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In this paper we focus on identifying differentially activated brain regions
using a light sheet fluorescence microscopy—a recently developed technique
for whole-brain imaging. Most existing statistical methods solve this problem
by partitioning the brain regions into two classes: significantly and nonsignif-
icantly activated. However, for the brain imaging problem at the center of our
study, such binary grouping may provide overly simplistic discoveries by fil-
tering out weak but important signals that are typically adulterated by the
noise present in the data. To overcome this limitation, we introduce a new
Bayesian approach that allows classifying the brain regions into several tiers
with varying degrees of relevance. Our approach is based on a combination
of shrinkage priors, widely used in regression and multiple hypothesis testing
problems, and mixture models, commonly used in model-based clustering.
In contrast to the existing regularizing prior distributions, which use either
the spike-and-slab prior or continuous scale mixtures, our class of priors is
based on a discrete mixture of continuous scale mixtures and devises a cluster
shrinkage version of the horseshoe prior. As a result, our approach provides
a more general setting for Bayesian sparse estimation, drastically reduces the
number of shrinkage parameters needed, and creates a framework for sharing
information across units of interest. We show that this approach leads to more
biologically meaningful and interpretable results in our brain imaging prob-
lem, since it allows the discrimination between active and inactive regions,
while at the same time ranking the discoveries into clusters representing tiers
of similar importance.

1. Introduction. A central goal of many neuroscience studies is to detect regional pat-
terns of brain activation associated with an activity, preferably at cellular resolution. A re-
cent strategy to accomplish this goal involves using thin-section microscopy. This technique
allows to detect immediate-early gene (IEG) activation, that is, the coordinate activation
of genes for which the transcription is fast in response to external stimuli. IEG activation
is thus closely related to changes in neurons’ activity (Sheng and Greenberg (1990)). By
using fluorescent antibodies for labeling IEG proteins along with advanced optical tissue
clearing techniques and light sheet fluorescence microscopy (LSFM), we can obtain high-
resolution, three-dimensional snapshots of activity in individual neurons across the entire
brain (Richardson and Lichtman (2015), Renier et al. (2016)). Using a specific IEG, the Neu-
ronal Per-Arnt-Sim Domain Protein 4 (Npsa4—Lin et al. (2008), Sun and Lin (2016)), our
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goal in this paper is to detect differentially activated brain regions in response to light expo-
sure. Statistical methods for assessing regional differences in activity across the whole brain
using IEGs are currently in their infancy. The screening procedure proposed in this paper is
a first step to improve statistical inference for quickly emerging high-content imaging tech-
niques such as LSFM.

Existing statistical methods for multiple hypothesis testing and variable selection typically
group the individual estimates across the regions into two classes: significant and nonsignifi-
cant. This approach, however, oversimplifies the overall objective of such studies as the noise
in the data may affect the discovery process. In particular, by using arbitrary cutoffs, the bi-
nary partition can also dismiss (i.e., classify as nonsignificant) many weak but biologically
relevant signals. The limitations imposed by a dichotomous, symmetric screening are well
known, and proposals to improve the decision problem date back at least to Tukey (1993).
In a recent report, the U.S. National Academies recommended the consideration of alterna-
tives to binary decision rules (e.g., to reject or not to reject a null hypothesis) as one way to
improve the replicability of scientific results (National Academies of Sciences, Engineering,
and Medicine (2019)); see also Wasserstein, Schirm and Lazar (2019) and McShane et al.
(2019) for more discussion of this concept. Here we propose an alternative to classical bi-
nary discrimination with a method that can partition the potential findings into multiple tiers
with varying degrees of relevance—a term we use instead of significance to distinguish our
approach from other hypothesis testing methods (see, for similar usage in Bayesian variable
selection, Tadesse and Vannucci (2021)). By allowing the sharing of information across the
different regularization profiles and shrinking the noise to zero, our proposed model can better
discriminate between signal and noise. Furthermore, this approach allows scientists to rank
and classify brain regions without resorting to arbitrary cutoffs or prespecifying the grouping.
Thus, investigators can identify interesting activation pathways to consider in their follow-up
studies. To achieve these goals, our method combines shrinkage priors with mixture models.

1.1. One- and two-group based screening. Screening procedures play a central role in
many statistical inference problems involving high-throughput scientific studies. Whether
presented as a multiple comparisons problem within a hypothesis testing framework or a
variable selection problem within a regression framework, they typically involve inference
regarding a set of n parameters, say β = {βi}ni=1. In a Bayesian framework, many method-
ologies have been proposed based on regularization—or shrinkage—of these parameters by
using either the spike-and-slab (two-group) models (McCulloch and George (1993), Mitchell
and Beauchamp (1988)) or the continuous scale mixture (one-group) models (Polson et al.
(2012)).

The first approach treats the prior over the parameters as a discrete mixture of a point mass
at 0 (or a distribution centered at zero with low variance) and a “flat” distribution with large
variance. This way, the resulting model-based clustering can discriminate between relevant
and irrelevant units. Ročková and George (2018) have recently proposed an extension of the
Bayesian Lasso (Park and Casella (2008)), called the spike-and-slab Lasso, where the two
competing densities are assumed to be from the Laplace family.

The second approach places hierarchical priors on the scale parameter of a given ker-
nel distribution, typically Gaussian (see Bhadra et al. (2019), for a review). The scale pa-
rameter is often decoupled into the product of global (i.e., shared across all the regression
coefficients) and local shrinkage parameters (i.e., specific to each unit). This framework
includes the Bayesian Lasso (Park and Casella (2008)), the Normal-Gamma (Griffin and
Brown (2010)), the horseshoe (Carvalho, Polson and Scott (2010)), the horseshoe+, and the
Dirichlet–Laplace (Bhattacharya et al. (2015)) priors, all based on Gaussian kernels. Due
to their continuous shrinkage profile, the selection between relevant and irrelevant variables
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needs to be done through post hoc analysis, usually by thresholding a proxy of the posterior
probability P[βi != 0|data].

