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LBL-29124

Free-Electron Lasers: Present Status and Future Prospects"

Kwang-Je Kim and Andrew Sessler

Free-electron lasers as scientific instruments are reviewed. The present status

and future prospects are delineated with attention drawn to the size,

complexity, availability, and performance capability of this new tool.

The Free-Electron Laser (FEL) was proposed by John Madey in 1970 (1),

although earlier work, relevant tojhe concept, had been performed by Motz

(2) and by Phillips (3). Experimental demonstration was achieved by Madey,

et. al. in 1975 and 1976 (4). Since that time, FELs of diverse configurations

have been operated at several laboratories around the world. At present, FEL

development is focused in two directions: in constructing reliable FELs for

scientific research and in extending FEL capability to vacuum ultra-violet

(VUV) and even shorter wavelengths.

In this article we shall only very briefly review the principles of an FEL,

putting emphasis on those aspects that limit performance, after which we

shall discuss the applications, present status and future prospects of FELs.

Much material that we wish to present is in the form of Tables, and they are

an essential part of this article.

The readers of Science have had the benefit of a fine review article by

Brau (5) in which was described the history, the basic principles, various

experiments, and potential applications of FELs. The textbooks on FELs (6)

provide even more material, and there have been a number of other review

articles (7, 8). In addition, the interested reader may wish to consult the

,. This work was supported by the Director, Office of Energy Research, Office of High Energy
and Nuclear Physics, Division of High Energy Physics, of the US Department of Energy
under contract DE-AC03-76SF00098.



Proceedings of the International FEL Conferences (the 12th will be held this

year) where much of the original research papers have been published (9).

Principles of the Free-Electron Laser

An FEL produces coherent radiation from a beam of free electrons

rather than electrons bound into atoms or molecules, as in a conventional

laser. The electrons are passed through a transverse magnetic field

alternating in sign along the direction of the electron's motion. The device

that produces the periodic magnetic field is known as a wiggler (or sometimes

as an undulator). The configuration is shown diagrammatically in Fig. 1,

which also shows the resonant optical cavity for the output radiation. The
resonance condition involves the electron energy, y (in units of the electron

rest energy mc2), the magnetic period length, Aw, the wiggler field strength, B,

and the output radiation wavelength, A. This relation is:

where the wiggler peak field strength, B, is expressed by

The tremendous interest in FELs can be seen, immediately, from this

resonance condition; namely, the easy tunability of an FEL and the wide range

of wavelengths which are available to the FEL. As can be seen from the

resonance condition there are three ways to tune an FEL: First, it is possible to

design wigglers having a range of wiggler period lengths (usually in the

centimeter range). Second, it is easy to generate electron beams having
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various energies (in y units, from a fraction to thousands). Third, it is

possible to change the wiggler magnetic field.

Thus, unlike a conventional laser, where one is tied to the natural

resonance frequency of the atom or molecule, here all frequencies are

possible. The electromagnetic spectrum is shown in Fig. 2, where we also

show some alternative sources of radiation. One notes that sources are
lacking both in the infrared region (1 ~m ~ 'A ~ 1 mm), and in the ultraviolet

and shorter wavelength region ('A ~ 1000 A). Free electron lasers could

presumably fill these gaps. In Fig. 3 we show the performance of FELs to date;

one can see that the features of operation in different wavelength ranges and

tunability have already been demonstrated.

The wiggler can be constructed from either electromagnets or

permanent magnets. Attention must be given to the field quality and

alignment of the wiggler. The development of high-field, short period

wigglers, using permanent magnets, has been an important factor in

constructing efficient FELs. The magnetic field of a permanent magnet

wiggler can be easily changed by changing the wiggler gap.

An FEL can be operated either as an oscillator, as we show in Fig. 1

where an optical cavity is indicated, or as an amplifier. Most FELs are

operated in the oscillator mode, and attention must be given to mirror

properties. In an amplifier mode, the gain in a single traverse needs to be

significant and this requires an intense electron beam. (In an oscillator, the

gain per pass only needs to be larger than the loss per pass.)

