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blood samples from a group of 491 healthy 
individuals in great detail. They quantified 
the molecules in serum — the liquid compo-
nent of blood that remains after the proteins 
needed for clotting have been removed. The 
study participants provided detailed health 
information, and answered questionnaires 
about diet and lifestyle. They also gave stool 
samples, which were used for DNA sequenc-
ing, to determine the genetic signatures of 
the gut microbes present (also known as the 
microbiome). 

As the authors acknowledge, this is a small 
study group by the standards of genome-wide 
association studies, which seek to find con-
nections between genes and disease. Bar et al. 
are also not the first to link serum molecules 
to genetic variation or the microbiome3,4. 
However, the authors’ analysis of this group 
of individuals is unique in the number of data 
types that were systematically collected to 
investigate serum composition.

Next, Bar et al. used a machine-learning 
approach to link factors such as human 
genetics and microbiome information to the 
molecules in the blood. By carrying out many 
analyses omitting different data subsets, the 
authors found that diet, the microbiome and 
clinical variables such as prescription-drug use 
and blood pressure had the most associations 
with serum molecules. Although the authors 
found some genetic associations, confirming 
46 previously reported gene–metabolite links, 
they concluded that the association effects for 
genetic factors were smaller than were those 
for diet, clinical variables and the microbi-
ome. These various data types are not exactly 
comparable, but the authors’ estimates of the 
genetic effects are in line with results from 

not only in the field of vision restoration but 
also in those looking to understand epi genetic 
reprogramming of neurons and other cell 
types generally. For decades, it was argued 
that understanding normal neural develop-
mental processes would one day lead to the 
tools to repair the aged or damaged brain. Lu 
and colleagues’ work makes it clear: that era 
has now arrived.
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Our blood transports many chemicals besides 
oxygen and carbon dioxide. Some of these 
molecules provide useful indicators of the 
state of our health. Indeed, measuring such 
biomarkers is a common feature of clinical 
blood tests. Other molecules present, such 
as hormones and drugs, directly affect health 
by modulating processes such as metabolism 
and immune responses. On page 135, Bar et al.1 
shed light on the factors that affect the recipe 
for human blood’s chemical brew.

The origin of most blood-borne molecules, 
and why they vary in concentration between 
individuals, is unknown. The list of possible 
regulators is long: for any given molecule, diet, 
drugs, medical conditions and history, genetic 
variants and gut microorganisms might all 
have a role. Furthermore, these factors can 
interact, as is the case for trimethylamine 
oxide. This molecule, which promotes the 
artery-narrowing disease atherosclerosis, 
is generated as a result of the metabolism, 
by both microbes and their host, of certain 
dietary compounds that are abundant in 
red meat2. For molecules such as this, which 
directly affect health, understanding their 
metabolic regulation might help to yield new 
clinical treatments. 

Bar et al. describe their efforts to tackle the 
question of what factors govern the molecules 
present in blood. This work requires not only 
measurement of the many variables potentially 

involved, but also the use of analytical meth-
ods that can capture complexity — such as the 
inter actions between variables — while still 
ensuring that valid predictions can be made 
for individuals outside the study population. 

The authors began by characterizing 
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What determines the chemical make-up of human blood? 
Measurement of the contributions of factors ranging from 
genetics to lifestyle has now identified diet and gut microbes 
as key predictors of blood’s molecular composition. See p.135
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Figure 1 | A way to predict blood’s molecular composition. Bar et al.1 obtained human blood samples 
and identified many of the molecules present. The authors also gathered information about a range of 
factors, such as diet and gut microbes, that might have affected the molecules found. Using a computational 
method called gradient-boosted decision trees, Bar and colleagues predicted the molecular composition 
of an individual’s blood. a, In this hypothetical example, data points show an individual’s concentration of 
molecule X in arbitrary units (a.u.) and the relative abundance of a type of gut bacterium Y. b, The model uses 
an ‘if–then’ classification to predict (black horizontal lines) the relationship between bacterial abundance 
and the concentration of X. The prediction in this case is that if the bacterial abundance is more than 0.1, the 
concentration of X is 2, and if this abundance is less than 0.1, the concentration of X is 0.1. Dotted lines show 
the prediction errors. c, The model is then refined by taking into account another factor, such as whether 
the person eats red meat (red) or not (blue). d, After another ‘if–then’ classification that includes this dietary 
factor, the model generates refined predictions (red and blue horizontal lines) with lower errors that link the 
predicted concentration of X to dietary and bacterial factors.   
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previous work, providing support for their 
conclusion that diet and the micro biome have 
larger and more pervasive influences on serum 
composition than do genetic factors.

Diet and the microbiome could predict the 
data for some molecules with similar levels of 
accuracy, as would be expected, given that diet 
can affect microbiome composition. But Bar 
and colleagues showed that these data types 
provide non-overlapping information, too. 
For example, dietary information uniquely 
predicted particular metabolites associated 
with the consumption of citrus fruit, whereas 
the presence of a type of microbe belonging to 
the Lachnospiraceae family strongly predicted 
the presence of indoxyl sulfate — a bacterial 
breakdown product of the amino acid tryp-
tophan, previously linked to diseases of the 
kidney and vasculature5. 

To make predictions about the concentra-
tions of molecules present in blood samples, 
Bar et al. used a machine-learning method 
called gradient-boosted decision trees, which 
can capture complex interactions. Decision 
trees learn simple ‘if–then’ rules to make pre-
dictions (Fig. 1). This method layers individual 
decision trees, successively improving them 
by training new models that focus specifically 
on reducing the prediction errors of the older 
ones. 

