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ABSTRACT 

 

Understanding and controlling carbonate crystallization processes and the effects of 

saccharide surface additive interactions 

by 

Katherine Ann Brune 

 

 Biological organisms are able to selectively synthesize and stabilize different polymorphs 

of calcium carbonate, including metastable vaterite and amorphous calcium carbonate 

(ACC), in a process known as biomineralization. Stabilization is accomplished by 

introducing other ions, such as magnesium or silicate, into the calcium carbonate material to 

stabilize the formation of less energetically favorable polymorphs, and also via interactions 

of biomolecules, such as proteins or saccharides, with the particle surface to slow the kinetics 

of the crystallization processes. In this work, the effects of two different saccharide surface 

additives, glucose and sucrose, on the crystallization process of amorphous calcium 

carbonate were investigated. The crystallization process was characterized using solid-state 

nuclear magnetic resonance (NMR) spectroscopy, wide-angle x-ray diffractometry (XRD), 

transmission and scanning electron microscopy (TEM and SEM), and nitrogen adsorption 

porosimetry. Both the glucose and sucrose adsorbates delayed the onset and progression of 

crystallization of amorphous calcium carbonate, though the respective products of the 

crystallization process differed. Adsorbed glucose surface favored the formation of the 

thermodynamically stable calcite polymorph, while adsorbed sucrose favored the formation 

of the metastable vaterite polymorph. The observed differences likely arose from the fact that 

glucose is a reducing saccharide that interacted with the surface of the amorphous calcium 
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carbonate particles primarily via electrostatic interactions, while sucrose, a non-reducing 

saccharide, interacted with the particle surfaces via hydrogen bonding in addition to 

electrostatic interactions. Furthermore, initial studies of adsorbed maltose (reducing 

saccharide) and trehalose (non-reducing saccharide) revealed that these surface additives 

exhibited the same inhibition of crystallization.  



v 

 

Table of Contents 

 

1. Background and motivation ........................................................................................................ 1 

2. Materials and methods ................................................................................................................. 8 

2.1. Synthesis and crystallization of amorphous calcium carbonate nanoparticles ................... 8 

2.2. Methods .............................................................................................................................. 9 

2.2.1. Nuclear magnetic resonance (NMR) spectroscopy ............................................................ 9 

2.2.2. Transmission electron microscopy (TEM) ....................................................................... 10 

2.2.3. Scanning electron microscopy (SEM) .............................................................................. 10 

2.2.4. X-ray diffractometry (XRD) ............................................................................................. 11 

3. Results and discussion ................................................................................................................ 12 

3.1. Crystallization of neat amorphous calcium carbonate ...................................................... 12 

3.2. Crystallization of amorphous calcium carbonate with adsorbed saccharides ................... 27 

3.2.1. Glucose, a reducing monosaccharide ............................................................................... 27 

3.2.2. Sucrose, a non-reducing disaccharide .............................................................................. 41 

3.2.3. Other reducing and non-reducing saccharides .................................................................. 58 

4. Conclusions and future work .................................................................................................... 63 

4.1. Conclusions ...................................................................................................................... 63 

4.2. Future work ...................................................................................................................... 66 

5. References ................................................................................................................................... 70 

6. Appendices .................................................................................................................................. 74 

6.1. Crystallization and aggregation during TEM imaging ..................................................... 74 

6.2. Crystallization during NMR measurements ..................................................................... 76 

 



1 

 

1. Background and motivation 

 The study of crystallization processes is of interest due to the importance of 

crystallization in a variety of applications ranging from pharmaceuticals1–3 to catalysis,4–6 as 

well as its significance in biological and environmental systems.7,8 Many applications for 

crystalline products rely on the ability to selectively synthesize crystals with specific 

characteristics or structures, and oftentimes metastable crystal structures provide interesting 

properties that lead to applications unlike those of the thermodynamically stable counterparts. 

An understanding of the thermodynamic and kinetic factors involved in the selective 

nucleation, growth, and stabilization of these metastable polymorphs presents a significant 

challenge that is relevant from both fundamental and technological perspectives. 

 Calcium carbonate is a key example of a material with multiple crystal structures that 

exhibit distinct morphologies, each of which are relevant to specific biological and 

technological applications. Three anhydrous crystalline polymorphs are known to exist; 

calcite, aragonite, and vaterite, as well as an amorphous form termed amorphous calcium 

carbonate (ACC). Calcite exhibits a rhombohedral morphology with a trigonal crystal 

system, while aragonite forms high aspect ratio needles with an orthorhombic crystal system 

(Figure 1a-b, e-f). Vaterite and amorphous calcium carbonate both form spherical particles 

(Figure 1g-h), with ACC exhibiting a lack of structural order characteristic of an amorphous 

material (Figure 1d). Vaterite is currently thought to have a hexagonal crystal system, 

however the exact structure is still widely disputed (Figure 1c).9–11 The morphological and 

structural differences exhibited by the calcium carbonate polymorphs have led to varied 

applications that utilize these distinct characteristics. High aspect ratio aragonite crystals 

serve as a filler in the paper industry to increase the brightness of paper products and are 
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furthermore known to increase tensile strength in cements.12,13 Both vaterite and amorphous 

calcium carbonate particles have potential applications in the pharmaceutical industry, and 

vaterite is also utilized in printing applications.14–16 Additionally, amorphous calcium 

carbonate is an ideal building block from which to selectively synthesize other calcium 

carbonate polymorphs via a templated growth process,17 exemplified in its use by biological 

organisms to form exoskeletal features.8,18,19 

 
Figure 1. Unit cells of the three anhydrous calcium carbonate polymorphs (a) calcite, (b) 

aragonite, and (c) vaterite (reproduced from Weller et al.20), as well as a representation of the 

disordered, hydrated structure of (d) amorphous calcium carbonate (ACC). Scanning electron 

micrographs of synthetic (e) calcite, (f) aragonite, (g) vaterite, and (h) amorphous calcium 

carbonate. Calcite SEM image reproduced from Xiao et al.,21 aragonite SEM image 

reproduced from Hu et al.,22 and vaterite SEM image reproduced from Andreassen et al.23 

 Although each calcium carbonate polymorph has unique applications, several of the 

structures are highly metastable and therefore are difficult to synthesize and stabilize. The 

polymorphs range in stability from the most thermodynamically stable, calcite, to the more 

metastable, aragonite, vaterite, and ACC (Figure 2a). The precipitation diagram in Figure 2b 

shows that calcite is the most thermodynamically stable reaction product, however the other 

metastable polymorphs may precipitate and become kinetically stabilized under certain 



3 

 

solution conditions during synthesis. According to Ostwald’s step rule, the most disordered 

metastable polymorph will initially precipitate as it is structurally most similar to the 

disordered nucleation clusters that form in solution and therefore is closest in free energy to 

the clusters.24 Depending on the solution conditions such as pH, temperature, ionic strength, 

and the presence of different ions or additives, the metastable polymorphs that initially form 

may be stabilized instead of undergoing dissolution and reprecipitation to form more 

thermodynamically stable structures.  

 
Figure 2. (a) Enthalpies of the calcium carbonate polymorphs relative to the most 

thermodynamically stable calcite polymorph. Reproduced from Radha et al.25 (b) 

Precipitation diagram for CaCO3 polymorphs showing a semi-logarithmic plot of the activity 

product of calcium and carbonate ions as a function of temperature. Equilibrium curves for 

the formation reaction of each polymorph are plotted as functions of temperature and 

illustrate the relative thermodynamic stability of each structure. Reproduced from Kawano et 

al.26  

 Despite large differences in stability, the various polymorphs of calcium carbonate are 

found throughout nature in geological minerals and biological organisms. While calcite, 

vaterite, and aragonite are the only polymorphs that occur geologically, biological organisms 

are able to selectively synthesize and stabilize all of the different structures in a process 
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known as biomineralization. Sea urchin spines are composed of calcite, and are grown and 

regenerated using stabilized amorphous calcium carbonate precursors (Figure 3a).8 Abalone 

shells are made up of stacks of aragonite platelets (nacre) (Figure 3b) on top of a calcite shell, 

while lobster shells are composed of stabilized amorphous calcium carbonate (Figure 3c).18,19 

Of particular interest is the stabilization of the highly metastable amorphous calcium 

carbonate polymorph. Stabilization of ACC in biomineralization is thought to occur via the 

introduction of different additive species including ions such as magnesium, phosphates, and 

silicates, chitosan and chitin (biological polysaccharides), and biological proteins composed 

of various amino acids,27–31 though the specific interactions and impact on local molecular 

environment remains relatively unexplored. 

 
Figure 3. Scanning electron micrographs of stabilized biogenic calcium carbonate 

polymorphs. (a) Regenerating sea urchin spine composed of calcite, with new structure 

composed of amorphous calcium carbonate. Reproduced from Politi et al.8 (b) Nacre on 

abalone shell made up of aragonite platelets. Reproduced from Li et al.18 (c) Lobster 

exoskeleton composed of stabilized amorphous calcium carbonate. Reproduced from Reeder 

et al.19 

 While calcium carbonate is an interesting material from the standpoint of the industrial 

uses for the various polymorphs, it is also unique in that it can be synthesized from carbon 

dioxide, providing a consumption process to turn waste CO2 into valuable products. Various 

alternative techniques exist for carbon capture and sequestration (CCS), but the main idea 

remains the same throughout; carbon dioxide is treated as a waste product that is sequestered 

in geological formations, rather than as a potential precursor to a material of value. However, 
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it is possible to bubble carbon dioxide through hard, alkaline brines sourced from natural 

underground formations or waste from mining operations and precipitate calcium carbonate. 

The series of reactions that occurs during this process are depicted in Figure 4. Carbon 

dioxide is reacted with hydroxide ions in solution, forming bicarbonate, which then reacts 

again with hydroxide to form carbonate ions and water. The carbonate reacts with calcium to 

precipitate calcium carbonate solids. Depending on factors including pH, temperature, 

supersaturation, and the presence of additives, any one of the calcium carbonate polymorphs 

may be synthesized and stabilized. The calcium carbonate formed during this process could 

be utilized in any manner of the industrial processes described previously or, in the case of 

amorphous calcium carbonate, could serve as a building block from which to synthesize 

other polymorphs in a templated growth process. Developing a fundamental understanding of 

the nucleation, growth, and stabilization of the various calcium carbonate polymorphs is 

necessary to design processes that can turn waste CO2 into valuable calcium carbonate 

polymorphs. 

 
Figure 4. Mechanism by which carbon dioxide reacts with the calcium and hydroxide ions 

found in hard, alkaline brines to form calcium carbonate precipitates. The polymorph of 

calcium carbonate that is formed from these reactions is dependent on solution conditions 

including pH, temperature, and ion concentrations. 

 The overarching objective of this work is to gain insights into the crystallization process 

of amorphous calcium carbonate in order to better select and understand the types of 

additives and interactions that might stabilize the amorphous material or direct crystallization 
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to a polymorph of interest. Specifically, the origin and progression of crystallization in ACC 

are poorly understood, however developing an understanding of these processes will provide 

important insights into the most efficacious method for stabilization. Inspiration for the 

stabilization of ACC is taken from biological organisms, and the stabilized metastable ACC 

can be utilized as a product of value, either by direct application or by further templated 

crystallization to a polymorph and morphology of interest. The secondary objective 

following from this overarching objective is to develop a procedure wherein carbon dioxide 

can be utilized to produce a stabilized metastable calcium carbonate polymorph of value. 

This would provide an interesting alternative to traditional CCS techniques wherein carbon 

dioxide is treated as a waste rather than a resource for synthesizing a variety of valuable 

products. 

 Several hypotheses arise from these specific objectives, the first being that in the solid 

state under conditions of high relative humidity, amorphous calcium carbonate crystallization 

is initiated at the particle surface and progresses inward, and therefore surface additives may 

be used to inhibit crystallization. Additionally, different interactions of additives with the 

particle surface could produce different stabilization effects. Specifically, taking inspiration 

from the use of modified polysaccharides by biological organisms in the stabilization of 

amorphous calcium carbonate, it is hypothesized that mono- and disaccharides may affect the 

crystallization process of amorphous calcium carbonate via hydrogen bonding and 

electrostatic interactions with the particle surface. Depending on the stereochemistry of 

saccharide utilized and whether the saccharide is reducing or non-reducing, the stabilization 

will occur to different extents and crystallization may result in the formation of different 

metastable polymorphs of calcium carbonate rather than calcite. The results of these studies 
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will contribute to better understanding the biomineralization process by examining the role 

that surface additive interactions of saccharides play in stabilizing ACC. Furthermore, 

determining which metastable polymorphs crystallize from ACC precursors as a result of 

different surface additive interactions is necessary to develop a procedure for directed 

crystallization. 

 The use of saccharides as a hydration inhibiting surface additive in silicate systems has 

precedent in the Chmelka group.32 It has been found that hydrogen bonding of non-reducing 

saccharides such as sucrose with silicate particles inhibits hydration, while reducing 

saccharides such as glucose are incapable of hydrogen bonding with particle surfaces and 

interact primarily via electrostatic interactions which do not effectively inhibit hydration. 

This lends support to the aforementioned hypothesis that different saccharides may have 

different effects on the crystallization process of amorphous calcium carbonate due to the 

different types of interactions present. 

