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RESEARCH ARTICLE Open Access

Seasonal dynamics in taxonomy and
function within bacterial and viral
metagenomic assemblages recovered from
a freshwater agricultural pond
Jessica Chopyk1,2* , Daniel J. Nasko3, Sarah Allard1, Anthony Bui1, Mihai Pop3, Emmanuel F. Mongodin4 and
Amy R. Sapkota1

Abstract

Background: Ponds are important freshwater habitats that support both human and environmental activities.
However, relative to their larger counterparts (e.g. rivers, lakes), ponds are understudied, especially with regard to
their microbial communities. Our study aimed to fill this knowledge gap by using culture-independent, high-
throughput sequencing to assess the dynamics, taxonomy, and functionality of bacterial and viral communities in a
freshwater agricultural pond.

Results: Water samples (n = 14) were collected from a Mid-Atlantic agricultural pond between June 2017 and May
2018 and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each
filter, pooled, and subjected to 16S rRNA gene and shotgun sequencing on the Illumina HiSeq 2500 platform.
Additionally, on eight occasions water filtrates were processed for viral metagenomes (viromes) using chemical
concentration and then shotgun sequenced. A ubiquitous freshwater phylum, Proteobacteria was abundant at all
sampling dates throughout the year. However, environmental characteristics appeared to drive the structure of the
community. For instance, the abundance of Cyanobacteria (e.g. Nostoc) increased with rising water temperatures,
while a storm event appeared to trigger an increase in overall bacterial diversity, as well as the relative abundance
of Bacteroidetes. This event was also associated with an increase in the number of antibiotic resistance genes. The
viral fractions were dominated by dsDNA of the order Caudovirales, namely Siphoviridae and Myovirdae.

Conclusions: Overall, this study provides one of the largest datasets on pond water microbial ecology to date,
revealing seasonal trends in the microbial taxonomic composition and functional potential.

Keywords: Metagenome, Shotgun, Agricultural irrigation, Antibiotic resistance, Microbial communities, Bacteria,
Bacteriophage
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Background
Ponds are small (1 m2 to ~ 50,000 m2), shallow, standing
water bodies that are found ubiquitously among Earth’s
terrestrial biomes, with an estimated 2.6 to 9 million
ponds located within the U.S. alone [1, 2]. Globally,
ponds occupy a greater total area than lakes and are
considered to be functionally and ecologically distinct,
playing a major role in the global cycling of carbon and
supporting a high level of macro- and micro- species di-
versity [1–6]. Along with those that are formed by nat-
ural processes, there are many ponds that are human
constructed for a variety of recreational, industrial, agri-
cultural, and aesthetic purposes [1, 7]. For instance, in
areas where municipal and ground water sources are
limited or unavailable, ponds are built to capture and
store water for irrigation [8, 9]. Despite the importance
of ponds to both environmental and human activities,
the majority of research on freshwater resources is fo-
cused on large water systems (e.g. lakes). As a result,
outside of extreme environments (e.g. saline/hypersaline
[10–12], thermokarsts [13]), and aquaculture facilities
[14–16] ponds remain largely understudied [17], espe-
cially with regard to their microbial communities.
Microbial communities are vital to the health and

maintenance of aquatic ecosystems [18]. However, due
to their topography (e.g. size small and shallow depth)
ponds are uniquely sensitive to anthropogenic and envir-
onmental factors [19]. Nonpoint source nutrient pollu-
tion, coupled with warm temperatures, and long water
residence times can result in a high abundance of algal
and cyanobacterial concentrations, in some cases leading
to blooms that deplete oxygen levels and produce toxins
[20–23]. Storm events can also trigger an influx of fecal
pathogens that can contaminate irrigation supplies and
subsequently crops [24–26]. For instance, a 2002 multi-
state outbreak of Salmonella Newport on tomatoes was
traced back to contaminated pond water used for irriga-
tion [27]. In addition to pathogens, runoff can introduce
pollutants originating from land use practices (e.g. anti-
biotics, pesticides) [28]. Because of the long water reten-
tion times of ponds, these pollutants may then diffuse
and accumulate, leading in some cases to changes in
bacterial community dynamics, including increased se-
lection pressures for antibiotic-resistant bacterial popu-
lations [29]. However, the persistence of these
disruptions and foreign bacterial agents depends on
complex factors such as sedimentation, temperature, UV
light, and predation [30].
Despite the value in surveying the microbial compos-

ition of ponds, the limited collection of previous studies
have been largely restricted to PCR or culture-based
methodologies and often comprise just a static “snap
shot” of the microbial community. Thus, we are re-
stricted in our understanding of microbial functionality,