In the amplifier mode, since no mirrors are involved, operation can be

obtained in short wavelength ranges where high reflectivity mirrors are

difficult to construct. Either an input signal may be used, which can readily be

done for longer wavelengths, or amplification can be made to grow from

noise by means of self-amplification of spontaneous radiation (SASE). In the

short wavelength range, where even low-power input signals are not

available, an FEL must rely upon growth from noise.

As an electron moves down the wiggler of an FEL it loses energy to the

growing electromagnetic wave and, consequently, no longer satisfies the
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resonance condition. As a result, the FEL stops working; i.e. "reaches

saturation". This can be avoided by varying the wiggler field, B, to match the

changing resonance condition. With this so-called "tapering", the FEL

continues to operate even when the wiggler is very long. Tapering is very

important for high gain amplifier operation.

An FEL "works well" provided certain conditions on the quality of the

electron beam are satisfied. In the past, essentially all the difficulties with FELs

have not been due either to technological problems in the FEL or to

theoretical problems concerning FEL operation, but rather that the electron

beam was not of sufficient quality, Le. did not satisfy the conditions required

for operation of an FEL. As the technology of electron beams improves, one

can expect to see ever more powerful FELs; Le., FELs that span an even larger

range of wavelengths and produce even more power.

Roughly, beam quality is described by two quantities: beam energy
spread ~:y/y and beam emittance. The energy spread is a measure of

longitudinal spread, while the emittance is a measure of the transverse
spread. The emittance, E, is given by the product of beam radius, a, and beam

angular divergence, S, so that E=aS.

What are the conditions on electron beam quality? An optical beam

has an emittance of order A, where Ais the wavelength. Thus it is required to

have the electron beam emittance matched to the optical beam; Le. ES A. The

FEL gain bandwidth is liN, where N is the number of periods in the wiggler.

It is necessary to have the energy spread less than gain bandwidth; i.e.
(!'ly/y) S liN.

Besides these two conditions on beam quality, there is a condition on

beam current. That condition is related to the required gain and therefore

depends upon the mode of operation of the FEL. We shall not go into details

here, but roughly the requirement is a few amperes for an oscillator and a few

hundred amperes for an amplifier.
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Applications

There are many applications envisioned for FELs. (We say

"envisioned" for, so far, there have been very few actual uses of FELs.) A

number of conferences have been devoted to the subject (0). In Table 1 we

list some of these potential applications.

Microwave

High power from an FEL operating in the microwave range has already

been demonstrated. Thus applications requiring this capability, such as

plasma heating in tokamaks or acceleration of particles in conventional

linacs, are near at hand. For plasma heating the primary physics issue is the

plasma response to the high peak power of an FEL (which necessarily brings

in non-linear effects that may be advantageous or not) in contrast with

conventional (almost DC) gyrotrons. There are, also, economic

considerations.

In the accelerator application, FELs become the microwave sources and

therefore make possible operation in the high frequency range (up to (say) 30

GHz vs 3 GHz in the large accelerator at Stanford) where conventional

klystrons are no longer effective. The primary issue is economic and to this

end two-beam accelerators have been developed. They employ a drive beam

for powering the FEL and a second beam which is accelerated to high energy.

Two-beam accelerators plan to increase efficiency (and hence reduce operating

cost) while tolerating a larger capital cost, but because they have various

novel features they bring in new physics issues which are, only now, being

studied.

Infra-Red

Many of these applications can be expected rather soon; i.e., they

require radiation in the infra-red (IR) (which is relatively easy to come by), but

they do not require high power. Nevertheless these applications require

facilities which take account of the user needs in such things as stability, line

width, reliability and ease of tuning, etc. Radiation from an IR FEL can be

used to manipulate molecular vibrations and chemical reactions in both the
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condensed and the gas phases. The IR pulses will open up new studies on

intra molecular vibrational energy transfer using the technique of infrared

multiphoton excitation and dissociation, a technique so far limited to the
molecular species that can be excited by C02 lasers. With broadly tunable IR

FELs, the technique can be extended to practically all molecular species. The

new studies will provide valuable information on, for example, the

combustion phenomena. High average power IR FELs would ultimately

allow materials to be synthesized from across a wide range of the periodic

table. The pump-probe type experiments involving an IR FEL and a second

light source, which can be another FEL, a conventional laser or a synchrotron

light source, will allow quantitative studies of many surface phenomena,

such as time dependent redistribution of surface molecules, diffusion,
desorption, etc. Measurement of the band gap of the high Tc superconductor

will be possible because of the high intensity of the IR FEL radiation.

