tables....................................................................................................................95 

4.6      Figures.................................................................................................................100 

REFERENCES..........................................................................................................................103  



 viii 
 

LIST OF FIGURES 

Figure 2.1. Pursuing a network understanding of psychiatric disorders’ genetic architectures to 

advance precision medicine........................................................................................................38 

Figure 2.2. Extracting tissue and cell-type specific gene interaction relationships from multiomics 

data............................................................................................................................40 

Figure 2.3. Using networks to identify disorder-related networks and key driver genes.............41 

Figure 2.4. Comparing shared and distinct pathways across selected psychiatric disorders.....43 

Figure 3.1. Adolescent exposure to THC reduced recognition memory and social interaction in a 

sex-specific manner..................................................................................................................70 

Figure 3.2. Behavioral characterization of female and male mice following adolescent exposure 

to THC.........................................................................................................................................72 

Figure 3.3. Adolescent THC exposure induced long-term sex-specific transcriptional 

changes.......................................................................................................................................73 

Figure 3.4. Adolescent THC administration induced sex-specific transcriptional changes.........74 

Figure 3.5. Minimal transcriptional overlap was detected in most comparisons across sex and 

brain regions................................................................................................................................76 

Figure 3.6. Coexpression modules correlated with chronic THC administration and mouse 

cognitive phenotypes...................................................................................................................78 

Figure 3.7. DEG enrichment in coexpression modules was detected in a few brain regions….79 

Figure 3.8. THC-correlated coexpression modules exhibit cell-type marker enrichments..........80 

Figure 3.9. Hub genes and key driver genes were identified in THC-correlated coexpression 

modules.......................................................................................................................................82 

Figure 3.10. Construction of THC-interconnected module map reveals potential intra- or inter-

region molecular circuitries disrupted by THC.............................................................................84 

Figure 3.11. Identification of GWAS-associated modules using Mergeomics............................86 



 ix 
 

Figure 3.12. THC-correlated and interconnected modules are associated with human cognitive 

traits and disorders......................................................................................................................87 

Figure 4.1. CGE-derived interneurons have the highest level of ASD common variant related 

gene enrichment among neurons across species and developmental stage............................100 

Figure 4.2. The hub genes of ASD common variant-informed perturbation networks are enriched 

in ASD rare variants. .................................................................................................................101 

Figure 4.3. Representative ASD common variant-informed perturbation Bayesian network from 

the frontal cortex.......................................................................................................................102 

 

  



 x 
 

LIST OF TABLES 

Table 2.1. Publicly available repositories of multi-tissue multiomics data related to psychiatric 

research ......................................................................................................................................30 

Table 2.2. Major networks used in psychiatric disorder research ..............................................32 

Table 2.3. Key findings based on network applications in selected psychiatric disorders..........34 

Table 4.1. BrainNet Bayesian networks and WGCNA module information.................................95 

Table 4.2. Cell subtypes used for single-cell WGCNA network generation................................96 

Table 4.3. Brain region-specific modules enriched in ASD common variant related genes........97 

Table 4.4. Neuron subtypes enriched in ASD common variant related genes ...........................98 

Table 4.5. Evidence of drugs identified using PharmOmics on modulating ASD phenotypes....99 

 

  



 xi 
 

ACKNOWLEDGEMENTS 

I would like to acknowledge my mentors, Weizhe and Xia, for your support and mentorship. 

Weizhe, thank you for leading me to independence and pointing out my potentials in 

computational research. I really appreciate your guidance and have been enjoying learning and 

applying computational skills to neuropsychiatric disorders.  

Xia, I am very lucky to have you as my advisor both academically and personally. Thank you for 

your patience, understanding, and dedication to build up my intelligence and acumen in systems 

biology and support me through the past two years. You set the role model of a strong woman. 

Francesca, it was a great pleasure collaborating with you for the exciting project and for your 

amazing personality. I really enjoyed the discussions between us and have learned a great deal 

from our collaborative project. 

Mother, grandmother, and grandfather, I could not thank you more for your constant support 

and love. Thank you for your understanding, patience, and care towards me when I was a kid. 

You always provide me with the best. Xiaochuan, thank you for coming to my side in my darkest 

time. I cannot imagine what my life would be like if you were not here for me with your 

compassion.  

To all my colleagues and friends, thank you for being with me. We may or may not have seen 

each other in person, but the most important thing is that we love each other. Last and most 

importantly, thank you, my almighty God. I have been experiencing your grace and guidance 

every day in my life. Without you, I would not be who I am today. My Lord, you are my solid 

rock, and please keep leading me forward. 

Chapter 2 is a version of Zuo, Y., Wei, D., Zhu, C., Naveed, O., Hong, W., & Yang, X. (2021). 

Unveiling the Pathogenesis of Psychiatric Disorders Using Network Models. Genes, 12(7), 



 xii 
 

1101. X.Y. and W.H. was supported by the National Center for Advancing Translational 

Sciences UCLA CTSI Grant UL1TR001881. 

Chapter 3 is a version of Zuo, Y., Iemolo, A., Montilla-Perez, P., Li, H., Yang, X., & Telese, F. 

(2021). Chronic adolescent exposure to cannabis in mice leads to long-term sex-biased 

changes in gene expression networks across brain regions. BioRxiv. T.F. was supported by the 

National Institute on Drug Use, USA [DP1DA042232, U01DA051972, and U01DA050239]. X.Y. 

is supported by the National Center for Advancing Translational Sciences UCLA CTSI Grant 

UL1TR001881. This publication includes data generated at the UC San Diego IGM Genomics 

Center utilizing an Illumina NovaSeq 6000 that was purchased with funding from a National 

Institutes of Health SIG grant (#S10 OD026929). 

Chapter 4 is supported by the National Center for Advancing Translational Sciences UCLA 

CTSI Grant UL1TR001881. 

  



 xiii 
 

VITA 

EDUCATION 

2021     PhD Candidate, Neuroscience 

University of California, Los Angeles 

2012     Bachelor of Science, Biomedical Sciences 

     Zhejiang University, China 

RESEARCH EXPERIENCE 

2017 – Present   PhD trainee 

Department of Integrative Biology and Physiology 

Department of Biological Chemistry 

Department of Neurobiology 

University of California, Los Angeles 

PEER-REVIEWED PUBLICATIONS 

Zuo, Y., Wei, D., Zhu, C., Naveed, O., Hong, W., & Yang, X. (2021). Unveiling the Pathogenesis 

of Psychiatric Disorders Using Network Models. Genes, 12(7), 1101. 

Hu, R. K., Zuo, Y., Ly, T., Wang, J., Meera, P., Wu, Y. E., & Hong, W. (2021). An amygdala-to-

hypothalamus circuit for social reward. Nature Neuroscience, 24(6), 831-842. 

PREPRINTS 

Zuo, Y., Iemolo, A., Montilla-Perez, P., Li, H., Yang, X., & Telese, F. (2021). Chronic adolescent 

exposure to cannabis in mice leads to long-term sex-biased changes in gene expression 

networks across brain regions. BioRxiv. https://doi.org/10.1101/2021.11.30.470393. 

Tsan, L., Chometton, S., Zuo, Y., Sun, S., Hayes, A. M., Bridi, L., ... & Schier, L. A. (2021). 

Lasting effects of low-calorie sweeteners on glucose regulation, sugar intake, and memory. 

bioRxiv. https://doi.org/10.1101/2021.11.22.469487. 

  



 1 

Chapter 1. Introduction 

Neuropsychiatric disorders are complex brain disorders with a high level of genetic 

heterogeneity and affects 10.7% of worldwide population based on estimation
1
. Decades of 

research have linked neuropsychiatric disorders to numerous brain regions, circuits, cell types, 

and molecules. However, the pathogenic mechanisms of neuropsychiatric disorders still remain 

largely elusive. Studies on molecular pathophysiology of neuropsychiatric disorders are urgently 

needed to aid the discovery of novel therapeutics. 

To address this knowledge gap, my dissertation focuses on unveil the pathogenic mechanisms 

of neuropsychiatric disorders by taking the advantage of the abundant human genetics and 

multimodal omics data as well as recent advances in system biology approaches and tools. For 

example, using network modeling tools to perform multi-tissue multi-omics integrative analysis 

of ~100 mouse strains in the hybrid mouse diversity panel with a spectrum of non-alcoholic fatty 

liver disease, Krishnan et al identified candidate regulatory genes and pathways involved in the 

development of non-alcoholic fatty liver disease, which was further validated by in vitro and in 

vivo experiments
2
. Such approaches have not yet been widely adopted in the neuropsychiatric 

disorder research field. 

Specifically, I focus on adopting various complementary network-based multi-omics integration 

methods to identify disturbances in gene networks, specific cell types and subtypes, circuitries, 

and brain regions in neuropsychiatric disorders. In Chapter 2, I review current network modeling 

methods and survey existing applications of network modeling methods in neuropsychiatric 

research. This review provides a comprehensive summary of key findings based on network 

applications in six most commonly studied neuropsychiatric disorders and compares shared and 

distinct pathways across these neuropsychiatric disorders. In addition, I discuss the limitations 
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of current applications and propose future directions including engaging the increasing amount 

of single-cell level datasets. 

In Chapter 3, I focus on applying system biology tools, including Mergeomics and WGCNA, to 

identify the molecular, network, cellular and connectome basis of sex-specific transcriptional 

changes caused by chronic adolescent exposure to Δ-9-tetrahydrocannabinol (THC), the major 

psychoactive component of cannabis, using bulk-tissue mouse transcriptomic data across 

multiple brain regions. I found that gene coexpression modules involved in endocannabinoid 

signaling and inflammation were correlated with memory deficits in the female dorsal medial 

striatum and ventral tegmental area, respectively. Converging pathways related to dopamine 

signaling and addiction were altered in the female amygdala and male nucleus accumbens. 

Moreover, the connectivity map of THC-correlated modules uncovered intra- and inter-region 

molecular circuitries influenced by THC. Lastly, modules altered by THC were enriched in genes 

relevant for human cognition and neuropsychiatric disorders. These findings provide novel 

insights underlying persistent behavioral deficits induced by adolescent exposure to THC in a 

sex-specific manner. 

The increasing abundance of single cell multimodal omics data in the past few years has 

enabled further dissection of the gene networks at finer granularities. In Chapter 4, I expand the 

network modeling applications to a single-cell resolution, and have constructed Bayesian 

perturbation networks of autism spectrum disorder informed by common genetic variants. My 

analyses suggested that gene networks in the caudal ganglionic eminence (CGE) linage 

inhibitory neurons in the frontal cortex play an essential role in the pathogenesis of ASD across 

developmental stages. Further, the ASD networks informed by common variants were also 

highly enriched for genes revealed by ASD rare variants, supporting the omnigenic hypothesis 

of ASD pathogenesis. Our analysis connects ASD genetics with downstream mechanisms and 

provides network models to guide target identification for ASD. 
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In summary, my studies have revealed novel pathogenic mechanisms in chronic adolescent 

cannabis use and ASD, respectively, across multiple levels of biological complexity, provided 

databases of networks and key regulators for query, and offered potential therapeutic targets. 

These studies demonstrate the strength of integrating multimodal omics data with human 

genetics findings to facilitate the identification of perturbed gene networks and their potential 

regulators, which warrant future experimental validation and mechanistic studies.  
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Chapter 2. Unveiling the Pathogenesis of Psychiatric Disorders Using Network Models 

2.1     Introduction 

Psychiatric disorders, a group of prevalent brain disorders involving complex disturbances in 

sociocognitive functioning, are a leading cause of disability
3
. Surpassing cancer and 

cardiovascular disease, psychiatric disorders are estimated to affect 792 mil-lion people 

worldwide, representing 10.7% of the total population
1
. Nearly one in five adults experiences a 

psychiatric disorder in the U.S., with major depressive disorder being the leading cause of 

disability
4
. Given the lifelong morbidity and dearth of rationally designed treatments, it is 

imperative to understand the pathophysiology of psychiatric disorders. While numerous 

advances have expanded the scope of genetic analysis, how genetic risk confers 

pathophysiology remains largely elusive. 

Key unanswered questions include: How do polygenetic contributions interact to affect 

molecular signaling and endophenotypes? Do different combinations of common and rare 

variants produce distinct manifestations of psychiatric symptoms? How do we meaningfully 

expand the understanding of these genetic interactions, and how do we leverage such 

knowledge to promote precision medicine (Figure 2.1a)?  

One promising approach is to broaden analysis to noncoding regulatory elements and consider 

their effects within the complete architecture of a functional genome
3,5

. Current analytical 

methods mostly focus on interpreting common and rare variants located in gene coding regions, 

but 93% of the disorder-associated loci identified in genome-wide association studies (GWAS) 

are located in non-coding regions of the genome
6
. However, analyzing global interrelationships 

between noncoding regulatory elements and rare and common variants is complicated by cell-

type heterogeneity, data availability, and incomplete annotation.  
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In this review, we discuss recent advances in network approaches that may address this 

complexity. Broadly, for example, network approaches that define the superstructures of 

interactions and probabilistic models that localize key nodes in this structure could compress the 

genetic search space to the most important elements. We will firstly introduce the prevailing 

view on the polygenetic architecture of psychiatric disorders and review genetic studies that 

have linked rare and common genomic loci to different conditions. We will then discuss several 

challenges in dissecting the full architecture of psychiatric disorders with this view. We will 

present advances in multiomics approaches and network methodologies that could address 

these challenges. We will introduce emerging network tools that are underutilized but promising. 

Last, we will summarize potential future directions of developing network approaches. 

2.2     The scope, characteristics, and genetic architecture of psychiatric disorders 

We surveyed six common psychiatric disorders with various levels of heritability (twin heritability 

ranging from 0.37 to 0.85) and distinct domains of manifestation and etiology: alcohol use 

disorder, autism spectrum disorder (ASD), bipolar affective disorder, major depressive disorder, 

post-traumatic stress disorder (PTSD), and schizophrenia. Details regarding disorder 

characteristics, heritability, and impacts is outside the scope of this review but can be found in 

previous reviews, such as Sullivan and Geschwind, 2019
3
.   

Over the past decade, genetic studies have linked both rare and common genomic loci to 

different disorders and traits
7-13

. One efficient way to characterize the genetic architecture of 

complex diseases is to search for protein-encoding rare mutations in singletons or multiplex 

families with extreme phenotypes, which include an early onset, more severe symptoms, or fast 

progression of diseases
14

. Human genetics studies of extreme psychiatric phenotypes and rare 

syndromes involving psychiatric symptoms have revealed numerous rare variants in psychiatric 

disorders. These rare variants include copy number variations (CNVs) and protein-altering point 
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mutations; particularly for schizophrenia and autism spectrum disorder, 159 and 136 rare 

variants have been identified, respectively
8, 15-18

. These rare mutations occur at extremely low 

frequencies in the population, but each with a large effect size. One rare mutation on its own 

may be sufficient to cause a specific disorder, as in the Rett syndrome
19

. Rare variants often 

cause loss-of-function of known genes, and it is relatively easier to identify the affected 

pathways. For instance, synaptic function and transcriptional regulation pathways have been 

implicated by autism spectrum disorder rare genetic variants. However, rare variants can only 

explain a small proportion of individuals
3
. 

By contrast, recent GWAS studies have uncovered common genetic loci with relatively high 

frequencies in the population but each with small effect size, making common variants 

challenging to identify unless studied in large populations comprised of as many as 100,000 

subjects
19, 20

. Despite the challenges, 353 common loci have been identified for the surveyed 

psychiatric disorders, amongst which 270 loci are associated with schizophrenia
15

. Such 

findings illustrate a polygenic model in which many gene loci with small effect sizes and hub 

genes with moderate to large effect sizes contribute to a disorder
22

 (Figure 2.1b). 

There are several challenges in investigating the polygenic architecture and mechanisms of 

psychiatric disorders. First, large population samples are needed to overcome statistical hurdles 

to identify common variants with small effect sizes. Second, interpreting the biological roles of 

common variants is challenging because the 93% of common variant loci located in non-coding 

areas of the genome can regulate gene ex-pression in a subtle or indirect way
6
. Third, the set of 

regulatory actions of a given gene is diverse and varies across cell types and developmental 

stages. Last, cell-state specific sequencing and functional annotations of such non-coding areas 

are unavailable or inconsistent. 
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Multiomics and network approaches can address these levels of complexity by exploiting the 

structure of physiological contextualization and connectivity to generate otherwise inaccessible 

insights. Multiomics approaches integrate genetics, functional genomics, transcriptomics, 

proteomics, and epigenetics. Integrating multiple levels of analysis in this manner can provide 

unique windows into key driving elements and hypothesized biological functions of genes that 

would otherwise be opaque to single-level analysis. One way to integrate multiomics data is 

through network approaches and we will discuss the biological and pragmatic motivations for 

transitioning from a polygenic model to an omnigenic network model of psychiatric genetics. 