dynamics, and response under multiple conditions. Shot-
gun metagenomics makes it possible to observe and
analyze a broad sampling of microbial diversity without
cultivation, providing new insights into their genomic
complexity and functional potential [31]. In addition, be-
cause shotgun metagenomic sequencing does not rely
on a universally distributed marker gene, such as the
16S rRNA gene, it can also be used to explore the viral
community [32].
Using metagenomics previous studies have identified

that within the viral community of surface freshwater
sites bacteriophages (phage) dominate [33–37]. Phages
are critical components in shaping the evolution, diver-
sity, abundance, and genetic composition of bacteria
[38]. Temperate phages (forming prophage) can influ-
ence their hosts’ phenotype through the horizontal
transfer of genes, such as those for antibiotic resistance/
toxins and those that promote host fitness and adapt-
ability [39, 40]. However, phage composition, diversity,
and host-interactions are often linked to fluctuating en-
vironmental characteristics [41]. Therefore, assessing
phage ecology and relationships with their host(s) is crit-
ical with regard to completing a comprehensive
characterization of pond biodiversity.
In the present study, we periodically sampled surface

water from a freshwater agricultural pond located in the
Mid Atlantic, United States. From these samples, we
employed culture-independent high-throughput sequen-
cing to characterize the dynamics, taxonomy, and func-
tionality of their bacterial and viral communities over
time.

Materials and methods
Study site and sample collection
Water samples (total n = 14) were collected on the fol-
lowing dates: 6/12/17, 7/17/17, 8/8/17, 8/21/17, 9/11/17,
9/25/17, 10/30/17, 11/13/17, 12/18/17, 1/22/18, 2/12/18,
3/12/18, 4/9/18, and 5/7/18 from a freshwater agricul-
tural pond located in a rural area of central Maryland,
United States (maximum depth of ca. 3.35 m and a sur-
face area of ca. 0.26 ha). At each date, a utility transfer
pump (0.08W; Everbilt, Atlanta, GA) powered by a
EU1000i generator (American Honda Motor Co., Ltd.,
Alpharetta, GA) and connected to a sampling cartridge
via vinyl braided tubing (1.9 cm inner diameter, Sioux
Chief, Peculiar, MO) was submerged 15–30 cm below
the surface and used to pump roughly 10 L of water into
a sterile polypropylene carboy. Samples were kept in the
dark at 4 °C and processed within 24 h of collection.

Water physicochemical assessment
At each time point a ProDSS digital sampling system
(YSI, Yellow Springs, OH, United States) was used to
measure the following physicochemical properties of the
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pond water: temperature (°C), pH, dissolved oxygen (%
DO), conductivity (SPC uS/cm), oxidation-reduction po-
tential (ORP, mv), turbidity (FNU), nitrate (mg/L), and
chloride (mg/L). Using the Nation Weather Services his-
torical data archive, ambient temperature was recorded
for the time and date at each sampling event.

Water sample processing
Microbial DNA was isolated as described in detail previ-
ously [6]. Briefly, for each sample 10 L of water was fil-
tered sequentially through a Whatman 1 μm
polycarbonate filter (Sigma-Aldrich, MO, United States)
and a 142-mm diameter 0.2 μm membrane filter (Pall
Gelman Sciences, MI, United States) attached via sterile
1.6 mm PVC tubing with a Watson Marlow 323 Series
Peristaltic Pump (Watson-Marlow, Falmouth, Cornwall,
United Kingdom).
The 1 μm polycarbonate filter was used initially to

collect large cells and debris to make the subsequent
0.2 μm membrane filtration more effective and effi-
cient. Following filtration, filters (1 and 0.2 μm) con-
taining the cellular fraction were dissected into four
equal quadrants and stored at − 80 °C until DNA
extraction.

Viral concentration and DNA extraction
On 6/12/17, 7/17/17, 8/8/17, 8/21/17, 9/11/17, 9/25/
17, 10/30/17, and 5/7/18 the iron chloride procedure
was used on the pond water after sequential 1 μm
and 0.2 μm filtration, with the 0.2 μm a common pore
size used in virome generation to prevent cellular
contamination [33, 37, 42]. A 1 mL solution of FeCl3
(4.83 g FeCl3 into 100 ml H2O) was added to the fil-
tered pond water and incubated in the dark for 1 h.
The samples were then filtered onto 142-mm 1 μm
polycarbonate filters (Sigma-Aldrich, MO, United
States) to capture flocculated viral particles [43]. Fil-
ters were stored at 4 °C in the dark until resuspen-
sion. For resuspension, filters were rocked overnight
at 4 °C in 10 mL of 0.1 M EDTA - 0.2 M MgCl2− 0.2
M Ascorbate Buffer, described in detail elsewhere
[43]. Resuspended viral particles were then subjected
to a DNase I (Sigma-Aldrich, MO, United States)
treatment for 1 h and passed through a 33-mm diam-
eter sterile syringe filter with a 0.2 μm pore size
(Millipore Corporation, MA, United States). DNA was
extracted from 500 μl of the viral concentrate using
the AllPrep PowerViral DNA/RNA Kit (Qiagen, CA,
United States) per the manufacturer’s instructions.
Prior to sequencing, viral DNA was tested for the
presence of bacterial contamination via 16S rRNA
gene PCR.