 Furthermore, saccharides have previously been utilized to stabilize amorphous calcium 

carbonate by adding large quantities during the synthesis33 rather than post synthesis as a 

surface additive, which could have a significant impact on the subsequent crystallization 

process and development of other material properties. The crystallization process of the 

saccharide-stabilized amorphous calcium carbonate was not investigated and the additive 

interactions have never been characterized. The insights gained from this work will 

contribute to a better understanding of the stabilizing interactions of additive species with 

calcium carbonate polymorphs in order to develop products of potential value from 

controlled crystallization and provide better understanding of natural phenomena such as 

biomineralization.  
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2. Materials and methods 

2.1.  Synthesis and crystallization of amorphous calcium carbonate nanoparticles 

Amorphous calcium carbonate nanoparticles were prepared by mixing a solution of 0.1 

M CaCl2 with a solution of 0.05 M Na2CO3 and 0.05 M NaOH at 4°C (Figure 5). Typical 

solution amounts used were 30 mL and 60 mL, respectively, and the initial solution pH was 

12.8. White calcium carbonate nanoparticles immediately precipitated after the salt solutions 

were combined, and the resulting solution (pH 12.7) and nanoparticles were stored in an ice 

bath (4°C) for 30 seconds before filtration with 0.45 μm Millipore Stericup filters (Figure 5). 

If a saccharide additive was applied to the calcium carbonate particle surfaces, it was added 

in the form of a 25 wt % solution after 30 seconds and the amount added to the synthesis 

solution was 200% by weight of the expected calcium carbonate precipitate (assuming a 

100% yield). The saccharide adsorption occurred in an ice bath at 4°C for an additional 4 

minutes 30 seconds and was followed by filtration using 0.45 μm Millipore Stericup filters 

(Figure 5). The filter with the calcium carbonate precipitate was then placed in liquid 

nitrogen in preparation for removal of physisorbed water via lyophilization, which was 

allowed to occur for 48 hours. After this process, the amorphous samples were taken off of 

the lyophilizer, removed from the filter paper, and ground into uniformly sized aggregates. 

The calcium carbonate samples were then stored in a controlled humidity environment (76% 

relative humidity as regulated by a saturated NaCl solution) at 20°C and the crystallization 

process was monitored at the designated time points. For the purpose of NMR experiments, 

13C enriched Na2CO3 was used to prepare the calcium carbonate nanoparticles to expedite 

measurements. 
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Figure 5. Schematic diagram depicting the formation of amorphous calcium carbonate 

nanoparticles at 4°C, pH 12.8 without and with saccharide additives. 

2.2. Methods 

2.2.1. Nuclear magnetic resonance (NMR) spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is a solution- and solid-state technique 

sensitive to local atomic order (<1 nm). Samples are placed into a magnetic field and radio 

frequency (RF) pulses are applied to polarize the NMR active nuclear isotopes, inducing 

Larmor precession at a frequency that is indicative of the extent of electronic shielding of the 

nuclei, which in turn provides information regarding local molecular environments and 

interactions. Different RF pulse sequences may be applied to the magnetized nuclei in order 

to characterize distinct properties, however the resulting signal intensity is affected 

significantly by the relative natural abundances and gyromagnetic ratios of the isotopes.  

Solid-state single-pulse NMR experiments employ direct polarization of the nuclei of 

interest and provide information regarding the extents of order and relative populations of the 

different atomic environments present in the sample. In contrast, cross-polarization (CP) 

experiments employ polarization transfer to selectively detect dipole-dipole coupled 

heteronuclei. The signal intensity in the cross polarization experiments is therefore based 
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upon the molecular distance between the nuclei from which polarization is transferred and 

the nuclei that are detected, in addition to the quantity of the isotopes that are adjacent to 

each other. The same principles for the one-dimensional experiments mentioned may be 

extended to two-dimensional experiments, which are performed to assess intermolecular 

interactions between distinct atomic sites. 

2.2.2. Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) images are produced by the detection of 

electrons that are transmitted through a sample. Based on the interactions of the electrons 

with the sample, information regarding morphology, density, and crystallinity can be 

obtained from elastic scattering and information regarding composition may be obtained 

from inelastic scattering and emission of x-rays. Several different modes of operation result 

from the detection of different categories of transmitted electrons - bright-field TEM utilizes 

the unscattered electrons that are passed through the sample and contrast is generated from 

occlusion and absorption, while dark-field TEM utilizes electrons that are deflected by Bragg 

scattering and contrast is generated from diffraction. Amongst other things, TEM is 

commonly used to characterize morphology (bright-field TEM), crystal structure and 

orientation (selected area electron diffraction and dark-field TEM), crystal lattice structures 

(high-resolution TEM), and chemical composition (electron energy loss spectroscopy, 

energy-dispersive x-ray spectroscopy). 

2.2.3. Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) utilizes a focused beam of electrons to produce 

images from the detection of electrons that are emitted or backscattered from a sample 

surface. As the electron beam is rastered across the sample, the electrons either penetrate the 
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sample surface and eject electrons from the sample through inelastic scattering (secondary 

electrons) or are deflected from the sample surface via elastic scattering (backscattered 

electrons). The detection of these electrons provides information regarding morphology and 

structural features, while the detection of the x-rays emitted by the sample during the 

inelastic scattering process provides information regarding chemical composition (EDS). 

2.2.4. X-ray diffractometry (XRD) 

X-ray diffraction (XRD) patterns are produced by applying a beam of x-rays to a sample 

and detecting the x-rays that are diffracted by the sample. The resulting diffraction angles 

and intensities are affected by the interactions between the incident beam of x-rays and the 

electronic environments surrounding the nuclei in the sample, allowing for determination of 

the spatial distribution of the atoms in the sample. This is accomplished by applying Bragg’s 

Law, which relates interplanar lattice spacings to the angles at which diffraction intensity is 

present, thus providing information regarding unit cell dimensions and crystal structures in 

the sample for areas of long range order (>10 nm). Furthermore, the line broadening of the 

reflections in the diffraction pattern may be related to the distribution of crystallite sizes 

present in the sample using the Scherrer equation, and the relative populations of the 

crystallites may be calculated from the shapes and intensities of the reflections and using 

Rietveld refinement.  
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3. Results and discussion 

3.1. Crystallization of neat amorphous calcium carbonate 

To determine the effects of saccharide adsorbates on the crystallization process of 

amorphous calcium carbonate, complete characterization of the crystallization of neat ACC 

was first necessary, as no previous studies have characterized the transient processes 

extensively. The changes in both long and short range order in the neat calcium carbonate 

material were monitored using wide-angle XRD patterns in conjunction with solid-state 

single-pulse 13C and 1H NMR spectra collected after 0, 8, 24, 48, and 120 hours of exposure 

to 76% relative humidity at 20°C. Wide-angle XRD measurements identify the different 

crystal structures present in the calcium carbonate materials, as well as probe the extent of 

long range (>10 nm) molecular order. By comparison, solid-state single-pulse 13C and 1H 

NMR measurements are sensitive to the local atomic bonding environments, relative 

quantities, and short-range (<1 nm) molecular order or disorder of distinct 13C and 1H sites in 

the calcium carbonate materials.  

Immediately following the removal of the neat calcium carbonate material from the 

lyophilizer, corresponding XRD and NMR measurements were collected to characterize the 

material as it was synthesized (Figure 6, 0 hours). The XRD pattern exhibits two broad 

reflections of extremely low intensity centered at 30° and 45° 2θ which result from random 

scattering that is characteristic of an amorphous material. Complementarily, the 

inhomogeneously broadened signal (3.5 ppm fwhm) centered at 168.6 ppm in the single-

pulse 13C NMR measurements collected at 0 hours indicates that a broad distribution of 13C 

atomic environments were present in the material, which is also characteristic of an 

amorphous solid, and the chemical shift is attributed to the average 13C atomic environment 
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present in amorphous calcium carbonate.34 Likewise, the broadened 1H signals centered at 

5.0 ppm (5 ppm fwhm) and 1.3 ppm (2 ppm fwhm) establish the presence of a wide 

distribution of 1H sites in the material which can be attributed to the structural water and -OH 

groups found in amorphous calcium carbonate, respectively.34 Altogether, the XRD and 

solid-state NMR measurements collected at 0 hours indicate that the material as-synthesized 

was amorphous calcium carbonate. 

To induce controlled, reproducible crystallization of the neat amorphous calcium 

carbonate, the material was stored at 76% relative humidity and 20°C following removal 

from the lyophilizer. After 8 hours, a few hundred milligrams of the calcium carbonate was 

removed from the controlled environment and further XRD and NMR measurements were 

conducted to characterize the crystallization process (Figure 6, 8 hours). The wide-angle 

XRD pattern exhibits a single, narrow reflection of low intensity at 29° 2θ that is indexable 

to the [1 0 4] plane of calcite, however the aforementioned broad reflections centered at 30° 

and 45° 2θ remain, indicating that a significant amount of amorphous calcium carbonate was 

present in the material. Correspondingly, an additional signal (0.4 ppm fwhm) centered at 

168.7 ppm is manifested in the single-pulse 13C spectrum collected at 8 hours, which can be 

attributed to the single 13C atomic environment present in calcite.34 A significant amount of 

amorphous calcium carbonate remained in the material as evidenced by the intense, 

inhomogeneously broadened signal (3.3 ppm fwhm) centered at 168.6 ppm. To determine the 

relative amounts of each distinct 13C site in the calcium carbonate material, Lorentzian line 

fits were applied to deconvolute the overlapping signals and then integrated to quantify the 

relative amounts of calcite and amorphous calcium carbonate. This analysis revealed that the 

material was composed of 2% of the single crystallographic site attributed to calcite and 98% 
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of the distribution of sites assigned to amorphous calcium carbonate (Table 1). The 

broadened 1H signals centered at 5.0 ppm (2 ppm fwhm) and 1.3 ppm (2 ppm fwhm) remain 

in the single pulse 1H spectrum, indicating that the structural water and -OH groups 

(respectively) associated with the amorphous calcium carbonate were still present in the 

material. However the intensity of the signal associated with the -OH groups and linewidth of 

the signal associated with the structural water have decreased slightly, indicating that the 1H 

sites in the material were slightly more uniform as is consistent with amorphous calcium 

carbonate crystallizing to anhydrous crystalline calcium carbonate. In summary, the XRD 

and solid-state NMR measurements indicate that after 8 hours at 76% relative humidity, 

calcite crystals had begun to nucleate and grow in the amorphous calcium carbonate 

nanoparticles. Furthermore, in the absence of surface additives, the amorphous calcium 

carbonate nanoparticles began to crystallize to the most thermodynamically stable of the 

anhydrous crystalline polymorphs. 

Once the neat calcium carbonate material was exposed to 76% relative humidity for 24 

hours, additional material was removed to characterize the extent of crystallization using 

complementary XRD and NMR measurements (Figure 6, 24 hours). The broad reflections 

centered at 30° and 45° 2θ that were present in the XRD measurements at 8 hours are 

replaced by two sets of narrow reflections indexable to calcite and vaterite, indicating that the 

crystallization process of the neat amorphous calcium carbonate was complete by 24 hours. 

The calcite reflections have greater intensity in comparison with the vaterite reflections, 

signifying that there was a larger amount of calcite relative to vaterite in the crystallized 

calcium carbonate material. The single-pulse 13C NMR measurements exhibit signals at 

170.6 ppm, 169.5 ppm, and 168.7 ppm that are assigned to two 13C atomic sites in vaterite 
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and the single 13C atomic environment present in calcite, respectively,34 confirming the 

presence of the crystalline polymorphs manifested in the XRD spectrum. Several recent 

publications have proposed explanations that could account for the two distinct 13C atomic 

sites in vaterite established by solid-state 13C NMR. Demichelis et. al. suggest that vaterite is 

a dynamic system in which CO3
2- anions have “rotational freedom at room temperature” and 

therefore the resulting crystal structure of vaterite is an average of at least three minimum 

energy configurations.9 Kabalah-Amitai et. al. propose a random distribution of two 

coexisting crystal structures with a major structure exhibiting hexagonal symmetry and a 

minor structure of unknown symmetry, which is consistent with the observation of two 

distinct vaterite signals.11 It is notable that no aragonite was present in the material, as the 13C 

signal would appear at a chemical shift of 171 ppm,34 around 0.5 ppm downfield of the 

second vaterite signal, and it similarly is not present in any of the other 13C measurements 

collected and presented in this thesis. It is known that the calcite and aragonite polymorphs 

have similar enthalpies (Figure 2a) so final polymorph selection is likely sensitive to subtle 

differences in the crystallization pathway. The linewidths for each of the calcite and vaterite 

signals are extremely narrow, with a full-width half-maximum (fwhm) of 0.3 ppm for calcite 

and 0.6 ppm and 0.5 ppm for the first (169.5 ppm) and second (170.6 ppm) 13C atomic 

environments in vaterite, respectively. These narrow linewidths are indicative of a uniform 

local atomic order for each of the distinct crystallographic sites in the calcium carbonate 

material. The signals were again deconvoluted using Lorentzian line fits, establishing that the 

material was composed of 7% of the first 13C atomic environment attributed to vaterite, 3% 

of the second 13C atomic environment attributed to vaterite, and 90% of the 13C atomic 

environment attributed to calcite after 24 hours of crystallization (Table 1). It is notable that 
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within a few percent error of the integration of the Lorentzian line fits applied to the 

spectrum, the crystallographic sites attributed to vaterite occurred in a 2:1 ratio. The 1H 

signal centered at 1.3 ppm has disappeared, while the signal centered at 5.0 ppm has shifted 

to 4.6 ppm and narrowed considerably (0.3 ppm fwhm), indicating that the -OH groups 

associated with the disordered amorphous calcium carbonate have disappeared and that the 

water associated with the crystallized material has a more uniform atomic environment. 