2.3      From a polygenic model to an omnigenic network hypothesis of psychiatric 

disorders 

A polygenic model views disorder risk from a multitude of common and rare variants as 

combinatorial contributions. More recent inferences from the polygenic model and advances in 

technology and biology have promoted the recognition of an omnigenic model, which views 

genetic architecture from a network perspective
23, 24

. Networks are graphical models depicting 

interactions between nodes. From social networks to the World Wide Web, network models 

emphasize the structure of interconnections between nodes, which may have apparent 

commonalities across domains. In biological networks, nodes are biological entities such as 

genes, proteins, non-coding RNAs, and metabolites. Nodes are organized hierarchically and 

may be described in terms of their topology or interconnections, such as in scale-free 

architecture
25

. In a scale-free network, most genes have only a few connections with other 

genes, while a small proportion of genes have a high level of connectivity and are located at the 

center of the network. These small numbers of genes with high connectivity are referred to as 

‘core genes’ or ‘hub genes’. The remaining genes with low connectivity are referred to as 

‘peripheral genes’
26

. The relationships between entities are illustrated by edges connecting 

nodes, with the strength of interactions encoded as weights on edges. This view of genetic and 
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signaling architecture permits not only relationally based biological insights but also hypotheses 

regarding how certain structures are more vulnerable or robust to disorder. 

In the omnigenic model, core genes and peripheral genes contribute differentially to the 

heritability of complex traits
23

. The small number of core genes usually plays a large regulatory 

role in the network, thus having large effect sizes. On the other hand, the majority of genes are 

peripheral genes, which account for most of heritability as a whole, yet each displaying a small 

effect size. Naturally, one can correspond to rare variants with core genes and common variants 

with peripheral genes (Figure 2.1c). While the polygenic model also allows for rare variants with 

large effect sizes, the omnigenic model provides additional insights into the underlying gene 

regulatory relationships responsible for pathogenesis. The assumption that rare variants are 

core genes in the network, which have larger effect sizes, account for a small percent of 

heritability and are more phenotype-specific, is supported by existing studies
24, 27, 28

. Thus, we 

believe that the omnigenic model is superior in reflecting the underlying pathogenic mechanisms 

of complex psychiatric disorders. 

The omnigenic network model calls for systems biology tools to make inferences about 

pathogenic mechanisms; however, variants alone are insufficient to construct disorder-related 

networks – additional molecular data that help establish or infer functional relationships are 

needed. Multiple levels of data from gene expression to protein interactions can be integrated to 

facilitate the construction of disorder-related networks (Fig. 2.2). We describe these approaches 

in more details below. 

2.4      Connecting disorder-related genetic architecture to network models 

Integrating and embedding multi-tissue, multiomics data into network architectures offers 

unprecedented relational insights while anchored to physiologic contexts. Common omics data 
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for network construction include genetics, transcriptomics, proteomics, and epigenomics
29

. 

Transcriptomic datasets derive from microarray, RNA-seq, and single-cell RNA-seq experiments 

and are the most used data type in network construction. mRNA and non-coding RNA 

expression levels can inform gene coexpression, regulation, and causality relationships. 

Epigenomics data such as histone modification, DNA methylation, non-coding RNA regulation, 

and open chromatin sites derived from methods including CHIP-seq, ATAC-seq, Hi-C, and 

methyl-seq, highlight specific gene regulation profiles
30

. Proteomic data can reflect protein-

protein physical interaction relationships based on assays such as yeast double hybridization or 

co-regulation relationships through high throughput methods such as protein chips. Across 

omics domains, genetic and epigenetic variations contribute to gene expression regulation, 

which in turn affect protein levels and downstream protein-protein interactions and functions. All 

these within-datatype and between-datatype relations can be used in network construction. 

As mentioned, the vast majority of heritability involves common variants that are often in non-

coding areas, which cannot be directly mapped in a gene network. To connect these loci with 

molecular networks in disease-relevant tissues, functional genomics serves as a bridge 

between genetics and other omics. Intermediate phenotype quantitative trait loci (iQTL) are 

mostly used for this purpose, which are genetic loci associated with specific quantitative traits 

such as gene expression or protein levels, which are intermediate traits between genetics and 

clinical phenotypes
31

. In terms of quantitative trait associated, iQTLs include expression QTLs 

(eQTLs), splicing QTLs (sQTLs), histone modification QTLs (hQTLs), methylation QTLs 

(mQTLs), and protein QTLs (pQTLs)
32

. The most common type of iQTLs studied is eQTLs that 

define genetic loci that are associated with gene expression. eQTLs can be divided into cis-

eQTLs and trans-eQTLs. Cis-eQTLs are adjacent genetic loci that cis-regulate the covariate 

gene, while trans-eQTLs are distant genetic loci that regulate genes remotely
33

. In a network, 

cis-eQTLs can help set the corresponding covariate genes as parent nodes. In contrast, trans-
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eQTLs can infer the covariate genes as child nodes. As such, eQTL information can also be 

directly incorporated in network construction. For instance, using eQTLs as an input to Bayesian 

networks boosts the causal inference and network performance
34

. In this way, one can locate 

disorder-related common variants in a network by examining the connection of their eQTL 

covariate genes and further identify hub genes related to common variants in the network. 

As efforts devoting to large-scale omics profiling proceed, there has been an accumulation of 

databases of different data modalities that can be used for psychiatric research (Table 2.1). 

GWAS catalog, LD-hub, and PGC collect the summary statistics of genetic associations of 

diseases or phenotypes from many GWAS, including numerous psychiatric disorders
35

. The 

Genotype-Tissue Expression (GTEx) project profiled the genotype, transcriptome, eQTLs, and 

sQTLs across 54 tissues in a total of 948 donors, including 2642 samples from 13 brain 

regions
36

. The Encyclopedia of DNA Elements (ENCODE) profiles various transcriptional 

regulators and epigenomic factors across more than 150 tissues from 4920 samples, including 

706 brain samples
37

. Another project focusing on transcriptional regulator profiling is the 

Functional Annotation of the Mouse/Mammalian Genome (FANTOM), which has released 

atlases of transcriptional regulatory networks, promoters, enhancers, lncRNAs, and miRNAs
38

. 

Apart from GTEx, an abundance of bulk tissue RNA-seq and single-cell RNA-seq datasets can 

be found on Gene Expression Omnibus (GEO)
39

. Lastly, Search Tool for the Retrieval of 

Interacting Genes/Proteins (STRING) curates and profiles protein interactions, with the latest 

version v11 including 24.6 million proteins from 5090 organisms
40

. All these data resources 

enable robust network construction integrating multi-tissue multiomics datasets. 

2.5      A survey of current and potential network methods and applications in psychiatric 

research 
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Networks commonly used in systems biology include gene regulatory networks, protein-protein 

interaction networks (PPI), literature-curated networks, and hybrid networks (Table 2.2). These 

network models depict the molecular relationships at both cellular and intracellular level, each 

from a unique perspective. Gene regulatory networks focus on elucidating gene-gene 

interaction and regulatory relationships, organizing genes based on coexpression clusters or 

inferred causality and regulatory pairs. PPIs emphasize the physical interaction between 

proteins, combining protein interaction in-formation from both experiments and computational 

predictions. Literature-curated networks capture potential gene or protein interaction by mining 

gene or protein co-occurrence from published research papers. Hybrid networks combine and 

integrate information from two or more different networks and present a comprehensive 

summary for a specific tissue
41

. 

Below we discuss each network method and its applications in psychiatric disorders. We also 

highlight approaches that are not yet widely adopted in psychiatric research. 

Gene regulatory networks  

Three main kinds of gene regulatory networks are commonly adopted: gene coexpression 

networks, causal relationship networks (Bayesian networks), regulator-target pair networks. 

1) Gene coexpression networks 

Gene coexpression networks are correlation-based networks in which highly co-regulated genes 

are clustered into modules, illustrating functional clustering of genes and pinpoint core genes 

based on connectivity. Commonly used methods to generate gene coexpression networks 

include WGCNA
42

 and MEGENA 
43

. The key differences between the two types of coexpression 

networks include module size (large modules in WGCNA vs. more compact modules in 

MEGENA) and whether a gene can be in multiple modules (not allowed in WGCNA but allowed 
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in MEGENA). WGCNA has been widely implemented in numerous studies and is one of the 

most adopted network methods in systems biology and psychiatric research. In contrast, 

MEGENA has not be broadly applied. In recent comparative applications between the WGCNA 

and MEGENA for non-psychiatric diseases, the complementary nature of the two methods is 

strongly supported
2, 44

. It will be interesting to test MEGENA in psychiatric disorders in future 

studies. 

Using WGCNA or MEGENA, one can identify modules associated with certain conditions based 

on transcriptomic profiles in both cases and controls using the module-trait correlation analysis 

(Figure 2.3a). By annotating disorder-associated modules’ biological function, cell types and 

pathways responsible for pathogenesis can be elucidated. For example, Kapoor et al. examined 

bulk-tissue gene expression in the prefrontal cortex of subjects with alcohol use disorder as well 

as controls
45

. They applied WGCNA to the transcriptomic profiles and identified two modules 

that were significantly correlated with alcoholism. Further pathway analysis suggested that in 

subjects with alcoholism, there is a down-regulation of calcium signaling and nicotine response 

pathways in one module and an up-regulation of immune signaling pathways in another module. 

Another common application of coexpression networks is first to construct coexpression 

networks based on transcriptomic profiles from control subjects and then ex-amine the module 

enrichment level of genes affected in a specific disorder (Figure 2.3a), as exemplified in the 

following study. Parikshak et al. constructed WGCNA gene coexpression networks based on 

bulk tissue brain RNA-seq data from subjects representing the cortex of early developmental 

stages spanning post-conception week 8 to one year after birth in the BrainSpan database
46,47

. 

Autism spectrum disorder rare variant genes are enriched in hub genes of modules functioning 

in early transcriptional regulation and synaptic development. Spatially, autism spectrum disorder 

rare variant genes are enriched in superficial cortical layers and glutamatergic projection 

neurons of the cortex. These findings have been cross-validated experimentally by other studies 
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using postmortem human brain samples from subjects with autism spectrum disorder, using 

both bulk-tissue and single nucleus transcriptomics
48,49

. A parallel paper by Willsey et al. also 

utilized the BrainSpan database and gene co-expression networks to identify pathways and cell-

types related to autism spectrum disorder
50

. Rather than using WGCNA, the authors 

constructed coexpression networks of high confidence autism spectrum disorder ‘seed genes’ 

using the Pearson correlation coefficient to choose the top 20 best-correlated genes with a 

Pearson coefficient higher than 0.7 for each seed gene. Using this method, the authors 

elucidate an enrichment of autism spectrum disorder rare mutation genes in deep-layer 

glutamatergic projection neurons of the mid-fetal cortex, consistent with Parikshak et al. 

Gene coexpression networks are powerful tools in determining co-regulatory relationships of 

genes involved in distinct functions and how these modules connect to psychiatric disorders. 

However, coexpression networks are not directional, and thus unable to provide causal 

relationships between genes, an important aspect to retrieve upstream regulators. This 

limitation can be addressed by causal regulatory networks such as Bayesian networks. 

2) Bayesian networks 

Bayesian networks (BNs) are directed acyclic graphs summarizing causal regulatory 

relationships between genes. BNs can be generated with transcriptomic data alone, but the 

incorporation of prior information capturing regulatory information can offer higher prediction 

accuracy for regulatory relationships
34,51

. cis-eQTLs, trans-eQTLs, and transcriptional factor-

target pairs can be used as prior information for causal inference
33

. For instance, genes with cis-

regulatory function and transcription factors are as-signed as ‘parent nodes’ in BN, while genes 

under trans-regulation or target genes of transcription factors are ‘child nodes’. Arrows pointing 

from the parent nodes to child nodes indicate the inferred direction of causality. 
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Integrating genetics, transcriptomic, functional genomic inputs, and more, BN can capture 

causal regulatory relationships in a given tissue and can be used as a ‘roadmap’ in pinpointing 

key regulatory genes
51

 (Figure 2.3b). There have been a few applications of BN in psychiatric 

research. Scarpa et al. leveraged a combination of WGCNA gene co-expression network, 

transcription factor-target network, PPI, and BN to identify con-vergence and divergence of 

biological processes between sleep loss and depression
52

. The authors first measured the 

affective and sleep patterns of 288 hybrid mice and their genotypes and transcriptional profile in 

the cortex, hippocampus, hypothalamus, and thalamus. WGCNA coexpression networks were 

constructed to identify trait-related modules in individual tissues, and BNs were constructed 

based on the transcriptomic profiles in conjunction with eQTLs derived from the genotype 

information and transcriptomics. Next, the authors examined the differentially expressed genes 

(DEGs) from a meta-analysis cohort of human major depressive disorder and from mouse sleep 

loss datasets. The DEGs of human major depressive disorder and mouse sleep loss model 

converged on a frontal cortex-derived module enriched in clock genes and immediate early 

genes (IEGs). Moreover, genes in this module displayed opposite directions of change in major 

depressive disorder subjects and sleep deficient mice, in line with the fact that many major 

depressive disorder patients manifest sleep issues and antidepressants affect sleep. The 

authors then identified the key driver gene of this subnetwork by overlapping the non-directional 

coexpression modules on the directional BN to identify intramodular regulatory hub genes. An 

IEG Arc was found as a key driver gene of the clock/IEG network, which may link depression 

and sleep loss. 

Protein-protein interaction and tissue-specific gene expression patterns have also been used to 

construct BNs, as in GIANT BNs
53

. GIANT BNs contain 31 central nervous system-related 

tissue-specific functional interaction networks, each constructed based on transcriptomic 

profiles, protein interaction information, and regulatory in-formation curated from diverse 
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experiments. Among those, the brain-specific BN was constructed with thousands of curated 

experiments and was used to predict autism spectrum disorder risk genes and characterize their 

biological functions by Krishnan et al.
54

. The authors applied this BN as an input to a machine-

learning procedure, which was informed by text-mining co-occurrence of genes of high-

confidence autism spectrum disorder associations. This approach revealed synaptic 

transmission, MAPK signaling, histone modification, and immune response to be essential 

affected functions in autism spectrum disorder, which was cross-validated with previous 

literature and experiments. Besides, this method was applied to prioritize driver genes in autism 

spectrum disorder related CNVs, and the authors highlighted PPP4C and MAZ as potential top 

driver genes in the most common autism spectrum disorder related CNV 16p11.2. 

Although not yet widely adopted in psychiatric research, BN has been applied to study many 

other diseases such as Alzheimer's disease
55

, Type II diabetes
56

, and non-alcoholic fatty liver 

disease
2
. BN is very powerful in identifying key driver genes in a biological process based on 

causality. For example, BN construction in RimbaNET uses Monte Carlo Markov Chain 

simulations to reconstruct 1000 networks starting with random seeds, and the final BN is a 

consensus network containing the most shared edges across all the reconstructions
52

. Although 

this method promotes causal inference, its disadvantages include high computational cost
30, 41, 

57
, possibility of failing to find the optimal network structure

41
, and lack of feedback loops which 

misses an essential type of gene expression regulation
58

. 

3) Regulator-target pair networks 

Dysregulation of transcriptional factors and non-coding RNAs have been indicated in psychiatric 

disorders
48,59-61

. A regulator-target pair subnetwork consisting of a gene expression regulator 

(such as a transcription factor or a non-coding RNA) and its downstream effect genes is termed 

‘regulon.’ One can directly explore experiment-derived regulator-target pair networks from 
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databases such as FANTOM and ENCODE
37,62

. An alternative method is to use the binding 

sites or transcriptomic information to infer targets of transcription factors or non-coding RNAs.  

One piece of software that infers transcriptional factor regulons based on transcriptomic 

information is Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe). 

Repunte-Canonigo et al. applied ARACNe to a rat model of alcoholism and identified Nr3c1, the 

gene encoding the glucocorticoid receptor, as a master regulator across many brain regions in 

alcohol-dependent rats
63,64

. The authors then performed an in vivo validation experiment by 

administering a glucocorticoid antagonist to the nucleus accumbens and ventral tegmental area 

of alcohol-dependent rats and control animals. A significant decrease in alcohol consumption 

was observed in alcohol-dependent rats with the glucocorticoid antagonist to either of the two 

brain regions, while there was no effect in alcohol non-dependent rats. Another method 

developed based on ARACNe, Reconstruction of Transcriptional regulatory Networks (RTN)
65

, 

was applied by Pfaffenseller et al. to identify differentially expressed regulons in the prefrontal 

cortex of subjects with bipolar affective disorder
66

. Five regulons (EGR3, TSC22D4, ILF2, YBX1, 

and MADD as regulators) were identified, with EGR3 showing the most robust significance in 

two independent human bipolar affective disorder datasets. 

Ingenuity Pathway Analysis (IPA), a commercial tool constructed based on a comprehensive 

curation of different networks from experimental datasets, text-mining literature, and other 

databases, also contains transcriptional factor and miRNA-target pair networks
67

. Using this 

tool, Bam et al. predicted many down-regulated miRNAs in PTSD to target IFNG and IL-12, 

which exhibit increased expression levels in PTSD patients
68

. They also predicted that up-

regulation of hsa-miR-193a-5p could decrease the high expression level of IL-12, which may 

help reduce the excessive inflammation response in PTSD patients. 
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Another software tool, TargetScan, predicts mRNA targets of miRNA based on conserved 

sequences in mRNAs
69

. Wu et al. leveraged a combination of coexpression network and 

miRNA-target regulatory network to identify miRNA dysregulation in autism spectrum disorder
61

. 