Microbial DNA extraction
Microbial DNA was extracted from the filters using an
enzymatic and mechanical lysis procedure [6, 44]. Each
filter quadrant was placed in a lysing matrix tube with a
cocktail of PBS buffer, lysozyme, lysostaphin, and muta-
nolysin. After incubation at 37 °C for 30 min, a second
lysing cocktail (Proteinase K and SDS) was added
followed by another incubation at 55 °C for 45 min and
mechanical lysis via bead beating with a FastPrep Instru-
ment FP-24 (MP Biomedicals, CA) (6.0 m/s for 40s).
The resulting DNA was purified with the QIAmp DNA
mini kit (Qiagen, CA, USA) and assessed for quality with
the NanoDrop 2000 Spectrophotometer. To create a
composite sample, microbial DNA extracts from all four
quadrants of both filter sizes were pooled for each date.

16S rRNA gene sequencing and analysis
From each of the pooled microbial DNA extractions
(n = 14), the V3-V4 hypervariable region of the 16S
rRNA gene was PCR-amplified and sequenced on the
Illumina HiSeq 2500 (Illumina, San Diego, CA, United
States) utilizing a dual-indexing strategy for multiplexed
sequencing developed at the Institute for Genome Sci-
ences [45].
The resulting 16S rRNA reads were screened for low

quality bases and short read lengths, merged with PAND
Aseq, de-multiplexed, and trimmed of artificial barcodes
and primers [46–48]. Using VSEARCH, reads were then
checked for chimeras with the UCHIME algorithm and
the ChimeraSlayer RDPGold_Trainset reference training
dataset [49]. Chimera-free reads were then clustered de
novo into Operational Taxonomic Units (OTUs) using
VSEARCH with a minimum confidence threshold of
0.97. Following OTU clustering, alpha diversity (Ob-
served OTUs) was calculated and assessed using the R
packages: Bioconductor [50], metagenomeSeq [51],
vegan [52], phyloseq [53], fossil [54], biomformat [53],
and ggplot2 [55] on unrarefied data and data rarefied to
an even sampling depth (13,956 sequences). Taxonomic
assignments via 16S rRNA were not considered in this
study.

Shotgun sequencing for microbial metagenomes and
viromes
For both the microbial (n = 14) and viral (n = 8) samples,
DNA extracts were shotgun sequenced. Briefly, for each
sample DNA was used in a tagmentation reaction,
followed by 12 cycles of PCR amplification using Nextera
i7 & i5 index primers per the modified Nextera XT
protocol. The final libraries were then quantitated by
Quant-iT hsDNA kit. The libraries were pooled, loaded
onto an Agilent High Sensitivity D1000 ScreenTape Sys-
tem, and then sequenced on an Illumina 2500 Hiseq
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X10 flow cell (Illumina, San Diego, CA, United States)
targeting 100 bp paired-end reads per sample.

Microbial and viral metagenomic assembly
After sequencing the paired-end reads from both micro-
bial and viral libraries were quality trimmed using Trim-
momatic ver. 0.36 (sliding window:4:30 min len:60) [56].
The quality reads were then merged with FLASh ver.
1.2.11 [57] and assembled de novo with MEGAHIT [58].
Open reading frames (ORFs) were predicted and trans-
lated from each library using MetaGene [59].