Furthermore, the signal shift indicates that more electron density was present around the 

protons associated with water, which is consistent with the exclusion of structural water from 

the carbonate material. The only water remaining in the calcium carbonate material was 

likely surface water, which would interact to a lesser extent with the electron withdrawing 

oxygen groups in the carbonate anion. Taken in conjunction with the XRD measurements, 

the solid-state NMR measurements establish that after 24 hours at 76% relative humidity, no 

amorphous calcium carbonate remained in the nanoparticles. The thermodynamically stable 

calcite polymorph predominated (90% relative abundance), with trace amounts of kinetically 

metastable vaterite present in the material as well (10% relative abundance).  

Additional measurements were collected for the neat calcium carbonate material after 48 

hours and 120 hours in a controlled humidity and temperature environment. Comparing the 

wide-angle XRD patterns and the 13C and 1H NMR spectra acquired for the calcium 

carbonate material crystallized for 24 hours and those of the calcium carbonate material 

crystallized for 48 and 120 hours (Figure 6, 24 hours, 48 hours, and 120 hours), it is apparent 

that there are no changes in the reflections or intensities in the XRD patterns, as well as no 

variations in the chemical shifts, linewidths, and intensities of the signals present in the 13C 

and 1H NMR spectra. This indicates that the composition of the neat calcium carbonate 
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material reached a pseudo steady state after less than 24 hours of crystallization, with trace 

amounts of stabilized metastable vaterite present (10% relative abundance) in addition to the 

thermodynamically stable calcite (90% relative abundance). 

 

Figure 6. (a) Wide-angle powder XRD patterns, (b) solid-state single-pulse 13C NMR 

spectra, and (c) solid-state single-pulse 1H NMR spectra were acquired for amorphous 

calcium carbonate synthesized without surface additives and crystallized at 76% relative 

humidity for 0, 8, 24, 48, and 120 hours. XRD reflections were indexed to standard calcite 

(C) and vaterite (V) reflections. NMR spectra were acquired at 9.4 T, 298 K, and 10 kHz 

MAS and chemical shifts were referenced using a tetrakis(trimethylsilyl)silane (TKS) 

standard. Lorentzian line fits were applied to the 13C NMR spectra to deconvolute the 

overlapping signals and quantify the relative amounts of each calcium carbonate polymorph.  
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Crystallization time (hrs) Amorphous CaCO3 Calcite Vaterite Site 1 Vaterite Site 2 

0 100% - - - 

8 98% 2% - - 

24 - 90% 7% 3% 

48 - 90% 7% 3% 

120 - 90% 7% 3% 

Table 1. Relative quantities of calcium carbonate polymorphs present in the calcium 

carbonate material prepared without surface additives and stored at 76% relative humidity for 

0, 8, 24, 48, and 120 hours. Quantities are obtained from integration of Lorentzian line fits 

applied to solid-state single-pulse 13C NMR spectra. 

While single-pulse 13C NMR measurements are inherently quantitative as the 13C nuclei 

in the material are polarized directly, 13C CP-MAS experiments employ polarization transfer 

to selectively detect 13C nuclei that are dipole-dipole coupled to 1H nuclei. The signal 

intensity in the cross polarization experiments is therefore based upon the molecular distance 

between the two NMR active nuclear isotopes, in this case 1H nuclei and 13C nuclei, in 

addition to the quantity of the isotopes that are adjacent to each other. By varying the amount 

of time that the polarization is transferred from the 1H nuclei to the 13C nuclei (contact time), 

information about different molecular distances as well as fast or slow relaxing species may 

be obtained. Solid-state 13C CP-MAS NMR measurements were performed on the same neat 

calcium carbonate material after 0, 8, 24, 48, and 120 hours of storage at 76% relative 

humidity and 20°C. For these measurements, two contact times were selected; 500 ms 

(immediately adjacent nuclei, detects a greater quantity of fast relaxing species) and 3750 ms 

(adjacent nuclei, detects a greater quantity of slow relaxing species). 

Solid-state 13C CP-MAS NMR measurements were collected for the neat calcium 

carbonate material immediately after removal from the lyophilizer (Figure 7, 0 hours) to 

characterize the material as it was synthesized. For the measurements obtained with a 500 ms 
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contact time, the inhomogeneously broadened signal (3.4 ppm fwhm) centered at 168.6 ppm 

indicates that a wide distribution of 13C atomic sites were proximate to 1H atomic sites. This 

is consistent with the structural water and -OH groups found throughout the highly 

disordered amorphous calcium carbonate, and the chemical shift is consistent with the 

average chemical shift assigned to the 13C environments in amorphous calcium carbonate. 

The measurements obtained with the 3750 ms contact time have a higher signal to noise ratio 

than those obtained with the 500 ms contact time, establishing that the increased contact time 

allowed for the detection of a larger number of 13C atomic sites in the material. However the 

chemical shift of the signal (168.6 ppm) and the signal width (3.4 ppm fwhm) remain the 

same, indicating that the 13C atomic sites that were adjacent to the 1H atomic sites had a 

similar average electronic shielding as well as distribution at different molecular proximities. 

Furthermore, after 8 hours at 76% relative humidity (Figure 7, 8 hours), the signals for the 

500 ms and 3750 ms contact time are unchanged with respect to their 0 hour counterparts, 

signifying that the structural water and -OH groups associated with amorphous calcium 

carbonate remained in the material and the molecular proximities of the 1H and 13C nuclei 

and distributions of 13C atomic environments both remained the same. 

Additional measurements were acquired after 24, 48, and 120 hours at a controlled 

relative humidity and temperature to characterize the 13C atomic environments proximate to 

1H environments in the neat, fully crystalline calcium carbonate material. Comparing the 13C 

CP-MAS NMR measurements acquired for the calcium carbonate material crystallized for 24 

hours and those of the calcium carbonate material crystallized for 48 and 120 hours (Figure 

7, 24 hours, 48 hours, and 120 hours), it is evident that the 500 ms contact time 

measurements and the 3750 ms contact time measurements are unchanged with respect to 
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chemical shift, linewidth, and intensity across the three time points, indicating that the 

material had reached a steady state. The peak intensities and linewidths for both the 500 ms 

contact time (1.3 ppm fwhm) and the 3750 ms contact time (1.3 ppm fwhm) have decreased 

from those observed at 0 hours and 8 hours (3.4 ppm fwhm), indicating that the molecular 

environments for the 13C nuclei proximate to the 1H nuclei had a more uniform order, and 

that the structural water and -OH groups associated with the disordered amorphous material 

were excluded from the now crystalline material. The only 1H species remaining in the 

calcium carbonate material were associated with water (based on the single-pulse 1H NMR 

measurements) that was likely physisorbed to the calcite and vaterite crystallites at the 

particle surface. Additionally, the chemical shift of the signal shifted from the 168.6 ppm 

observed at 0 and 8 hours to 168.8 ppm, indicating that the crystalline 13C atomic 

environments that were proximate to the 1H atomic environments were primarily those 

present in calcite (168.7 ppm). The signal shift and linewidth are identical for the 500 ms and 

3750 ms contact times, establishing that the 13C environments adjacent to the water were 

uniformly distributed across a range of distances. 

 

Figure 7. Solid-state 13C CP-MAS NMR spectra were acquired for the same amorphous 

calcium carbonate synthesized without surface additives and crystallized at 76% relative 

humidity for 0, 8, 24, 48, and 120 hours as in Figure 6. NMR spectra were acquired for 

contact times of 500 ms and 3750 ms at 9.4 T, 298 K, and 10 kHz MAS and referenced using 

a tetrakis(trimethylsilyl)silane (TKS) standard. 
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To further characterize the crystalline calcium carbonate material (120 hours at 76% 

relative humidity), separate solid-state single-pulse 43Ca measurements were conducted at the 

National High Magnetic Field Laboratory to probe the 43Ca environments present (Figure 8). 

The single signal centered at 20 ppm indicates that the single 43Ca environment attributed to 

calcite35 was present in the material, which was expected to be the predominant calcium 

carbonate polymorph based on the separate solid-state single-pulse 13C measurements and 

wide-angle XRD measurements conducted on a sample prepared and crystallized under the 

same conditions. The crystalline 43Ca environments attributed to aragonite (-30 ppm)35 and 

vaterite (10 ppm)35 are not visible in this spectrum and it is evident that the sample did not 

contain appreciable amounts of amorphous material. This is also consistent with the solid-

state single-pulse 13C NMR measurements and XRD measurements conducted on a sample 

stored at 76% relative humidity for 120 hours, as only trace amounts of vaterite were present 

in the sample with no amorphous material or aragonite present within the limits of detection 

(<2%) (Figure 6). Furthermore, it is notable that no aragonite is present in any of the 43Ca 

NMR measurements presented in this thesis. The differences observed between the two 

samples prepared and crystallized under identical conditions may be attributed to the fact that 

the crystallization of metastable calcium carbonate is inherently difficult to control, and 

agreement within +/- 10% of the relative abundance of the crystalline polymorphs present is 

adequate. The linewidth of the single signal (4 ppm fwhm) indicates that the 43Ca 

environment was uniform, which is consistent with a highly crystalline calcite 43Ca atomic 

environment. 
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Figure 8. Solid-state single-pulse 43Ca MAS NMR spectrum was acquired for amorphous 

calcium carbonate synthesized without surface additives and crystallized at 76% relative 

humidity for 120 hours. The NMR spectrum was acquired at 11.7 T, 298 K, and 5 kHz MAS 

and referenced using a 1.0 M CaCl2 standard solution. 

To characterize particle morphology and crystallinity, complementary SEM, TEM, and 

BET measurements were conducted on the neat calcium carbonate material prepared and 

crystallized under the same conditions (Figure 9). Measurements were obtained before (0 

hours at 76% relative humidity) and after (120 hours at 76% relative humidity) 

crystallization. The scanning electron micrographs obtained for the material reveal that it was 

composed of aggregates of spherical nanoparticles that averaged 100 nm in diameter (Figure 

9a, 0 hours). Although the particle morphology does not seem to change significantly based 

on the SEM images collected before and after crystallization, it does appear that an increased 

roughness in the spherical particles was present after crystallization (Figure 9a, 120 hours). 

Similarly, the bright-field transmission electron micrographs obtained before crystallization 

of the calcium carbonate material reveal that the particles were spherical with an average 

particle diameter of 100 nm (Figure 9b, 0 hours). The corresponding image collected after the 

samples were allowed to crystallize for 120 hours at 76% relative humidity reveals that some 

porosity was potentially present in the particle structures (Figure 9b, 120 hours). These 

nanopores could have been formed by the exclusion of water from the particle and 

crystallization of the surrounding carbonate material, resulting in areas of material depletion. 
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The BET surface area measurements contradict these observations - the initial surface area of 

the calcium carbonate material before crystallization was 25.7 ± 0.3 m2/g while the surface 

area after crystallization is complete was around 16.7 ± 0.2 m2/g. This discrepancy could 

arise from the fact that particle densification was occurring alongside the formation of the 

nanopores as the carbonate material crystallized, and that the decrease in surface area 

resulting from the densification process dominated the change in particle surface area such 

that the additional surface area provided by the nanopores was outweighed in comparison. 

An alternate explanation for the apparent nanoscale porosity is that the crystalline material 

aggregated and changed under the electron beam, resulting in the formation of the 

“nanopores” during imaging, therefore additional imaging is necessary to confirm these 

observations. The electron diffraction pattern for the corresponding bright-field image 

collected at 0 hours reveal that the calcium carbonate material as synthesized was completely 

amorphous as the electrons are deflected at random, forming rings of equal intensity (Figure 

9c, 0 hours), therefore the dark-field image contained no discernable contrast. The selected 

area electron diffraction pattern collected for the fully crystalline calcium carbonate material 

exhibits scattering characteristic of a crystalline material (Figure 9c, 120 hours). Each of 

these diffraction spots in the electron diffraction pattern is characteristic of a crystallite that is 

oriented at random in the calcium carbonate material, and the spacing of the spots from the 

center of the pattern can be related to d-spacings present in the crystalline calcium carbonate 

polymorphs, thus establishing that the composition of the material was consistent with mixed 

calcium carbonate phases. Distinct spots in the pattern are indicative of larger single crystals 

in the calcium carbonate material, while rings of spots signify that the material was 

polycrystalline. The corresponding dark-field TEM supports these observations, as numerous 
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small randomly oriented crystallites (~2 nm in width) are visible alongside several larger 

crystalline regions (Figure 9d). High-resolution transmission electron microscopy was also 

performed on the fully crystalline sample that reveals the crystal lattice structures present in 

the material with the corresponding d-spacings from the electron diffraction (Figure 10). 

 

Figure 9. (a) Scanning electron micrographs, (b) bright-field transmission electron 

micrographs, (c) selected area electron diffraction patterns, and (d) dark-field transmission 

electron micrograph acquired for amorphous calcium carbonate synthesized without surface 

additives and crystallized at 76% relative humidity for 0 and 120 hours. Compositions are 

based upon single-pulse 13C NMR measurements conducted on a sample prepared and 

crystallized under the same conditions (Figure 6 and Table 1). A dark-field TEM image was 

not collected at 0 hours as the material was diffracting electrons at random, therefore the 

dark-field image did not exhibit any contrast.  
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Figure 10. (a) High-resolution transmission electron micrograph and (b) corresponding 

selected area electron diffraction pattern acquired for amorphous calcium carbonate 

synthesized without surface additives and crystallized at 76% relative humidity for 120 

hours. 