The authors firstly identified differentially expressed miRNAs from autism spectrum disorder 

case-control brain samples and constructed WGCNA coexpression modules. They then used 

the TargetScan algorithm to identify mRNA targets of top differentially expressed miRNAs and 

hub miRNAs in autism spectrum disorder related coexpression modules. The authors illustrated 

that autism spectrum disorder related risk genes are enriched in miRNA targets and miRNA 

modules. One miRNA, hsa-miR-21-3p, targets neuronal/synaptic genes down-regulated in 

autism spectrum disorder, which may play an essential role in pathogenesis. 

PPI networks 

In a PPI network, the nodes are proteins, and the edges depict the physical interaction 

relationship between proteins based on experimental datasets or computational simulation. The 

edges are undirected, and the weights of edges indicate the reliability of the interaction. 

StringDB is the most commonly used PPI database, with the latest version v11 covering around 

25 million proteins from 5099 organisms
40

. StringDB imports and integrates PPI information 

from other databases, including PINA, MINT, IntAct, DIP, BioGRID, HPRD, and MIPS/MPact. It 

also contains PPI inferred from text-mining, statistically significant co-occurring genes from the 

literature, and computationally predicted PPI based on criteria such as coexpression. Other 

integrated databases, including IPA and GeneMania, also contain PPI resources. 

PPIs have been extensively used in psychiatric research to identify hub genes. Commonly used 

methods of identifying subnetworks and hubs include DAPPLE, DMS, MCODE, and PINA
70-73

. 

For example, Blizinsky et al. constructed a PPI network related to rare CNVs in schizophrenia 

using PINA2
74

. MAPK3/ERK1 was identified as the most topologically important hub gene for 
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the 16p11.2 network. The authors then performed in vitro validation by applying an ERK 

signaling inhibitor to cultured primary neurons with 16p11.2 microduplication. This treatment 

successfully reversed the abnormality in these neurons’ dendritic arborization, indicating the 

critical role of MAPK3/ERK1 in maintaining normal neuronal morphology. 

PPIs are also used broadly in combination with other networks, such as the coexpression 

network, to identify disorder-related networks. Gulsuner et al. profiled schizophrenia-related de 

novo mutations and leveraged a combination of PPI network and coexpression network to 

examine the functional relevance of these de novo mutations and identify their enrichment in 

pathways and tissues
75

. By mapping de novo mutation genes onto GeneMania physical 

interaction data set, the authors constructed an interconnected subnetwork enriched for 

schizophrenia de novo mutation genes, suggesting that the mutation genes are biologically 

interacting. The authors then constructed coexpression networks based on BrainSpan data by 

calculating Pearson correlation coefficients across de novo mutation gene pairs. The most 

highly connected coexpression network of de novo mutation genes was derived from the fetal 

cortex. To further examine the interaction topology and gene characteristics, the authors 

merged the PPI network and coexpression network derived from schizophrenia risk genes. This 

merged network contains genes in pathways related to neurogenesis and synaptic integrity, with 

most of the genes expressed high in early fetal development, low in childhood, and high again in 

early adulthood, which is in line with the onset of schizophrenia in early adulthood. 

Since proteins interacting with each other may be co-regulated by the same up-stream 

regulatory signal, they may also exist in the same coexpression network. Thus, genes that are 

both coregulated and showing protein interaction may be of higher relevance to a specific 

condition and should be prioritized for further study as driver genes (Figure 2.3b). Parikshak et 

al. identified two WGCNA coexpression modules enriched for autism spectrum disorder rare de 

novo variants
46

 and further showed that these modules enriched for rare variants are also 
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significantly enriched for protein interaction. The authors then intersected the WGCNA 

coexpression network hub genes with PPI network hub genes. Many of the overlapping hub 

genes are known to harbor autism spectrum disorder associated mutations and interact with 

other autism spectrum disorder related genes, such as TBR1, NFIA, and KDM6B. 

The comprehensive PPI databases provide abundant resources of reliable PPI networks. 

However, one main limitation of the PPI network is that it does not reflect causality or regulatory 

relationships. In addition, the PPI network is not tissue-specific and may bring in interactions 

that are not relevant to the disease tissues. 

Literature-based networks 

Literature-based networks are curated based on integrating general knowledge such as 

pathway/function annotation databases and text-mining existing experimental data and literature 

to capture genes contributing to specific biological functions. Although gene ontology terms can 

be constructed into a network in terms of the relatedness of biological pathways, genes in this 

type of network are not interconnected and do not reflect the topological properties of gene-

gene relationship
76

. Thus, pathway/function annotation databases such as GO, KEGG, 

Reactome, and BioCarta are collections of sets of functionally related genes rather than 

networks. However, pathway annotations can be used in conjunction with other molecular 

interaction information in network analysis. 

Leveraging a knowledge-based and data-driven gene-phenotype likelihood network, Gilman et 

al. developed NETwork-Based Analysis of Genetic Associations (NETBAG)
77

. The gene-

phenotype likelihood network was first constructed by connecting all pairs of human genes. 

Then weights calculated based on likelihood ratio were assigned to the edges based on naive 

Bayesian integration of pathway annotations, protein-protein interaction information, shared 
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gene or protein sequence or structure, and coevolutionary patterns. In this network, genes that 

are more likely to participate in the same phenotype have a high likelihood ratio weight. To 

predict genes affected by rare de novo CNVs in autism spectrum disorder using this network, 

the authors overlaid genes from autism spectrum disorder related CNV regions and found the 

subnetwork with the highest enrichment p-value. They discovered that genes in these 

subnetworks mostly participate in synapse development, axon targeting, and neuron motility, 

which are cross-validated by later studies
46,48-50,54,78

. Gilman et al. also developed NETBAG+ to 

incorporate more genetic variation, including GWAS loci and de novo single nucleotide variants 

(SNVs). Further analysis suggested that cortical interneurons, pyramidal neurons, and medium 

spiny neurons are the most impacted cell types in ASD
78

. The authors also applied NETBAG+ to 

schizophrenia and identified related subnetworks and their functions
79

. Schizophrenia-related 

networks function mainly in axon guidance, neuronal cell mobility, synaptic function, and 

chromosomal remodeling, which largely coincides with ASD but with different mutations.  

Similar to NETBAG, Ward et al. constructed phenotypic-linkage networks (PLN) to identify 

nervous system gene sets related to GWAS loci of mood instability
80

. The authors constructed a 

nervous-PLN using phenotypes specifically in mouse phenotype ontology (MPO) category 

Nervous System and integrated GO terms and pathway an-notations with PPI, coexpression 

relationship, to derive semantic similarity score
81

. Using this nervous-PLN, the authors found 

genes within loci related to mood instability to function in synapse transmission. Specifically, two 

candidate genes associated in the network are HTR4 and MCHR1, encoding serotonin and 

melatonin receptors, respectively, and have been indicated in depression and schizophrenia. 

Hybrid networks 
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Apart from the individual usage of the networks mentioned above, constructing a hybrid network 

consisting of two or more kinds of networks is also a common practice. As different networks 

cover different aspects of gene interaction, a hybrid network can leverage the strengths and 

overcome the disadvantages and limitations of each network type. For example, combining 

PPIs with BNs integrates both causal gene regulatory in-formation and protein physical 

interaction, which covers distinct aspects of gene interactions and promotes the identification of 

hub genes that play regulatory roles at gene and/or protein levels. 

Gazestani et al. constructed hybrid networks incorporating knowledge-based, functional, and 

experiment-derived coexpression networks to identify transcriptional perturbation patterns in 

leukocytes from ASD cases and control children
82

. The authors first generated a static network 

which combines information from (a) high-confidence physical and regulatory interactions from 

the Pathway Commons database, Reactome, and BioGRID; (b) coexpression network based on 

the transcriptome of the aforementioned case-controlled leukocyte samples; (c) functionally 

related gene interactions from GeneMania, which includes PPI, coexpression, colocalization, 

pathways and protein domain similarity information. Gene pairs in each diagnosis group (case 

or control) were retained to generate diagnosis-specific networks. By comparing the con-trol-

specific network and ASD specific network, the authors discovered that the ASD network was 

enriched for ASD rare mutation genes, as well as their regulatory targets and regulators. RAS–

ERK, PI3K–AKT, and WNT–β-catenin signaling pathways were enriched in autism spectrum 

disorder specific networks, and ASD rare mutations perturbed the network through these 

pathways. 

In addition to constructing literature-curated networks or hybrid networks from scratch, there are 

numerous existing hybrid network resources available. Huang et al. benchmarked 21 popular 

human gene or protein networks, including StringDB, Gene-Mania, GIANT, based on a disease 

gene set recovery test and found that networks with larger size have better performance in 
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retrieving known disease genes
83

. They then assembled an integrative network which requires 

edges to be present in at least two networks, called Parsimonious Composite Network (PCNet), 

which is smaller in size but has the best performance. Although psychiatric disorders were not 

explicitly tested, this study provides a new network resource and a guideline to choose hybrid 

network re-sources. 

Cross disorder network applications 

Due to the genetic correlation and comorbidity across psychiatric disorders, studying 

pathogenesis mechanisms across disorders may yield therapeutic targets for several disorders 

or specific endophenotypes. A recent study by Gandal et al. leveraged WGCNA gene 

coexpression networks constructed based on case-controlled human brain transcriptomic 

profiles across five psychiatric disorders: schizophrenia, major depressive disorder, bipolar 

affective disorder, autism spectrum disorder and alcohol use disorder
84

. In addition to the 

distinct transcriptomic disturbance in each disorder, the authors identified a shared component 

of transcriptional dysregulation across all five disorders related to the degree of polygenic 

overlap. Their results agree with previous findings supporting that a shared causal genetic 

component underlies all psychiatric disorders
85,86

. Further, the authors identified shared and 

unique modules across these disorders. In ASD, bipolar affective disorder, and schizophrenia, 

an astrocyte module with the annotation of glial differentiation is up-regulated; several modules 

associated with neuronal and mitochondria function are down-regulated in these disorders. A 

microglia module is uniquely up-regulated in ASD, which is confirmed in another study by 

Gandal et al., where modules related to microglia and interferon response are significantly up-

regulated in ASD but down-regulated in bipolar affective disorder and schizophrenia. There is 

also a shared upregulation of the NFkB pathway across these three disorders
87

.  
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The conclusions from the Gandal et al. studies are consistent with previous pathway analyses 

based on genetic risks and studied leveraging a similar network approach. Using pathway 

analysis, a study by PGC found that common genetic risks of schizophrenia, major depressive 

disorder, and bipolar affective disorder converge on neural, immune, and histone modification 

pathways
86

. Kim et al. constructed WGCNA coexpression networks to identify shared modules 

across schizophrenia, major depressive disorder, and bipolar affective disorder, which were 

enriched with GABAergic markers, synaptic proteins, and immune functions. Interestingly, 

genes that compromise immune function-related modules showed no overlap across all three 

disorders, indicating possible differential response in the immune system
88

. 

Network applications on treatment response 

Besides network applications in studying pathogenesis, networks are also powerful tools to 

identify driver genes in treatment response. Although many psychopharmacological drugs are 

available and applied for more than five decades, their action mechanisms remain mostly 

elusive. Moreover, drug response in individuals differs tremendously. Elucidating the 

mechanisms of action and identifying biomarkers that predict individual response to drugs can 

greatly aid precision medicine in psychiatry and the development of novel therapeutics. 

Lithium (Li) is a first-line mood stabilizer for bipolar disorder, although its mode of action is not 

fully elucidated. To reveal the mechanism of Li in treating bipolar disorder and the differential 

responses across patients, Breen et al. characterized the transcriptomic profiles of subject-

derived lymphoblastoid cell lines from Li responders and non-responders
89

. WGCNA gene 

coexpression modules suggested that Li treatment correlates to upregulated immune response, 

apoptosis, and protein processing in the endoplasmic reticulum and down-regulated ribosome 

pathway, translation initiation and phosphatidylserine metabolism. They further discovered that 

DEGs between Li responders and non-responders are enriched in cell cycle processes and 
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nucleotide excision repair pathways. To identify psychopharmacological drugs with a similar 

transcriptomic signature to Li for bipolar disorder patients, the authors then queried the DEGs 

from Li treatment against DSigDB, a database of drug/compound activated gene expression 

signatures
90

. Clonidine, an alpha2-adrenoceptor agonist, exhibited a drug-gene signature most 

reminiscent of Li signature, thus has potential for bipolar disorder treatment. Besides DSigDB, 

CLUE and Metacore (commercial) also contain drug-gene transcriptomic signatures applicable 

for studying drug action mechanisms and drug repurposing. 

Summary of new insights obtained from network studies of psychiatric disorders 

Network methodologies provide us with a perspective beyond the identified dis-order-associated 

variants. For instance, candidate genes in the network which show high connectivity to many 

previously identified genes can be prioritized as hub genes or driver genes. Due to their high 

connectivity, these hub genes may act as the converging points of disorder-related variants and 

pathways, making them potential targets for therapeutics even if they have not been implicated 

by genetic evidence yet. Besides revealing hidden novel genes in disorder etiology, network 

methodologies can elucidate regulatory relationships and coherent biological functions between 

disorder genes. For example, coexpression networks can identify covariation across modules of 

genes and differentially regulated modules, while one may fail to identify significant differentially 

expressed genes. 

Many fruitful findings have been made through network methods, which are summarized in 

Table 2.3. Among the six psychiatric disorders discussed in this review, ASD and schizophrenia 

are the most studied, and independent studies have yielded consistent results. Existing studies 

exploiting network methods mostly focus on identifying candidate genes and pathways based 

on transcriptomic studies (Figure 2.4). Almost every study on ASD has indicated the pathogenic 

role of immune and synaptic functions in ASD pathogenesis. Other crucial biological processes 
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revealed for ASD include chromatin and transcription regulation, early embryonic development, 

axon guidance, extracellular matrix, and MAPK signaling
46,50,77-78,82,91-95

. Besides the processes 

affected in general ASD cases, Luo et al. combined electronic health records with genomic and 

transcriptomic data and identified an ASD subtype with dyslipidemia
96

. In addition, the various 

studies also implicated key cell types related to ASD, including mid-fetal deep layer cortical 

projection neurons, superficial cortical layers neurons, cortical interneurons, medium spiny 

neurons, and microglia
46,50,78,97

. 

Schizophrenia also engages the immune system, synaptic functions, and neurodevelopmental 

processes, which fall into the same pathway category as ASD
79, 98

. However, schizophrenia 

exhibits differential alterations in these pathways. Apart from the differential immune response 

discussed in 5.5 (upregulated microglia and immune activities in ASD and down in 

schizophrenia), the candidate genes from de novo CNVs of ASD and schizophrenia showed 

opposite directions in their biological functions. Most of the schizophrenia candidate genes are 

associated with synaptic pruning and decreased dendritic spines, while ASD candidate genes 

are associated with increased dendritic spines, which were also observed in postmortem brain 

analyses
79

. Besides, genes related to schizophrenia de novo mutations mostly show a 

characteristic expression pattern: high in the fetal stage, low in childhood, and high again in 

early adulthood
75

, while ASD de novo mutations exhibit high expression in fetal and early post-

natal development
46,99

. Another independent study on 22q11.2 deletion identified two hub genes 

that express during embryonic brain development and adolescence, respectively
100

. This pattern 

coincides with the typical onset time of schizophrenia, which is around early adulthood. 

Schizophrenia related genes have also been shown to fail to decrease naturally as control 

subjects do
101

. 

The polygenic component of bipolar affective disorder overlaps with schizophrenia significantly, 

but network application in bipolar affective disorder is very limited. The role of postsynaptic 
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density in bipolar affective disorder pathogenesis has been indicated by independent 

studies
102,103

. Hub genes such as MAP4 and ILF2 were also suggested, but due to fewer study 

numbers and a lack of validation, a consensus can not be reached
66, 104, 105

. 

Major depressive disorder and PTSD are stress-related disorders and share neuronal and 

immune dysregulations based on network studies
106-109

. PTSD has been shown to engage 

immune processes more prominently than major depressive disorder. Dysfunction of multiple 

immune processes, including innate immunity, interferon responses, cytokine receptor 

interaction, and glucocorticoid receptor activity, has been implicated
110-115

. Unlike PTSD, for 

which all network studies identified immune dysregulation, the mechanism behind major 

depressive disorder seems less coherent across studies similar to the case of bipolar affective 

disorder. In a study using a mouse model to identify hub genes related to depression 

susceptibility, several key drivers including Dkkl1, Neurod2, and Sdk1 were validated in vivo, 

indicating the reliability of network predictions, and implicating synaptic transmission, cell-cell 

signaling, and oxidative phosphorylation pathways in depression pathogenesis
116

. 

Lastly, alcohol use disorder is a disorder combining features of addiction and neurotoxicity. 

Network studies of alcoholism have revealed processes related to mitochondrial dysfunction, 

synaptic transmission, neuroplasticity, calcium signaling, and immune functions
45, 117-120

. One 

hub gene Nr3c1 predicted by transcriptional factor network was validated in vivo in a mouse 

model of alcohol-dependent
63

. More studies are needed to reveal the underlying mechanisms 

behind alcoholism. 