Microbial and viral taxonomic and functional classification
For the microbial metagenomes, translated peptide ORFs
were searched against UniRef 100 (retrieved May 2018)
via protein-protein BLAST (BLASTp ver. 2.6.0+) (E
value ≤1e-3) [60, 61]. Max cumulative bit score was used
to assign taxonomy and calculated by summing the bit
scores of all taxa with a hit to a translate peptide ORFs
encoded by the contig. Translated peptide ORFs were
also searched against the SEED database using BLASTp
(E value ≤1e-3). Translated peptide ORFs were assigned
to a SEED subsystem with the maximum sum bit score
among all of the ORF’s hits. Taxonomic and functional
classification of viromes were conducted as described in
Chopyk et al., 2017 [6].
For both viral and microbial metagenomes coverage

was calculated for each contig by recruiting quality-
controlled reads to assembled contigs via Bowtie2 ver.
2.3.3 in very sensitive local mode. Then using the
“depth” function in Samtools ver. 1.4.1 we computed the
per-contig coverage [62]. Coverage for translated peptide
ORFs were denoted by start and stop coordinates within
each contig. To normalize abundances across libraries,
contig and ORF coverages were divided by the sum of
coverage per million, similar to the transcripts per mil-
lion (TPM) metric used in RNA-Seq [63, 64]. Scripts
performing these assignments and normalization are
available at https://github.com/dnasko/baby_virome. All
taxonomic and functional data were visualized using the
R packages ggplot2 ver. 3.1.0 and pheatmap ver 1.0.10
[55, 65].

ARGs prediction and host assignment
Translated peptide ORFs from both viral and microbial
metagenomes were searched against the “Comprehensive
Antibiotic Resistance Database” (CARD; retrieved July
2018) via protein-protein BLAST (BLASTp ver. 2.6.0+) (E
value ≤1e-3) [60, 66]. A queried translated peptide ORF
was considered an ARG if it had > 40% coverage and >
80% amino-acid identity to a CARD protein [67, 68]. In
addition, for the ARGs conferring resistance through tar-
get mutations, a post-processing step was taken to con-
firm the presence of resistance-conferring mutations; a

MAFFT alignment with reference sequences available at
CARD [69]. Taxonomic assignments were parsed for con-
tigs containing ARG-like translated peptide ORFs. Net-
works were visualized by Cytoscape [70].

Statistical analysis
Significance tests were conducted using an ANOVA
with post hoc Tukey’s HSD Test among meteorological
seasons, defined by the American Meteorological Soci-
ety. Additionally, to identify associations between the
water physicochemical characteristics and the normal-
ized abundance of the bacterial genera, as well as be-
tween the abundance of bacterial genera and viral
families, Pearson’s correlation coefficients were calcu-
lated in RStudio version 1.0.153 and corrected for mul-
tiple comparisons with FDR.

Results
Sequencing effort and assembly
All samples (n = 22) were sequenced on the Illumina
HiSeq, 14 microbial and eight viral. In total, there were
907,056,944 read pairs for the microbial metagenomes
with an average of 64,789,782 read pairs per metagen-
ome (+/− 7,936,115 Standard Deviation, SD) (Table S1).
For the viral metagenomes, there were 489,222,408 read
pairs with an average of 61,152,801 read pairs per meta-
genome (+/− 9,064,079 SD) (Table S2). After assembly,
there were a total of 9,979,705 contigs generated, with
an average of 712,836 contigs per sample (+/− 142,125
SD) for the microbial metagenomes and a total of 1,913,
254 contigs, with an average of 239,157 contigs per sam-
ple (+/− 45,658 SD) for the viromes.

Temporal variations in physicochemical characteristics
and bacterial diversity of pond water
Physicochemical variables for each sampling date are
shown in Fig. 1. Water temperature ranged from 29 °C
(7/17/17) to 4 °C (1/22/18). By meteorological season,
winter (12/18/17, 1/22/18, 2/12/18) had an average
water temperature of 6 °C. This was significantly (p ≤
0.05) lower than autumn (9/11/17, 9/25/17, 10/30/17,
11/13/17) and summer (6/12/17, 7/17/17, 8/8/17, 8/21/
17), which had an average water temperature of 18 °C
and 27 °C, respectively. In addition, the water
temperature in summer was significantly (p ≤ 0.05)
higher than spring (3/12/18, 4/9/18, 5/7/18). The only
other environmental factor that significantly (p ≤ 0.05)
differed by meteorological season was ORP, which was
significantly higher in spring compared to autumn. Pre-
cipitation 24-h prior to sampling occurred only on 8/8/
17, 10/30/17, and 2/12/18.
Furthermore, we examined the bacterial diversity at

each time point by way of amplification and sequencing
of the 16S rRNA gene. Overall, the alpha diversity,
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surveyed by rarefied and unrarefied Observed OTUs,
was generally steady throughout the year, with no sig-
nificant differences found between rarefied or unrarefied
diversity and meteorological season. However, by physi-
cochemical parameter we did find some correlations.
Specifically, we found that turbidity was significantly
(p ≤ 0.05) positively correlated with the abundance of
rarefied and unrarefied Observed OTUs.