To characterize the intermolecular interactions in the fully crystalline calcium carbonate 

material synthesized without surface additives, a 2D 13C{1H} HETCOR NMR spectrum was 

acquired (Figure 11a). A strong intensity correlation is observed between water (4.6 ppm) 

and the average carbonate environment (168.8 ppm), which is consistent with water that was 

excluded from the crystalline calcium carbonate material and adsorbed to the surface of the 

particles (Figure 11b). The spectrum was collected after crystallization was complete to 

provide a comparison with spectra collected for calcium carbonate with saccharide surface 

additives at the same time point. Spectra were not collected for the fully amorphous material 

synthesized with and without surface additives as it was established that structural hydroxyl 

groups were present in amorphous calcium carbonate that could provide a false indication of 

hydrogen bonding between the surface additives and calcium carbonate particles. 
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Figure 11. (a) Solid-state 2D 13C{1H} HETCOR NMR spectrum acquired for amorphous 

calcium carbonate synthesized without surface additives and crystallized at 76% relative 

humidity for 120 hours. 1D 13C CP-MAS and single-pulse 1H MAS spectra displayed along 

the horizontal and vertical axes, respectively. (b) Depiction of the calcium carbonate particle 

surface resulting from the crystallization of amorphous calcium carbonate without surface 

additives present. 
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3.2. Crystallization of amorphous calcium carbonate with adsorbed saccharides 

3.2.1. Glucose, a reducing monosaccharide 

Glucose (reducing monosaccharide) was selected as a surface additive of potential 

interest, taking inspiration from the stabilizing interactions of biological polysaccharides 

(chitosan and chitin) with amorphous calcium carbonate particle surfaces in biological 

organisms. Samples of calcium carbonate material were synthesized, crystallized, and 

characterized using the same procedures as described in the previous section, however a 

glucose adsorbate was applied in situ immediately following particle precipitation. As before, 

wide-angle powder XRD was used to characterize the extent of long range order and the 

crystalline calcium carbonate polymorphs, while single-pulse 13C and 1H NMR 

measurements were collected to probe the extents of short range molecular order, relative 

quantities of the calcium carbonate polymorphs, and distinct 13C and 1H atomic environments 

present in the material. 

After removal of the material from the lyophilizer, XRD and solid-state 13C and 1H NMR 

measurements were obtained for the calcium carbonate material prepared with a glucose 

surface adsorbate to characterize the material as it was synthesized (Figure 12, 0 hours). The 

XRD pattern displays two broad, low-intensity reflections, the first centered at 30° and the 

second at 45° 2θ, which are characteristic of the random scattering of x-rays by an 

amorphous material. Complimentarily, the single-pulse 13C NMR spectrum collected at 0 

hours contains an inhomogeneously broadened signal (3.5 ppm fwhm) centered at 168.6 ppm 

which indicates that a broad distribution of 13C atomic environments were present in the 

material. This distribution is characteristic of an amorphous material, while the chemical shift 

of 168.6 ppm corresponds to the average 13C atomic environment present in amorphous 
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calcium carbonate. With regards to the single-pulse 1H NMR, the broadened 1H signals 

centered at 5.0 ppm (6 ppm fwhm) and 1.3 ppm (2 ppm fwhm) similarly establish the 

presence of a wide distribution of 1H sites in the material. The signal at 5.0 ppm can be 

attributed to the structural water present in amorphous calcium carbonate, while the signal 

centered at 1.3 ppm corresponds to the -OH groups found in amorphous calcium carbonate 

and in the glucose additive. The comprehensive XRD and solid-state NMR measurements 

indicate that the calcium carbonate material as-synthesized was completely amorphous. 

Following lyophilization, the calcium carbonate material with a glucose surface additive 

was stored at 20°C and 76% relative humidity as regulated by a saturated NaCl solution to 

induce crystallization. The crystallization process was monitored at the same time points as 

for the calcium carbonate material synthesized without additive; 8 hours, 24 hours, 48 hours, 

and 120 hours. No differences in the XRD patterns and the single-pulse 13C NMR 

measurements for the 0 hour, 8 hour, and 24 hour time points are observed within the 

sensitivity of the measurements (Figure 12, 0 hours, 8 hours, 24 hours). The two broad 

reflections indicative of random scattering remain in the diffraction patterns, and the 

linewidth and signal shift do not change appreciably for the single signal in the 13C NMR 

spectra. This indicates that the amorphous calcium carbonate material was kinetically 

stabilized by the glucose surface additive, as in the absence of surface additives the 

metastable amorphous material began to crystallize to calcite at 8 hours and was fully 

crystalline by 24 hours at 76% relative humidity. This delay in the onset of the crystallization 

process potentially resulted from electrostatic interactions of surface Ca2+ species with 

deprotonated glucose hydroxyl groups, or from hydrogen bonding of surface CO3
2- species 

with glucose hydroxyl groups (Figure 13). It should be noted that the pKa of glucose is 
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12.28,36 while the synthesis pH was 12.7 when the adsorbate was added which would 

indicate that both protonated and deprotonated glucose hydroxyl groups were present in 

solution. Furthermore, glucose is a known cryoprotectant in biological organisms that 

reduces cellular water loss,37 and it is possible that the addition of glucose to the particle 

surface similarly reduced the loss of structural water, thus slowing the crystallization process 

and stabilizing the disordered amorphous material. Although the XRD and 13C NMR 

measurements do not show measureable differences for the first three time points, the single-

pulse 1H NMR measurements indicate that the sample was still crystallizing slowly. The 

linewidth for the structural water signal at 5.0 ppm decreases slightly (5 ppm fwhm), and the 

signal corresponding to structural hydroxyl and glucose hydroxyl groups decreases in 

intensity.  Both of these changes indicate that the calcium carbonate material with a glucose 

surface additive was becoming marginally more ordered over a period of 24 hours, although 

the material remained fully amorphous based on 13C NMR and XRD measurements. 

 After the calcium carbonate material with a glucose surface adsorbate was exposed to 

76% relative humidity for 48 hours (Figure 12, 48 hours), crystallization was manifested in 

the material. The primary reflection of calcite (29° 2θ, [1 0 4] plane) is visible in the wide-

angle XRD pattern, however significant amounts of amorphous calcium carbonate were still 

present in the material based on the broad reflections centered at 30° and 45° 2θ. 

Complimentarily, the single-pulse 13C spectrum collected at 48 hours exhibits an additional 

signal (0.4 ppm fwhm) centered at 168.7 ppm. This signal can be attributed to the single 13C 

atomic environment present in calcite, however the inhomogeneously broadened signal (3.3 

ppm fwhm) centered at 168.6 ppm corresponding to amorphous calcium carbonate still 

predominates. The overlapping signals were deconvoluted using Lorentzian line fits and the 
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relative amounts of the distinct 13C sites were quantified (Table 2). Integration of these fits 

reveals that the material was composed of 2% of the single crystallographic site attributed to 

calcite and 98% of the distribution of sites assigned to amorphous calcium carbonate. The 

single-pulse 1H measurements indicate that a significant amount of structural water remained 

in the amorphous material after 48 hours of crystallization based on the broadened 1H signal 

centered at 5.0 ppm (5 ppm fwhm). Furthermore, the 1H signal centered at 1.3 ppm (2 ppm 

fwhm) indicates that structural hydroxyl groups were present in the amorphous calcium 

carbonate material with additional intensity resulting from glucose hydroxyl present in the 

carbonate material. In comparison to the signals observed in the previous 1H measurements, 

the intensities, chemical shifts, and linewidths of both signals have not changed appreciably. 

In summary, both wide angle XRD and solid-state NMR measurements indicate that after 48 

hours at 76% relative humidity, calcite crystals had begun to nucleate and grow in the 

amorphous calcium carbonate nanoparticles prepared with a glucose surface additive. 

Furthermore, in the presence of a glucose (reducing saccharide) surface additive, the 

amorphous calcium carbonate nanoparticles will begin to crystallize to the most 

thermodynamically stable of the anhydrous crystalline polymorphs. 

Following exposure to 76% relative humidity for 120 hours (Figure 12, 120 hours), the 

XRD pattern obtained for the calcium carbonate material prepared with a glucose surface 

additive exhibits two sets of narrow reflections that are indexable to calcite and vaterite. The 

calcite reflections have greater intensity in comparison with the vaterite reflections, as seen 

with the sample crystallized without surface additive, indicating that there was a larger 

amount of calcite relative to vaterite in the crystallized calcium carbonate material. However, 

the vaterite reflections have greater intensity than previously observed in the sample 



31 

 

crystallized without additive, indicating that more of the metastable vaterite polymorph was 

formed. Correspondingly, the single-pulse 13C NMR measurements indicate that crystalline 

calcite and vaterite were present in the material. Signals at 170.6 ppm, 169.5 ppm, and 168.7 

ppm that are assigned to two 13C atomic sites in vaterite and the single 13C atomic 

environment present in calcite, respectively, are manifested in the 13C spectrum. The narrow 

linewidths (0.5 ppm fwhm, 0.7 ppm fwhm, and 0.4 ppm fwhm, respectively) for each of 

these signals is indicative of a uniform local atomic order for each of the distinct sites in the 

calcium carbonate material, consistent with a fully crystalline material. The integration of the 

deconvoluted signals establishes that the material was composed of 23% of the first 13C 

atomic environment attributed to vaterite, 10% of the second 13C atomic environment 

attributed to vaterite, and 67% of the 13C atomic environment attributed to calcite. Again, 

within a few percent error of the integration of the Lorentzian line fits applied to the 

spectrum, the relative populations of the crystallographic sites attributed to vaterite occurred 

in a 2:1 ratio. The 1H NMR measurements also indicate that the calcium carbonate material 

had become more ordered. The 1H signal at 1.3 ppm associated with the structural -OH 

groups in the amorphous material and potentially with the -OH groups present in the glucose 

surface additive has decreased in intensity, consistent with the crystallization of the 

amorphous material. Furthermore, the 1H signal corresponding to the structural water has 

shifted from 5.0 ppm to 4.8 ppm and narrowed considerably (2 ppm fwhm), indicating that 

the water associated with the crystalline material had a more uniform atomic environment as 

expected. As previously discussed, the signal shift is likely due to the exclusion of structural 

water from the carbonate material as it crystallized, leaving only surface water. Altogether, 

the XRD and solid-state NMR measurements establish that after 120 hours at 76% relative 
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humidity, no amorphous calcium carbonate remained in the calcium carbonate nanoparticles 

synthesized with a glucose surface additive.  

To summarize the significant findings from this series of XRD and solid-state NMR 

measurements, the onset of crystallization for the amorphous calcium carbonate material 

crystallized in the presence of a glucose surface additive was delayed in comparison with the 

same material crystallized without a surface additive. Crystallization was first manifested 

after 48 hours at 76% relative humidity in the presence of the glucose surface additive, in 

comparison to 8 hours without any surface additive present. Furthermore, although the 

thermodynamically stable calcite polymorph predominated in the fully crystalline calcium 

carbonate material with a glucose adsorbate (67% relative abundance), the kinetically 

metastable vaterite polymorph was present in significant quantities (33% relative 

abundance). Comparing these results with those for the amorphous calcium carbonate 

crystallized without a surface additive (90% calcite, 10% vaterite), it is evident that the 

glucose surface additive stabilized larger amounts the kinetically metastable vaterite 

polymorph. In conclusion, the glucose (reducing sugar) surface additive delayed the onset of 

crystallization in amorphous calcium carbonate, as well as favored the formation of greater 

amounts of metastable vaterite. 
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Figure 12. (a) Wide-angle powder XRD patterns, (b) solid-state single-pulse 13C NMR 

spectra, and (c) solid-state single-pulse 1H NMR spectra were acquired for amorphous 

calcium carbonate synthesized with a glucose surface additive and crystallized at 76% 

relative humidity for 0, 8, 24, 48, and 120 hours. XRD reflections were indexed to standard 

calcite (C) and vaterite (V) reflections. NMR spectra were acquired at 9.4 T, 298 K, and 10 

kHz MAS and chemical shifts were referenced using a tetrakis(trimethylsilyl)silane (TKS) 

standard. Lorentzian line fits were applied to the 13C NMR spectra to deconvolute the 

overlapping signals and quantify the relative amounts of each calcium carbonate polymorph.  
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Crystallization time (hrs) Amorphous CaCO3 Calcite Vaterite Site 1 Vaterite Site 2 

0 100% - - - 

8 100% - - - 

24 100% - - - 

48 98% 2% - - 

120 - 67% 23% 10% 

Table 2. Relative quantities of calcium carbonate polymorphs present in the calcium 

carbonate material prepared with a glucose surface additive and stored at 76% relative 

humidity for 0, 8, 24, 48, and 120 hours. Quantities are obtained from integration of 

Lorentzian line fits applied to solid-state single-pulse 13C NMR spectra. 

 

Figure 13. Depiction of the interaction of glucose (reducing saccharide) with the crystal 

structures present at the calcium carbonate particle surface. 