2.6     Conclusions and future directions 

In summary, we have introduced and illustrated main network approaches, their strengths and 

limitations, and how they can complement one another by highlighting relevant studies. Despite 
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the aforementioned recent discoveries, network applications in psychiatric research are still in 

their infancy. Networks such as the WGCNA coexpression network and PPI have been 

extensively applied, while other networks such as BN are rarely adopted despite indications as 

powerful tools in other research fields. Integrating these network applications may reveal hidden 

pathogenic mechanisms by capturing underappreciated information from the data. We 

recommend adoption of diverse types of network approaches in each study to derive 

comprehensive molecular insights. 

Besides leveraging complementary network methods, another future direction would be to have 

an integrated framework followed by the field to apply a set of benchmarked and well-

performing networking methodologies systematically. Such a framework would eliminate 

technical bias caused by different methods to enable systematic comparison of psychiatric 

disorders at a network level. 

Benchmarked and standardized network methodologies are applicable regardless of disorder 

types. However, in order to better elucidate trait-specific biology, we recommend careful 

collection of multiomics data types that reflect the unique aspects of a certain disorder, including 

specific causal factors (e.g., genetic versus environmental) and the corresponding omics data 

types (e.g., genetic variants for genetic causes; epigenetic alterations for environmental 

causes), related brain regions and circuits. In addition to collecting relevant types of data, tissue 

heterogeneity needs to be addressed as a future direction. As a highly complex organ, the brain 

consists of numerous subregions and nuclei, each containing various cell subtypes. Previous 

network application studies in psychiatric disorders are mostly performed at the brain region 

level using bulk tissue transcriptome. Obviously, with the advancement of scRNA-seq, the 

opportunity to explore cell-level networks becomes an urgent need. The abundance of single-

cell transcriptomic datasets enables researchers to further dissect the pathogenic mechanisms 

of psychiatric disorders at an increasing granularity of cell type or subtype level. Thus, it is 
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possible to identify cell subtypes related to a specific condition and pinpoint key driver genes in 

different cell subtypes.  

Appealing as it is, network methods for single-cell datasets are still limited. Due to the challenge 

of data sparsity, methods applicable to bulk tissue transcriptomics do not perform well on single-

cell datasets
121

. However, a few single-cell network methods have been successfully applied 

widely in studying cell type diversity and non-psychiatric conditions, including ligand-receptor 

binding network, single-cell gene regulatory network, and single-cell coexpression network. The 

ligand-receptor binding network is a PPI network emphasizing intracellular interactions. By 

looking at the ligand and receptor pairs expressed in cell types, we can identify interacting cell 

types utilizing autocrine, paracrine, and endocrine signaling. For example, CellPhoneDB and 

iTALK are two standard tools to calculate cell-cell interaction scores
122,123

; SCENIC uses 

transcriptional factor information and scRNA-seq data to identify regulons at a cell-type-specific 

level
124

; scLink infers gene coexpression network from sparse gene expression matrix
125

; 

CytoTalk aims to construct both within cell-type and between cell-type signaling networks
126

. 

Benchmarking and applying these methods would bring mechanistic research of psychiatric 

disorders to a finer granularity from the brain region level to cell subtype level. 

Besides using scRNA-seq as a resource providing pathophysiological insights with an 

increasing granularity, single-cell and bulk tissue transcriptomic profiling can also be applied as 

an approach to validating in silico predictions. Experimental validations have been limited 

despite the current progress of in silico findings in key drivers and pathways. More experimental 

validations should be performed to facilitate the transition from in silico predictions to the bench 

and eventually to the bedside. Current experimental validation methods include RT-PCR and 

transcriptomics for evaluating possible expression alteration of the key drivers from samples 

with the disorder
56,47,48

; human genetic studies for identifying risk genes
8,12,15,16

; In vitro and in 

vivo experiments using appropriate animal model or human subject-derived material for 
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validating the molecular, cellular and behavioral phenotypes upon disrupting key driver 

expression
74,127-129 

(Figure 2.3c). 

In conclusion, approaching psychiatric genetics from a network perspective enables researchers 

to identify the converging pathways in genetic architecture and leverage the abundance of 

omics databases to yield better understanding of pathophysiology and predictions for 

therapeutic targets. With this review, we hope to provide a systematic overview of network 

methodologies, previous network applications, and their findings in psychiatric research. Much 

remains to be explored – including adopting network approaches from other fields, 

standardizing a benchmarked and integrated framework, developing single-cell network 

construction methods, and performing corresponding experimental validations. 
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2.7     Tables 

Table 2.1. Publicly available repositories of multi-tissue multiomics data related to psychiatric research 

Omics Database Description URL 
Usage in 
network 

applications 

Genetics 

GWAS catalog 
Collections of GWAS summary 

statistics files 

https://www.ebi.ac.uk/gwas/ Find trait-related 
genes, 

pathways, and 
subnetwork 

LD-hub http://ldsc.broadinstitute.org/ 

PGC https://www.med.unc.edu/pgc/ 

Genomics/ 
Functional 
genomics/ 

Transcriptomics 

GTEx 

Genotype, transcriptome, eQTLs, 
and sQTLs profiles across 13 brain 
regions from 948 donors and 2642 

samples 
https://www.gtexportal.org/home/ 

"Building bricks" 
for gene 

regulatory 
network 

GEO 

A repository for various data types 
including genotypes, bulk tissue 

RNA-seq and single-cell RNA-seq 
datasets 

https://www.ncbi.nlm.nih.gov/geo/ 

PsychENCODE 

A repository specifically for 
neuropsychiatric disorders 

including RNA-seq datasets, 
QTLs, epigenomic datasets and 

gene regulatory networks 

http://resource.psychencode.org/ 
  

https://www.synapse.org/#!Synapse:syn4921
369/wiki/235539 

BrainSpan 

Transcriptional profiles of 16 
cortical and subcortical regions 

with a temporal coverage across 
pre- and post-natal development in 

both males and females 

http://www.brainspan.org/static/download.htm
l 

Epigenomics 

ENCODE 
Transcriptional regulator and 

epigenomic factor profiles from 
706 brain samples 

https://www.encodeproject.org/ Provide 
regulator target-

pair 
 information FANTOM 

Atlases of transcriptional 
regulatory networks, promoters, 

enhancers, lncRNAs, and miRNAs 
https://fantom.gsc.riken.jp/ 
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Table 2.1. Cont. 

Proteomics STRING DB 
Curated protein interactions 

including 24.6 million proteins from 
5090 organisms 

https://string-db.org/ 

Provide protein-
protein 

interaction 
information 
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Table 2.2. Major networks used in psychiatric disorder research 

Networks Relationship Captured Disadvantages Example Construction 
Methods 

Gene regulatory network 
(GRN) 

Coexpression 
network 

Covariation and co-
regulation among gene 

clusters 

- Not directional 
- No causal 

relationships 
WGCNA42, MEGENA43 

Bayesian network Causality of regulation 
between gene pairs 

- High computational 
cost 

- Lack of feedback 
loops 

- Possibility of failing 
to find the optimal 
network structure 

RimbaNet57 

Regulator-target 
pair network 

Specific regulation of 
certain transcriptional 

factors/non-coding RNAs 

- Only captures 
certain types of 
regulator 
relationships 

From database 
(FANTOM)37;  

ARACNe64; TargetScan69 

Protein-protein 
interaction network 

 Physical interaction affinity 
between pairs of proteins 

- Cannot reflect 
causality or 
regulator 
relationships 

- Current PPI 
datasets are not 
tissue-specific 

From database 
(STRINGDB)40 

Literature-based network 

Background 
likelihood network 

Possibility of gene pairs 
participating in a similar 

genetic phenotype - Limited by current 
level of knowledge 

Gilman et al., 201177 

Phenotypic-linkage 
network 

Gene clusters related with 
disease-related phenotypes 
curated from the literature 

Ward et al., 202080 
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Table 2.2. Cont. 

Hybrid network  General gene-gene interactions, 
PPIs, and literature co-occurrence 

 Use premade 
networks (e.g. 

PCNet)83;  
Custom script 
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Table 2.3. Key findings based on network applications in selected psychiatric disorders 

Disorder Networks Key findings Ref. 

ASD 

Coexpression 

network 

Synapse and immune response related modules are affected in frontal and temporal cortex from ASD 

subjects; 

ASD rare variants affects early transcriptional regulation and synaptic development pathways and are 

enriched in superficial cortical layers and glutamatergic projection neurons in developing and adult 

human cortex. 

Voineagu et al. [90] 

Parikshak et al. [46] 

Protein-protein 

interaction network 

ASD rare variant related protein interactions are enriched in synaptic transmission, cell junction, TGFβ 

pathway, neurodegeneration, and transcriptional regulation. 

de Rubies et al. 

[92] 

Sanders et al. [91] 

Bayesian network 
Synaptic transmission, MAPK signaling, histone modification, and immune response are the top 

affected functions in predicted ASD risk genes using a brain-specific network. 
Krishnan et al. [54] 

Literature-based 

network 

ASD rare variant genes form a network related to synapse development, axon targeting, and neuron 

motility; 

Genes in ASD rare variant and SNV informed network are expressed at the highest level in cortical 

interneurons, pyramidal neurons and the medium spiny neurons of the striatum. 

Gilman et al. [77] 

Chang et al. [78] 

Hybrid network 

The ASD network constructed with peripheral blood transcriptome in children with ASD was enriched 

for ASD rare mutation genes, as well as their regulatory targets and regulators. RAS–ERK, PI3K–AKT, 

and WNT–β-catenin signaling pathways are enriched in ASD-specific networks. 

Gazestani et al. 

[81] 

ASD: autism spectrum disorder. 
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Table 2.3. Cont. 

Disorder Networks Key findings Ref. 

AUD Coexpression network 

In prefrontal cortex samples from human ALC subjects, a module functioning in 

calcium signaling, nicotine response and opioid signaling are down-regulated in ALC, 

while another module functioning in immune signaling are up-regulated in ALC; 

In nucleus accumbens samples from human ALC subjects, two neuronal modules 

enriched for genes in oxidative phosphorylation, mitochondrial dysfunction and MAPK 

signaling pathways are down-regulated in ALC, while four immune-related modules 

enriched for astrocyte and microglia markers are up-regulated in ALC. 

Kapoor et al.45 

Mamdani et al.117 

 
Transcriptional 

factor/miRNA regulons 

Pathways related to synaptic processes and neuroplasticity are disrupted in a rat ALC 

model; 

Nr3c1 acts as a master regulator in multiple brain regions in alcohol-dependent rats. 

Tapocik et al., 2013118 

Repunte-Canonigo et al., 201563 

AUD: alcohol use disorder 
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Table 2.3. Cont. 

Disorder Networks Key findings Ref. 

BAD 

Coexpression network 

BAD common variants are enriched in hippocampus and amygdala across developmental stages.  

In dorsolateral frontal cortex samples from human BAD subjects, modules enriched for genes 

related to postsynaptic density, RNA processing and carbon-nitrogen ligase activity are 

downregulated, while modules enriched for genes related to ion binding and lipid catabolism are 

upregulated. 

Xiang et al.104 

Akula et al.102 

Transcriptional factor regulons 
EGR3, TSC22D4, ILF2, YBX1 and MADD are predicted as master regulators in human prefrontal 

cortex with BAD. 
Pfaffenseller et al.66 

Protein-protein interaction 

network 

CDH4, MTA2, RBBP4, and HDAC2 are the core genes predicted by PPI analysis, involved in early 

brain development regulation. 

HP and PC are related to BAD de novo mutations; MAP4, WDHD1, EIF4E and STRN are related to 

BAD common variant loci. 

Xiang et al.104 

Toma et al.105  

BAD: bipolar affective disorder. 
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Table 2.3. Cont. 

Disorder Networks Key findings Ref. 

MDD Coexpression network CCND3, TXND5, TRI26 are the driver genes for cognitive dysfunction in MDD, validated by plasma protein 

level in MDD subjects; 

Immune response and protein processing in the ER are disrupted in older adults with recurrent MDD 

Schubert et. al.130 

Ciobanu et al.106 

Protein-protein 

interaction network 

The ATP5G1 gene is associated with the pathogenesis of MDD Zeng et al.131 

PTSD Coexpression network Differential responses to PTSD are observed in correlated modules constructed from peripheral blood 

transcriptome of PTSD subjects. In men, an IL-12 signaling module is upregulated; In women, a module 

related to lipid metabolism and mitogen-activated protein kinase is upregulated. Cytokine, innate immune and 

type I interferon related modules are shared between sexes. 

Breen et. al.110 

miRNA regulons Downregulated miRNAs in peripheral blood transcriptome of PTSD subjects are predicted to 

target IFNG and IL-12. 

Bam et al.68 

SCZ Coexpression network Genes related to central nervous system development failed to attenuate with age in SCZ subjects; 

Synaptic protein coexpression was significantly decreased in the auditory cortex of SCZ subjects; 

SCZ common variants are enriched in negative coexpression genes of C4A 

Torkamani et al.132 

MacDonald et. al.133 

Kim et. al.134 

Transcriptional factor 

regulons 

TCF4 is a master regulator identified from postmortem dorsolateral prefrontal cortex of SCZ subjects and 

cultured olfactory neuroepithelium 

Torshizi et. al.127 

Protein-protein 

interaction network 

MAPK3/ERK1 is the top hub gene for the 16p11.2 microduplication network Blizinsky et. al.74 

Literature-based 

network 

SCZ rare variant-derived network genes function mainly in axon guidance, neuronal cell mobility, synaptic 

function, and chromosomal remodeling, and are highly expressed in the brain during prenatal development. 

Gilman et. al.79 

MDD: major depressive disorder; PTSD: post-traumatic stress disorder; SCZ: schizophrenia.
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2.8     Figures  
 

 

Figure 2.1. Pursuing a network understanding of psychiatric disorders’ genetic architectures to 

advance precision medicine. (a) With the increasing abundance of GWA and WES studies, 

genetic data for psychiatric disorders are increasingly comprehensive. However, we still lack a 

mechanistic understanding of the genetic architecture in the pathogenesis of different disorders 

and symptoms. Establishing such an understanding systematically could enable the 

development of therapies for subgroups of patients or even on a personalized basis. Network 

modeling of gene interaction provides a powerful tool to dissect risk gene relationships and 

pathways affected. The polygenic model and the omnigenic model are proposed for psychiatric 

disorders. In the polygenetic model (b), a certain trait is determined by a combination of multiple 

variants with different effect sizes. Common variants have high population frequency and small 
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effect sizes, while a small number of rare variants have low population frequency but large 

effect sizes. In the omni-genic network model (c), the regulatory relationships between variants 

are depicted by the network. A small number of hub genes regulates the majority of other genes 

(peripheral genes). Rare variants likely reside in core genes and common variants in peripheral 

genes.  
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Figure 2.2. Extracting tissue and cell-type specific gene interaction relationships from 

multiomics data. Genetics, functional genomics, transcriptomics, epigenomics and proteomics 

are the most commonly used omics in obtaining gene interaction relationships. Genetic 

readouts can be used to infer trait related pathways and driver genes, while readouts from other 

omics indicate gene regulatory relationship or protein-protein interaction. Particularly, 

intermediate phenotype QTLs (iQTLs) such as expression QTLs (eQTLs) or protein QTLs 

(pQTLs) from functional genomics data act as a bridge linking genetics and other omics by 

tissue-specific loci-gene regulatory relationship, thus enabling the interpretation of common 

variant loci in non-coding areas of the genome. 
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Figure 2.3. Using networks to identify disorder-related networks and key driver genes. (a) 

Pipeline of identifying disorder-related coexpression modules. Coexpression network is 

generated from the transcriptomic profiles of subject with a specific disorder and corresponding 

controls using methods such as WGCNA. By calculating enrichment level of disorder-related 

risk genes in each module, modules enriched with risk genes can be identified. Alternatively, 

modules positively or negatively correlated with the disorder can be identified by doing a 

module-trait correlation analysis. Downstream annotation of these modules’ biological functions 

will reflect pathways affected in the disorder. However, coexpression networks are unable to 

capture directed, causal relationships, which can be supplemented by Bayesian networks and 

regulator-target pair networks. (b) Using networks as a ‘road map’ to identify key driver genes of 

a specific disorder. Bayesian networks, regulons from regulator-target pair networks, and PPI 



 42 
 

networks depict causality, regulation, or direct physical interactions, respectively, and can be 

used as network models summarizing regulatory or direct gene-gene interactions in a certain 

tissue. By overlaying disorder-related gene sets, e.g. differentially expressed genes (DEGs), 

disorder-correlated coexpression modules, related pathways and risk genes, one can pinpoint 

potential key drivers based on the topology of the networks. (c) A summary of key driver 

validation approaches. RT-PCR and transcriptomics can evaluate possible expression alteration 

of the key drivers from samples with the disorder. Key drivers may be also validated if they are 

identified as risk genes by human genetic studies. In vitro and in vivo experiments using 

appropriate animal model may help to validate the molecular, cellular, and behavioral 

phenotypes upon disrupting key driver expression. 
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Figure 2.4. Comparing shared and distinct pathways across selected psychiatric disorders. Top 

pathways related to selected psychiatric disorders are shown in the disorder-pathway network. 