Temporal variations in bacterial phyla of pond water
For the microbial metagenomes collected throughout
the year, on average 78% (+/− 4% SD) of contigs could
be assigned a taxonomic representative (Table S3). Of
these, the majority was homologous to Bacteria 93%
(+/− 2% SD), followed by Eukaryota 3% (+/− 1% SD),
and Viruses 3% (+/− 0.5% SD).
For each of the contigs, a normalized abundance was

calculated to account for assembly proficiency and se-
quencing depth and then parsed for those assigned as
Bacteria. Of these, the most frequently observed bacter-
ial phylum was Proteobacteria, which accounted for 43%
(+/− 5%) of the total bacterial assigned abundance across

all time points (Fig. 2). The next most abundant phyla
were Actinobacteria at 28% (+/− 8%), Bacteroidetes at 12%
(+/− 4% SD), and Firmicutes at 7% (+/− 1%). The largest
phylum, Proteobacteria, was composed chiefly of the class
Betaproteobacteria 50% (+/− 6% SD) and Alphaproteobac-
teria 23% (+/− 5% SD), with the largest spike in Alphapro-
teobacteria occurring on 2/12/18.
By meteorological season, winter had a significantly

(p ≤ 0.05) higher abundance of Bacteroidetes than all
other seasons, while summer had a significantly (p ≤
0.05) higher abundance of Cyanobacteria compared to
all other seasons. Summer and autumn both had a high
abundance of Firmicutes, with both significantly (p ≤
0.05) higher than spring and winter.
In addition to differences by meteorological season,

the normalized abundance of some of these top
phyla correlated with physicochemical parameters
surveyed in the water: Actinobacteria (R = 0.65, p ≤
0.05) correlated with conductivity, Bacteroidetes cor-
related with precipitation (R = 0.63, p ≤ 0.05), con-
ductivity (R = -0.67, p ≤ 0.05), and turbidity (R = 0.74,
p ≤ 0.05), and Chloroflexi correlated negatively with
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precipitation (R = -0.68, p ≤ 0.05) and turbidity (R = -
0.63, p ≤ 0.05). Additionally, Cyanobacteria (R = 0.83,
p ≤ 0.01), Firmicutes (R = 0.80, p ≤ 0.01), and Plancto-
mycetes (R = 0.74, p ≤ 0.01) all correlated positively
with water temperature.

Temporal variations in bacterial genera of pond water
Within the bacterial assignments classified at the genera
level, Streptomyces (11% +/− 3% SD), Variovorax (7%
+/− 2% SD), Pusillimonas (4% +/− 1% SD), and Pseudo-
monas (3% +/− 0.5% SD) were the most abundant
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(Fig. 3). By meteorological season, winter had a signifi-
cantly (p ≤ 0.05) higher abundance of Ulvibacter, Ruda-
nella, and Flavobacterium compared to all seasons.
Spring had a significantly (p ≤ 0.05) higher abundance of
Polynucleobacter compared to all seasons and a signifi-
cantly higher abundance of Nitrosovibrio compared to
autumn. Summer had a significantly (p ≤ 0.05) higher
abundance of Nostoc compared to all seasons. Autumn
had a significantly (p ≤ 0.05) higher abundance of Ferri-
microbium compared to winter.
Similar to the analysis of the bacterial phyla, we calculated

Pearson’s correlations between the normalized abundance
of the dominant bacterial genera and the physicochemical
parameters of the pond water (Fig. 3). In total, precipitation
and turbidity correlated with the greatest number of genera,
followed by conductivity and water temperature.

Microbial metagenome, functional potential
On average, 40% (+/− 3%) of translated peptide ORFs
from the microbial metagenomes could be assigned a
SEED functional category (Fig. 4). Of these, “Carbohy-
drate Metabolism” was the most abundant represent-
ing on average 16% (+/− 1%) of the total assigned
functional abundance followed by “Amino Acids and
Derivatives” at 12% (+/− 0.3%), “Protein Metabolism”
at 9% (+/− 0.4%), and either “Cofactors, Vitamins,
Prosthetic Groups, Pigments” at 7% (+/− 0.2%) or
“DNA Metabolism” at 6% (+/− 0.5%). By meteoro-
logical season, the only SEED functional category that
was significantly (p ≤ 0.05) different among seasons
was “Motility and Chemotaxis”, which was signifi-
cantly higher in winter compared to autumn and
summer.