Most military and medical applications require high power at short
wavelengths (about 111m). This level of operation has not yet been achieved

by FELs and thus these applications still lie in the future.

Short Wavelengths

The applications in the UV and the X-Ray range are most attractive and

are driving the FEL physicist to learn how to operate at very short

wavelengths. For example, there is great desire to reach the "water window",

between 24 Aand 44 A, where biological materials can be studied in their

natural aqueous environment. Also, there is great interest in obtaining

sufficient power at short wavelengths as to be able to do projection

lithography and material processing, and in obtaining sufficient spatial

coherence for holography, and in obtaining sufficiently narrow bandwidth

and intensity for probing the fine details of chemical dynamics of dilute

samples, etc. Some capabilities, in coherence and in power, in the short

wavelength region, will be available soon with the completion of the

advanced synchrotron radiation facilities under construction at several

laboratories around the world (see Fig. 2) (11). Experience in dealing with

intense short wavelength radiation with these sources will provide a base for

the more challenging experiments possible with the more intense and

coherent FEL sources.
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Present Status

That there is considerable interest in the FEL is obvious and need not

be said. Just a list of world-wide activities speaks strongly, and in Table 2 we

present such a list. This compendium lists on-going projects, past projects,

and future projects. The purpose of the Table is to give a feeling for the range

of activities and the diversity of the activities.

Notice that the projects employ just about every kind of electron

accelerator known to man. That is in part a result of history (what an

institute happens to have and what it has expertise in), and in part because it

is not yet clear what is the most suitable accelerator for a particular kind of

FEL.

Going beyond a mere list of projects, we have selected a few

representative projects and presented more information about them in Table

3. These are all operating FELs, so the performance characteristics are very

"real". We have listed the wavelength range, the line width of the radiation,

the pulse structure, the energy per pulse, and the average power. The reader

can compare this performance with that of other sources, and consider

experiments now possible that previously were not so. Suffice it to say that

these projects are the base upon which world-wide enthusiasm for new FEL

projects has been built.

In Fig. 4 we show the FEL undulator installed on Super-ACO at Orsay.

The reader should note that the installation is large, complicated, and

expensive. True, this particular facility is a bit larger than those FEL facilities

in the infra-red (the Orsay Facility is primarily a synchrotron radiation facility

serving many users), but the general impression is correctly given, FEL

facilities are not small and inexpensive and it seems unlikely that they will

ever become "table top" and hence readily available to any researcher, or,

even, available in every university or institute. Much more likely is the

development of regional, or even national, centers.
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Future Prospect

In the future FELs will be developed in two separate directions: In the

infrared region, where the technologies for the accelerator and optical cavities

are available, the emphasis will be on constructing user facilities. In the short

wavelength region, the emphasis will be on the development of technology.

IR FEL User Facilities

IR FELs have been built and operated; but these first devices were

oriented towards learning about FELs rather than towards serving a

community of users. The challenge in the future will be to build an FEL

satisfying a unique set of criteria required for a user facility. We list

parameters of four representative new facilities in Table 4. The first three

facilities in this Table are under construction. The last one is in the proposal

stage, but is listed here as it is a representative of the present state of the art

and shows what can be expected. All of these facilities are planned to be

operated rather reliably, in a stable manner, and for a very large percentage of

scheduled operating time.