In this paper we propose a discrete mixture of continuous scale mixtures that bridges the
gap between those two alternatives and provides a unified framework. As carefully high-
lighted in Hahn and Carvalho (2015), the idea of adopting mixtures to model the scale pa-
rameters can be traced back to the seminal paper by Ishwaran and Rao (2005), where the
authors discuss it within the context of bimodal mixtures. By building on that idea, our con-
tribution allows combining the regularization effect typical of continuous shrinkage priors
while inducing a grouping of the coefficients similarly to the spike-and-slab case. In our ap-
plication to thin-section microscopy, our approach leads to automated model-based detection
of groups of brain regions driven by different sparsity levels, imposing an adaptive regu-
larization within each group. With our model we can also rank the discoveries into blocks
of increasing relevance, facilitating the interpretation of the results. The discrete mixture
also greatly reduces the complexity of the model, avoiding the usual specification of a local
shrinkage parameter for each variable and enabling, at the same time, sharing of information
across the parameters. From a multiple comparison perspective, the induced clustering goes
beyond the classical “significant vs. nonsignificant” paradigm and allows to capture signals
that would be otherwise lost within the canonical binary framework. In summary, our ap-
proach: (i) provides a more general setting for Bayesian sparse estimation without resorting
to arbitrary cutoffs, (ii) drastically reduces the number of shrinkage parameters needed, and
(iii) creates a framework for sharing information across units of interest without prespecify-
ing any grouping of the units. The combination of model-based clustering and shrinkage is
important for our application since it allows the discrimination between a group of inactive
regions (whose effect is aggressively shrunk to zero) and a group of active ones. Moreover,
the group of discoveries is partitioned into tiers, characterized by a similar amount of sig-
nal, providing neuroscientists with a ranking that can be invaluable for prioritizing further
investigation.

Our approach is related to several other methods using mixture models to improve the
efficacy of the variable selection and shrinkage processes and models for hypothesis testing.
Our proposed method is also related to—but different than—the scale mixture of Gaussian
distributions for relevance determination of Shahbaba and Johnson (2013) and the Dirichlet-t
distribution of Finegold and Drton (2011), Finegold and Drton (2014). We further elaborate
on the connections between our model and the literature in Section A of the Supplementary
Material (Denti et al. (2023)).

In the next section, we describe our study and the preprocessing steps required for prepar-
ing the raw data for analysis. We also present some preliminary results based on commonly-
used methods whose limitations led to the development of our model. We introduce our
methodology in Section 3 and the derivation of the corresponding posterior inference in
Section 4. Section 5 is devoted to applying our method to the whole-brain imaging data
(discussed above) using light sheet fluorescence microscopy to detect degrees of activation
across brain regions. Then, in Section 6 we evaluate our model and confirm its validity us-
ing several simulation studies. Finally, in Section 7 we summarize the advantages and the
shortcomings of our proposed method and discuss future directions.

2. Thin-section microscopy: Experimental setup, preprocessing pipeline, and prelim-
inary results. Figure 1 shows a visual representation of the experimental setting in our case
study, along with sample images obtained from two representative mice. More specifically,
14 mice were individually housed in the dark for 24 hours to establish baseline visual activ-
ity. Mice were then transferred into a new cage exposed to ambient light. The brains of six
mice were examined zero to 15 minutes after light exposure to serve as the baseline group.
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FIG. 1. Visual representation of the experiment setting and images obtained with the LSFM technology. For both
rows the brain areas highlighted in the rectangles are reported in the right four panels to show the high level of
resolution achievable with the LSFM.

The brains of another eight mice were examined 30–120 minutes after light exposure, within
the window of Npas4 protein up-regulation (Ramamoorthi et al. (2011)). Equal numbers of
left and right hemispheres were sampled. The goal was to assess differences in brain acti-
vation by comparing the baseline and light-exposed groups. We expect that light exposure
induces widespread, visually evoked activity in terms of fluorescence intensity. Through this
experiment we measured the location of almost 300,000 active neurons within a common
three-dimensional reference space and extracted their intensity and volume with remarkable
precision. The neurons are classified into regions according to the Allen Brain Atlas (Sunkin
et al. (2013)), the anatomic reference atlas commonly used in studies involving brain struc-
tures of mice.

Figure 2 displays the three-dimensional images of brain cells measured in two represen-
tative mice under the two different experimental conditions: baseline and light-exposed. The
intensity per unit of volume, iov, is the primary variable of interest in this study. However,
before starting our analysis, Figure 2 reveals an important feature of the data: the frequency
of observed neurons is strongly affected by the light exposure level. This effect can also be

FIG. 2. Comparison between detected Npas4 expressing neurons in brains of two representative mice exposed to
different experimental conditions (Allen annotated atlas–left, baseline–middle, light-exposed–right). The points
represent the detected neurons. The size of each dot corresponds to the neuron’s volume. As we can see, the
activated neuron count is higher in the light-exposed group of mice.
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FIG. 3. Boxplots representing the distributions of log(iov) and the log-frequency of cells in each region and
mouse stratified by level of exposure. The widths of the boxplots are proportional to the square roots of the number
of observations under the two experimental conditions (baseline ≈ 55,000 neurons; light-exposed ≈ 235,000
neurons). The diamonds represent the mean for each mouse, while the dashed lines connect the overall means
across the two subpopulations.

observed in Figure 3, which reports two boxplots comparing the distributions of the loga-
rithm of iov (left panel) and the logarithmic frequency of cells detected in the brain regions
of each mouse (right panel), under the two experimental conditions. The log scale is chosen
to enhance the visual representation. Basing the entire analysis on iov alone would be in-
sufficient and could lead to misleading results, as no clear difference emerges between the
two experimental groups. However, the right panel suggests a positive association between
the exposure level and the number of activated cells. In other words a proper definition of
“activation” needs to incorporate the number of detected cells. Therefore, we will base our
analysis on a score derived as a combination of frequency and intensity.

To compare the regions under the two different exposure levels, we need to adjust for the
effects of possible confounders. An important source of information provided by our data is
the multiresolution, hierarchical organization of the brain regions. Each neuron is assigned
to a terminal region, and different terminal regions are connected to a shared, higher-level
parent region. This mechanism goes on until all the regions are assigned to a common region,
called root. We aim to remove the potential distortion in the intensity, given by specific mouse
effects, and the possible influence of parent areas (i.e., the closest ancestors). In fact, certain
areas may have higher intensity because of the dimension and overall intensity of their parents
which, in turn, may blur the activation measures. Therefore, we regress the variable iov
on all possible interactions between the mouse identifiers and the ancestor identifiers. We
denote the resulting residual for each neuron as ri,c, highlighting the membership of the cell
c to the brain region i. Let mi indicate the number of cells found in brain region i, with
i = 1, . . . , n. To take into account the frequency distribution of the neurons, we multiply ri,c
by the density of neurons per unit of parent volume. This way, we obtain a new variable of
interest: r̃i,c = ri,c × m∗

i /Vol∗i , where with m∗
i and Vol∗i we indicate the frequency of cells

and the volume of the parent of region i, respectively. Finally, we retain all brain regions with
at least 15 (mi ≥ 15) neurons, leaving n = 281 regions for our analysis.