Fig. 4 Functional composition in agricultural pond water across sampling dates. Heatmap of the microbial metagenomes’ functional profiles,
represented by the SEED systems, at each sampling date. Hierarchical clustering of SEED systems was performed using the complete clustering
method with Euclidean distances. Sampling dates are ordered temporally. Normalized abundance measured as ORF coverage divided by the sum
ORF coverage per million
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Similar to the bacterial abundance, precipitation was
significantly correlated with the abundance of a diversity
of functional SEED systems including: “Potassium me-
tabolism” (R = 0.78, p ≤ 0.001), “Regulation and Cell sig-
naling” (R = 0.76, p ≤ 0.01), “Iron acquisition and
metabolism” (R = 0.74, p ≤ 0.01), “Virulence Disease and
Defense” (R = 0.72, p ≤ 0.01), “Miscellaneous” (R = 0.69,
p ≤ 0.01), “Phages Prophages Transposable elements etc.”
(R = -0.69, p ≤ 0.05), “Carbohydrates” (R = 0.68, p ≤ 0.05),
and “Membrane Transport” (R = 0.67, p ≤ 0.01). Likewise,
turbidity was also correlated with “Iron acquisition and
metabolism” (R = 0.76, p ≤ 0.01).

Antibiotic resistance and host taxonomy in pond water
To assess antibiotic resistance in the microbial and viral
metagenomes, we conducted a BLAST analysis of trans-
lated peptide ORFs against CARD. No translated peptide
ORFs within the viral metagenomes had significant
homology to ARGs within CARD. However, in the mi-
crobial metagenomes, 184 translated peptide ORFs were
identified as 21 unique ARGs conferring resistance to

over 15 drug classes (Fig. 5). For the ARGs whose resist-
ance is associated with target mutations, they were con-
firmed to carry the following mutations: rpsL; K88R [71];
gyrA, S95T [72]; murA C117D [73]; rpoB H526T [74];
EF-Tu Q124K [75]; ndh V300G, V246A [76]. A normal-
ized abundance was also calculated for each ARG-like
translated peptide ORF. From this, the greatest abun-
dance of ARG-like translated peptide ORFs was attrib-
uted to the sampled collected on 10/30/17, followed by
9/25/17 and 9/11/17. However, the greatest diversity of
ARGs was identified on 2/12/18.
For each ARG-like translated peptide ORF, the source

genus and phylum were parsed (Fig. 6). All the ARG-like
translated peptide ORFs originated from contigs
assigned as Bacteria. Of these, 71% of were contigs
assigned to the phylum Actinobacteria (9 unique ARGs),
largely of the genus Ferrimicrobium (30 rpsL), Saccharo-
monospora (1 RbpA, 4 gyrA, 12 mtrA, 4 murA, 2 rpsL),
and Aeromicrobium (5 EF-Tu, 1 rpoB, 13 rpsL). The next
largest phylum assigned to contigs with an ARG-like
ORF was Proteobacteria, which accounted for 21% of the
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contigs, but had a wide diversity of ARGs (14 unique
ARGs). Within this phylum, Sphingopyxis (12 rpsL) and
Pseudomonas (3 rpsL, 1 CpxR, 1 mtrA) were assigned to
the most contigs.

Viral taxonomic and functional composition
For the viromes, on average 47% of contigs (+/− 1%)
could be assigned a taxa, which is in agreement with
results described in other viral metagenomic studies
[77]. For those that could be assigned, a normalized
abundance was calculated. The vast majority of viral
abundance was assigned to the tailed bacteriophage of
the order Caudovirales (Fig. 7). Of these, the majority

were similar to members of the Siphoviridae (49%
+/− 4%) family, followed by the Myoviridae (34% +/−
5%) and Podoviridae families (14% +/− 2%). The
remaining portion were either viral contigs that could
not be assigned a family (2% +/− 0.1%) or were other
viral families (1% +/− 0.2%). The other viral families
included viruses infecting other bacteria and archaea,
ssDNA bacteriophage Microviridae and Inoviridae,
plant viruses from the family Tymoviridae, and ani-
mal/arthropod viruses from the family Poxviridae.
On average, only 10% (+/− 2%) of translated peptide

ORFs from the viromes could be assigned at a SEED
system (Fig. S1). Of these, “DNA Metabolism” was
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the most abundant representing on average 23%
(+/− 5%) of the total assigned functional abundance
followed by “Phages, Prophages, Transposable ele-
ments” at 12% (+/− 0.3%), “Motility and Chemotaxis”
at 9% (+/− 1%), and “Protein Metabolism” at 7%
(+/− 1%). For the dominant viral phyla we did not
calculate any significant correlations between their
relative abundance or functional potential and the
physicochemical properties of the pond water, likely
due to the limited sample size (n = 8).