Solid-state 13C CP-MAS NMR measurements were performed on the same calcium 

carbonate material with a glucose adsorbate using to characterize the 13C environments in 

molecular proximity to 1H sites at different points in the crystallization process. Immediately 

after removal from the lyophilizer (Figure 14, 0 hours) the measurements obtained with a 500 

ms contact time contain a single inhomogeneously broadened signal (3.4 ppm fwhm) 

centered at 168.6 ppm indicating that a wide distribution of 13C atomic sites are proximate to 

1H atomic sites. The signal intensity results primarily from the molecular proximity between 
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the structural water and -OH groups found throughout the highly disordered ACC and the 

carbonate anions, while the chemical shift is consistent with the average chemical shift 

assigned to the 13C environments in amorphous calcium carbonate. This signal could also 

contain intensity resulting from the protons within the saccharide molecules that were 

proximate to surface carbonate species. Increasing the contact time from 500 ms to 3750 ms 

contact time increases the signal to noise ratio, however the chemical shift of the signal 

(168.6 ppm) and the signal width (3.4 ppm fwhm) remain the same within the sensitivity of 

the measurements. This establishes that the increased contact time allowed for the detection 

of a larger number of 13C atomic sites in the material and that the 13C atomic sites adjacent to 

the 1H atomic sites had a similar average electronic shielding as well as distribution at 

different molecular proximities. Furthermore, the signals for the 500 ms and 3750 ms contact 

time are unchanged across a 48 hour time period (Figure 14, 0 hours, 8 hours, 24 hours, 48 

hours), signifying that the structural water and -OH groups associated with amorphous 

calcium carbonate and the glucose surface additive remained in the material and the 

molecular proximities of the 1H and 13C nuclei and distributions of 13C atomic environments 

both remained the same. 

The 13C CP-MAS NMR spectrum acquired for the calcium carbonate material 

crystallized with a glucose surface additive for 120 hours differs slightly from those obtained 

for the first four timepoints (Figure 14, 120 hours). The peak intensities and linewidths for 

the 3750 ms contact time (1.7 ppm fwhm) and 500 ms contact time (1.7 ppm fwhm) have 

decreased and the center of the signal has shifted to 168.9 ppm, indicating that the molecular 

environments for the 13C nuclei proximate to the 1H nuclei had a more uniform order and an 

average 13C atomic environment between that of calcite and vaterite. The observed decreases 
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in signal intensity result from the exclusion of the structural water and -OH groups associated 

with the disordered amorphous material. Any water remaining in the material was likely 

physisorbed to the calcite and vaterite crystallites at the particle surface. The shift in the 

average 13C atomic environment is not observed for the calcium carbonate material 

crystallizing without surface additive present, which could indicate that once the structural 

water and hydroxyl groups in the carbonate material are depleted by crystallization, a larger 

portion of the CP signal results from the protons on saccharide molecules that are adjacent to 

carbonate anions at the particle surface. The saccharide molecules are likely associated with a 

more metastable phase of calcium carbonate, such as vaterite, which could result in the 

observed signal shift. 

 

Figure 14. Solid-state 13C CP-MAS NMR spectra were acquired for the same amorphous 

calcium carbonate synthesized with a glucose surface additive and crystallized at 76% 

relative humidity for 0, 8, 24, 48, and 120 hours as in Figure 12. NMR spectra were acquired 

for contact times of 500 ms and 3750 ms at 9.4 T, 298 K, and 10 kHz MAS and referenced 

using a tetrakis(trimethylsilyl)silane (TKS) standard. 

To further characterize the fully crystalline calcium carbonate material prepared with a 

glucose surface additive (120 hours at 76% relative humidity), separate solid-state single-

pulse 43Ca measurements were conducted at the National High Magnetic Field Laboratory 

(Figure 15). The measurements indicate that two distinct 43Ca environments were present in 
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the material and the separate signals can be deconvoluted using Lorentzian line fits (43Ca is 

only a weakly quadrupolar nucleus and therefore Lorentzian fits are applicable). The more 

intense, narrow (7 ppm fwhm) signal centered at 19 ppm indicates that the predominant 43Ca 

environment that was present in the sample can be attributed to calcite, which is expected 

based on the separate solid-state single-pulse 13C measurements and wide-angle XRD 

measurements conducted on a sample prepared and crystallized under the same conditions. 

The less intense, broadened signal (16 ppm fwhm) centered at 5 ppm corresponds to the 

average 43Ca environment present in vaterite, which was also present in significant quantities 

based on single-pulse 13C measurements and wide-angle XRD measurements. It is notable 

that although the 13C measurements reveal that crystalline vaterite has two distinct 13C sites 

with relatively uniform distributions (0.5 ppm and 0.7 ppm fwhm), there is only one 43Ca 

signal attributed to vaterite and it is extremely broadened. It would follow that there are at 

least two distinct 43Ca sites in vaterite, and the single broadened signal in the measurements 

is likely composed of multiple overlapping signals resulting from 43Ca sites which have 

similar average electronic shielding. The integration of the Lorentzian deconvolutions reveals 

that the calcium carbonate material fully crystallized in the presence of a glucose surface 

additive was composed of 66% of the single 43Ca site attributed to calcite and 34% of the 

distribution of 43Ca sites attributed to vaterite. In comparison, the relative populations 

indicated by the single-pulse 13C NMR measurements (Figure 12, 120 hours) were 67% of 

the single 13C site assigned to calcite and 33% of the two 13C sites assigned to vaterite (Table 

2). 
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Figure 15. Solid-state single-pulse 43Ca MAS NMR spectrum was acquired for amorphous 

calcium carbonate synthesized with a glucose surface additive and crystallized at 76% 

relative humidity for 120 hours. NMR spectrum was acquired at 11.7 T, 298 K, and 5 kHz 

MAS and referenced using a 1.0 M CaCl2 standard solution. 

Complementary SEM, TEM, and BET measurements were conducted on a calcium 

carbonate material prepared with a glucose adsorbate and crystallized under the same 

conditions (Figure 16) to characterize particle morphology and crystallinity. Measurements 

were obtained before (0 hours at 76% relative humidity) and after (120 hours at 76% relative 

humidity) crystallization. The initial SEM images reveal that the amorphous material was 

composed of aggregates of spherical nanoparticles averaging 100 nm in diameter, and the 

SEM images obtained for the crystalline material after 120 hours show that the morphology 

and particle diameter did not change significantly (Figure 16a). Likewise, the bright-field 

transmission electron micrograph obtained before crystallization of the calcium carbonate 

material reveals that the particles were roughly spherical, as does the corresponding image 

collected after the samples were allowed to crystallize for 120 hours at 76% relative humidity 

(Figure 16b). The increased particle roughness (and tentative nanoporosity) observed for the 

amorphous calcium carbonate crystallized without surface additive is not observed in the 

presence of a glucose surface additive, potentially due to the cryoprotectant functionality of 

the glucose molecule that inhibited the exclusion of structural water from the particles. The 

BET surface area measurements allude to particle densification as the material crystallizes; 
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the initial surface area of the calcium carbonate material with a glucose adsorbate was 33.9 ± 

0.2 m2/g while the surface area after crystallization was around 28.5 ± 0.2 m2/g. These 

surface areas are noticeably different from the surface areas measured for the amorphous 

material crystallized without surface additives, which were 25.7 ± 0.3 m2/g and 16.7 ± 0.2 

m2/g, respectively. The observed differences could arise from the fact that the glucose 

inhibited aggregation of the amorphous calcium carbonate particles, thus increasing the 

measured surface area. The corresponding electron diffraction patterns for the bright-field 

TEM images (Figure 16c) indicate that the calcium carbonate material as synthesized was 

completely amorphous, while the pattern collected after the calcium carbonate material was 

stored at 76% relative humidity for 120 hours exhibits regular scattering characteristic of a 

polycrystalline material with some large single crystals, with d-spacings consistent with 

mixed crystalline calcium carbonate phases. The dark-field TEM image supports these 

observations, as numerous small crystallites of a few nanometers in width are visible 

alongside several crystalline regions that are much larger in size (10-50 nm) (Figure 16d). 



40 

 

 

Figure 16. (a) Scanning electron micrographs, (b) bright-field transmission electron 

micrographs, (c) selected area electron diffraction patterns, and (d) dark-field transmission 

electron micrograph acquired for amorphous calcium carbonate synthesized with a glucose 

surface additive and crystallized at 76% relative humidity for 0 and 120 hours. Compositions 

are based upon single-pulse 13C NMR measurements conducted on a sample prepared and 

crystallized under the same conditions (Figure 12 and Table 2). A dark-field TEM image was 

not collected at 0 hours as the material was diffracting electrons at random, therefore the 

dark-field image did not exhibit any contrast.  
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3.2.2. Sucrose, a non-reducing disaccharide 

To provide maximum contrast to the crystallization processes of amorphous calcium 

carbonate in the presence of a reducing saccharide (glucose) surface additive, a non-reducing 

saccharide (sucrose) surface additive was selected for further study, again taking inspiration 

from the stabilizing interactions of biological polysaccharides (chitosan and chitin) with 

amorphous calcium carbonate particle surfaces in biological organisms. Samples of calcium 

carbonate material were synthesized and crystallized using the same procedure as described 

previously, however a sucrose surface adsorbate was applied in situ immediately following 

particle precipitation. As before, wide-angle powder XRD was used to characterize the extent 

of long range order and the crystalline calcium carbonate polymorphs, while single-pulse 13C 

and 1H NMR measurements were collected to probe the extents of short range molecular 

order, relative quantities of the calcium carbonate polymorphs, and distinct 13C and 1H 

atomic environments present in the material. 

To characterize the material as synthesized, XRD patterns in conjunction with solid-state 

single-pulse 13C and 1H NMR measurements were collected after removal of the material 

from the lyophilizer (Figure 17, 0 hours). These measurements reveal that the material as 

synthesized was amorphous calcium carbonate. The wide-angle XRD pattern exhibits two 

broad, low-intensity reflections which are characteristic of the random scattering of X-rays 

from an amorphous material. Furthermore, a single, inhomogeneously broadened signal 

centered at 168.6 ppm is present in the solid-state single-pulse 13C NMR spectrum collected 

at 0 hours. The signal shift corresponds to the average 13C environment present in amorphous 

calcium carbonate, while the broadened signal (3.5 ppm fwhm) indicates that a wide 

distribution of 13C atomic environments were present in the material, again consistent with an 
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amorphous sample. The single-pulse 1H NMR measurements are consistent with the 13C 

NMR measurements; two broadened 1H signals are present in the spectrum, the first centered 

at 5.0 ppm (6 ppm fwhm) is assigned to the structural water present in amorphous calcium 

carbonate and the second centered at 1.3 ppm (2 ppm fwhm) corresponds to the -OH groups 

found in amorphous calcium carbonate and in the sucrose surface additive. The 

inhomogeneous broadening of these two signals establishes the presence of a wide 

distribution of 1H sites in the material. Altogether, the wide-angle XRD and solid-state NMR 

measurements indicate that the synthesized material was amorphous calcium carbonate with 

a sucrose surface additive. 

Following lyophilization, the crystallization process of the calcium carbonate material 

synthesized with a sucrose adsorbate was monitored after 8 hours, 24 hours, 48 hours, and 

120 hours of exposure to 76% relative humidity (Figure 17, 8 hours, 24 hours, 48 hours, 120 

hours). The XRD patterns and 13C NMR measurements obtained at 8 and 24 hours exhibit no 

differences (within the sensitivity of the measurements) to those obtained initially at 0 hours. 

The broad reflections indicative of random scattering remain in the diffraction patterns, and 

the linewidth and signal shift do not change appreciably for the signals in the 13C NMR 

spectra. Given that in the absence of surface additives amorphous calcium carbonate began to 

crystallize to calcite after 8 hours and was fully crystalline after 24 hours, it is evident that 

the amorphous material was stabilized by the sucrose surface additive. As with the glucose 

surface additive, delay in the onset of the crystallization process potentially resulted from 

electrostatic interactions of surface Ca2+ species with deprotonated sucrose hydroxyl groups, 

or from hydrogen bonding of surface CO3
2- species with sucrose hydroxyl groups (Figure 21 

b). It should be noted that the pKa of sucrose is 12.62,36 while the synthesis pH was 12.7 
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when the adsorbate was added which would indicate that both protonated and deprotonated 

sucrose hydroxyl groups were present in solution. Furthermore, sucrose is also commonly 

used as a cryoprotectant,38 and as with glucose, could have inhibited the exclusion of 

structural water from the calcium carbonate particles thus stabilizing the disordered ACC. 

Although the XRD and 13C NMR measurements indicate that the calcium carbonate prepared 

with a sucrose surface additive remained fully amorphous for a period of 24 hours at 76% 

relative humidity, the single-pulse 1H NMR measurements reveal that the material was still 

changing. The 1H signal linewidths and shifts remain the same across the first three time 

points, however the intensity of the 1H signal corresponding to the hydroxyl groups present 

in the sample decreases after 8 hours at 76% relative humidity. This indicates that the sample 

was becoming slightly more ordered over a period of 8 hours, as a large fraction of the 

hydroxyl sites present in the material were associated with the amorphous calcium carbonate. 

In summary, XRD and solid-state NMR measurements indicate that the crystallization 

process of amorphous calcium carbonate was delayed by the presence of a sucrose (non-

reducing saccharide) surface additive. 

 Following 48 hours of exposure to 76% relative humidity (Figure 17, 48 hours), XRD 

and 13C and 1H solid-state NMR measurements indicate that the calcium carbonate material 

synthesized with a sucrose adsorbate contained crystalline calcium carbonate. Reflections 

indexable to calcite and vaterite are visible in the wide-angle XRD pattern, however the 

reflections are of low intensity, indicating that the material was likely not fully crystalline. 