In a typical analysis, neuroscientists would consider a standard two-sided Welch t-test
to detect differential activation of brain regions, comparing the averages of the vector
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r̃ i = (r̃i,1, . . . , r̃i,mi ) under the baseline vs. light-exposed conditions. In the following we
show how this typical approach may fail to identify important regions of interest. We ob-
tain the t-statistics t = {ti}ni=1, the degrees of freedom estimated by the Welch–Satterthwaite
equation d = {di}ni=1, and the corresponding p-values p = {pi}ni=1 for each brain region. The
p-values are post-processed following Benjamini and Hochberg (BH, 1995) and thresholded
at 5% to detect the activated regions. This result provides a first benchmark for later com-
parisons. We also use Efron’s empirical Bayes two-group model (Efron (2007)) computing
the local false discover rate (lFDR). To do so, we first transform the t-statistics to z-scores:
zi = "−1(FTdi

(ti)) ∀i, where " and FTd denote the cumulative distribution function (c.d.f.)
of the standard normal distribution and a Student-t distribution with d degrees of freedom,
respectively. Then we threshold the resulting lFDR at 0.20, as suggested in the literature.

Within this setting the BH discovers 142 regions. In contrast, the lFDR method flags only
38 brain regions as important, missing many pertinent regions known to be associated with
the visual task. On the one hand, such a difference in the results suggests that some brain
regions may be active but show weaker signals than others. These regions are the ones that
are likely missed by lFDR. On the other hand, it is known that the BH method struggles in
cases where the z-scores distribution departs from the theoretical null. This rigidity may ex-
plain the large number of regions identified as significant, potentially due to false discoveries.
Nonetheless, the discrepancy between the numbers of findings of the two methods highlights
the shortcomings of the classical binary hypothesis partition (e.g., significant vs. nonsignifi-
cant). Indeed, the model we present in the next section can provide more insights by ranking
the signals into several tiers with varying degrees of relevance which identify several levels
of biological importance. As shown in Section 5, this ranking allows scientists to examine
groups of brain regions from the highest degree of relevance to the lowest degree without
setting an arbitrary cutoff. More details about the discoveries can be found in Section G of
the Supplementary Material.

3. Methodology: A discrete mixture of continuous scale mixtures. For analyzing the
whole-brain imaging data (and potentially similar high-throughput studies), we propose a
novel discrete mixture model to cluster the brain regions into several tiers of varying relevance
with respect to their activation levels. More specifically, we consider the following model:

(1) z = β + ε, ε ∼ Nn(0,#),

where z = {zi}ni=1 is an outcome vector (e.g., z-scores) of length n, β = {βi}ni=1 is the mean
vector, and ε is the noise term. We assume homoscedastic and uncorrelated errors, that is,
# = σ 2In, for simplicity; this assumption seems to hold for our data, but our approach also
can be readily generalized for more complex structures. In what follows, Nk(a,A) indicates
a multivariate Normal distribution of dimension k with mean vector a, covariance matrix A,
and density function φk(a,A). In the univariate case, we let N1 ≡ N and φ1 ≡ φ.

Our main focus is the specification of suitable prior distributions for the coefficients β .
In the usual global-local shrinkage parameter models (Polson et al. (2012)), the regression
coefficients are assumed to be distributed as a continuous scale mixture of Gaussian distribu-
tions, that is, βi |τ,λn,σ

2 ∼ N (0,σ 2 ·τ 2 ·λ2
i ) ∀i = 1, . . . , n, with λi assumed to be stochastic.

Here τ ∈ R+ denotes a global shrinkage parameter, while the vector λn = {λi}ni=1, λi ∈ R+

contains all the local shrinkage parameters. Conditioning on the variance of the data, σ 2,
guarantees a unimodal posterior (Park and Casella (2008)).

We extend this framework and consider a discrete mixture of continuous scale mixtures
of Gaussians. As a result, the large number of local shrinkage parameters is substituted by a
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more parsimonious set of L mixture component shrinkage parameters. More specifically, we
assume

(2) βi |τ,λL,π,σ 2 ∼
L∑

l=1

πlφ
(
βi;0,σ 2 · τ 2 · λ2

l

)
, i = 1, . . . , n,

where π is the L-dimensional vector of mixture weights and the elements of the vector λL =
{λl}Ll=1 assume the role of mixture component shrinkage parameters. The specification in (2)
is very general and encompasses many known models. In particular, when L = 2 and λ1 ≈ 0,
we recover the continuous spike-and-slab framework of George and McCulloch (1997); while
when L = n and πl = δi (l) ∀l, i (i.e., inducing n different singleton clusters), we recover the
continuous shrinkage framework. In our application the mixture model allows to identify
signals characterized by similar levels of shrinkage.

The mean estimation scenario is often considered for hypothesis testing, where the task
is to identify the test statistics that depart from the standard Gaussian distribution spec-
ified under the null hypothesis (e.g., H0,i : βi = 0). Adopting the classical global-local
shrinkage prior for β to induce sparsity and setting σ 2 = 1, one can easily show that
zi |λi , τ ∼ N (0,1 + τ 2λ2

i ). In our discrete mixture of continuous scale mixture model, the
induced sampling distribution is itself a mixture,

(3) zi |τ,λL,π ∼
L∑

l=1

πlφ
(
zi;0,1 + τ 2λ2

l

)
.

In the multiple comparison setting, we can see z as a vector of n properly standardized test
statistics corresponding to n different null hypotheses. Thus, model (3) can be interpreted as
a multigroup extension of the classical two-group model (Efron (2007)). This connection is
crucial, since it reveals the limitations of well-established multiple hypothesis testing meth-
ods when applied to our neuroscience data, as highlighted in Section 2; see Section B of the
Supplementary Material for the derivation of (3).

The interpretation of (3) as a multigroup version of the model presented in Efron (2007)
provides an additional justification for the use of continuous scale mixtures of Gaussians.
Without loss of generality, let us assume that the first mixture component is characterized
by the smallest scale parameter λ(min) = minl λl . One can impose this constraint a priori or
identify the mixture component with the smallest scale parameter after model estimation.
Whenever the product τλ(min) ≈ 0, the corresponding mixture component can be interpreted
as the null distribution, resembling the theoretical standard Gaussian. At the same time, the
product τλ(min) is allowed to be different from zero to reflect a departure from the theoretical
null, leading to the estimation of the so-called empirical null which could capture, for ex-
ample, unexplained correlations among brain regions (Efron (2004)). The remaining mixture
components describe the alternative distribution which can be decomposed into degrees of
relevance according to the magnitude of the remaining parameters, λ \ λ(min).