Discussion
Freshwater is a finite natural resource essential to life on
Earth. It is critical in supporting urban, agricultural, and
industrial activities, as well as providing a home for a
rich diversity of macro- and micro- organisms [1–6].
Yet, anthropogenic activities, climate change, and a
growing global population threaten its quality and avail-
ability worldwide [78, 79]. Here, we focused our atten-
tion on one freshwater resource, ponds, that have been
historically disregarded in favor of studies on larger
aquatic systems.
In this study, the pond freshwater was dominated by

Proteobacteria, largely that of Betaproteobacteria, a class

found ubiquitously in freshwater [80]. This agrees with
initial freshwater samples collected along Indian Pond in
New York U.S., as well as a recent study from our lab
surveying the microbial composition in a freshwater
creek [81, 82]. However, here we were able to detect
seasonal changes in the abundance of the bacterial
phyla that corresponded to environmental conditions.
For instance, during the summer months, the abun-
dance of Cyanobacteria, increased with increasing am-
bient water temperature (Figs. 2 and 4). This is not
surprising as water temperature has been found in
multiple prior studies to be predictors of the abun-
dance of Cyanobacteria [83, 84]. Moreover, these re-
sults agree with those reported in an earlier study
from our lab, where we found, through 16S rRNA
gene sequencing, that the relative abundance of
Cyanobacteria and Synechococcus decreased signifi-
cantly with declining temperature [6]. In this study,
Cyanobacteria peaked in the summer season (specific-
ally on 7/17/17), but continued at high abundance
into autumn, where mild temperatures likely sustained
their growth. During these peak seasons, the genus
Nostoc was the most abundant within the Cyanobac-
teria phylum (Fig. 3).
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The Nostoc genus includes a highly diverse range of
nitrogen-fixing species, commonly found in aquatic envi-
ronments as either free-living, engaged in cooperative
growth on plants and fungi, or in gelatinous colonies on
rocks and stones [85]. While Nostoc blooms in fresh-
water ponds and lakes are often just considered a nuis-
ance, there are still concerns with regard to recreational
use or agricultural irrigation post and during a bloom
[86, 87]. Nostoc spp. are becoming increasingly recog-
nized for their role in the production of cyanotoxins, as
well as other bioactive compounds that can cause ser-
ious health problems in humans and animals [86, 87]. In
fact, Nostoc is reported by the EPA as one of the eight
most common microcystin-producing Cyanobacteria
[88]. In humans, microcystin exposure is associated with
both acute health effects (e.g. abdominal pain, headache,
diarrhea, pneumonia, etc.) and chronic conditions (e.g.
primary liver cancer, colon and rectum carcinomas) [89,
90]. While we do not know from the data presented in
this study if the Nostoc spp. are toxin-producing, their
persistence in the summer months is cause for future in-
vestigation to protect environmental and public health.
In addition to fluctuations driven by seasonal trends, we

saw a large shift in the bacterial composition that corre-
lated with a sizable precipitation event on 2/12/18 (Fig. 1).
Likely, this event triggered an influx of upland runoff into
the pond, resulting in an increase in bacterial diversity, as
well as an increase in the abundance of Bacteroidetes (e.g.
Rudanella, Flavobacterium) and Proteobacteria (e.g.
Alphaproteobacteria) (Fig. 2). Bacteroidetes are often lim-
ited in freshwater environments, likely due to their de-
pendency on organic matter [80, 91]. However, previous
studies have found Bacteroidetes increased in abundance
within freshwater creeks following storm events [92, 93].
In these studies, the authors suggested that the increase in
Bacteroidetes may be a concern, as they are often indica-
tive of human fecal and sewage material contamination
[94, 95]. In fact, they have been suggested as better alter-
natives to traditional fecal indicators such as E. coli or
fecal coliforms [94–96]. Along with potential pathogens
and a diversity of terrestrial microorganisms, runoff can
also introduce upland pollutants, such as antibiotics.
While antibiotics and ARGs are both naturally occur-

ring, nonpoint and point source pollution of human and
animal-derived wastes may select for an abundance that
is atypical and may ultimately have repercussions for en-
vironmental and public health [97, 98]. Freshwater envi-
ronments have become established as important
reservoirs for the potential maintenance and dissemin-
ation of ARGs, especially small lakes and pond [99].
These lentic bodies tend to have longer water retention
times compared to lotic environments, which can result
in the accumulation of antibiotics and selection for re-
sistant bacteria [100, 101]. In this study, we identified