Interestingly, the vaterite reflections are of greater intensity than the calcite reflections, which 

reveals that the calcium carbonate material prepared with a sucrose surface additive began to 

crystallize to a metastable polymorph of calcium carbonate in more significant amounts than 
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observed with the glucose surface additive or no surface additive. Complimentarily, the 

single-pulse 13C spectrum collected at 48 hours exhibits four signals when properly 

deconvoluted by Lorentzian line fits. An inhomogeneously broadened signal corresponding 

to the ACC remaining in the material is centered at 168.6 ppm, while three additional signals 

centered at 170.6 ppm, 169.5 ppm, and 168.7 ppm are assigned to two 13C atomic sites in 

vaterite and the single 13C atomic environment present in calcite, respectively. The narrow 

linewidths for the vaterite and calcite signals (0.5 ppm fwhm, 0.7 ppm fwhm, and 0.4 ppm 

fwhm, respectively) are indicative of a uniform local atomic order for each of the sites, while 

the broadened linewidth for the remaining ACC (3.2 ppm fwhm) reveals that the sample was 

not fully crystalline. The relative amounts of the distinct 13C sites are quantified by 

integration of the applied Lorentzian line fits (Table 3). After 48 hours at 76% relative 

humidity, the calcium carbonate material prepared with a sucrose surface additive was 

composed of 37% of the first crystallographic site attributed to vaterite, 16% of the second 

crystallographic site attributed to vaterite, 13% of the single crystallographic site attributed to 

calcite, and 34% of the distribution of sites assigned to amorphous calcium carbonate. As 

with the vaterite present in the samples prepared without surface additive and with a glucose 

surface additive, the vaterite sites occur in a 2:1 ratio given the error present in the fitting. 

The corresponding single-pulse 1H measurements reveal that two distinct 1H atomic 

environments are still present in the material; the broadened 1H signal centered at 5.0 ppm (4 

ppm fwhm) indicates that a significant amount of structural water remained associated with 

the ACC in the material after 48 hours of crystallization while the 1H signal centered at 1.3 

ppm (2 ppm fwhm) indicates that structural hydroxyl groups were present in the amorphous 

calcium carbonate, with additional intensity resulting from sucrose hydroxyl groups that were 
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present in the carbonate material. The linewidth of the structural water signal has decreased 

slightly and the intensity has correspondingly increased, which is consistent with the 

increased atomic order present in the material. In summary, after 48 hours at 76% relative 

humidity, vaterite and calcite crystals began to nucleate and grow in the amorphous calcium 

carbonate nanoparticles prepared with a sucrose adsorbate although a significant amount of 

amorphous material remained. In addition, the amorphous calcium carbonate nanoparticles 

crystallized preferentially to the metastable vaterite polymorph in the presence of a sucrose 

(non-reducing saccharide) surface additive, although some of the thermodynamically stable 

calcite polymorph was also present. Interestingly, the amorphous calcium carbonate 

nanoparticles crystallized in the presence of a glucose (reducing saccharide) surface additive 

for 48 hours exhibited significantly larger amounts of amorphous material (98% relative 

abundance) in comparison with those crystallized in the presence of a sucrose surface 

additive (34% relative abundance), indicating that sucrose delayed the onset of 

crystallization, but to a lesser extent than glucose. 

After exposure to 76% relative humidity for 120 hours (Figure 17, 120 hours), the XRD 

pattern obtained for the calcium carbonate material prepared with a sucrose surface additive 

exhibits two sets of narrow reflections that are indexable to vaterite and calcite. The 

intensities of the reflections indicate that the material was fully crystalline and vaterite 

reflections still have greater intensity in comparison to the calcite reflections, confirming that 

there was a larger amount of metastable vaterite relative to calcite in the material. 

Correspondingly, the single-pulse 13C NMR measurements establish that crystalline vaterite 

and calcite were present in the material and no amorphous calcium carbonate remained. 

Signals at 170.6 ppm, 169.5 ppm, and 168.7 ppm assigned to the two 13C atomic sites in 
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vaterite and the single 13C atomic environment present in calcite, respectively, have narrow 

linewidths (0.5 ppm fwhm, 0.7 ppm fwhm, and 0.4 ppm fwhm, respectively) which are 

indicative of a uniform local atomic order consistent with a fully crystalline material. The 

integration of the deconvoluted signals establishes that the material was composed of 61% of 

the first 13C atomic environment attributed to vaterite, 26% of the second 13C atomic 

environment attributed to vaterite, and 13% of the 13C atomic environment attributed to 

calcite. Again, it is notable that within a few percent error of the fitting, the relative 

populations of the crystallographic sites attributed to vaterite occurred in a 2:1 ratio. The 1H 

NMR measurements also confirm that the calcium carbonate material had become more 

ordered. The 1H signal centered at 1.3 ppm associated with the structural -OH groups in the 

amorphous material and potentially with the -OH groups present in the sucrose surface 

additive has decreased in intensity, consistent with the crystallization of the amorphous 

material. Furthermore, the 1H signal corresponding to the structural water has shifted from 

5.0 ppm to 4.8 ppm and narrowed considerably (2 ppm fwhm), indicating that the water 

associated with the crystalline material had a more uniform atomic environment as expected. 

As previously discussed, the signal shift is likely due to the exclusion of structural water 

from the carbonate material as it crystallized, leaving only surface water. Altogether, the 

XRD and solid-state NMR measurements establish that after 120 hours at 76% relative 

humidity, no amorphous calcium carbonate remained in the calcium carbonate nanoparticles 

synthesized with a sucrose surface additive.  

To summarize the significant findings from this series of XRD and solid-state NMR 

measurements, the amorphous calcium carbonate material crystallized in the presence of a 

sucrose (non-reducing saccharide) surface additive had a delayed onset of crystallization in 
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comparison with the same ACC crystallized without a surface additive. Crystallization was 

first manifested to a significant extent after 48 hours at 76% relative humidity in the presence 

of the sucrose surface additive, in comparison to 8 hours without any surface additive 

present. Although both the sucrose and glucose saccharide surface additives delayed the 

onset of crystallization, crystallization did take place more rapidly in the presence of the 

sucrose surface additive than in the presence of the glucose (reducing saccharide) surface 

additive. After 48 hours at 76% relative humidity, the material with a sucrose surface 

additive was composed of 34% ACC, while the material prepared with a glucose surface 

additive contained 98% ACC. Furthermore, although the thermodynamically stable calcite 

polymorph predominated in the fully crystalline calcium carbonate material with a glucose 

surface additive (67% relative abundance) and in the crystalline calcium carbonate prepared 

without surface additives (90% relative abundance), it was present in significantly lower 

levels in the sample crystallized with a sucrose surface additive (13% relative abundance). 

The kinetically metastable vaterite was the predominant polymorph produced in the presence 

of sucrose (87% relative abundance) versus in the presence of glucose (33% relative 

abundance) and no surface additive (10% relative abundance). In conclusion, the sucrose 

surface additive delayed the onset of crystallization in amorphous calcium carbonate 

(although to a lesser extent than glucose), as well as favored the formation of metastable 

vaterite over the thermodynamically stable calcite. 
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Figure 17. (a) Wide-angle powder XRD patterns, (b) solid-state single-pulse 13C NMR 

spectra, and (c) solid-state single-pulse 1H NMR spectra were acquired for amorphous 

calcium carbonate synthesized with a sucrose surface additive and crystallized at 76% 

relative humidity for 0, 8, 24, 48, and 120 hours. XRD reflections were indexed to standard 

calcite (C) and vaterite (V) reflections. NMR spectra were acquired at 9.4 T, 298 K, and 10 

kHz MAS and chemical shifts were referenced using a tetrakis(trimethylsilyl)silane (TKS) 

standard. Lorentzian line fits were applied to the 13C NMR spectra to deconvolute the 

overlapping signals and quantify the relative amounts of each calcium carbonate polymorph. 
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Crystallization time (hrs) Amorphous CaCO3 Calcite Vaterite Site 1 Vaterite Site 2 

0 100% - - - 

8 100% - - - 

24 100% - - - 

48 34% 13% 37% 16% 

120 - 13% 61% 26% 

Table 3. Relative quantities of calcium carbonate polymorphs present in the calcium 

carbonate material prepared with a sucrose surface additive and stored at 76% relative 

humidity for 0, 8, 24, 48, and 120 hours. Quantities are obtained from integration of 

Lorentzian line fits applied to solid-state single-pulse 13C NMR spectra. 

Complementary solid-state 13C CP-MAS NMR measurements were performed on the 

same calcium carbonate material prepared with a sucrose adsorbate using 500 ms and 3750 

ms contact times to characterize the 13C atomic sites in different molecular proximities to 1H 

atomic sites. The initial measurements (Figure 18, 0 hours) obtained with a 500 ms contact 

time contain a single inhomogeneously broadened signal (3.4 ppm fwhm) centered at 168.6 

ppm indicating that a wide distribution of 13C atomic sites are adjacent to 1H atomic sites. As 

in the previous CP-MAS NMR measurements, the signal intensity results primarily from 

protons in structural water and hydroxyl groups found throughout the highly disordered ACC 

that are in close molecular proximity to the carbonate anions, while the chemical shift is 

consistent with the average chemical shift assigned to the 13C environments in amorphous 

calcium carbonate. The observed signal also contains intensity resulting from the protons 

within the saccharide molecules that are proximate to surface carbonate species. As expected, 

increasing the contact time from 500 ms to 3750 ms contact time increases the signal to noise 

ratio, however the chemical shift of the signal (168.6 ppm) and the signal width (3.4 ppm 

fwhm) remain the same. The increased contact time allows for the detection of a larger 

number of 13C atomic sites in the material as spin polarization travels radially outward from 
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the 1H nuclei for a longer amount of time, thus increasing the signal to noise ratio. The 

identical chemical shifts and line widths for the 500 ms and 3750 ms contact times indicate 

that the 13C atomic sites adjacent to the 1H atomic sites had a similar average electronic 

shielding as well as distribution at different molecular proximities. Furthermore, the signals 

for the 500 ms and 3750 ms contact time are unchanged across a 24 hour time period (Figure 

18, 0 hours, 8 hours, 24 hours), signifying that the structural water and -OH groups 

associated with amorphous calcium carbonate and sucrose surface additive remained in the 

material and the molecular proximities of the 1H and 13C nuclei and distributions of 13C 

atomic environments both remained the same. 

After the calcium carbonate material prepared with a sucrose surface additive was 

exposed to 76% relative humidity for 48 hours, the obtained 13C CP-MAS NMR 

measurements differ slightly from those obtained for the first three timepoints (Figure 18, 48 

hours). The peak intensities and linewidths for both the 500 ms contact time (3.0 ppm fwhm) 

and the 3750 ms contact time (3.2 ppm fwhm) have decreased and the centers of the signals 

have shifted to 168.9 ppm. The decrease in linewidth indicates that the molecular 

environments for the 13C nuclei proximate to the 1H nuclei had a more uniform order and the 

signal shift corresponds to an average 13C atomic environment that between that of calcite 

and that of vaterite. In addition, the observed decrease in signal intensity results from the 

exclusion of the structural water and -OH groups associated with the disordered amorphous 

material; any remaining water was likely physisorbed to the calcite and vaterite crystallites at 

the particle surface. Notably, the shift in the average 13C atomic environment was not 

observed for the calcium carbonate material crystallized without surface additive present, 

which could indicate that once the structural water and hydroxyl groups in the carbonate 
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material were depleted by crystallization, a larger portion of the CP signal resulted from the 

protons on saccharide molecules that were adjacent to carbonate anions at the particle 

surface. The saccharide molecules were likely associated with a more metastable phase of 

calcium carbonate, such as vaterite, which could result in the observed signal shift. Finally, 

the signal shift and linewidth are similar for the 500 ms and 3750 ms contact times, 

establishing that the 13C environments that were adjacent to the 1H nuclei were uniformly 

distributed across a range of distances. 

Similarly, after 120 hours at 76% relative humidity, the single signal observed in the 13C 

CP-MAS NMR measurements at contact times of 500 ms and 3750 ms has decreased further 

in intensity and linewidth (2.0 ppm), and shifted to 169.3 ppm. These changes result from the 

increased crystallinity present in the sample as described previously. It is interesting to note 

that the signals now correspond well with the known chemical shift of the first vaterite site 

(169.5 ppm), indicating that the protons that remained in the calcium carbonate material 

prepared with a sucrose adsorbate were proximate to vaterite sites. The identical shift and 

linewidth for the two contact times again indicates that the 13C environments that were 

adjacent to the 1H nuclei were uniformly distributed across a range of distances. 
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Figure 18. Solid-state 13C CP-MAS NMR spectra were acquired for the same amorphous 

calcium carbonate synthesized with a sucrose surface additive and crystallized at 76% 

relative humidity for 0, 8, 24, 48, and 120 hours as in Figure 17. NMR spectra were acquired 

for contact times of 500 ms and 3750 ms at 9.4 T, 298 K, and 10 kHz MAS and referenced 

using a tetrakis(trimethylsilyl)silane (TKS) standard. 