Finally, we highlight that our proposal can be extended to a more generic regression prob-
lem. The linear regression case can be obtained by simply substituting Xβ as the mean term
of model (1), where X is a n×p covariate matrix and β = {βj }pj=1 the corresponding regres-
sion coefficients. We explore the performance of our prior specification in such a scenario
with a simulation study, reported in Section 6.

3.1. Mixture and shrinkage: The horseshoe mix. Whether we are adopting our model to
perform variable selection or hypothesis testing, we need to specify prior distributions for
the remaining parameters to complete the Bayesian specification. In addition, we can also
specify a distribution for the global shrinkage parameter τ . A common choice for the prior
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distribution of the error variance σ 2 is the Jeffreys prior π(σ 2) ∝ 1/σ 2. The prior distribution
for the weights changes if we assume a finite or infinite number of mixture components. If
we assume L to be finite, we can simply set π ∼ Dirichlet(a1, . . . , aL). Notice that even
L > n is a viable option since one has to distinguish between mixture components and active
components, that is, the actual clusters found in the dataset; see Malsiner-Walli, Frühwirth-
Schnatter and Grün (2016) for more discussion on the use of sparse finite mixture (SFM)
models. Setting the hyperparameters al = ε ∀l with ε small (≤ 0.05) allows the model to
parsimoniously select the number of active components needed to describe the data. Another
option is to specify a nonparametric model via a Dirichlet Process (DP) mixture model,

(4) βi |τ,λ∞,σ 2 ∼ N
(
0, τ 2σ 2λ2

i

)
,λi |G ∼ G,G ∼ DP(α,H),

where DP(α,H) indicates a Dirichlet Process with concentration parameter α and base mea-
sure H . Adopting the Stick Breaking (SB) representation of Sethuraman (1994), model (4)
becomes

(5) βi |τ,λ∞,σ 2,π ∼
+∞∑

l=1

πlφ
(
βi;0,σ 2 · τ 2 · λ2

l

)
,λl ∼ H,π ∼ SB(α),

where the weights π are defined as π1 = u1, πl = ul
∏

q<l(1 − uq) for l > 1 and ul ∼
Beta(1,α) for l ≥ 1.

We have introduced multiple mixture specifications (both parametric and nonparametric)
to present a general working framework that can be adapted beyond our specific applica-
tion. Depending on the problem at hand, specific priors can be used to incorporate our do-
main knowledge about the possible number of tiers. The Bayesian nonparametric approach is
preferable if the number of clusters (L) is expected to increase with the number of tests (i.e.,
regions). In our application a higher resolution brain atlas would lead to a larger number of
tests and possibly the identification of new activation profiles of brain subregions. In contrast,
using a sparse finite mixture implies that the number of clusters has the upper bound L. Nev-
ertheless, as we will show in the simulation study of Section 6, the two approaches achieve
very similar results if L is set to a sufficiently large number to ensure that many superflu-
ous mixture components are not assigned any observation a posteriori. This rule of thumb
is based on the posterior behavior of overfitted mixtures (Rousseau and Mengersen (2011)).
In our experience the two methods usually provide similar results for all practical purposes
when L > 30.

To summarize, the introduction of mixture component shrinkage parameters is beneficial
for several reasons. This specification can improve the effectiveness of the regularization with
respect to common global-local scale mixtures models. A discrete mixture allows the model
to use a relatively small number of shrinkage parameters to borrow information across all
the units and self-adapt to the different degrees of sparsity characterizing subsets of the co-
efficients. In our application this feature would help compound the signal in each tier and
thus differentiate between pure noise—effectively shrunk to zero—and weak signals. Also,
the model-based clustering nature of our approach enables the ranking of groups of coef-
ficients into several shrinkage profiles, improving on commonly-used binary solutions (i.e.,
significant vs. nonsignificant) by providing more flexibility and insight for decision making.

In what follows, we will adopt a half-Cauchy prior for the mixture component shrinkage
parameters: λl ∼ C+(0,1), ∀l. The half-Cauchy has been successfully employed in sparse
mean estimation tasks, and its aggressive shrinkage property is ideal for our discovery prob-
lem. Henceforth, we refer to this model as horseshoe mix (HSM), in the spirit of the horseshoe
(HS) prior introduced by Carvalho, Polson and Scott (2010).

Finally, we point out that, although the two models involve similar distributions, our
model is fundamentally different from the Dirichlet–Laplace (DL) prior of Bhattacharya et al.
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(2015). Under the DL prior, the conditional distribution of each coefficient is βi |π∗
i ,λi , τ ∼

N (0,λ2
i π

∗2

i τ 2), where π∗ ∼ Dirichlet(a1, . . . , an). Thus, the model by Bhattacharya et al.
(2015) assumes that the Dirichlet random vector π∗ lies on the (n− 1)-dimensional simplex;
that is, its dimension is tied to the sample size. In our model the vector of mixture weights
has only L entries. More importantly, our likelihood is the convex combination of L different
kernels which is different from the single-parameter kernel structure assumed under the DL
distribution.

3.2. Mixture component and cluster shrinkage. Consider now the Normal mean esti-
mation framework, and define κi = 1/(1 + τ 2λ2

i ) ∈ (0,1). It follows that E[βi |zi] = (1 −
E[κi |zi]) · zi and E[βi |λi , τ, zi] = τ 2λ2

i

1+τ 2λ2
i

· zi , where κi is known as the shrinkage factor

for observation i, which can be interpreted as a proxy of the complement of the posterior
probability of relevance in the two-group model (Carvalho, Polson and Scott (2010)). It is
interesting to see how these key quantities change under our model specification. For the
conditional model, the posterior expected values of the coefficients become

(6)

E[βi |π ,z] =
L∑

l=1

E
[
rl(zi)

(
1 − κ∗

l

)|z] · zi,

E[βi |τ,λL,π,z] =
(

L∑

l=1

rl(zi)
(
1 − κ∗

l

)
)

· zi = (1 − κ̃i) · zi,

where rl(zi) = πlφ(zi;0,1+τ 2λ2
l )∑L

l=1 πlφ(zi;0,1+τ 2λ2
l )

; see Section B of the Supplementary Material for the

derivation of (6). Here we distinguish between the mixture component shrinkage factors
(MCSF—one for every mixture component), defined as κ∗

l = 1/(1 + τ 2λ2
l ), and the cluster

shrinkage factors (CSF—one for every parameter) κ̃i = ∑L
l=1 rl(zi)κ

∗
l . Each CSF is a func-

tion of a convex combination of the L MCSFs and directly controls the amount of shrinkage
that affects each parameter βi . Simultaneously, the weights of the convex combination de-
pend on the components of the marginal sampling distribution φ(zi;0,1 + τ 2λ2

l ). It becomes
clear how the model structure takes advantage of the sharing of statistical strength across
parameters. Indeed, the posterior mean for βi is the result of two effects. Given its mixture
nature, the shrinkage is affected by all the other mixture component parameters through in-
formation sharing. However, since the mixture is driven by weights that directly depend on
each data point’s contribution to the marginal likelihood, we retain an observation-specific
effect in the shrinkage process. These simultaneous effects help the estimating procedure to
place more emphasis on shrinkage profiles that better describe the data points in z.