ARGs on all of the sampling dates conferring resistance
through a wide range of mechanisms across clinical, veter-
inary, and agricultural antibiotics. This varied resistome
may be attributed to the selective forces driven by the
pond topography, environmental contributions, and the
commensal bacterial community composition. Unlike
other surface freshwater sites, the pond surveyed here was
dominated by Streptomyces of the phylum Actinobacteria.
Actinobacteria, particularly Streptomyces, produce many
clinically significant antibiotics [97, 102, 103]. As a result,
they can contain a wide array of ARGs for self-protection,
as well as those inherited horizontally from other Actino-
bacteria [104, 105]. Thus, it was not surprising to see that
the majority of ARG putative hosts originated from Acti-
nobacteria (Fig. 6).
As for the environmental contributions, the largest

spike in ARG diversity was on 2/12/18, which corre-
sponded to a large precipitation event. Here, we saw the
emergence of seven unique ARGs (JOHN-1, ESP-1, CRP,
PEDO-2, CPS-1, CpxR, and bacA) conferring resistance
to a broad range of clinically- relevant antibiotics, in-
cluding three beta-lactamases against carbapenem. The
majority of these ARGs, unlike in the other months,
were identified on contigs assigned as Gammaproteobac-
teria. This is consistent with the idea that these ARGs
were introduced by an influx of upland runoff, as Gam-
maproteobacteria are not common in freshwater and are
thought to be transient members introduced from the
surrounding environment [80].
While other studies on freshwater have identified

phage-encoded ARGs we did not observe any ARGs in
the viral fraction [106, 107]. However, we did identify
other putative functions carried largely by bacterio-
phages, specifically, genes related to DNA metabolism
(Fig. S1). Previous studies characterizing DNA viruses in
freshwater [108], wastewater treatment plants [109], and
reclaimed water [110] found DNA metabolism genes
were also enriched. This high abundance of virome-
associated metabolic genes suggests elevated metabolic
activity within these water systems. It also highlights the
potential phages in these systems have to interfere in the
metabolism of their hosts [111]. This could be of par-
ticular importance within the pond surveyed here, as we
also identified a large abundance of Siphoviridae, a fam-
ily of largely temperate dsDNA bacteriophage. For
phages, lysogeny is suggested to be advantageous when
conditions are poor, such as during times of nutrient-
starvation [112]. Whereas, the lytic lifestyle is suggested
to dominate when the bacterial community is the most
productive (e.g. summer) [113]. While we do not have
viral data that spans the coldest months of the year,
the abundance of Siphoviridae did decrease and the
abundance of Myoviridae, a traditionally virulent
phage family, did increase during the warmer months
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(7/17/17–9/11/17) surveyed. However, the dominance
of phage lifestyle strategy may be more complex then
previously thought, as not all studies find lysogeny to
be prevalent only in times of low bacterial productiv-
ity [114]. For instance, the “piggy-back-the-winner”
model was born from observations that showed lysog-
eny is more prevalent at higher host cell densities
[115, 116]. In this study, the prevalence of lysogenic
phages may also be due to the composition of the
host taxa, as the dominant bacterial phyla of the
pond, Actinobacteria, and Proteobacteria, have been
previously reported in some environments to be ideal
hosts for temperate phages [117].
In addition to their significance as a freshwater re-

source for human industrial and agricultural activities,
ponds are also a “hot spot” of biodiversity that signifi-
cantly contribute to global ecosystem health [118]. Here,
we provide one of the largest datasets on pond water mi-
crobial ecology to date. We expect these data will serve
to not only improve understanding of the factors that
may contribute to the disruption of pond biodiversity
but also further our knowledge regarding the potential
microbial risks of using pond water for agricultural
irrigation.

Conclusions
Ponds represent a potential resource for freshwater,
especially in agricultural settings. Here, we character-
ized the seasonal fluctuations in the microbial com-
munities within one of these complex and often
understudied water bodies. We found, through the
use of shotgun metagenomics, that features of the
bacterial community are strongly influenced by sea-
sonal forces, including temperature, conductivity, pre-
cipitation, and turbidity. For instance, we noted that
the abundance of Cyanobacteria (e.g. Nostoc spp), in-
creased with rising ambient water temperature. In
addition we characterized the functional potential of
the bacterial fraction and identified 21 unique ARGs
conferring resistance to over 15 drug classes, with the
majority of hosts identified as members of the Actino-
bacteria phylum. Interestingly, we found that the di-
versity of ARGs, largely from Gammaproteobacterial
hosts, spiked with a large precipitation event. More-
over, for a subset of samples we were able to
characterize the viral communities, an often over-
looked, but incredibly important, member of fresh-
water systems. From these data we found that
Siphoviridae and Myoviridae dominated the pond,
with the latter increasing during the warmer months
surveyed. Taken together, these data showcase the
range of compositional and functional variability
within a freshwater pond over the course of a year.
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