Red lines connecting disorders depicts correlation level between disorders135. Synaptic trans-

mission-related processes are shared among all six disorders and immune functions are 

indicated in all disorders except BAD. Pathways including MAPK signaling and transcriptional 

regulation are shared among AUD, ASD, and SCZ. Each disorder and their associated 

pathways are annotated with the same node color. Shared pathways between disorders are 

indicated with multi-color nodes. ASD: autism spectrum disorder; AUD: alcohol use disorder; 

BAD: bipolar affective disorder; MDD: major depressive disorder; PTSD: post-traumatic stress 

disorder; SCZ: schizophrenia. 
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Chapter 3. Chronic adolescent exposure to cannabis in mice leads to long-term sex-

biased changes in gene expression networks across brain regions 

3.1     Introduction 

Numerous studies have reported consistent and clear association between high frequency or 

dose of cannabis use and adverse long-term health effects, including higher risk of developing 

psychiatric disorders, dependence, memory deficits, and anxiety136–140, posing a major public 

health concern especially for vulnerable populations, such as adolescents.   

Adolescence is a critical developmental period for reproductive functions, brain maturation and 

emergence of sex differences in social, cognitive, and emotional behaviors141. The 

endocannabinoid system (eCB) plays an important role in brain maturation, and, as such, drug-

induced alterations of the eCB system during adolescence could lead to substantial sex-specific 

behavioral alterations and increased risk for neuropsychiatric disorders in adulthood141–143.  

Although animal studies have recapitulated the impact of adolescent cannabis exposure on 

behavioral outcomes that are relevant to neuropsychiatric disorders, our knowledge of the 

underlying neurobiological processes remains limited. Long-lasting changes in gene expression 

and epigenetic marks are likely to be an important mechanism mediating drug-induced 

neuroadaptations144. However, limited data is available concerning sex-specific transcriptional 

responses to adolescent exposure to cannabinoids across different brain regions145, limiting our 

ability to dissect brain region specificity and cross-brain networks in the female and male brain.  

Multiple brain regions are involved in cognitive and reward processes or psychiatric disorders 

that are linked to early and frequent cannabis use. These brain regions included the PFC, which 

undergoes functional and structural remodeling during adolescence and mediates higher 

cognitive functions146; the nucleus accumbens (NAc), which drives motivation and reward 
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behaviors147; the dorsal medial striatum (DMS), which plays a critical role in goal-directed 

responses 48; amygdala (Amy), which is critical for processing emotions and memories149; 

ventral tegmental area (VTA), which is important for a range of learning behaviors related to 

reward and stressful experiences150. However, the analysis of global gene expression changes 

altered by adolescent exposure to THC is limited to PFC in male rats145.  

Here, we used female and male mice that were chronically administered THC during 

adolescence and were subjected to behavioral and molecular analysis in adulthood. We 

assessed long-term recognition memory, social interaction, and anxiety-like behaviors in each 

mouse. Next, we measured gene expression changes by RNA sequencing (RNA-seq) in 5 brain 

regions that are involved in cognitive and addiction-related processes. Differential gene 

expression and gene co-expression network analyses were used to examine gene expression 

and gene network changes associated with adolescent exposure to THC for each sex and 

within and between brain regions. Lastly, we performed integrative analysis of coexpression 

networks affected by THC in mice with human cognition trait-related genes from genome wide 

association studies (GWAS) to identify links between adolescent THC use and neuropsychiatric 

disorders. 

3.2     Methods 

Animals 

Forty-eight C57BL/6J male and female mice were purchased from Charles River. Mice were 

housed (3-4 per cage) under a 12h light/12h dark cycle and provided with food and water ad 

libitum. All experimental procedures were approved by the institutional animal care and use 

committee at University of California, San Diego. 

Drug treatment protocol and experimental design 
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THC was provided by the U.S. National Institute on Drug Abuse and was dissolved in a vehicle 

solution consisting of ethanol, tween, and 0.9% saline (1:1:18) on the day of administration. As 

shown in Figure 3.1A, vehicle or THC (10 mg/kg) was administered daily to mice by 

intraperitoneal injections for the whole adolescent period in mice, from postnatal day (PND) 28 

to PND 48, as previously reported151,152. To study the long-term behavioral effects of adolescent 

exposure to THC, we tested 2 independent cohorts of mice for behavioral assays (n = 24 

mice/cohort) two weeks after the last injection, starting at PND 63. Behavioral assays were 

conducted on separate days and all behavioral tests were performed once on each mouse. To 

prevent bias due to olfactory cues, the behavioral apparatus was cleaned in between mice. At 

the end of the behavioral protocol, brains from one cohort (n = 24 mice) were collected in dry ice 

and stored at -80⁰C before dissections and molecular analysis. 

Elevated Plus-Maze (EPM) Test 

The EPM was performed as described in Iemolo et al.153. Briefly, mice were placed individually 

onto the center of the maze for a 5-min period. The percent of total arm time [i.e.,100 × open 

arm/(open arm + closed arm)] was measured and used as an index of anxiety-related 

behavior154. 

Six different objects test (6-DOT) 

We used the 6-DOT to study recognition memory in mice, as previously described152 with minor 

modifications. Mice were left free to explore an empty arena during a 10 min habituation trial. 

Afterwards, mice were exposed to six different objects for 10 min (familiarization trial). After 24 

hours, mice were exposed for 5 min to 5 familiar objects and a novel object (test trial). The 

exploration time for each trial was measured with Anymaze (Ugo Basile, Varese, Italy). Absolute 

discrimination index D1 = (time spent exploring novel object – average time spent exploring 
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familiar objects), and a relative discrimination index D2 = [(time spent exploring novel object – 

average time spent exploring familiar objects) / Total time spent exploring novel + familiar 

objects].  The D2 index also takes into account differences in exploration time between mice155. 

The discrimination indexes were used as measures of recognition memory. A longer time spent 

exploring the novel object is also interpreted as a sign of memory reconsolidation156 or novelty 

seeking behavior157. During the habituation trial, total distance traveled (m) was measured to 

assess basal locomotor activity. 

Three-chamber social approach test 

The three-chamber social approach test was performed as previously described152. The target 

mouse was first placed in the center chamber and allowed to explore the apparatus for 15 min. 

After introducing the novel mouse and the novel object in the side chambers, the mouse was 

allowed to explore for 10 min. The placement of the novel mouse or novel object in the left or 

right chambers was systematically alternated in between trials. The time spent actively sniffing 

the novel mouse or the novel object was manually scored. Longer time exploring the novel 

mouse versus the novel object was considered an index of sociability. Social preference was 

calculated as [(Time sniffing novel mouse/(total time sniffing novel mouse and novel 

object))*100]. 

Body weight measurements 

Body weight (g) was measured through the course of the drug administration protocol and when 

each behavioral assay began. 

Statistical analysis of behavioral measures 



 48 
 

To evaluate how factors (treatment, sex) influenced mice behavior, we used linear mixed 

models (LMM) in JMP pro v. 16.0 (SAS Institute, Inc). LMMs allow both fixed and random 

effects, which includes repeated measures158. We modeled the categorical predictor variables 

for the overall effect of treatment and sex, and we included sex x treatment interaction to study 

sex-specific effects. We used mouse cohorts and individual subjects as random effects (when 

appropriate) to account for possible non-independence of the data. Tukey HSD post hoc 

pairwise comparisons identified differences among specific groups. A p < 0.05 was considered 

significant. Outliers were detected using the Huber M-estimation method159 in JMP pro 16.0 and 

removed when appropriate (n = 1 in absolute discrimination index D1 and n = 1 in social 

preference). 

Brain punching 

Brains were sliced on a cryostat, and 5 brain regions were collected using 1-2mm punches, 

starting at the following bregma coordinates: +2.68 (PFC), 1.78 (NAc), 1.10 (DMS), -1.34 (Amy), 

and -2.92 (VTA), for a total of 120 samples. 

RNA extraction 

Brain punches (n = 120) were homogenized in Trizol Reagent (Invitrogen, Cat, num. 15596018) 

and Zirconium Beads RNase Free (Next Advance, Cat. num. ZrOB05-RNA 0.5mm) using the 

Bullet Blender Blue (Next Advance, Model. num. BBX24B) at speed 6 for 1 min. RNA was then 

purified using the Direct-Zol kit (Zymo, Cat. num. R2052). RNA quality was assessed using the 

Agilent 2200 TapeStation system and samples with RIN above 7.5 were used for library 

preparations. One sample for a VTA vehicle-treated male mouse with low RIN was excluded. 

RNA-seq library preparations 
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An average of 200ng of RNA was used for each sample. The NEBNext Ultra II Directional RNA 

Library Prep Kit (New England BioLabs, Cat. Num. E7760S) was used following manufacturer’s 

instructions. A total of 119 libraries were sequenced on the Illumina NovaSeq 6000 system (2 x 

100 bp reads). 

RNA-seq raw data processing and identification of differentially expressed genes (DEGs) 

Raw sequencing reads were cleaned to remove adapter sequences and low-quality sequences 

using cutadapt v2.9160 with the paired-end trimming mode and the minimum 18-base setting. 

The cleaned reads were aligned to mouse genome (mm10) using STAR v2.7.3a161 following 

ENCODE parameters (https://github.com/ENCODE-DCC/long-rna-seq-

pipeline/blob/master/DAC/STAR_RSEM.sh). The aligned reads were quantified at the gene 

level using RSEM v1.3.1162. The quantified gene-level counts were analyzed with DESeq2 

v1.28.1163 for differential gene expression analysis by comparing the THC- versus vehicle-

treated groups for each brain region and sex. Significant DEGs were identified using FDR <5% 

or 10% and absolute log (fold change) > 0.4 as the cutoff. To identify sex x THC treatment 

interaction DEGs, we performed DEG analysis using the following formula for each brain region: 

gene expression ~ sex+treatment+sex:treatment. Significant sex:treatment interaction DEGs 

were identified using FDR < 10% as the cutoff. 

Rank Rank Hypergeometric Overlap (RRHO) Analysis 

To assess consistency or disagreement in the gene expression changes, we performed RRHO 

analysis using the RRHO2 R package164, 165. RRHO analysis detects the overlap of 

transcriptional profile change in the same or opposite directions between two datasets using a 

threshold-free approach. Full differential expression signatures were used to generate a ranking 
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score. RRHO heatmaps were generated using the RRHO2_heatmap function in the RRHO2 R 

package. 

Weighted gene coexpression network analysis (WGCNA) 

RNA-seq data was normalized with DEseq2 median of ratios normalization and then log-

transformed, and genes with a standard deviation greater than 0 were chosen for WGCNA 

analysis. The WGCNA R package was used to generate ten signed coexpression networks for 

the PFC, NAc, DMS, Amy, and VTA for males and females separately42. An adjacency matrix 

was generated to capture pair-wise biweight midcorrelation between genes, using dataset-

specific soft power for the best fit of a scale-free topology. A topological overlap measure (TOM) 

matrix was then calculated based on the adjacency matrix to measure relative 

interconnectedness between each pair of genes. Next, a gene dendrogram was built using the 

flashClust function based on hierarchical clustering. Branches of the dendrogram correspond to 

clusters of positively correlated genes, which are termed modules. The cutreeDynamic function 

based on a branch-cutting algorithm were used to identify modules using the following 

parameters: method=hybrid, minModuleSize = 30, pamStage = F, pamRespectsDendro = T. 

DeepSplit and cutHeight value were chosen on a per-network basis to optimize module 

detection. After module detection, module eigengenes (MEs) were calculated as the first 

principal component of genes in a module to summarize each module’s expression profile. 

Modules with ME correlation higher than 0.85 were considered highly similar modules and 

merged using the mergeCloseModules function. To examine the similarity of each gene’s 

expression profile with its module’s ME, biweight midcorrelation to the ME was calculated for 

each gene as its module membership score. Hub genes were defined as genes with an 

intramodular connectivity score among the top 10% in the module and a gene module 

membership score higher than 0.8. To identify module-trait associations, Pearson correlation 

between module MEs and treatment, percentage of time on the open arm of the elevated plus 
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maze, social preference score, object discrimination indexes D1 and D2, and new object 

interaction time were performed. Correlation p value of 0.05 were considered significant. 

Pathway annotation of DEGs, WGCNA coexpression modules, and subnetworks 

Pathway annotation for the DEG sets and WGCNA modules from individual brain regions was 

performed using the enrichR R package166.  General databases including KEGG, Reactome, 

GO Biological Process, BioCarta and WikiPathways from enrichR’s database library were used. 

Pathway enrichment was calculated based on the deviation from the expected rank for terms, 

and P-values were adjusted for multiple testing corrections using Benjamini-Hochberg 

correction. Adjusted P values of 0.05 were considered significant. 

DEG and cell type marker enrichment in WGCNA modules 

To explore the potential cell type source for the coexpression modules, we used cell type 

markers curated from Werling and coathors97 to perform enrichment analysis, including 

pyramidal neurons, interneurons, oligodendrocytes, microglia, activated microglia, astrocytes, 

mural cells, endothelial cells, and ependymal cells. Between each cell type marker set and each 

WGCNA module, a fold enrichment score and enrichment p-values were calculated using the 

phyper R function. We also assessed the overlap between the WGCNA modules and DEGs. 

DEGs with an FDR value lower than 0.05 and the absolute value of logFC equal to or higher 

than 0.4 were extracted for overlap analysis. DEGs were further split into upregulated and 

downregulated DEGs based on whether the corresponding logFC was positive or negative. 

Each DEG set was assessed for overlap with WGCNA modules using the method described for 

cell-type marker overlap above. 

Weighted Key Driver Analysis (wKDA) 
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wKDA from the Mergeomics R package was used to identify key drivers of selected modules or 

DEGs based on a gene interaction network167. We used a brain-specific Bayesian network 

capturing causal gene-gene regulatory relationships constructed using the RimbaNet package57. 

Besides human and mouse brain genetic and transcriptomic datasets as previously described, 

we also integrated human brain-region specific RNA-seq and QTLs from GTEx version 8, and 

transcriptional factor data from FANTOM v536, 37, 168. In wKDA, hub genes were first identified 

based on the input network’s topology. Subsequently, the input module genes or DEGs were 

overlaid onto the network. The hub genes whose downstream network neighbors were enriched 

with the input module genes or DEGs were highlighted as key drivers for the trait-related genes 

or modules. 10000 permutations were performed and top 10 key drivers from each module were 

selected based on FDR value.  Networks of prioritized key drivers were visualized using 

Cytoscape version 3.8.2169. 

Module-module interaction inference 

To examine possible module-module interactions across brain regions, Pearson correlations 

between module MEs were calculated among modules from all five brain regions in males and 

females, respectively. Module-module correlations with a p-value < 0.05 and |r| > 0.5 were used 

for visualization and the following analysis. Cytoscape 3.8.2 and sankeyNetwork function from 

the networkD3 R package were used for visualization. 

Associating DEGs and WGCNA modules with human GWAS traits 

To test whether the THC-correlated WGCNA modules are enriched for genes implicated in 

related human phenotypes, we used the Mergeomics R package that integrates gene sets with 

GWAS summary statistics through functional genomics. The following GWAS summary 

statistics were acquired: (1) a GWAS meta-analysis of cannabis use disorder (CUD) by Johnson 
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et al.170 from https://www.med.unc.edu/pgc/download-results/; (2) a GWAS of social interaction 

by Day et al.171,  from the NHGRI-EBI GWAS CatalogGWAS Catalog172 (study accession 

GCST006920, GCST006921, and GCST006922); (3) a GWAS of cognitive aspects of 

educational attainment by Demange et al.173 from the NHGRI-EBI GWAS CatalogGWAS 

Catalog (study accession GCST90011875);  (4) a GWAS of memory performance by Davies et 

al.174, from the NHGRI-EBI GWAS CatalogGWAS Catalog (study accession GCST003497); and 

(5) a GWAS of schizophrenia175 from https://www.med.unc.edu/pgc/download-results/.  

SNPs analyzed in each GWAS were adjusted for linkage disequilibrium with a cutoff of 0.5 to 

remove redundant SNPs. GWAS SNPs were mapped to genes using the following mapping 

strategies: (1) genes within 20kb distance of SNPs and (2) genes under regulation of tissue-

specific expression and splicing quantitative trait loci (eQTLs/sQTLs) from GTEx v8 for brain 

regions matching or semi-matching those we investigated, including amygdala, nucleus 

accumbens, frontal cortex, caudate and putamen (representing striatum), and substantia nigra 

(close to VTA). GWAS SNPs, their mapped genes, and the corresponding GWAS p values were 

then intersected with coexpression modules for each brain region using the Marker Set 

Enrichment Analysis (MSEA) function in Mergeomics to assess whether coexpression modules, 

compared to random gene sets, are enriched for genes with low p value SNPs in each GWAS. 

Modules with an FDR < 0.05 are considered as significantly enriched for GWAS related genes. 

Key driver genes from highlighted GWAS-associated modules were identified using wKDA as 

described above. To assess the enrichment significance of schizophrenia (SCZ) common 

variant genes and rare variant genes, permutation tests were performed by subsampling equal-

sized subnetworks with the network of interest for 10000 times. Genes mapped to SCZ common 

variants were acquired from the NHGRI-EBI GWAS Catalog172 (accession EFO_0004609). SCZ 

rare variant genes identified using whole exome sequencing (WES) were acquired from a 

curated list from SZDB2.0176. 
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3.3     Results 

THC administration during adolescence impairs cognitive behaviors in a sex-specific 

manner 

We used 6-DOT to assess the long-term effects of adolescent exposure to THC on object 

recognition memory152, 177. THC exposure during adolescence significantly reduced the absolute 

(D1) and relative (D2) discrimination indexes by 36% and 30%, respectively, compared to 

vehicle control group (treatment effect F(1, 41) = 7.1, p = 0.011 for D1, and F(1, 42) = 5.3, p = 

0.026 for D2, Fig 3.1B-C). Despite the lack of a significant interaction of sex with treatment (F(1, 

41) = 3.9, p = 0.056 for D1, and F(1, 42) = 1.9, p = 0.176 for D2), the effect tended to be 

stronger in females than males (t = 3.35, p = 0.009 for D1, and t = 2.64, p = 0.055 for D2). 