4. Posterior inference. To conduct posterior inference, we rely on Markov chain Monte
Carlo (MCMC) algorithms because the posterior distribution is not directly available in
closed form. To simplify posterior simulation, we augment model (2) with the latent mem-
bership labels ζ = {ζi}ni=1, where ζi ∈ {1, . . . ,L}, linking each coefficient with a cluster; that
is, ζi = l if the ith coefficients has been assigned to the lth cluster. We obtain

(7) βi |τ,λL, ζi ,σ
2 ∼ N

(
0,σ 2 · τ 2 · λ2

ζi

)
, ζi |π ∼

L∑

l=1

πlδl(·).

Once the auxiliary membership labels are introduced in the model, it is straightforward to de-
rive the full conditional for the corresponding Gibbs sampler. Both the global and the mixture
component shrinkage parameters can be efficiently sampled following a parameter augmen-
tation strategy (Makalic and Schmidt (2016)) or via slice sampler (as in the Supplementary
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Material of Polson, Scott and Windle (2014)). The details of the Gibbs sampler are deferred
to Section C of the Supplementary Material. In Section D of the Supplementary Material, we
also comment on additional insights that the data augmentation procedure (7) provides about
the model.

4.1. Postprocessing of the results. Once the posterior samples have been collected,
we can estimate the cluster shrinkage factors from the membership labels. We map each
coefficient βi to the assigned local shrinkage parameter via ζi , constructing the vector
(λζ1, . . . ,λζn). It is then straightforward to compute ˆ̃κi = 1/(1 + τ 2λ2

ζi
). One of the main

advantages of our model is that, once the MCMC samples of size T are collected, it al-
lows the estimation of the best partition that groups the coefficients into classes of similar
magnitude. Let ζ (t) = {ζ (t)

1 , . . . , ζ
(t)
n } be the realization of the membership labels at iteration

t = 1, . . . , T . With this information we can estimate the posterior probability coclustering
(PPC) matrix, whose entries are defined as P̂PCi,i′ =

∑T
t=1 1

(ζ
(t)
i =ζ

(t)

i′ )
/T , for i, i′ = 1, . . . , n.

In other words, P̂PCi,i′ estimates the proportion of times that coefficients i and i ′ have been
assigned to the same cluster along the MCMC iterations. Hierarchical clustering can be ap-
plied directly to the P̂PC matrix for fast solutions as in Medvedovic, Yeung and Bumgarner
(2004). The choice of the number of tiers can be driven by the simultaneous inspection of the
dendrogram obtained from the hierarchical clustering approach and exogenous knowledge
from domain experts. When the latter is unavailable, we recommend thresholding the result-
ing dendrogram using a moderate value of potential tiers (e.g., ranging between 2 and 6) and
avoiding partitions with clusters containing only a negligible fraction of the observations. We
elaborate more on this point in Section H of the Supplementary Material.

The resulting partition is easy to interpret. The HSM prior allows for a model-based clus-
tering driven by the cluster shrinkage parameter vector λL. Therefore, the clusters in the
solution specified by the optimal partition ζ̂ can be described as classes of different magni-
tudes. Therefore, we can explicitly identify the subgroup of coefficients characterized by the
smallest magnitude that can be deemed as irrelevant, similarly to the null component in the
two-group model. In a linear regression framework, this means that we are able to identify the
set of indices that indicate the least relevant covariates, say B0 = {i ∈ {1, . . . , n} : βi = 0}, in-
ducing a variable selection solution. Moreover, the model also allows the classification of the
remaining parameters into subsets of different magnitudes, yielding an interpretable ranking.

In the next section, we apply the HSM model to the light-sheet fluorescence microscopy
data presented in Section 2. We emphasize that, despite being tailored to the differential
activation detection problem, our HSM model represents a viable alternative to shrinkage
priors in a wide range of problems. In Section 6 we compare HSM to well-established and
state-of-the-art methods for variable selection and multiple hypothesis testing.

5. Application: Segmenting brain regions into activation tiers. In Section 2 we pre-
sented the preprocessing steps along with the results obtained from lFDR (38 discoveries)
and BH procedures (142 discoveries).

To present additional benchmarks, here we estimate the posterior mean of the vector of z-
statistics, using the spike and slab (SnS) and horseshoe (HS) models, after proper centering.
Under the former model, we deem a region as relevant if its inclusion probability over the
MCMC samples is over 5%, given the high level of sparsity induced by the SnS model in our
data. Under the latter model, we select a brain region as significant if the credible set for the
corresponding mean does not contain zero (van der Pas, Szabó and van der Vaart (2017)).

Next, we apply the HSM model directly to the centered z-scores,

(8) zi |βi ,σ
2 ∼ N

(
βi ,σ

2)
, βi |λ, τ,σ ∼

∑

l≥1

πlφ
(
0,λ2

l τ
2σ 2)

, i = 1, . . . , n.
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As mentioned previously, the expression in (8) can be regarded as a multigroup model in a
multiple hypothesis testing framework. Within this setting we will interpret the component
characterized by the lowest variance as representative of the null distribution. In contrast, the
other components, which are ranked in increasing order, represent different degrees of rele-
vance. To fit model (8), we use a Bayesian nonparametric approach with a DP stick–breaking
representation over the mixture weights and adopt an Inverse Gamma distribution for τ 2.
A sparse finite mixture would also suffice, as the experiments we conduct in Section 6 show
that the two specifications appear to provide similar results. The hyperprior on τ 2 was chosen
to ensure good mixing of the global shrinkage parameter. We ran 10,000 iterations as burn-in
period and used the next 10,000 samples for inference. Then we postprocessed the resulting
posterior coclustering matrix with the Medvedovic approach. Although the flexibility of our
model allows estimating the number of tiers through inspection of the nonempty components
of the posterior distribution, for practical and inferential purposes a choice often needs to
be made post-MCMC. For this application the inspection of the postprocessing results and
the insight of our collaborators led to partitioning the z-scores into four tiers of relevance,
ranging from no activation (Tier 4) to clear activation (Tier 1).