To further characterize the fully crystalline calcium carbonate material prepared with a 

sucrose surface additive (120 hours at 76% relative humidity), separate solid-state single-

pulse 43Ca measurements were conducted at the National High Magnetic Field Laboratory 

(Figure 19). Two distinct signals are resolved in the 43Ca measurements by deconvolution 

using Lorentzian line fits, indicating that two distinct 43Ca environments are present in the 

material. The narrow (5 ppm fwhm) signal centered at 19 ppm is attributed to the single 43Ca 

environment present in calcite, while the broadened signal (20 ppm fwhm) centered at 5 ppm 

corresponds to the average 43Ca environment present in vaterite. Both polymorphs of calcium 

carbonate are expected in the material based on the separate solid-state single-pulse 13C 

measurements and wide-angle XRD measurements conducted on a sample prepared and 

crystallized under the same conditions. As observed in the previous 43Ca measurements, there 

is only one broadened 43Ca signal attributed to vaterite although the 13C measurements reveal 

that crystalline vaterite has two distinct 13C sites with relatively uniform distributions (0.5 

ppm and 0.7 ppm fwhm). Again, it is likely that the single broadened 43Ca vaterite signal is 
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composed of multiple overlapping signals resulting from 43Ca sites which have similar 

average electronic shielding. Integrating the deconvolutions reveals that the calcium 

carbonate material crystallized in the presence of a sucrose surface additive was composed of 

23% of the single 43Ca site attributed to calcite and 77% of the distribution of 43Ca sites 

attributed to vaterite. In comparison, the relative populations indicated by the single-pulse 

13C NMR measurements (Figure 17, 120 hours) were 13% of the single 13C site assigned to 

calcite and 87% of the two 13C sites assigned to vaterite (Table 3). Again, the differences 

observed between the two samples prepared and crystallized under identical conditions may 

be attributed to the fact that the crystallization of metastable calcium carbonate is inherently 

difficult to control, and agreement within +/- 10% of the relative abundance of the crystalline 

polymorphs present is adequate. 

 

Figure 19. Solid-state single-pulse 43Ca MAS NMR spectrum was acquired for amorphous 

calcium carbonate synthesized with a sucrose surface additive and crystallized at 76% 

relative humidity for 120 hours. NMR spectrum was acquired at 11.7 T, 298 K, and 5 kHz 

MAS and referenced using a 1.0 M CaCl2 standard solution. 

Particle morphology and crystallinity were characterized using complementary SEM, 

TEM, and BET measurements conducted on a calcium carbonate material prepared with a 

sucrose adsorbate and crystallized under the same conditions (Figure 20). Measurements 

were obtained before (0 hours at 76% relative humidity) and after (120 hours at 76% relative 

humidity) crystallization. Aggregates of spherical nanoparticles averaging 100 nm in 
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diameter are visible in the SEM images obtained for both the amorphous material (0 hours) 

and the crystalline material (120 hours), showing that the morphology and particle diameter 

did not change significantly as a result of the crystallization process (Figure 20a). Similarly, 

the bright-field TEM measurements obtained before and after the crystallization of the 

calcium carbonate material reveal that the particles were roughly spherical with an average 

diameter of 100 nm (Figure 20b). As with the sample crystallized in the presence of glucose, 

the increased particle roughness observed for the amorphous calcium carbonate crystallized 

without surface additive is not observed. This potentially results from the retention of larger 

amounts of structural water in the calcium carbonate particles, as sucrose serves as a 

cryoprotectant. BET analysis reveals that the initial surface area of the calcium carbonate 

material with a sucrose adsorbate was 35.3 ± 0.3 m2/g while the surface area after 

crystallization is complete was around 24.7 ± 0.2 m2/g, which are similar to the surface areas 

measured for the calcium carbonate material prepared and crystallized with a glucose surface 

additive. The observed decrease in surface area was likely caused by particle densification 

associated with the crystallization of an amorphous material. Again, these surface areas are 

noticeably higher than those measured for the amorphous material crystallized without 

surface additives, which could be the result of the sucrose surface additive inhibiting particle 

aggregation during synthesis. The corresponding electron diffraction patterns for the bright-

field TEM images (Figure 20c) indicate that the calcium carbonate material as synthesized 

was completely amorphous, while the pattern collected after the calcium carbonate material 

was stored at 76% relative humidity for 120 hours exhibits regular scattering characteristic of 

a polycrystalline material with some large single crystals. The dark-field TEM (Figure 20d) 
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supports these observations, as numerous small crystallites of a few nanometers in width are 

visible alongside several crystalline regions that are much larger in size (10-50 nm). 

 

Figure 20. (a) Scanning electron micrographs, (b) bright-field transmission electron 

micrographs, (c) selected area electron diffraction patterns, and (d) dark-field transmission 

electron micrograph acquired for amorphous calcium carbonate synthesized with a sucrose 

surface additive and crystallized at 76% relative humidity for 0 and 120 hours. Compositions 

are based upon single-pulse 13C NMR measurements conducted on a sample prepared and 

crystallized under the same conditions (Figure 17 and Table 3). A dark-field TEM image was 

not collected at 0 hours as the material was diffracting electrons at random, therefore the 

dark-field image did not exhibit any contrast. 

A 2D 13C{1H} HETCOR NMR spectrum was acquired for amorphous calcium carbonate 

synthesized with a sucrose surface additive and crystallized at 76% relative humidity for 120 

hours (Figure 21a). A strong intensity correlation is measured between the average carbonate 

environment (169.3 ppm) and water (4.8 ppm), while a weaker correlation is measured 

between the average carbonate environment and hydroxyl groups (0 ppm). The first 

correlation is consistent with water that was excluded from the fully crystalline calcium 
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carbonate material and is adsorbed to the surface of the particles (Figure 21b). The second 

weaker correlation is potentially consistent with interactions between the hydroxyl groups 

remaining within the calcium carbonate material and the carbonate anions present within the 

carbonate material, or close molecular proximity of the saccharide hydroxyl groups with 

surface carbonate species (Figure 21b). It is notable that no correlations are present farther 

downfield in the proton dimension that would signify hydrogen bonding between the 

saccharide additive and the carbonate anion. The interactions of the sucrose surface additive 

with the carbonate anion could benefit from characterization by dynamic nuclear 

polarization-enhanced NMR, which is sensitive to surface species and interactions. 
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Figure 21. (a) Solid-state 2D 13C{1H} HETCOR NMR spectrum acquired for amorphous 

calcium carbonate synthesized with a sucrose surface additive and crystallized at 76% 

relative humidity for 120 hours. 1D 13C CP-MAS and single-pulse 1H MAS spectra displayed 

along the horizontal and vertical axes, respectively. (b) Depiction of the interaction of 

sucrose (non-reducing saccharide) with the crystal structures present at the calcium carbonate 

particle surface. 
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3.2.3. Other reducing and non-reducing saccharides 

Additional wide-angle powder XRD measurements were collected for calcium carbonate 

synthesized and crystallized in the presence of other reducing (maltose) and non-reducing 

(trehalose) saccharide adsorbates in addition to the original reducing (glucose) and non-

reducing (sucrose) saccharide adsorbates. These measurements were performed to further 

examine the effects of saccharide stereochemistry on the crystallization process of 

amorphous calcium carbonate. All of the calcium carbonate materials were fully amorphous 

after synthesis based on the broad, low intensity reflections centered at 30° and 45° 2θ 

indicative of random scattering of the x-rays (Figure 22, 0 hours).  

The crystallization process of the material synthesized without surface additive was 

nearly identical to that observed previously; crystallization was completed by 24 hours at 

76% relative humidity and calcite was the predominant polymorph present in the sample 

(Figure 22, No additive, 24 hours). Although some vaterite was observed in the previous 

sample based on XRD and single-pulse 13C NMR measurements, there was no vaterite 

present in this sample based on XRD measurements. The differences observed between the 

two samples prepared and crystallized under identical conditions may be attributed to the fact 

that the crystallization of metastable calcium carbonate is inherently difficult to control, and 

agreement within +/- 10% of the relative abundance of the crystalline polymorphs present is 

adequate. 

Additionally, the crystallization process of the material synthesized with a sucrose 

surface adsorbate was similar to that observed previously; crystallization was initiated 

between 24 and 48 hours at 76% relative humidity and completed by 72 hours at 76% 

relative humidity (Figure 22, Sucrose, 48 hours and 72 hours). In comparison, the XRD and 
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single-pulse 13C NMR measurements conducted on the first sample indicated that 

crystallization was initiated between 24 and 48 hours and completed by 120 hours, as a 72 

hour time point was not taken (Figure 17, 48 hours and 120 hours). Vaterite was the 

predominant polymorph in the material based on the XRD measurements with trace amounts 

of calcite present, which is consistent with the measurements obtained for the first sample as 

well. It is notable that the XRD measurements obtained at 72 hours and 240 hours are nearly 

identical (Figure 22, Sucrose, 72 hours and 240 hours), indicating that vaterite remained the 

predominant polymorph in the material after 10 days at 76% relative humidity and that the 

metastable vaterite phase was kinetically stabilized by the sucrose adsorbate for extended 

periods of time. 

Furthermore, the XRD measurements for the material synthesized with a glucose surface 

additive reveal that crystallization was initiated at 48 hours and completed by 240 hours at 

76% relative humidity (Figure 22, Glucose, 48 hours and 240 hours). These measurements 

are consistent with the XRD and single-pulse 13C NMR measurements obtained for the first 

sample, with crystallization initiated at 48 hours and completed by 120 hours, as the 120 hour 

time point was taken in place of the 240 hour time point (Figure 12, 48 hours and 120 hours). 

The additional measurement performed after 72 hours at 76% relative humidity reveals that 

the sample was almost completely amorphous (Figure 22, 72 hours), which indicates that the 

progression of the crystallization process was slowed by the presence of a glucose surface 

additive. Calcite was the predominant polymorph in the material with some vaterite present, 

which is again consistent with the XRD and single-pulse 13C NMR measurements obtained 

for the first sample. The vaterite remained in the sample after 240 hours at 76% relative 

humidity, signifying that it was stabilized by the presence of a glucose surface additive. 
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The XRD measurements conducted on the amorphous calcium carbonate synthesized 

with a trehalose surface additive exhibit distinct differences from those obtained for the 

sucrose surface additive. Although both saccharides are non-reducing, crystallization was 

initiated at 24 hours and completed by 48 hours in the material synthesized with a trehalose 

surface additive, in comparison with the 48 hours and 72 hours, respectively, observed for 

sucrose (Figure 22, 24 hours, 48 hours, 72 hours). Furthermore, the material crystallized in 

the presence of trehalose contained mostly calcite based on XRD measurements, with only 

trace amounts of vaterite present. In comparison, the sucrose adsorbate favored the formation 

of vaterite, with only trace amounts of calcite formed. The differences in the crystallization 

processes and the formation of the different polymorphs were likely a result of the 

differences in stereochemistry and bond lengths exhibited by the two non-reducing 

saccharides. Trehalose is a disaccharide composed of two glucose molecules joined by an α-β 

(1-1) glycosidic bond, while sucrose is a disaccharide composed of a glucose and fructose 

molecule joined by an α-β (1-2) glycosidic bond.  

Similarly, the XRD measurements conducted on the amorphous calcium carbonate 

synthesized with a maltose surface additive exhibit distinct differences from those obtained 

for the glucose surface additive. Although maltose and glucose are both reducing 

saccharides, crystallization was initiated at some point between 72 and 240 hours and was 

complete by 240 hours in the material synthesized with a maltose surface additive, compared 

to the 48 hours and 72 hours, respectively, observed for glucose (Figure 22, Maltose, 72 

hours and 240 hours and Glucose, 48 hours and 72 hours). Additionally, the material 

crystallized in the presence of maltose contained primarily calcite based on XRD 

measurements, with only small amounts of vaterite present, which is consistent with the 
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polymorphs resulting from the crystallization of amorphous calcium carbonate with a glucose 

surface additive. Again, the differences in the delay of the onset of crystallization were likely 

a result of the differences in stereochemistry and bond lengths exhibited by the two reducing 

saccharides. Maltose is a disaccharide composed of two glucose molecules joined by an α-α 

(1-4) glycosidic bond, while glucose is a monosaccharide. 
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4. Conclusions and future work 

4.1. Conclusions 

Based on the x-ray diffraction, nuclear magnetic resonance, electron microscopy, and 

nitrogen adsorption measurements presented previously, this work has shown that 

saccharides adsorbed on amorphous calcium carbonate nanoparticles delay the onset and 

progression of crystallization. The efficacy with which the saccharides delay the 

crystallization process and the polymorphs of calcium carbonate that result from the 

crystallization process vary based upon the stereochemistry of the saccharides. In the absence 

of surface additives, neat amorphous calcium carbonate nanoparticles began to crystallize 

after 8 hours of exposure to 76% relative humidity. The crystallization process was 

completed by 24 hours, and the predominant polymorph formed was the thermodynamically 

stable calcite polymorph (90% relative abundance), with trace amounts of the metastable 

vaterite polymorph present (10% relative abundance). 

When amorphous calcium carbonate nanoparticles were synthesized in the presence of 

glucose, a reducing saccharide, the onset of crystallization was delayed by up to 40 hours, 

and the crystallization process was completed by 120 hours. Data acquired at intermediate 

times indicated that the progression of crystallization was slowed as well, as the material was 

primarily amorphous after 72 hours of exposure to 76% relative humidity. Although the 

calcite polymorph still predominated (67% relative abundance) in the fully crystalline 

material, there was significantly more vaterite present (33% relative abundance) compared to 

the neat ACC synthesized and crystallized without adsorbed saccharides. The delay in the 

onset of the crystallization process and the formation and stabilization of larger amounts of 

vaterite potentially resulted from electrostatic interactions of surface Ca2+ species with 
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deprotonated glucose hydroxyl groups, or from hydrogen bonding of surface CO3
2- species 

with glucose hydroxyl groups. 