Moreover, only female mice previously exposed to THC showed a significant 40% decrease in 

the exploration of the novel object compared to the vehicle control group (sex x treatment 

interaction, F(1, 42) = 4.6, p = 0.038, Fig. 3.1D). 

The behavioral alterations triggered by THC were specific for the cognitive components of the 

assay, as treatment had no detectable effect on the distance traveled during habituation phase 

(effect and interaction p > 0.1, Fig. 3.2A) nor on the total amount of exploratory activity towards 

objects in familiarization or test phase (effect and interaction p > 0.1, Fig. 3.2B-C).  

When we assessed social behaviors, social preference was significantly decreased by 12% in 

both female and male mice exposed to THC during adolescence compared to the vehicle group 

(treatment effect F(1, 41), p = 0.016, Fig. 3.1E).  

Next, we examined anxiety-like behaviors and did not observe significant differences in the 

willingness of mice to explore open environments, which was measured by the time spent in the 

open arms (treatment and interaction p > 0.1, Fig. 3.2D).  
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Finally, treatment was not associated with changes in body weight at the time of behavioral 

testing, excluding potential confounding effects on exploratory activity in any behavioral task 

(treatment and interaction p > 0.1, Fig. 3.2E).  

Overall, these results demonstrate that chronic exposure to THC during adolescence leads to 

long-term deficits in recognition memory and social interaction, with stronger memory deficits 

observed in female mice. 

Identification and functional annotation of gene expression changes associated with 

chronic adolescent exposure to THC 

We profiled the transcriptome of PFC, DMS, NAc, Amy and VTA from vehicle and THC-treated 

mice. PCA on the raw RNA-seq data showed that the studied brain regions can be distinguished 

based on their transcriptome (Fig. 3.3A). 

We identified DEGs from each of the brain regions in each sex by comparing THC and vehicle 

groups (Table S1). We found the largest number of significant DEGs in the Amy of female mice 

(n = 549 DEGs) and in the NAc of male mice (n = 22 DEGs) using a cutoff of FDR < 0.05 and 

logFC >0.4 (Fig. 3.3B). At a less stringent statistical cutoff of FDR < 0.1 and logFC > 0.4, we 

observed the same sex- and brain-region specificity, and in general we identified more DEGs in 

females in most brain regions except NAc, which has a larger number of DEGs in males. To 

explore the influence of sex on transcriptional responses to THC, we compared expression 

changes induced by THC treatment between males and females. At a statistical cutoff of FDR < 

0.1, this analysis yielded significant sex x treatment interactions for DEGs in Amy (n = 106), 

DMS (n = 7), and NAc (n= 13), but not for PFC and VTA (Fig. 3.3C, Fig. 3.4), indicating that 

females and males responded differently to THC. 
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Based on the DEGs, we assessed the enrichment for biological pathways altered by THC (Fig. 

3.3D, Table S2). In female Amy and DMS, DEGs showed enrichment for overlapping pathways, 

including addiction-related pathways, opioid signaling and GPCR ligand binding. Moreover, 

DEGs in female Amy were related to neurotransmission, axon guidance and retrograde 

cannabinoid signaling. Genes that were up-regulated only in females were linked to presynaptic 

SNARE complex formation and several signal transduction pathways (e.g. mTOR, Wnt, oxytocin 

signaling). In contrast, pathways associated with DEGs in male NAc did not overlap with those 

identified in females and were related to interferon signaling and ubiquitin-mediated proteolysis.  

In agreement with DEG analysis, threshold-free RRHO analysis showed that there was minimal 

overlap in DEGs when we compared gene expression changes between most pairs of brain 

regions or between sexes (Fig. 3.5). 

Together, these data provide strong evidence for sex-specific regulation of transcriptional 

responses by THC across several brain regions. 

Identification of gene coexpression networks correlated with THC administration and 

cognitive traits 

Because DEG analysis found limited significant changes at the level of individual genes across 

brain regions and sexes, we reasoned that gene network modeling approaches would be a 

more powerful method to provide a broader characterization of the biological changes induced 

by THC treatment in the brain. 

Therefore, we constructed WGCNA gene coexpression networks for each sex within each brain 

region. Module membership and significance for each gene are reported in Table S3. Next, we 

performed trait-module correlation analysis to identify gene coexpression networks correlated 

with THC treatment and/or cognitive traits (correlation values and significance for each module 
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and trait are reported in Table S4 and visualized in Fig. 3.6. As shown in Fig. 3.6A, this 

analysis identified 29 modules significantly correlated with THC treatment (referred to as “THC-

correlated modules”) and 12 modules significantly correlated with memory traits from the 6-DOT 

(p < 0.05). Consistent with the DEG analysis, a larger number of THC-correlated modules was 

observed in female Amy (n = 9) and male NAc samples (n = 7), while male PFC and Amy 

modules showed no correlation with THC treatment or memory traits. Social preference was 

correlated with 9 modules (Table S4); however, there was no overlap with THC-correlated 

modules.  

Next, we performed pathway enrichment analysis of THC-correlated modules. We report the 

enriched terms for each module in Table S5 and highlight top enriched terms in Fig. 3.6B-C. 

This analysis showed that some pathways were uniquely enriched in specific THC-correlated 

modules, while others were shared among several modules. Among uniquely regulated 

pathways, we identified glutathione metabolism in female Amy (white module), p53 signaling in 

female PFC (tan module), pregnane X receptor pathway in female DMS (violet module), glial 

differentiation in female VTA (red module), and phosphonate metabolism in male VTA (cyan 

module). Among the shared pathways, the greenyellow module from female Amy and the blue 

module from male NAc were enriched for genes implicated in dopaminergic neurotransmission 

and addiction-related pathways and were both positively correlated with THC treatment. In 

addition, the tan module from female DMS was related to dopamine signaling but negatively 

correlated with THC. Other THC-correlated modules in female Amy (black, yellow) and male 

NAc (orange) were related to similar pathways, such as regulation of glutamatergic synapse, but 

displayed positive correlation in females and negative correlation in males with THC.  

Of note, we identified modules that were simultaneously correlated with THC treatment and 

memory traits, thus revealing gene networks that are directly associated with cognitive deficits 

observed in mice after adolescent exposure to THC. Among these modules, the saddlebrown 
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module (enriched for genes involved in the metabolism of endogenous cannabinoids) in the 

female DMS, the bisque4 (enriched for interferon signaling genes) and lightsteelblue1 modules 

(enriched for differentiation processes) in the female VTA were negatively correlated with THC 

treatment but positively correlated with memory traits (Fig. 3.6C). Finally, in the male NAc, the 

darkgrey module (no pathways enriched) showed positive correlations with both THC and 

memory traits but the orange (enriched for synaptic transmission) module showed a negative 

correlation with both THC and memory traits (Fig. 3.6B). 

Comparison between the THC-correlated modules and DEGs revealed that the majority of THC-

correlated modules did not overlap with DEGs, with the exception of a few cases in which we 

observed an enrichment of DEGs in specific modules from the same tissue (Fig. 3.7). These 

results indicate that network analysis captures additional information about responses of 

coordinated gene sets that goes beyond what changes in individual DEGs reflect. 

Taken together, WGCNA indicates that distinct gene coexpression networks are influenced by 

THC in a brain region- and sex-specific manner. 

Characterization of cellular specificity of THC correlated gene coexpression networks 

To identify cell type contributions to co-expression modules, we performed cell-type marker 

enrichment analysis within each module. We observed strong cell type specificity for gene 

coexpression networks associated with THC from several brain regions (Fig. 3.8).  

THC treatment in female Amy, female NAc and male NAc presumably involved neuronal cell 

types: modules positively correlated with THC showed enrichment of pyramidal neuron markers, 

while modules negatively correlated with THC showed enrichment for interneuron markers (Fig. 

3.8A). This result was consistent with their association with pathways related to dopamine 

signaling, addiction and glutamatergic synapse (Fig. 3.3D). 
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In contrast, 3 out of 4 THC-correlated modules from female VTA were negatively correlated with 

THC and enriched for markers of glial cells, including astrocytes, oligodendrocytes, and 

microglia (Fig. 3.8B), which was supported by the immune functions revealed by the pathway 

analysis (Fig. 3.3D). In addition, one module was positively correlated with THC and enriched in 

neuronal markers.  

Finally, both neuronal and non-neuronal cells contributed to cell type enrichment in female DMS 

and male VTA THC-correlated modules (Fig. 3.8C). In female DMS, the 3 THC-correlated 

modules showed negative correlation with treatment and were enriched in both neuronal and 

glial markers, including pyramidal neurons, interneurons, astrocytes, and oligodendrocytes. In 

male VTA, one THC-correlated module showed negative correlation with treatment and was 

enriched for oligodendrocytes markers, while one module was positively correlated with THC 

and enriched for both neuronal and non-neuronal (mural and ependymal) cell markers.  

Together these results suggest that cell type-specific mechanisms are triggered by THC 

administration in a sex- and region-specific manner.   

Identification of potential regulators of THC-correlated modules 

To better understand the mechanisms underlying changes in transcriptional responses to THC, 

we performed network analyses on coexpression modules and identified “hub genes'' based on 

intra-modular connectivity and “key driver genes” based on causal gene regulatory 

relationships. Hub genes and key driver genes represent potential regulators of THC-correlated 

coexpression networks. We identified a total of 104 hub genes with high degree of intra-module 

connectivity across modules that were significantly correlated with THC treatment (Table S6). In 

Figure 3.9A-D, we highlight gene interaction networks that show correlation with both THC and 

memory traits, including female DMS saddlebrown, female VTA bisque4 and lighsteelblue1, 
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male NAc orange and darkgrey modules. Among these hub genes, several were involved in the 

regulation of neuronal plasticity and memory processes. These hub genes included Lynx1 

(saddlebrown, Fig. 3.9A) which encodes for a protein that suppresses memory processes by 

inhibiting nicotinic receptors-induced neuronal plasticity 178, 179; Cyp46a1 (saddlebrown, Fig. 

3.9A) which is the rate-limiting enzyme for cholesterol degradation and is linked to 

neuroprotective effects180; Sgpl1 (bisque4, Fig. 3.9B) which is implicated in lipid metabolism and 

cognitive functions181; Gng7 (lightsteelblue1, Fig. 3.9C) which encodes for a synaptic 

heterotrimeric G protein with a role in dopamine receptor stimulation and cognitive abilities182, 

183. 

We also used the wKDA analysis in Mergeomics coupled with a brain-specific Bayesian gene 

regulatory network to predict key driver genes regulating the THC-correlated coexpression 

networks168. In contrast to coexpression module hub genes which are purely based correlation-

based connectivity, Bayesian gene regulatory network reveals gene regulatory relations and 

pinpoint potential causal regulatory relationships. This analysis identified 141 key drivers for the 

modules correlated with THC treatment (Table S6). These key driver genes included Drd1 and 

Gpr88, which were shared between female Amy greenyellow and male NAc blue modules (Fig. 

3.9E). These genes are known regulators of addition processes, which agrees with the pathway 

enrichment analysis of Amy greenyellow and male NAc blue modules. Drd1 encodes the 

dopamine receptor subtype 1, which is highly expressed in NAc and is a key regulator of 

addiction behavior184, 185. Gpr88 encodes an orphan G-protein-coupled receptor implicated in 

drug taking behavior186. 

These analyses identify new genes that are potential regulators of the long-term behavioral 

effects of adolescent exposure to THC, including cognitive impairments and addictive behaviors. 

Cross-brain region module-module interactions affected by THC administration 
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Next, we analyzed the correlations between modules within and between brain regions to 

identify potential intra- or inter-region molecular circuitries that are disrupted by THC. Thus, we 

define “THC-interconnected modules” as those gene coexpression networks that are 

significantly correlated with THC-correlated modules with |r| > 0.5. We identified numerous 

THC-interconnected modules in both females (Fig. 3.10A) and males (Fig. 3.10B), indicating 

that additional gene networks in the same region or across brain regions are influenced by THC-

correlated modules. Sankey diagrams illustrate the negative or positive correlations of THC-

interconnected modules (Fig. 3.10C-D). In both sexes, positive and negative correlations were 

relatively balanced across regions. In females, higher levels of connectivity were observed 

between Amy-Amy modules, followed by Amy-VTA, VTA-VTA, DMS-DMS and Amy-DMS (Fig. 

3.10E). In males, higher levels of connectivity were observed between NAc-NAc, followed by 

NAc-VTA, NAc-PFC, VTA-NAc, and VTA-VTA (Fig. 3.10F). Consistent with the DEG analysis, 

the module-module interaction analysis revealed a significant sexual dimorphism with a broader 

impact of THC on module-module connection patterns in Amy in females and in NAc in males 

(Fig. 3.10E-F). 

Overall, these findings suggest that chronic exposure to THC during adolescence leads to long 

term changes in molecular circuitries across different brain regions in a sex-specific manner. 

Genetic association of THC-related coexpression modules for human cognitive traits and 

disorders 

Next, we examined the relationship between the coexpression networks altered by THC in mice 

and human cognitive phenotypes related to cannabis use disorders, such as those examined in 

GWAS for CUD, SCZ, memory performance, cognitive aspects of educational attainment, and 

social interaction. Using Mergeomics (Fig. 3.11A) 168, we generated a list of “GWAS-associated 

genes” by integrating GWAS summary statistics, distance mapping and eQTLs/sQTLs from 
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human brain regions that were matching those examined in mice for THC response. We then 

defined “GWAS-associated modules” as those WGCNA modules enriched in GWAS-associated 

genes for each sex within each brain region. We provide a detailed list of module associations 

for each human trait in Table S7. THC-correlated modules only overlapped with 11.3% and 

6.1% GWAS-associated modules in females and males, respectively (Fig 3.11B). However, 

when we included THC-interconnected modules into the analysis, the overlap increased to 79% 

and 54% in females and males, respectively (Fig. 3.11C). This suggests a potential role of THC-

interconnected modules in THC-induced behavioral abnormality, despite the fact that they are 

not directly correlated with THC treatment from our animal model. 

To evaluate the biological significance of GWAS-associated modules that respond to THC, we 

focused on the functional annotations for gene networks that are significantly enriched for genes 

from at least 3 studied human cognitive traits or disorders, plus significant correlation with THC 

treatment in mice (inferred from either from THC-correlated or interconnected modules). These 

modules and their functional annotations are highlighted in Figure 3.12A-B. Our analysis not 

only confirmed known pathways relevant to cognitive processes and psychiatric disorders, such 

as glutamatergic transmission (female NAc blue, Amy yellow, and male NAc orange, DMS 

darkred and Amy darkorange), dopaminergic transmission (female NAc darkmagenta and VTA 

blue), ubiquitin mediated proteolysis (female Amy darkorange), axon guidance (female DMS 

darkorange/paleturquoise and male VTA blue), and immune function (female VTA darkorange, 

male MAc royalblue), but also pinpointed the brain region and specificity for these pathways. 

Importantly, our analysis also revealed relatively new pathways and their specific tissue and sex 

contexts, such as glycosaminoglycan metabolism (female PFC black), inositol metabolism (male 

DMS pink) and PPARalpha signaling (male DMS greenyellow).  

To identify potential regulatory components of the gene networks altered by THC and enriched 

in GWAS-associated genes, we focused on SCZ associated genes given the potential link 
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between SCZ vulnerability and adolescent cannabis use, and the availability of both common 

and rare variants from well-powered GWAS and whole exome sequencing (WES) studies in 

humans. Here, we report key driver genes of the female Amy yellow and darkorange modules 

which were selected because the female Amy transcriptome is more potently altered by THC 

compared to other brain regions. We found that both yellow and darkorange networks were 

significantly enriched for common and rare variant genes for SCZ as demonstrated by a 

permutation test (Fig. 3.12C). As shown in Figure 3.12D, 10 out of 20 key drivers also 

overlapped with SCZ variant genes. The vast majority of key driver genes encode membrane 

proteins and are localized at the synapse and vesicles. Besides, several key driver genes 

engage in brain development, including Plxna4, Syngr3, Agap2, Camk1d and Atp6v0d1. 

Subnetwork pathway analysis revealed that 10 out of the 20 key driver genes (Jph4, Plxna4, 

Rimbp2, Rnf187, Syp, Syngr3, Tmem130, Agap2, Apba1 and Camk1d) orchestrate tissue-

specific subnetworks of genes implicated in synaptic transmission processes, including 

chemical synaptic transmission, neurotransmitter release cycle, GABA transmission, synaptic 

vesicle cycle, and calcium signaling. 5 out of the 20 key drivers (Agap2, Rimbp2, Tmem130, 

Camk1d, Lonrf2) regulate central nervous system development related subnetworks. Three key 

drivers (Atp6vod1, Rnf187, and Ube20) regulate glucose metabolism subnetworks. We also 

identified key drivers (Pi4ka, Rnf187, Ldoc1) regulating mitochondrial biogenesis, antigen 

processing and protein deubiquitination subnetworks. 