An important criteria for an FEL user facility is the stability of the FEL

output, in wavelength, in intensity, and in direction. Thus the choice of the

accelerator system and design must be made with the view of ensuring the

required stability. The jitter in electron beam parameters, such as the electron

beam energy, charge, timing, etc., needs to be tightly controlled by employing

feed-back and feed-forward correction. Thus, for example, the fluctuation in

the electron beam energy for the COP will be reduced to less than 0.05%.

Another important criteria is the ease of wavelength coverage and

tuning; the facility must provide a wide wavelength coverage with

minimum interruptions to the users. It is more or less straightforward to

change the electron energy or the wiggler gap. It is less straightforward to

design a broad band optical system which includes the optical cavity, output

coupling and beam transport from the FEL to the experimental station. Work

in this direction is just beginning and can be expected to advance significantly

in the future.
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FELs for 1000 A or Shorter Wavelengths

The short wavelength record in FEL is 2400 A obtained at Novosibirsk.

Realizing FELs for short wavelengths is difficult because the electron beam

requirements are more demanding: higher energy, higher current, smaller

emittance and smaller energy spread. Also, high reflectivity mirrors suitable

for optical cavity are currently not available. In spite of these difficulties,

several laboratories are engaging in research for the development of short

wavelength FELs because the scientific payoffs are great 06, 17).

Among different accelerators, electron storage rings appear to be the

most promising source of electron beams for short wavelength FELs. This is

because of the unique radiation damping mechanism that improves, and

maintains, beam quality in the storage ring. The accelerator community has

gained considerable experience recently in the art of building high brightness

electron storage rings in connection with the advanced light source projects at

several places around the world. The drawbacks of the storage ring-based

FELs are that the storage rings are big and expensive and that the average

output power tends to be limited because the damping is a slow process.

Another approach is to use RF linacs. In that case, it is necessary to

start out with a good emittance beam since there is no damping mechanism.

The recent development of laser driven RF photo-cathodes (18) appears to

make possible the generation of such low emittance, yet intense, beams. It is

upon this new technology that the linac FELs, for very short wavelengths, are

based. The linac technology benefits from high energy physics linear collider

projects.

Multifacet mirrors and multilayer mirrors are currently under

development for use in short wavelength FELs. The use of mirrors can be

entirely avoided if FELs are run in the amplifier mode. As the input

radiation, if available at all, is usually quite weak in the short wavelength

region, the FEL in the amplifier mode is inherently a high-gain device. In the

case of extreme high gain, with a gain of one million or larger, the FEL can

amplify the initial noise signal (the undulator radiation) to intense, coherent

radiation. While operation in this (SASE) regime requires neither mirrors
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nor coherent input signals, the requirements on the electron beam qualities

and the wiggler construction are very demanding.

Considerable effort is going into the development of short wavelength

undulators. This development is important for short wavelength FELs as the

smaller Aw is made, less energetic are the electrons required for a given optical

wavelength. At present, undulators with wavelengths of (about) Aw = 1 cm

are being developed employing either permanent magnets, superconducting

magnets, or electromagnetic (iron) magnets.

Laboratory and theoretical work is being undertaken on the

development of even shorter wavelength (Aw "" mm) undulators ("micro-

undulators"), gas-loaded FELs, plasma-loaded FELs, and two-stage FELs. All

of this work is motivated by the desire to reach short wavelengths in an

economic and reliable manner. However, none of these developments have

yet reached the stage of being incorporated into projects.

In Table 5 we list the parameters of some short wavelength FEL

projects. The Duke facility is being constructed, LANL is building linacs for

their facility, the other two are in a very preliminary stage. The LBL facility

employs an amplifier, rather than an oscillator, so as to avoid the use of

mirrors. The consequence is that the storage ring peak current must be very

large and the FEL wiggler very long and of high field. The last requires a

small gap, so small that the wiggler must be put into a special by-pass section

of the storage ring (so as to avoid drastic reduction of the electron beam

lifetime); the electron beam is switched into the by-pass once per damping

time.