Bar and colleagues interpreted these models 
using an approach called feature-attribution 
analysis. This yields specific hypotheses about 
how individual factors, such as microbes, 
foods and genetic variants, influence a par-
ticular prediction, here, the molecular com-
position of blood. More-complex models can 
be prone to ‘overfitting’ — making erroneous 
predictions that are based on noise or irrele-
vant details. The authors therefore fitted and 
evaluated their models conservatively, but, 
even more importantly, they confirmed many 
of their predicted microbe-to-metabolite 
links in two large, independent study groups. 
Finally, Bar et al. tested one set of their predic-
tions in a smaller study, identifying molecules 
(cytosine and betaine) associated with the 
consumption of wholewheat bread, and then 
showing that individuals randomly assigned 
to eat the bread had the expected changes in 
these metabolites.

This study is comprehensive, but plenty 
of room remains for future exploration. The 
authors used the well-validated and stand-
ardized Metabolon platform to measure 
serum metabolites, but no such metabolo-
mic analysis method can cover the full range 
of blood-borne compounds. Certain types 
of molecule, such as blood lipids, might 
therefore be under-sampled compared with 
others. This might explain why the authors 
mostly detected metabolite associations 
with only one of the two most abundant 
lineages of gut bacteria6,7. Metabolomics can 
detect molecules whose identity is unknown 

beyond their molecular weight, and, indeed, 
the authors report several associations with 
such unknown metabolites. Although these 
might point to previously unknown aspects of 
biology (interestingly, for example, one such 
association was linked to the age of the partic-
ipant), without metabolite identification, only 
limited conclusions can be drawn.

The authors’ microbiome data provide DNA 
information for all the genomes present in 
stool extracts. However, Bar et al. distil these 
data down to the level of abundances of bac-
terial species, excluding non-bacteria such 
as yeasts or protozoan organisms. Limiting 
analyses to the species level also obscures the 
fact that strains of the same bacterial species 
can differ in gene content. For example, the 
metabolism of the drug digoxin in vivo by 
the bacterium Eggerthella lenta requires a 
gene that is present in only certain strains of 
E. lenta8. Finally, the authors were unable to 
link serum metabolites to specific bacterial 
enzymes responsible for their generation, 
which would have helped to connect the 
associated links to the underlying molecular 
mechanisms.

These limitations should not detract from 
the most useful aspect of this paper. By mak-
ing the full data set available to the research 
community, Bar and colleagues could help 

enable the development of future computa-
tional methods, potentially resolving some 
of these limitations, or even providing ways to 
answer new questions. Their data are likely to 
be a rich and valuable resource for scientists 
interested in the mechanisms by which diet, 
the microbiome and genetics affect our bio-
chemistry and physiology.

Patrick H. Bradley is in the Department of 
Microbiology and the Infectious Diseases 
Institute, Ohio State University, Ohio 43210, 
USA. Katherine S. Pollard is at the Gladstone 
Institute of Data Science and Biotechnology, 
University of California, San Francisco, 
San Francisco, and the Chan Zuckerberg 
Biohub, San Francisco, California 94158, USA.
e-mails: bradley.720@osu.edu;  
kpollard@gladstone.ucsf.edu

1. Bar, N. et al. Nature 588, 135–140 (2020).
2. Koeth, R. A. et al. Nature Med. 19, 576–585 (2013). 
3. Visconti, A. et al. Nature Commun. 10, 4505 (2019).
4. Shin, S.-Y. et al. Nature Genet. 46, 543–550 (2014).
5. Hung, S.-C., Kuo, K.-L., Wu, C.-C. & Tarng, D.-C. J. Am. 

Heart Assoc. 6, e005022 (2017).
6. Nemati, R. et al. J. Lipid Res. 58, 1999–2007 (2017).
7. Farrokhi, V. et al. Clin. Transl. Immunol. 2, e8 (2013).
8. Koppel, N., Bisanz, J. E., Pandelia, M.-E., Turnbaugh, P. J. & 

Balskus, E. P. eLife 7, e33953 (2018).

This article was published online on 11 November 2020.

Precision measurement

Fine-structure constant 
tests standard model
Holger Müller 

A highly precise measurement of a physical constant known 
as the fine-structure constant provides a stringent test of the 
standard model of particle physics, and sets strong limits on 
the existence of speculative particles. See p.61

Every physicist knows the approximate value 
(1/137) of a fundamental constant called the 
fine-structure constant, α. This constant 
describes the strength of the electromag-
netic force between elementary particles in 
the standard model of particle physics and 
is therefore central to the foundations of 
physics. For example, the binding energy of 
a hydrogen atom — the energy required to 
break apart the atom’s electron and proton — 
is about α2/2 times the energy associated with 
an electron’s mass. Moreover, the magnetic 
moment of an electron is subtly larger than 
that expected for a charged, point-like particle 
by a factor of roughly 1 + α/(2π). This ‘anomaly’ 
of the magnetic moment has been verified 
to ever-increasing accuracy, becoming “the 

standard model’s greatest triumph”1. On 
page 61, Morel et al.2 report a measurement 
of α with an accuracy of 81 parts per trillion 
(p.p.t.), a 2.5-fold improvement over the pre-
vious best determination3.

The measurement of α involves three steps. 
First, a laser beam makes an atom absorb and 
emit multiple photons and, in doing so, recoil 
(Fig. 1a). The mass of the atom is deduced by 
measuring the kinetic energy of this recoil. 
Second, the electron’s mass is calculated using 
the precisely known ratio of the atom’s mass to 
the mass of an electron4,5 (Fig. 1b). Third, α is 
determined from the electron’s mass and the 
binding energy of a hydrogen atom, which is 
known from spectroscopy6 (Fig. 1c).

However, the recoil energy is tiny and 
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