Taken together, this integrative analysis supports a strong mechanistic connection between 

genes and pathways altered by THC and those associated with schizophrenia vulnerability. 

3.4     Discussion 
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Our work provides the first comprehensive, tissue- and sex-specific view of molecular processes 

perturbed by adolescent THC treatment in mice. Our findings suggest that females are more 

sensitive than males to the long-term detrimental effects of THC on recognition memory, which 

coincides with larger transcriptional responses in the female brain. The gene network analysis 

identified potential regulators and biological pathways altered by THC, including cognitive and 

addiction processes. Lastly, by intersecting our mouse transcriptomic data with human GWAS 

of neuropsychiatric disorders and cognitive behavioral traits, we found a connection between 

gene networks affected by THC and human traits and disorders known to be influenced by 

cannabis use.  

Our behavioral analysis demonstrated that adolescent exposure to THC in mice led to long-term 

impairments in object recognition memory and social interaction, but not in anxiety-like 

behaviors. The results concerning memory and social interaction are in line with previous 

reports in rodent models152, 187–193. However, conflicting results have been reported concerning 

anxiety-like phenotypes likely due to varying mice genetic background and experimental 

conditions among different research groups (e.g., THC dose, mice age)194–196. Our study also 

showed sex differences in the effects of THC on recognition memory, which was impaired more 

in female compared to male mice. While the influence of sex on the effects of THC on memory 

has not been evaluated in animal models, female rats have been reported to be more 

susceptible than males to the effects of THC on locomotor activity, nociception, and reward 

processes197–201. Importantly, the greater sensitivity of females to the harmful effects of THC on 

spatial memory is evident also in humans202–206. Overall, our behavioral data confirms the 

harmful effect of THC on cognitive functions and highlights the importance of addressing sex 

differences when studying the long-term impact of cannabis exposure. 

Sex differences in gene expression patterns may elucidate the mechanisms underlying sexual 

dimorphism in behavioral phenotypes in response to drugs207. In agreement with this 
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hypothesis, our study demonstrated that adolescent exposure to THC caused sex-specific gene 

expression changes in the brain. When we identified DEGs or THC-correlated modules 

separately for each sex, female mice showed major transcriptional alterations in the Amy, while 

male in the NAc. In support of sex-specific responses to THC, RRHO analyses showed limited 

overlap in gene expression changes induced by THC between males and females for each 

brain region. Further, when we conducted a statistical analysis that explicitly tested for sex 

differences in DEGs, we found significant sex x treatment interaction in Amy, NAc and DMS. 

Although only a fraction of DEGs showed a significant sex x treatment interaction (FDR < 0.1), 

presumably due to lack of statistical power for specific datasets, this is the first study to provide 

strong statistical evidence for sexual dimorphism in the transcriptional responses to THC, which 

may underlie sex-specific behavioral alterations. These sex-specific gene expression 

differences could also influence other mechanisms known to play an important role in 

determining THC effects on females and males, including sex-specific effects of hormonal 

changes on the endocannabinoid system during adolescence208, differential density of 

cannabinoid receptors in the brain209, and pharmacokinetic factors210. Taken together, these 

results suggest that female mice with a history of adolescent exposure to THC exhibit more 

profound cognitive behavioral deficits and larger transcriptional alterations than males.  

It is unknown what particular brain region drives the behavioral abnormalities induced by 

adolescent exposure to THC. Our work that simultaneously investigates 5 brain regions, for the 

first time, suggests an extensive brain region specificity in the gene signatures and networks 

altered by THC. The analysis of sexually dimorphic DEGs and THC-correlated modules 

revealed that female Amy and male NAc may be sites of particular importance for the persistent 

changes induced by adolescent exposure to THC. In line with these findings, brain 

morphological studies of human cannabis users have shown that marijuana use may be 

associated with the disruption of neural organization of the Amy and NAc211. Moreover, previous 
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studies have documented that female teenagers who use marijuana are more susceptible than 

males to structural abnormalities of the Amy, which were correlated with worse internalizing 

symptoms212. Consistent with these observations, animal studies also reported perturbation of 

synaptic transmission in the Amy and NAc following administration of exogenous 

cannabinoids213–215. However, previous analysis of transcriptomic changes induced by 

adolescent exposure to THC have focused only on PFC of male rats 10. Miller et al reported 

that adolescent exposure to THC was associated with long-term gene expression changes in 

the PFC, which were related to cytoskeleton and chromatin regulation145. While we did not 

identify any DEGs or THC-correlated modules in the male PFC in mice, we found 2 THC-

interconnected modules in the male PFC, which were linked to the same biological pathways. 

Between-species differences may explain the discrepancy.  

Our multiple brain region studies also allowed us to uniquely infer network connections within 

and between brain regions. The THC-interconnected modules are likely indirectly influenced by 

THC, as they are inferred from the module-module interaction network. We speculate that the 

inter-region interaction network could predict how THC directly influences one brain region 

which then cascades down to other brain regions. Specifically, our analysis predicts that 

adolescent exposure to THC alters neural circuits that connect Amy with VTA and DMS in 

females, and neural circuits that connect NAc with VTA and PFC in males. Future experiments 

perturbing the THC modules using animal models will be necessary to validate these 

predictions. 

A major strength of this study is that we can directly correlate the transcriptional responses to 

THC in different brain regions with the cognitive traits altered by THC in the same mice. The 

trait-module correlation analysis suggested that the disruption of endogenous cannabinoid 

signaling in the DMS and inflammatory pathways in the VTA may drive the deficits in recognition 

memory observed in female mice. We also showed that neuronal cell types in the DMS and glial 
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cells (astrocytes and microglia) in the VTA may contribute to the transcriptional response to 

THC underlying memory deficits. These results are in line with previous reports on the effect of 

chronic administration of cannabinoids. The endocannabinoid system plays an essential role in 

learning and memory processes, with the engagement of the dorsal striatum specifically in 

encoding habit-related memories216–218. Moreover, repetitive exposure to synthetic cannabinoids 

led to inflammatory phenotypes including astrogliosis in the VTA219. 

Moreover, we also identified modules that may underlie behavioral alterations not measured in 

our study, such as addictive behavior. For instance, the neuronal-specific coexpression modules 

in female Amy (greenyellow) and male NAc (blue) were positively correlated with THC and 

shared enrichment for genes implicated in dopamine signaling and addiction processes. 

Different key drivers were identified as key regulators of the combined gene network including 

Drd1 and Gpr88, which are known to regulate drug seeking behaviors184-186.  

We conclude that adolescent exposure to THC leads to different behavioral abnormalities by 

reprogramming cell type-, brain region-, and sex-specific biological pathways.   

The frequent use of cannabis during adolescence has been linked to deleterious long-term 

consequences in humans, including an elevated likelihood of earlier onset of schizophrenia, 

cannabis use disorders and addiction220–228. We found coexpression modules that both respond 

to THC treatment and are enriched in genes relevant to human cognitive traits, schizophrenia, 

and CUD. These modules are involved in pathways already reported to be implicated in the 

development of psychiatric disorders, such as synaptic transmission, dopaminergic 

transmission, axon guidance, MAPK regulation, chromatin organization and immune 

functions220–226. We have also identified novel pathways that link chronic adolescent THC 

exposure to SCZ, such as sumoylation and glycosaminoglycan metabolism in females and 

inositol metabolism in males. This analysis also revealed that three key driver genes (Atp60vd1, 
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Rnf187, Ube20) regulate glucose metabolism, suggesting a novel link between THC use and 

schizophrenia, which is also supported by evidence in human studies229.  

Taken together, our results corroborate previous findings on the correlation of cannabis use with 

negative mental outcomes, and pinpoint potential coexpression modules, pathways and genes 

driving pathological mechanisms.  

Our results should be considered in light of certain limitations. First, we focus on probing 

transcriptomic changes that occur during early adulthood and we correlate these gene 

expression patterns with behaviors measured at the same time. This approach has the 

advantage of capturing persistent changes associated with a history of adolescent exposure to 

THC. However, a limitation of this study design is that it cannot directly assess the earlier 

transcriptional changes and the concomitant behavioral correlates during the adolescent period, 

which we hypothesize to be particularly vulnerable to THC exposure. Moreover, we use a single 

dosage of THC (10mg/kg) and do not examine overall dose response curves. This dosage was 

selected as it leads to plasma levels of THC similar to those detected in humans using 

cannabis230,231; hence, it can mimic heavy chronic cannabis intake. The second limitation of our 

study is that we focus on behavioral phenotypes of interest limited to cognitive behaviors, such 

as recognition memory and social interaction. However, other behaviors are likely to be 

influenced by THC, including addiction-like phenotypes. It is important to note, however, that 

addictive properties of THC are not well modeled in mice. Moreover, our study is limited to 5 

brain regions and other additional gene regulatory networks can be missed. Thus, it would be 

important to expand this study to other brain regions, such as the hippocampus given its critical 

role in recognition memory. 

In spite of these limitations, our study is the first to unveil the potential underlying molecular 

mechanisms underpinning the persistent behavioral alterations linked to cannabis use in a sex- 
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and brain region-specific manner. Our study also provides, for the first time, a comprehensive 

database of molecular events associated with THC including individual genes, gene networks, 

pathways, and cell types for further study. 
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3.5 Figures 

 

Figure 3.1. Adolescent exposure to THC reduced recognition memory and social interaction in 

a sex-specific manner.  

(A) Timeline of the study design. (B) D1 and (C) D2 are shown as mean ± 95% confidence 

intervals showing decreased recognition memory in THC-treated groups compared to vehicle 
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controls. Treatment effect F1, 41 = 7.1, p = 0.011 for D1, and F1, 42 = 5.3, p = 0.026 for D2. 

Sex x Treatment interaction F1, 41 = 3.9, p = 0.056 for D1, and F1, 42 = 1.9, p = 0.176 for D2. 

(D) Exploration time (s) of the novel object is expressed as mean ± SEM showing a decrease 

only in female mice. Sex x treatment interaction, F1, 42 = 4.6, p = 0.038. (E) Social preference 

(%) is expressed as mean ± SEM and does not change across groups. Treatment effect F1, 41, 

p = 0.016. P values from Tukey HSD post-hoc analyses are shown in panel B-D. 
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Figure 3.2. Behavioral characterization of female and male mice following adolescent exposure 

to THC.  

(A) Locomotor activity is expressed as mean distance traveled (m) ± SEM. Exploration (s) in 

familiarization phase T2 (B) and test phase T3 (C) are expressed as mean ± SEM. (D) Body 

weight (g) is expressed as mean ± SEM for the THC administration course (day 1 to 21), and for 

day 36, 43, and 60 when the three behavioral assays started. All effect and interaction p 

values > 0.1. 
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Figure 3.3. Adolescent THC exposure induced long-term sex-specific transcriptional changes.  

(A) PCA visualization of male and female samples across brain regions and treatment 

conditions. (B) Bar plot of treatment affected DEG numbers across brain regions and sexes 

using different FDR cutoffs in analyses within each sex and brain region. (C) Bar plot of DEG 

numbers for treatment by sex interaction across brain regions in analyses including both sexes 

for each brain region. (D) Dot plot of treatment affected DEG pathway enrichment in female 

Amy, DMS, and male NAc. Dot color depicts the direction of regulation and dot size illustrates 

the significance. (E) Dot plot of upregulated treatment:sex interaction DEG pathway enrichment 

in female Amy. Dot size illustrates the significance. DMS, dorsomedial striatum; Amy, amygdala; 

NAc, nucleus accumbens; PFC, prefrontal cortex; VTA, ventral tegmental area; Veh, vehicle; 

DEG, differential expression gene. 
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Figure 3.4. Adolescent THC administration induced sex-specific transcriptional changes.  

Heatmaps of treatment by sex interaction DEGs in Amy (A), NAc (B), and DMS (C).  DMS, 

dorsomedial striatum; Amy, amygdala; NAc, nucleus accumbens; Veh, vehicle; DEG, differential 

expression gene; UP, upregulated; DN, downregulated. 
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Figure 3.5. Minimal transcriptional overlap was detected in most comparisons across sex and 

brain regions.  

(A)Schematic of RRHO heatmap interpretation. (B-D) RRHO heatmaps show minimal overlap in 

transcription between pairs of brain regions within females (B), males (C), and between sexes 

(D). (E-F) RRHO heatmaps show concordance (E) and discordance (F) in transcription between 

pairs of brain regions. We define concordant as positive correlation and discordant as negative 

correlation in DEG overlap patterns. Amy, amygdala; DMS, dorsomedial striatum; VTA, ventral 

tegmental area; PFC, prefrontal cortex; NAc, nucleus accumbens; DEG, differential expression 

gene. 
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Figure 3.6. Coexpression modules correlated with chronic THC administration and mouse 

cognitive phenotypes.  

(A) Bar plot of the number of coexpression modules significantly correlated with THC treatment 

and cognitive phenotypes (p < 0.05). (B-C) Heatmaps of module correlation with THC treatment 

and cognitive phenotypes across brain regions in males (B) and females (C). Color depicts 

direction and strength of correlation. Pathway annotations of selected modules were shown. *p 

< 0.05; **p < 0.01; ***p < 0.001. DMS, dorsomedial striatum; Amy, amygdala; NAc, nucleus 

accumbens; PFC, prefrontal cortex; VTA, ventral tegmental area; D1, absolute discrimination 

index 1, D2, relative discrimination index 2. 
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Figure 3.7. DEG enrichment in coexpression modules was detected in a few brain regions.  

(A-B) Heatmaps of DEG enrichment in brain regions. Only female Amy, DMS and male VTA, 

and NAc showed significant enrichment in DEGs. Color depicts -log10P value of the enrichment 

and only significant enrichments were illustrated. *p < 0.05; **p < 0.01; ***p < 0.001. DMS, 

dorsomedial striatum; Amy, amygdala; NAc, nucleus accumbens; VTA, ventral tegmental area; 

DEG.all, all the differential expression genes of a certain brain region; DEG.uo, upregulated 

differential expression genes of a certain brain region; DEG.down, downregulated differential 

expression genes of a certain brain region. 
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Figure 3.8.  THC-correlated coexpression modules exhibit cell-type marker enrichments.  

(A) Dot plots of brain regions with THC-correlated modules enriched in neuronal cell markers. 

(B) Dot plots of brain regions with THC-correlated modules enriched in glial cell markers. (C) 

Dot plots of brain regions with THC-correlated modules enriched in both neuronal and non-
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neuronal cell markers. Dot color depicts the direction of correlation with chronic THC 

administration. Dot size depicts the significance of the enrichment pattern. Modules not shown 

are not enriched in cell-type markers. DMS, dorsomedial striatum; Amy, amygdala; NAc, 

nucleus accumbens; PFC, prefrontal cortex; VTA, ventral tegmental area. 
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Figure 3.9. Hub genes and key driver genes were identified in THC-correlated coexpression 

modules.  
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(A-D) Visualization of coexpression modules correlated with both THC administration and 

recognition memory traits. The edges denote positive correlations between pairs of genes by 

the definition of signed coexpression networks. Hub genes are highlighted in yellow. Only the 

top 100 edges based on topological overlap weight were visualized due to the large size of the 

male NAc orange module. (E) Visualization of Bayesian network of the male NAc blue module 

and female amygdala greenyellow module. Hub genes and key driver genes are labeled with 

orange borderlines. Key driver genes are illustrated by enlarged circles, overlaps between key 

driver genes and hub genes are illustrated by enlarged diamonds, and hub genes are illustrated 

by diamonds. Blue or green color denotes the origin module of the genes and grey color 

denotes genes from the BN but not in the WGCNA modules. DMS, dorsomedial striatum; Amy, 

amygdala; NAc, nucleus accumbens; VTA, ventral tegmental area; BN, Bayesian network. 
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Figure 3.10. Construction of THC-interconnected module map reveals potential intra- or inter-

region molecular circuitries disrupted by THC.  

(A-B) Visualization of female (A) and male (B) THC-interconnected modules with |r| > 0.5 and p 

< 0.05. Edge and node borderline colors denote positive or negative correlation between pairs 

of modules. Node fill colors denote module correlation relationships. (C-D) Sankey plots of 

female (C) and male (D) THC-correlated module interactions. Link colors denote the direction of 
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correlation. (E-F) Bar plots of the number of intermodular interactions in THC-interconnected 

modules. Color denotes the direction of correlation. DMS, dorsomedial striatum; Amy, 

amygdala; NAc, nucleus accumbens; PFC, prefrontal cortex; VTA, ventral tegmental area. 
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Figure 3.11. Identification of GWAS-associated modules using Mergeomics.  

(A) Schematic of Mergeomics pipeline. (B) Percentage of overlap in GWAS-associated modules 

with THC-correlated modules. (C) Percentage of overlap in GWAS-associated modules with 

THC-correlated and interconnected modules. Percentage of overlap is calculated as the number 

of overlapped modules divided by the total number of GWAS-associated modules. MDF, marker 

dependency filtering; MSEA, marker set enrichment analysis; QTL, quantitative trait loci. 
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Figure 3.12. THC-correlated and interconnected modules are associated with human cognitive 

traits and disorders.  