Conclusions

It has been two decades since a free-electron laser (FEL) was first

conceived. During that time many different FELs have been built, operated,

and analyzed, and as a result the understanding of FELs has been greatly

advanced. Only a few experiments have so far been done using the photons

from an FEL, but a number of "user facilities" (in the infra-red) are now

under construction and the next decade should witness a flowering of
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experiments using the unique capabilities of FELs. In addition, the FEL

appears to be capable of producing UV, VUV, and even X-ray, radiation.

Work on this frontier is on-going, but no "user facilities" can be expected in

this decade, perhaps in the decade beyond.
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Table 1. FEL Applications

1. Condensed Matter Studies
Surface science (IR)
Semiconductors (IR)
Superconductors (IR)
Magnetic properties (IR, soft x-rays)

2. Non Linear Plasma Studies
Heating (microwave)
Current drive in tokamaks (microwave)

3. Non-Linear QED Studies (1~m or 10 ~m)

4. Non-Linear Optics and Non-Linear Microwaves

5. Inertial Fusion (- 1/2 ~m)

6. Chemistry
Molecular excitations (IR)
Dynamic reactions (1-1 0 ~m)

Crossed photon-molecular beams
(1000-2000 A)

7. Biology
Microscopy (40 A)
DNA studIes (5 A)
Cell response (IR)

8. Medicine
Surgery (1-10 /lm)
Photo-reactions (IR)

9. Accelerators
Inverse Free Electron Lasers
Two Beam Accelerators (1-10 mm)

10. Chemical production (VUV)
Fixing polymers
Making drugs

11. Isotope separation OR)

12. Lithography 00 A)

13. Military uses OR, Visible)
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Table 2. World-Wide FEL Projects

China Shanghai (Diode, RF Linac)
IAE, Beijing (RF Linac)
IHEP, Beijing (RF Linac)
Chengdu (Induction Linac)

England Glasgow (RF Linac) (project terminated)

France Orsay, ACO (Storage Ring) (project completed)
Orsay, Super ACO (Storage Ring)
Orsay, CLIO (RF Linac)
Bruyeres (RF Linac)
Palaiseau (Diode)
Lille/Dijon (ElectrostatiC)*
Bordeaux (Induction Linac)

Germany KFI, Darmstadt (Superconducting)
Dortmund DELTA (Storage Ring)*

Israel Technion (Diode)
Weizmann (Electrostatic)

Italy ENEA, Frascati (Microtron)
INFN, Frascati, ARES (Superconducting RF Linac)
Milan, ELFA (Superconducting Unac)*
Padua (Electrostatic)*

Japan JAERI (Superconducting RF Linac)
Narashimo (Microtron)
Mitsubishi (RF Linac)
Univ. of Tokyo (RF Linac, Storage Ring)
Osaka (Induction Linac, Diode)
ISIR (RF Linac)
ETL (Storage Ring)

Netherlands FOM, Rijnhuizen FELIX (RF Linac)
Twente (Microtron)

USA Stanford, SCA (Superconducting RF Linac)
Stanford, Mark III (RF Linac) (project completed)
Duke (RF Linac)
Duke (Storage Ring)
Los Alamos (RF Linac)
Boeing (RF Linac)
Santa Barbara (Electrostatic)
NRL (Diode) (project completed), (Induction Linac)
Columbia (Diode)
Livermore, ELF, Paladin (Induction Linac) (project completed), MTX (Induction Linac)
NIST-NRL (Microtron)
Vanderbilt (RF Linac)
Florida, CREaL (Electrostatic)*
Brookhaven (Storage Ring) (project terminated), (RF Linac)
MIT (Diode, Induction Linac)
Hughes (Diode)
LBL (RF Linac)*
UCLA (RF Linac)*
Bell Labs (Microtron)

USSR INP, Novosibirsk (Storage Ring)
Erevan (Microtron)

*Proposed
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Table 3. Representative Operating FELs