Figure 4 presents the posterior means (circles) and posterior medians (crosses) for differ-
ent quantities. The elements in both panels are represented according to the tier to which
they are assigned. The top-left panel shows the estimated coefficients. We can see how the
model groups the scores according to their magnitude. A scatter plot of the z-scores vs. the
posterior estimates is displayed in the bottom-left panel. The axes are cropped to showcase
the shrinking effect of the HSM model on the z-scores for Tiers 3 and 4. Finally, the right
panel presents the posterior probabilities of relevance 1 − κ̃i , for i = 1, . . . , n. This plot helps

FIG. 4. All the panels show posterior means (circles) and posterior medians (crosses) for different quantities.
Top-left panel: Estimates for β stratified according to the retrieved segmentation. Bottom-left panel: Posterior es-
timates for β plotted against the z-scores. The plot is cropped between (−5,5) on both axes to show the shrinkage
induced on the z-scores belonging to the low tiers of relevance. Right panel: Posterior probability of relevance,
approximated as the complement to one of the cluster shrinkage factors κ̃i , linked with a gray vertical line to
highlight the variability in the posterior distributions.
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FIG. 5. Alluvial plots displaying how the partitions of the 281 regions, obtained with different models (SnS, HS,
lFDR, and BH), relate with the HSM partition into tiers.

interpret the tiers of relevance: we notice the shift from Tier 4 to Tier 3 in both posterior
estimates occurring around 0.5. Therefore, our method can be seen as an extension of the
two-group model, automatically detecting the null group. Moreover, after filtering out the
irrelevant units, it partitions the remaining ones into different sets with increasing levels of
importance, capturing more information from the z-scores.

We now compare the results obtained by the five alternative methods discussed in this pa-
per: BH, lFDR, HS, SnS, and HSM. Figure 5 juxtaposes the different results with an alluvial
plot. Each column represents a model, and the horizontal lines (the brain regions) display
how HSM tiers are associated with the results of the other models. A contingency table is
also provided in Section F of the Supplementary Material. The SnS and lFDR methods are
the most conservative, detecting only nine and 38 regions, respectively. All these selected
regions are part of HSM’s top two tiers. The results from HS and BH are also similar: the two
methods detect 138 and 142 regions, respectively. The HSM model places 25 regions in the
top tier, 68 regions in the second tier, 49 in the third, and deems 96 regions as irrelevant.

We next sought to identify the biological relevance of these findings. We expect that the
introduction of animals to light will drive Npas4 expression in neurons within the laminar
subregions (e.g., layers) of different visual cortex areas (Hübener (2003), Andermann et al.
(2011)). Previous studies have shown that neurons in the primary visual (V1) area of the cor-
tex respond to light exposure by expressing Npas4 mRNA (Hrvatin et al. (2018)). Our results
align with the literature, capturing the activation of the V1 laminae due to light exposure in
terms of increased Npas4 protein expression. Other cortex regions are expected to exhibit
visually evoked activity, such as the lateral, posteromedial, anterolateral, and anteromedial
visual areas. According to our results, all of these regions show Npas4 expression following
light exposure (Andermann et al. (2011)). However, across the 20 brain laminae, comprised
by these regions, five of them fall into Tiers 3 and 4, reflecting their lack of activation. We
report the list of the two top-tier areas in Table 1. The complete list of findings for the four
models we considered is reported in Section G of the Supplementary Material. From that
list we can appreciate how the HSM model provides a more articulate solution, mediating
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TABLE 1
Lists of brain regions assigned to Tier 1 and Tier 2 of activation by the HSM model

Tier 1 Tier 2

Agranular insular area, ventral part: Layer 1 Agranular insular area, dorsal part: Layer 1, 6a
Anterior cingulate area, dorsal part: Layer 1, 5 Anterior cingulate area, ventral part: Layer 1, 2/3, 5
Anterolateral visual area: Layer 1 Anterior olfactory nucleus
Dorsal auditory area: Layer 1, 2/3, 5, 6a Anteromedial visual area: Layer 1
Ectorhinal area: Layer 2/3 Central amygdalar nucleus
Lateral visual area: Layer 1, 5 Ectorhinal area: Layer 1, 5, 6a
Posteromedial visual area, 4, 5 Fiber tracts
Postpiriform transition area Hippocampal formation
Primary auditory area: Layer 2/3, 5 Infralimbic area: Layer 1, 5
Primary visual area: lLayer 1, 4, 5, 6a Main olfactory bulb
Subiculum Nucleus accumbens
Taenia tecta Orbital area, medial part: Layer 1, 5
Temporal association areas: Layer 2/3, 6a Orbital area, ventrolateral part: Layer 1
Ventral auditory area: Layer 2/3 Parasubiculum
· Perirhinal area: Layer 1, 2/3, 5, 6a
· Piriform area
· Piriform-amygdalar area
· Posterior auditory area: Layer 2/3
· Posterolateral visual area: Layer 2/3, 5
· posteromedial visual area: Layer 1
· Postsubiculum
· Prelimbic area: Layer 1, 5
· Primary auditory area: Layer 1, 6a
· Primary motor area: Layer 1, 5
· Primary somat. area, barrel field: Layer 1, 2/3, 5, 6a
· Primary somat. area, lower limb: Layer 2/3, 5
· Primary somat. area, mouth: Layer 2/3
· Primary somat. area, nose, 2/3
· Primary somat. area, trunk: Layer 2/3, 4, 5
· Primary somat. area, upper limb: Layer 1, 2/3
· Primary visual area, 2/3
· Retrosplenial area, lateral agranular part, 1
· Retrosplenial area, lateral agranular part: Layer 5
· Retrosplenial area, ventral part: Layer 1, 6a
· Secondary motor area: Layer 2/3, 5, 6a
· Suppl. somatosensory area: Layer 1, 5, 6a
· Temporal association areas: Layer 1, 5
· Third ventricle
· Unlabeled
· Ventral auditory area: Layer 5, 6a

between the more conservative lFDR and SnS methods and the numerous discoveries of the
BH and Horseshoe models.

The tiering results, obtained from our method, allow us to stratify our findings by the
level of activation without resorting to successive manual and arbitrary p-value cutoffs. We
can utilize this approach to identify laminar activity patterns. For example, neurons in layer
2/3 of the primary visual cortex are known to exhibit lower activity than those in other V1
laminae (Niell and Stryker (2010)). HSM identifies this by placing layer 2/3 in tier 2, while
all other V1 laminae are placed in tier 1. Interestingly, layers 2/3 of different visual cortex
areas are assigned one tier below the other laminae, suggesting lower activity in layer 2/3
may be a common feature throughout the visual cortex. To our knowledge, these results are
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novel and have not been previously reported in mice. Hence, these findings warrant further
investigation. These results illustrate the additional insights provided by HSM when applied
to high-throughput studies.