(A-B) Heatmaps of the modules that are significantly associated with GWAS traits (cognition, 

memory, social, CUD, and SCZ) in females (A) and males (B). # denotes THC-interconnected 
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modules. Color depicts significance in terms of -log (FDR). (C) Bar plot of SCZ variant gene 

overlap numbers with yellow and darkorange module genes from the female amygdala. *** p < 

0.001. (D) Visualization of Bayesian network of the female Amy yellow module and darkorange 

module. Key driver genes are represented by large size nodes. SCZ rare variants discovered by 

WES are labeled with red borderline and SCZ common variants discovered by GWAS are 

labeled with blue borderline. Yellow or orange color denotes the origin module of the genes 

(yellow and darkorange, respectively). (E) Dot plot of subnetwork pathway enrichment. Dot size 

depicts -log (FDR) value of the enrichment and color depicts yellow or darkorange module.DMS, 

dorsomedial striatum; Amy, amygdala; NAc, nucleus accumbens; PFC, prefrontal cortex; VTA, 

ventral tegmental area; CUD, cannabis use disorder; SCZ, schizophrenia; WES, whole-genome 

sequencing. 
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Chapter 4.  Gene network perturbations and drug candidates for autism spectrum 

disorders based on multi-omics integration 

4.1     Introduction 

ASD is a neurodevelopmental disorder characterized by social and communication deficits and 

repetitive and stereotype behaviors232, 233. Currently there is no approved drug targeting these 

two core symptoms due to a lack of comprehensive understanding of the pathogenic 

mechanisms. ASD has a heritability of more than 80% according to twin studies and is 

genetically heterogenous232. Recent advancement in ASD genetics have identified 136 ASD 

rare mutations through exome sequencing studies and 12 common polygenic risk loci via 

genome-wide association studies (GWAS) 8, 234, 235. Based on rare mutations, a number of 

mouse models have been established to study the underlying mechanisms99, 236. Despite the 

success in identifying numerous genetic risk variants, the heterogeneous nature of ASD 

genetics and the complexity of the brain anatomy make it challenging to fully understand the 

target genes and pathways driving ASD pathogenesis.  

ASD is clearly polygenic in nature and may even follow an omnigenic disease model23, which 

states that genes in highly interconnected networks together contribute to disease development, 

with core hub network genes exhibiting stronger effects and peripheral network genes showing 

subtle to moderate effects. Building on this model and the recent support for the use of network 

approaches for psychiatric research3, 237, we hypothesize that rare and common genetic variants 

affect genes interacting in tissue- and cell-type specific gene networks in different brain regions. 

With the recent surge of both bulk and single-cell transcriptome profiling data derived from many 

human and mouse brain regions, it is possible to map the network perturbations caused by ASD 

risk variants by incorporating the functional diversity of brain regions and cell types and by 

modeling gene regulatory cascades in a tissue and cell-type specific manner. 
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In addition to utilizing network approaches to understand complex diseases, network-based 

medicine has emerged as a powerful approach to guide drug repositioning238-242. In general, this 

approach utilizes the matching patterns of molecular networks between diseases and drug 

targets, where both disease and drug networks can be derived using different data sources and 

methodologies. The recent success of repurposing the FDA-approved drug bumetanide for 

improving social interaction in children with ASD supports the possibility of repurposing other 

drugs for potential ASD treatments243. However, more efforts are needed to address the scarcity 

of ASD therapeutics. 

Here, we applied Mergeomics, an integrative genomics pipeline to identify cell subtypes and 

construct Bayesian perturbation network of ASD common variants. We identified potential 

regulator genes of these networks and characterized the physiological functions of their 

subnetworks. We found that cortical inhibitory neurons of the caudal ganglionic eminence (CGE) 

lineage are highly enriched in ASD common variant related genes, and their corresponding 

perturbation networks displayed enrichment in ASD rare variants. We have also predicted 

potential drugs using the perturbation network signature, which are evident to influence ASD 

phenotype.  

4.2     Methods 

Construction of brain-region specific Bayesian networks (BNs) 

We constructed BNs from GTEx version 8 bulk tissue RNA-seq data for 14 central nervous 

system (CNS) tissues using RimbaNet36, 57. To improve causal inference, we used two types of 

prior information: brain-region specific expression quantitative trait loci (eQTLs) from GTEx 

version 8 and brain-region specific transcription factor to target relationships from FANTOM 

version 537. For each brain region, 1000 networks were generated with random seeds, and a 

consensus network containing the shared edges across the 1000 reconstructions was used as 
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the final BN for the given brain region. The numbers of edges and nodes in each network are 

shown in Table 4.1.  

Construction of brain-region specific WGCNA coexpression networks 

We constructed region-specific WGCNA coexpression networks based on the GTEx version 8 

RNA-seq data for the CNS tissues42. Signed WGCNA coexpression networks were generated 

for each tissue using optimized parameters which yield modules each enriched for specific 

biological functions. Total module counts for each tissue are in Table 4.1. 

Construction of cell-type specific WGCNA coexpression networks 

We further constructed cell-type specific WGCNA gene coexpression networks using single-cell 

RNA-seq (scRNA-seq) data from 356 cell subtypes in 7 brain regions across developmental 

stages and species (Table 4.2). scRNA-seq data were first filtered based on total RNA counts, 

and high-quality cells with total RNA counts above 40% among all cells were used as the input 

for network generation. Signed WGCNA coexpression networks were generated for each cell 

subtype using optimized parameters. Pathway enrichment analysis was performed on each 

network to assess the biological functions of each module. 

Inferring ASD-related brain regions, cell subtypes, networks, and pathways 

Mergeomics, a multi-omics data integrative genomic pipeline developed in our lab, was used to 

identify which networks and pathways from which brain regions and cell subtypes are related to 

ASD common variants. The GWAS full summary statistics of ASD common variants was 

integrated with brain region-specific eQTLs and splicing QTLs (sQTLs) from GTEx version 8 to 

connect common SNPs with potential target genes234. Genes within 20 kb distance to GWAS 

SNPs were also used for SNP-to-gene mapping. The brain-region and cell-subtype specific 

coexpression networks were used to assess which coexpression modules from which brain 
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regions and cell subtypes harbor genes whose potential regulatory SNPs mapped via 

eQTLs/sQTLs or chromosomal distance showed stronger ASD GWAS associations compared 

to random gene sets. 

PharmOmics prediction of drug candidates  

We intersected the ASD common variant-informed Bayesian perturbation networks and used 

the consensus network as the input to PharmOmics. Overlap based drug reposition mode was 

used, and candidate drugs were ranked based on Benjamini-Hochberg procedure adjusted p 

value. 

4.3 Results 

To identify top brain regions enriched in ASD common variant related genes, we firstly 

performed marker set enrichment analysis using bulk-tissue gene coexpression modules. 

Among the 14 CNS regions, 11 showed significant enrichment of ASD common variant-related 

genes in one or more modules. Importantly, most of the significant tissues and modules were 

identified when tissue-specific eQTLs/sQTLs were used as the SNP-to-gene mapping methods, 

supporting the functional regulation of the modules by ASD GWAS SNPs.  Pathways enriched 

in the ASD-associated modules include immune system pathways, mRNA processing, 

metabolism, and neuronal processes (Table 4.3). 

To further dissect ASD pathogenesis with increased granularity, we identified cell subtypes 

related to ASD common variants informed by GWAS. Cell-type specific WGCNA modules were 

used as input to Mergeomics and modules significantly enriched in ASD common variant-related 

genes informed by common variants were identified. We firstly surveyed the frontal cortex, 

striatum, and hippocampus from DropViz, which is a scRNA-seq database for adult mouse 

brains. We hypothesized that more excitatory neuron subtypes are enriched in ASD common 

variant-related genes based on previous studies46, 50. However, among the 15 neuronal cell 
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subtypes whose modules are significantly enriched in ASD common variant-related genes, 9 are 

interneurons (Table 4.4). Pathways over-represented in the ASD-associated modules from 

these neuronal subtypes also included metabolic pathways, neuronal processes, and RNA 

processing, which are in general agreement with those from the tissue-level module analysis 

(Table 4.3). 

We further examined networks from all cell types across developmental stages and species and 

found that inhibitory interneurons from the CGE lineage ranked the top among neuronal 

subtypes in terms of ASD common variant-related gene enrichment. Such enrichment was 

found consistently in the human mid-gestation developing cortex, adult mouse frontal cortex, 

and adult human frontal cortex (Figure 4.1). The conservation across species and 

developmental stages highlights the critical role of inhibitory interneurons in ASD pathogenesis. 

To identify potential regulators of the significant ASD coexpression modules in BNs which 

capture regulatory gene-gene relations, we used modules significantly enriched for ASD 

common variants as the inputs to weighted key driver analysis (wKDA) in Mergeomics. We 

hypothesized that ASD common and rare variants follow the omnigenic model, with the rare 

variants serving primarily as the hub genes in a biological network, while common variants 

acting in the peripheral pathways. Consistent with this hypothesis, the hub genes showed a ~3-

fold enrichment for ASD rare variants compared to all genes in ASD-associated BNs across 

brain regions surveyed (Figure 4.2). As exemplified in Figure 4.3, several top hub genes 

contain ASD rare variants (larger colored nodes). Additional hub genes (diamond nodes) were 

also predicted. 

To date, no drug has been approved targeting ASD-related phenotypes. To identify possible 

drug candidates that can affect ASD phenotypes, we adopted PharmOmics, a tissue- and 

species-specific drug signature database developed in our lab for drug repurposing242. Table 
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4.5 illustrates example top drug candidates that have been shown to promote or suppress ASD-

related phenotypes. In addition to the candidate drugs supported by literature, numerous 

additional drugs were also predicted and warrant further investigation. 

4.4 Conclusion  

Our study has, for the first time, investigated the pathogenic mechanism of ASD common 

variants. Using a combination of gene coexpression network, Bayesian causality network and 

integrative genomic pipeline Mergeomics, we identified brain regions and cell types enriched in 

ASD common variants. Specifically, we found cortical inhibitory neurons of the CGE lineage to 

be the most enriched neuronal cell type. Further, Bayesian perturbation networks of ASD 

common variants are enriched in ASD rare variant genes, supporting the omnigenic hypothesis 

of complex disorders. Taken together, our study offers a database of networks, potential 

regulator predictions and drug candidate predictions to aid future research. 
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4.5 Tables 

Table 4.1. BrainNet Bayesian networks and WGCNA module information 

GTEx Tissue BN edge counts # BN node counts # WGCNA module counts # 

Amygdala 6277 5437 88 

Anterior cingulate cortex 

BA24 
6725 5505 34 

Caudate 6885 4503 24 

Cerebellar hemisphere 6790 5353 25 

Cerebellum 6465 5131 25 

Cortex 7924 5410 10 

Frontal Cortex BA9 7087 5391 33 

Hippocampus 7580 5379 9 

Hypothalamus 7656 5479 19 

Nucleus accumbens 7924 5410 15 

Putamen 7439 5419 58 

Spinal cord 6403 5334 55 

Substantia nigra 5280 5254 29 

Pituatary 7339 5018 30 
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Table 4.2. Cell subtypes used for single-cell WGCNA network generation 

Brain region Species Cell subtype # Ref. 

Frontal cortex Mouse 81 Saunders et al.244 

Hippocampus Mouse 103 Saunders et al.244 

Striatum Mouse 52 Saunders et al.244 

Medial amygdala Mouse 8 Chen et al.245 

Mid-gestation cortex Human 64 Polioudakis et al.246 

Frontal cortex Human 23 Lake et al.247 

Dorsolateral prefrontal cortex Human 25 Nagy et al.109 
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Table 4.3. Brain region-specific modules enriched in ASD common variant related genes 

Brain region Module FDR Mapping Top annotations 

Frontal cortex FC-gray60 7.77E-19 sQTL 
Adaptive immune system; Spliceosome; 

Neuronal system 

Cortex Cortex-blue 6.63E-15 eQTL Olfactory signaling pathway 

Amygdala AMY-black 9.98E-13 eQTL, sQTL 
Oxidative phosphorylation; mRNA processing;  

Adaptive immune system 

Putamen Putamen-tan 3.84E-07 eQTL 
Proximal tubule bicarbonate reclamation;  

Transmembrane transport of small molecules 

Cerebellum CB-black 6.29E-05 eQTL, sQTL 
Spliceosome; Oxidative phosphorylation; 

Adaptive immune system 

Caudate Caudate-pink 1.79E-04 eQTL Immune system 

Frontal cortex FC-black 4.19E-04 eQTL Immune system 

Frontal cortex FC-pink 3.20E-03 eQTL 
Fatty acid metabolism; Metabolism of amino 

acids and derivatives 

Cerebellum CB-purple 5.13E-03 
Distance 

(20 kb) 
Glycolysis 

Hypothalamus Hypo-turquoise 5.78E-03 eQTL, sQTL mRNA processing; Adaptive immune system 
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Table 4.4. Neuron subtypes enriched in ASD common variant related genes 

Brain region Cell subtype  Cell type annotation Significant module annotations 

FC 

1-8 CGE-derived interneuron ARAP pathway 

1-10 CGE-derived interneuron 
Protein secretion; Metal ion transporters; 

Activation of chaperone genes 

2-3 
MGE-derived cortical 

interneurons--Martinotti cells 

ECM pathway; Glycolysis; Metabolism of 

RNA; mTORC1 pathway 

1-1 CGE-derived interneuron 

Metabolism of amino acids and 

derivatives; Fatty acid metabolism; GABA 

pathway 

1-7 CGE-derived interneuron Oxidative phosphorylation 

7-2 
Deep layer pyramidal cells--layer 

5 

Neurotrophin signaling pathway; Protein 

secretion; Intergration of energy 

metabolism 

Hippocampus 

1-2 Interneuron, Neurogliaform1 
Spliceosome; ECM pathway; 

Transcription 

3-4 Entorhinal cortex, Slc17a7 

Host interaction of HIV factors; Kainate 

receptor activation; Oxidative 

phosphorylation; mTOR pathway 

1-21 
Interneuron, candidate CGE-

derived 

Spliceosome; Glycolysis; Oxidative 

phosphorylation; mTOR pathway 

13-2 Neurogenesis (SGZ) 
E2F targets; Oxidative phosphorylation; 

mTOR pathway; Spliceosome 

3-11 Entorhinal cortex, Slc17a7 MAPK pathway; LTP; Endosome 

6-8 CA3 Principal cells 
Myc targets; Spliceosome; GABA receptor 

activation 

5-5 CA1 Principal cells Splicing; Peroxisome; PI metabolism 

5-13 Postsubiculum 
Myc targets; Proteasome; Spliceosome; 

MAPK pathway; Respiratory chain  

Striatum 14-1 Fast-spiking interneuron, Pvalb+ 
Regulation of autophagy; Neuvous 

system; Apoptosis  
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Table 4.5. Evidence of drugs identified using PharmOmics on modulating ASD phenotypes 

Drug FDR Evidence on modulating ASD phenotypes Ref.  

Valproic 5.96E-16 
Maternal exposure is associated with significant 

increased risk of ASD in offspring 
Christensen et al.248 

Trichostatin-a 6.55E-15 In utero exposure induced ASD phenotypes in mice Moldrich et al.249 

Acetaminophen 1.15E-14 
In Utero Acetaminophen Exposure is associated 

with increased ASD risk 
Ji et al.250 

Vorinostat 6.27E-10 

Rescued abnormal GTF2I expression in 7q11.23 

microduplication autism spectrum disorder patient-

derived cortical neurons 

Cavallo et al.251 

 Curcumin 1.74E-09 
Neonatal curcumin treatment rescued ASD-related 

behaviors 
Zhong et al.252 

Quinidine 1.77E-09 Decreased irritability in adult ASD patient Chez et al.253 

Estradiol 3.35E-09 Rescued ASD phenotypes in mice Macrì et al.254 

Panobinostat 1.15E-08 

Rescued abnormal GTF2I expression in 7q11.23 

microduplication autism spectrum disorder patient-

derived cortical neurons 

Cavallo et al.251 

Memantine 1.15E-08 May improve symptoms in ASD children Hardan et al.255 

Roscovitine 1.47E-08 
Rescued abnormalities from Timothy syndrome 

patient iPSC-derived neurons   
Paşca et al.256 
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4.6 Figures 

 

Figure 4.1. CGE-derived interneurons have the highest level of ASD common variant related 

gene enrichment among neurons across species and developmental stage. In the adult mouse 

panel, In-1 denotes interneurons of the CGE lineage and In-2 denotes interneurons of the MGE 

lineage. 
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Figure 4.2. The hub genes of ASD common variant-informed perturbation networks are 

enriched in ASD rare variants. Percentage of enrichment are displayed above each bar. 

SFARI1-6: ASD-related genes in SFARI database Level 1-6; SFARIs: syndromic ASD genes in 

SFARI database; WES: ASD genes identified by whole exome sequencing in Ruzzo et al.235 

and Satterstrom et al.8 
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Figure 4.3. Representative ASD common variant-informed perturbation Bayesian network from 

the frontal cortex. Documented ASD-related genes including rare variants are labeled in colors. 

SFARI1-6: ASD-related genes in SFARI database Level 1-6; SFARIs: syndromic ASD genes in 

SFARI database; WES: ASD genes identified by whole exome sequencing in Ruzzo et al.235 

and Satterstrom et al.8 
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