Stanford
LANL Mark III UCSB Stanford SCA Novosibirsk Orsay

Accelerator RF Linac RF Linac IX::: Super Storage Ring Storage Ring
(standing (traveling Conducting

wave) wave) Linac

Electron Energy 23 MeV 45 MeV 3 MeV 66 and 115 350 MeV 150-240 MeV
Mev

Wavelength 10-45 Jlm 2-8 Jlm 130-400 Jlm 0.5-3.0 Jlm 2400 A- 5700 A-
Range 6900 A 6400A

.1 A-
Bandwidth (-) 0.3% 0.5% 0.1 %* 0.1% 0.01% 0.01%

f-' A-
0"\

Micro-Pulse 8 psec 1-2 psec 3 Jlsec 2-4 psec 75 psec <300 psec
Duration

Rep Rate 50Hz 8 Mhz 27 MHz
Micropulse 22 MHz 2.8GHz - 12 MHz
Macropulse 1 Hz 15 Hz - 10-20 Hz

Micropulse 200 JlJ 5-7 JlJ 4.5 mJ 1-5 JlJ 1-100 nJ 2-5 nJ
Energy

Average Output 1W 3W 0.23 W 10 W 6 mW 3 mW
Power

* Including jitter
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Table 4. Parameters of Some Planned Facilities (Infra-red)

Felix(l2) NIST-NRL(13) CLIO(14) CDF(1S)

Accelerator RF Linac Microtron RF Linac RF Linac

Electron Energy 15-45 MeV 185 MeV 30-70 MeV 56 MeV

Wavelength Range 5-160 Jlm 0.2-10 Jlm 2-20 Jlm 3-50 Jlm

Micropulse 3 psec 3 psec 10-15 psec 10 psec
Duration

Macropulse 20 Jlsec - 10 Jlsec 100 Jlsec
f-' Duration
--J

Rep Rate 74 MHz
Micropulse 1000 MHz - 30-500 MHz 37 MHz
Macropulse 10Hz - 50Hz 60Hz

Micropulse Energy 25 JlJ 0.1-3.0 JlJ 100 JlJ 200 JlJ

Average Output 5W 25-200 W 10-100 W 20 W
Power



Table 5. Parameters for Representative Short Wavelength FEL Projects

LANL(19) Duke(20) LBU21) BNL<22)

Accelerator RF Unac Storage Ring Storage Ring Superconducting Unac

Electron Energy 100-500 MeV 800-1000 MeV 750 MeV 250 MeV

FEL Type Oscillator Oscillator Amplifier Amplifier

Wavelength 10-4000 A 50-4000 A 400 A 1000-3000 A

Micropulse 10-30 psec 300 psec 100 psec 5 psec
f-' Duration
00

Rep Rate 3 MHz 10Hz 3-10 kHz
Micropulse 10-100 MHz
Macropulse 30Hz

Peak Output Power 1-10 MW 10 kW 50 MW 300 MW

Average Output 1-10 W 10 W 50 mW 15 W
Power



FIGURE CAPTIONS

Fig.l. A schematic diagram of a free-electron laser. A beam of electrons is

generated in the electron accelerator and then passed through a region of

alternating direction magnetic field (wiggler). Coherent light is generated and

contained in an optical cavity defined by the mirrors. Needless to say concern

must be given to generating, focusing and transporting the electron beam as

well as to proper treatment of the light beam.

Fig. 2. FELs have already provided tunable, coherent radiation in the IR and

UV spectral ranges. The diagram shows the power, and range, of some other

sources of radiation; conventional microwave sources (tubes, klystrons,

gyrotrons, etc.), lasers, plasma lasers (indicated by 0 ), undulators on third

generation synchrotron radiation facilities. One can see that there are wide

ranges of the spectrum where there is need for the FEL. Possible FEL

performance is indicated by the cross-hatched region.

Fig. 3. Achieved FEL performance as a function of wavelength. One notes

the wide range of wavelengths in which FELs have been operated, as well as

the wide tunability ranges realized.

Fig. 4. The FEL in the Super ACO Storage Ring. One notes that the facility is

complicated and represents a considerable investment. That is generally true

of FELs; they are not cheap and it seems most unlikely that they will ever

become table-top in size like ordinary lasers.
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