6. Numerical experiments validating the HSM model. In this section we illustrate our
method and evaluate its performance, in terms of generic mean estimation and linear regres-
sion, to establish its competitiveness with commonly-used and the-state-of-the-art statistical
methodologies.

6.1. Illustrative example. As a simple example, consider a sample of 500 observations
generated from a linear regression model with true vector of coefficients β , composed of
100 zeros and 200 realizations generated in equal proportions from two Normal distributions
centered around zero with variances 100 and 1, respectively. The error noise is set to σ 2 =
0.5. Given this dataset, we estimate the HSM model with a nonparametric specification of the
mixture weights and fix τ 2 = 0.001. The two panels of Figure 6 show the estimated posterior
coclustering matrix P̂PC (left) and the posterior mean for each βi (right), transformed as
log |β̂i | to emphasize the differences in terms of magnitude. On top of the PPC matrix, we
highlighted three blocks representing the true clusters present in the data which are also
represented by the different shapes in the right plot. From the right panel, we can see that
the model can effectively group the parameters in terms of magnitude. The accuracy of the
classification is 0.89, with an Adjusted Rand Index of 0.72.

6.2. Performance in mean estimation. Next, we investigate the performance of the HSM
model in terms of mean estimation. To this end, we generate random vectors from a multivari-
ate Gaussian distribution with mean β . The elements in β = {βi}ni=1 are organized into three
different blocks: β

(1)
i ∼ N (0,100) for i = 1, . . . , q , β

(2)
i ∼ N (0,1) for i = q + 1, . . . ,2q ,

and β
(3)
i ∼ δ0 for i = 2q + 1, . . . , n. We consider four scenarios (S1–S4), varying according

to the values assumed by q and n. Specifically, for S1 and S2 we set n = 500, while for S3
and S4 n = 1000. Moreover, we set q = 50 for S1 and S3, while q = 100 for S2 and S4.

FIG. 6. Left panel: The estimated posterior coclustering matrix where the actual clusters are superimposed with
solid lines. Right panel: A scatterplot presenting the estimated posterior mean for each coefficient transformed
as λ̂iτσ . The horizontal lines separate the true clusters while the vertical lines highlight the estimated partition.
Note how the magnitude of the coefficients leads the estimation of the clusters.
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TABLE 2
Summary of the different HSM model specifications used in our first simulation experiment

HSM1 HSM2 HSM3 HSM4 HSM5 HSM6

Mixture SFM SFM SMF BNP BNP BNP
Global shrinkage parameter 0.0001 τ2 ∼ IG τ ∼ C+ 0.0001 τ2 ∼ IG τ ∼ C+

We compare the results obtained from three models: HSM, horseshoe (HS), and spike and
slab (SnS). Results for the latter two models were obtained via the R packages horseshoe
(v0.2.0) and BoomSpikeSlab (v1.2.5), respectively. We consider six different specifica-
tions for the HSM model by varying mixture type (sparse finite mixture, SFM, and Dirichlet
process mixture, BNP in all cases, we set L = 50) and distribution for the global shrink-
age parameter (fixed, Inverse Gamma, and half-Cauchy). We summarize the specifications
and the corresponding acronyms in Table 2. We also consider two specifications for the HS
model, where τ ∼ C+(0,1) (HS1) or τ ∼ δ0.0001 (HS2).

To quantify the performance of the models, for each simulated dataset k = 1, . . . ,K , we
compute the mean squared error between the posterior mean β̂k and the ground truth, defined
as MSE(βk, β̂k) = ∑n

i=1(βi,k − β̂i,k)
2/n. We also stratify the same quantity across the three

different parameter blocks to understand which magnitude group contributes the most to the
error. All the results are averaged over K = 30 replicates. For each replicate we ran 10,000
MCMC iterations, discarding the first half as burn-in. The outcome of the first and second
scenarios are displayed in the bar plots with error bars (representing the standard errors) in
Figure 7. The table containing the values used to draw the bar plots is reported in Section
F of the Supplementary Material. The same table also includes the results for S3 and S4 for
which the MSE values are very similar to the ones we display here. Lastly, in Section E of the
Supplementary Material we also include an alternative version of Figure 7 without the SnS
output to ease the visual comparison of the remaining models.

FIG. 7. Bar plots of the average overall and stratified MSEs and corresponding standard errors (error bars) for
simulation scenarios S1 and S2.
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The HSM obtains very competitive results both in terms of overall and stratified MSE.
Overall, the HSM specifications with constant or Inverse-Gamma global shrinkage parame-
ters attain low MSE combined with small standard errors across the replicates. Instead, when-
ever a half-Cauchy prior is used, the average overall MSE increases but so does the variability
of the results. The same happens for the HS model. Also, we do not observe any clear result
that favors one mixture type over the other. The stratification of the results into the param-
eter blocks shows an interesting trade-off between the precision of the parameter estimation
across the different magnitudes. As expected, the SnS perfectly captures the true zeros, but
it tends to overshrink the nonzero β’s. In the cases where τ ∼ C+ (HSM3 and HSM6), the
model better captures the nonzero parameters, while the remaining specifications perform
very good regularization. The same rationale applies to the HS models.

6.3. Performance in the estimation of regression coefficients. Here we consider a lin-
ear regression framework with n observations and p covariates and compare the estimation
performance of the HSM model with both well-established and recent Bayesian shrinkage
models, including Bayesian Lasso, horseshoe, and horseshoe+. To estimate these models
under different regularizing prior specifications, we use the R package bayesreg (v1.2.0).

Our experiment consists of three scenarios, characterized by different values of the ra-
tio n/p, describing the proportion between the sample size and the number of variables.
Specifically, we consider the following three ratios: n/p ∈ {(500,250) = 2, (500,500) =
1, (500,750) = 0.667}. Under each scenario we generate K = 30 datasets, as follows. We
first sample n independent observations from a multivariate Gaussian as Xi,k ∼ Np(0, Ip),
i = 1, . . . , n, creating the design matrix Xk , k = 1, . . . ,K . Then we sample the regression
coefficients βk , organized in three different blocks: β

(1)
j1,k

∼ N (0,100) for j1 = 1, . . . ,100,

β
(2)
j2,k

∼ N (0,1) for j2 = 1, . . . ,100, and β
(3)
j3,k

∼ δ0 for j3 = 1, . . . , p − 200. That is, for
a fixed number of covariates p > 100, we generate 100 coefficients of high magnitude
(σ (1) = 10), 100 coefficients of low magnitude (σ (2) = 1), and p − 100 coefficients iden-
tically equal to zero. Finally, we set yk = 5 + Xkβk + εk , with εk ∼ Nn(0, In).