When the amorphous calcium carbonate nanoparticles were synthesized with a sucrose 

(non-reducing disaccharide) adsorbate, the onset of crystallization was delayed by slightly 

less than 40 hours, and the crystallization process was completed by 120 hours. In contrast to 

the materials synthesized with no additive and with a glucose surface additive, the calcium 

carbonate synthesized with a sucrose surface additive crystallized selectively to vaterite (87% 

relative abundance), with small amounts of calcite present (13% relative abundance). 

Remarkably, the vaterite appeared to be stable as the material remained unchanged after 

storage at 76% relative humidity for 10 days (see Figure 22). As before, the delay in the 

onset of the crystallization process and the formation and stabilization of significant amounts 

of stable vaterite potentially resulted from electrostatic interactions of surface Ca2+ species 

with deprotonated sucrose hydroxyl groups, or from hydrogen bonding of surface CO3
2- 

species with sucrose hydroxyl groups. Interestingly, the formation of the crystalline calcium 

carbonate polymorphs in the bulk material was strongly affected by the presence of a sucrose 

surface additive. This is indicated by the selective formation of bulk vaterite, suggesting that 

the crystallization of amorphous calcium carbonate was initiated at the particle surface and 

progressed inward. Additionally, the extended stability of the vaterite was likely a result of 

sucrose adsorbate interactions that restricted water access to the vaterite surfaces and thereby 

inhibited the nucleation of other carbonate polymorphs. Although it could be argued that 

simply slowing the kinetics of the crystallization process with a surface additive would 

induce the formation of a larger amount of the metastable vaterite polymorph, the glucose 

surface additive delayed the onset and progression of the crystallization process to a larger 
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extent and significant amounts of calcite were still formed. The differences exhibited by the 

two saccharides in inhibiting crystallization and stabilizing different calcium carbonate 

polymorphs may be attributed to the architectural differences of the respective saccharides, 

which affect interactions with the particle surface. Glucose is a reducing monosaccharide 

which ring-opens at high pH to form a saccharinic acid with carboxylate groups. The 

carboxylate groups potentially interact with the calcium carbonate particles via electrostatic 

interactions. In contrast, sucrose is a non-reducing disaccharide composed of glucose and 

fructose monomers which does not ring-open at high pH and likely exhibits both hydrogen 

bonding and electrostatic interactions. Similarly, glucose and sucrose inhibit hydration of 

aluminosilicate cement materials to different extents, and this phenomenon has been 

definitively correlated with architectural variances.32,39 

Preliminary extension of the experiments to two reducing (maltose - a disaccharide 

composed of two glucose monomers linked by an α-α (1-4) glycosidic bond) and non-

reducing (trehalose - a disaccharide composed of two glucose monomers linked by an α-β (1-

1) glycosidic bond) saccharides yielded informative results with regards to crystalline 

polymorph formation based on saccharide stereochemistry. Both surface additives delayed 

the onset of crystallization, trehalose by up to 16 hours and maltose by more than 64 hours 

and the crystallization process was complete in the two materials by 48 hours and 240 hours, 

respectively. The crystalline calcium carbonate products both contained significant amounts 

of calcite with some vaterite present, indicating that saccharide stereochemistry has a 

significant role in the stabilization of the metastable vaterite polymorph, as neither saccharide 

favored the formation of vaterite to the extent that sucrose did. 
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In summary, the results of these studies demonstrated the importance of saccharide 

stereochemistry in inhibiting and controlling the crystallization process of amorphous 

calcium carbonate nanoparticles. Application of this directed crystallization will allow for 

specific stabilization of promising metastable polymorphs, such as vaterite, and subsequent 

use in various technological applications including drug delivery. Further research into the 

specific surface additive interactions and their impact on the resultant crystalline polymorphs 

will allow for the intelligent selection of surface additives and enable the successful 

conversion of CO2 waste into useful products. 

4.2. Future work 

While the work in this thesis extensively details the effects of saccharide surface 

additives on the transient crystallization processes of metastable calcium carbonate, several 

experiments should be performed to augment it. Although it was not mentioned in the thesis, 

the amounts of saccharide surface additive were determined indirectly by performing 

solution-state 1H NMR measurements on the synthesis filtrate to quantify the amounts of 

unabsorbed saccharide, however the results are in direct contradiction with the TEM, SEM, 

and 1H NMR measurements. The saccharide surface additives were both determined to be 

present in a 1:1 ratio by weight of sample, which based upon the absence of a large signal in 

the 1H NMR resulting from the sugar protons (by comparison, water is present at 10% bwos 

based upon TGA measurements), is unlikely. Furthermore, the particle sizes based on the 

SEM and TEM measurements did not change between the calcium carbonate synthesized 

without and with saccharide surface additive, which should not be the case if the saccharide 

were present in a 1:1 ratio. Additionally, the TEM images do not indicate that a noticeable 

surface additive layer is present, as they have in other works utilizing a significant amount of 
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surface additive.40 It is suggested that the amount of saccharide surface additive be 

determined directly by dissolving a known amount of calcium carbonate prepared with 

surface additive in strong acid, then bringing the solution to a neutral pH with base and 

measuring the saccharide concentration using solution-state NMR. Additionally, a solid-state 

2D 13C{1H} HETCOR NMR spectrum could be acquired for amorphous calcium carbonate 

synthesized with a glucose surface additive and crystallized at 76% relative humidity for 120 

hours.   

Furthermore, additional techniques should be used to characterize the interactions 

between saccharides and the calcium carbonate particle surface and also to study the 

crystallization processes of metastable calcium carbonate synthesized with and without 

surface additives. Dynamic nuclear polarization-enhanced NMR (DNP) could provide further 

insights into the interactions of the saccharide additives with the ACC particle surfaces as it 

affords several key advantages over traditional NMR measurements. DNP employs 

polarization transfer from electrons to the nuclei of interest, and the increased sensitivity of 

electrons to polarization results in significant signal enhancements. Additionally, DNP is a 

surface sensitive technique ideal for characterizing surface additive interactions as the 

polarized electrons transfer from radicals in solution to the sample surface. The surface 

forces apparatus (SFA) could also yield insights into the types and strengths of the 

interactions between the amorphous calcium carbonate particles and the saccharide surface 

additives utilizing recently developed ACC surfaces brought into contact under relevant 

solution conditions. Additionally, electron tomography could potentially be used to further 

characterize the crystallization processes of the calcium carbonate materials, specifically 

providing insights into where the crystallization process is initiated in the particles prepared 
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with and without surface additives and how the crystallization process progresses with time. 

These measurements were attempted, but due to the instabilities of the material under the 

electron beam, accurate characterization presented challenges. Finally, gas pycnometry could 

be utilized to characterize the densification of the carbonate materials as crystallization 

progresses, as amorphous materials are known to be less dense than crystalline materials, and 

these results could be compared with the extents of crystallization as determined using NMR. 

Additionally, inspiration for additional surface additives should be taken from the 

adhesion of mussels to rocks in the presence of seawater using specialized mussel foot 

proteins. It has been demonstrated that the process depends on a synergy between 

electrostatic interactions, which break the hydration layer present at the mineral-water 

interface, and hydrogen bonding, which allows the molecules to strongly adsorb to the 

mineral surface.41 Neither electrostatic interactions nor hydrogen bonding alone exhibit as 

strong of an adsorption. The stabilization of amorphous calcium carbonate in marine 

environments could depend on a similar synergy between electrostatic interactions and 

hydrogen bonding, with the amino acids found in proteins and the saccharides found in 

chitosan and chitin allowing for stronger adsorption and stabilization of ACC than either 

would alone. Preliminary research has already been conducted regarding the stabilization of 

amorphous calcium carbonate by mussel foot protein inspired molecules, although the 

interactions of the molecules with the ACC were not well characterized.40 Furthermore, the 

use of a reducing saccharide (glucose) in conjunction with a non-reducing saccharide 

(sucrose) could provide the same combination of electrostatic and hydrogen bonding 

interactions with the ACC particle surface, stabilizing the ACC more efficaciously than 

either did alone. 
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Finally, as shown in the SEM and TEM images acquired before and after crystallization, 

the spherical amorphous calcium carbonate nanoparticles crystallize to form spherical 

polycrystalline nanoparticles containing vaterite and calcite crystallites. As the solid-state 

transformation of ACC to crystalline polymorphs does not alter particle morphologies, ACC 

should be crystallized in solution to influence the particle morphologies and aspect ratios 

resulting from the crystallization process. Work has been performed studying the 

crystallization of amorphous calcium carbonate using templated growth in track etch 

membranes to form high-aspect ratio calcite nanorods,17 and by adjusting the solution 

conditions and additives it is probable the polymorph may be changed to either aragonite or 

vaterite as well. Regarding the synthesis of the aragonite polymorph from amorphous 

calcium carbonate, it has been demonstrated in the literature that aragonite will form from an 

ACC precursor in the presence of magnesium ions.42 In preliminary experiments not detailed 

in this thesis, structural strontium or barium in the amorphous calcium carbonate particles 

will result in the formation of aragonite as the ACC crystallizes. Both strontium carbonate 

and barium carbonate are isostructural with aragonite, exhibiting the same orthorhombic 

Pmcn space group, therefore strontium and barium ions stabilize the formation of the 

aragonite polymorph over calcite or vaterite.  
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6. Appendices  

6.1. Crystallization and aggregation during TEM imaging 

Significant issues were encountered while performing transmission electron microscopy 

on the amorphous calcium carbonate nanoparticles. As amorphous calcium carbonate is a 

soft matter which is quickly crystallized by both pressure and heat, it was not surprising that 

the electron beam induced both particle aggregation and crystallization. Although lower 

electron beam voltages were used and cryogenic TEM was performed on the material, neither 

the reduction in voltage nor the reduction in temperature mediated the aggregation and 

crystallization processes to a large extent. Changing the quantity of electrons (current) that 

passed through the sample by adjusting the spot size did, however, significantly affect the 

process. At low spot sizes (higher current), particle aggregation was not able to be imaged as 

it occurred instantaneously and crystallites were immediately visible (Figure 23). The darker 

spots (1-2 nm) in the bright field image collected at spot size 2 signify areas of higher 

density. These correspond with the crystalline regions in the sample as the crystallites scatter 

electrons to a larger extent than the less dense, lighter amorphous material. The selected area 

electron diffraction pattern confirms that crystallites were present in the material, as the 

electron diffraction rings are composed of distinct spots. Increasing the spot size to 5 slowed 

particle agglomeration to an extent that it was able to be imaged (Figure 24). The bright field 

images collected over a series of three minutes show the particles fusing together under the 

electron beam, although no crystallites were formed during this time as particle aggregation 

occurs more quickly than crystallization. Increasing the spot size to 7 allowed for adequate 

imaging of the particles without extensive agglomeration; the distinct features of the particles 

are visible in the bright field images for 5-10 minutes with limited fusion (Figure 25). These 
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conditions (spot size 7, 300 kV) were used to obtain the TEM images shown in Figures 9, 10, 

16, and 20. 

Figure 23. Bright-field transmission electron micrograph and corresponding selected area 

electron diffraction pattern acquired for neat amorphous calcium carbonate under a 300 kV 

electron beam with a spot size of 2. 

 
Figure 24. Bright-field transmission electron micrographs acquired as a function of time for 

neat amorphous calcium carbonate under a 300 kV electron beam with a spot size of 5. 
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Figure 25. Bright-field transmission electron micrographs acquired as a function of time for 

neat amorphous calcium carbonate under a 300 kV electron beam with a spot size of 7. 

6.2. Crystallization during NMR measurements 

As the metastable nature of the amorphous calcium carbonate was highlighted in the 

previous section, it was again unsurprising when the material crystallized while NMR 

measurements were being obtained. The fully amorphous sample (Figure 26, Pre-NMR) was 

packed into a rotor and spun at 10 kHz for three hours while measurements were collected. 

An XRD pattern was obtained after these measurements for both the sample in the rotor 

(Figure 26, Post-NMR) and the sample that remained stored at 76% relative humidity for 3 

hours (Figure 26, Control). Calcite and vaterite reflections are present in the pattern acquired 

for the material that was spun in the rotor, but not in the pattern acquired for the control. 

There are two potential explanations for this phenomenon; the first is that the temperature of 
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the rotor and material increased as a result of the friction at high spinning speeds and the heat 

induced crystallization and the second is that the centrifugal force exerted a significant 

pressure on the material at 10 kHz and induced crystallization. Both heat and pressure are 

known to induce crystallization in amorphous calcium carbonate. As a result of these 

observations, all NMR measurements in this thesis were performed on fully 13C enriched 

samples to reduce the number of scans necessary for adequate signal and therefore reduce the 

amount of time that the material spent spinning in the spectrometer (3 hours was reduced 

down to 5 minutes). The alternative solution not tested was to reduce the temperature of the 

sample and rotor in the probe using liquid nitrogen cooling. 

Figure 26. Wide-angle XRD patterns acquired for neat calcium carbonate before NMR 

measurements were performed (pre-NMR), after three additional hours of storage at 76% 

relative humidity (control), and after three hours of NMR measurements were conducted 

(post-NMR). 