For the mixture weights, we adopt a sparse mixture specification, using L = 50 mixture
components and a = 0.05, while we fix τ 2 = 0.0001. As in the previous case, we ran 5000 it-
erations as burn-in period and retained 5000 iterations (thinning every five steps) for posterior
inference.

The average and standard errors of the overall MSE, obtained by each model over the 30
replicates, are reported in Table 3. Each row corresponds to a simulation scenario. In general,
all models obtain very good performance. Indeed, in the first scenario the average MSEs
obtained by different models are very similar. As the number of covariates increases, we see
how the sharing of information across the HSM parameters leads to lower MSE, followed, in
order, by the horseshoe+, the horseshoe, and the Bayesian Lasso.

We decompose the overall MSE replicates into different magnitude blocks and report the
results in Figure 8. The boxplots describe the distributions of the results obtained over 30

TABLE 3
Overall average MSE (and relative standard errors) for the four different models under the three simulation

scenarios

Scenario HSM HS HS+ Lasso

1 0.0031 (4e−04) 0.0035 (4e−04) 0.0033 (4e−04) 0.0039 (0.0005)
2 0.0019 (3e−04) 0.0044 (6e−04) 0.0031 (4e−04) 0.0287 (0.0059)
3 0.0014 (3e−04) 0.0039 (6e−04) 0.0028 (5e−04) 0.3075 (0.0707)
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FIG. 8. Boxplots of the stratified MSE obtained over 30 replicates by the different models. Each panel corre-
sponds to a simulation scenario, with boxplots organized by blocks of parameters. The results obtained with the
Lasso are omitted in the center and bottom panels to ease the visual comparison.

replicates. Each panel depicts a simulation scenario. In the center and bottom panels, we
removed the Bayesian Lasso’s results to facilitate the visual comparison since its MSE is
much larger than the ones obtained with HSM, horseshoe, and horseshoe+. The complete
figure is reported in Section E of the Supplementary Material. First, we notice how the HSM
model obtains better performance in block 3, regardless of the scenario. Here the gain in
MSE reflects the ability of the model to target and shrink the true zeros effectively. Second,
it is interesting to see how HSM obtains lower MSE than its competitors as the ratio n/p
decreases. While the boxplots for blocks 1 and 2 in the top panel are almost equivalent, MSE
gains start to manifest in the other two panels.

7. Discussion. In this paper we have developed a novel class of priors that for multiple
hypothesis testing and variable selection problems. Our proposed method groups the units of
interest and their corresponding parameters into several tiers with varying degrees of rele-
vance. This feature proved to be particularly valuable for the specific application discussed
in this paper: discovering differentially activated brain regions from data collected via state-
of-the-art brain imaging technology. Specifically, our approach involves adopting a discrete
mixture model, reminiscent of the two-group models, where each mixture component is itself
a continuous scale mixture distribution. We then assumed half-Cauchy priors for the shrink-
age parameters, mimicking the horseshoe model. This way, we can retain the strong shrinkage
properties of the continuous mixtures while performing model-based clustering typical of the
discrete mixtures. Furthermore, the clustering detects irrelevant units and potentially seg-
ments the relevant ones into tiered classes, according to each coefficient’s magnitude. With
respect to the specific application discussed in this paper, the enhanced stratification of coeffi-
cients induced by our model detects important regions that were left out by more conservative
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methods. Further, these regions are ranked into groups of varying importance, avoiding ar-
bitrary decisions in screening. Notably, our model ranks in Tier 2 regions that are related to
the visual task, such as the primary visual area (layer 2/3) and various posterolateral visual
areas, missed by the lFDR and SnS models. Combining the two discrete and continuous mix-
tures for shrinkage shows promising results, especially in targeting and regularizing the null
coefficients via the clustering-induced shrinkage structure. We have showcased the potential
of our approach using simulation studies.

The results presented in this paper can pave the way for many future research directions.
For example, the data analysis can be enriched by including the hierarchical structure of brain
regions—each brain region can be divided into progressively smaller subregions. In our pre-
processing workflow, we only considered the relationship between the areas at the highest
resolution and their parents to account for potential correlations across regions. However,
including information regarding the whole-brain structure could add substantial information
since it is usually unclear at which hierarchical level a relevant differential effect emerges.
Therefore, we are currently developing a two-group model that incorporates such information
directly in the Bayesian model, studying how the activation probability is partitioned across
the regions’ ancestors. From a methodological point of view, one can consider different con-
tinuous scale mixture types to improve the HSM model. For example, a possibility would
be to take into consideration a Laplace distribution generalizing the model in Ročková and
George (2018) or more refined horseshoe distributions, such as the horseshoe-like distribution
(Bhadra et al. (2021)) or regularized horseshoe (Piironen and Vehtari (2017a)). Moreover, the
prior specification for the global shrinkage parameter, τ , could be improved in the context of
our clustering approach, for example, by using the method of Piironen and Vehtari (2017b).
Inspired by the idea of splitting the error rate introduced by Tukey (1993), it may be possi-
ble to develop a mixture of shrinkage priors that behaves asymmetrically around the origin.
The approach would estimate the probability that each z-score is assigned to a particular
relevance tier while allowing for different tail behaviors in over- and underexpressed brain
regions. Lastly, the scalability of our method could also be improved using more efficient
MCMC alternatives, such as the two algorithms for horseshoe estimation recently proposed
in Johndrow, Orenstein and Bhattacharya (2020). Alternatively, one can adopt an approxi-
mate inference method such as mean-field variational Bayes (Neville, Ormerod and Wand
(2014)).
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SUPPLEMENTARY MATERIAL

Supplement to “A horseshoe mixture model for Bayesian screening with an ap-
plication to light sheet fluorescence microscopy in brain imaging”. (DOI: 10.1214/23-
AOAS1736SUPPA; .pdf). We provide additional materials to support the results in this pa-
per. These include the details of the Gibbs sampler algorithm, its implementation, additional
figures, and a discussion of the proposed prior and models in the context of robust Bayesian
statistics.

Code (DOI: 10.1214/23-AOAS1736SUPPB; .zip). The R and C++ scripts used for
the simulation studies presented in this paper are available as in online Supplement (doi:
10.1214/23-AOAS1736SUPPB). In addition, one can find the latest version of the software
at the Github repository Fradenti/Horseshoe_Mix.

https://doi.org/10.1214/23-AOAS1736SUPPA
https://doi.org/10.1214/23-AOAS1736SUPPB
https://doi.org/10.1214/23-AOAS1736SUPPA
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