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Abstract

Essays in Matching

by

Ivan Stefanov Balbuzanov

Doctor of Philosophy in Economics

University of California, Berkeley

Associate Professor Haluk I. Ergin, Chair

In this dissertation, I study the properties of and propose the use of a family of random
mechanisms for a large class of problems where agents need to be matched to objects or to
each other without the use of monetary transfers.

In the first chapter, I study the problem of kidney exchange under strict ordinal prefer-
ences and with constraints on the length of the trading cycles. The requirement of individual
rationality in this setting incentivizes patient-donor pairs who are compatible with each other
to participate in the kidney exchange, thus increasing the match rate for incompatible pairs.
I show that deterministic mechanisms have poor properties in this environment. Instead, I
explicitly define an individually rational, efficient and fair random mechanism for the case
of pairwise kidney exchange. Finally, I show that individual rationality, efficiency and weak
strategyproofness are incompatible for the cycle-constrained case making the proposed mech-
anism, called the 2-Cycle Probabilistic Serial (2CPS) mechanism, a second-best mechanism.

In the second chapter, I extend the idea behind the 2CPS mechanism to arrive at a
constrained efficient mechanism for a general matching environment and regardless of what
the ex-post constraints on the outcome are, including individual rationality, limits on the
cycle lengths, maximizing the number of proposed matches etc. Several mechanisms from the
existing literature are special cases of this mechanism, called the Generalized Constrained
Probabilistic Serial (GCPS) mechanism.

In the final chapter, I consider two natural notions of strategyproofness in random match-
ing mechanisms based on ordinal preferences. The two notions are stronger than weak strat-
egyproofness but weaker than strategyproofness. I demonstrate that the two notions are
equivalent and provide a geometric characterization of the new intermediate property which
I call convex strategyproofness. I then show that the probabilistic serial mechanism (a special
case of the GCPS mechanism) is, in fact, convexly strategyproof. I finish by showing that
the property of weak envy-freeness of the random serial dictatorship can be strengthened in
an analogous manner.
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Chapter 1

Short Trading Cycles: Kidney
Exchange with Strict Ordinal
Preferences

1.1 Introduction

As of September 2014, the number of patients with end-stage kidney disease and in need of
a kidney transplant exceeded 100,000 on the US waiting list alone. The number has been
growing for years. Annually, more than 4,000 patients die while waiting and thousands more
become too sick to receive a transplant and have to withdraw from the list (see, for example,
The New York Times Editorial Board 2014). One of the methods attempted to alleviate the
severe kidney shortage, has been the creation of living-donor kidney-exchange clearinghouses
(Roth et al. 2004, 2005a, 2007), which allow otherwise incompatible patient-donor pairs to
trade kidneys amongst themselves.1

The United States National Organ Transplantation Act (NOTA) of 1984 forbids the trans-
fer of human organs for “valuable considerations.”2 This has two important consequences
for kidney exchange. First, it is illegal to use the price mechanism to guarantee that the
post-exchange allocation is socially optimal. Instead, it falls to the existing clearinghouses,
which are in charge of kidney exchanges, to organize efficient trading. Second, NOTA’s pro-
visions make it impossible for donors to contractually commit to donate a kidney so kidney
exchanges need to be performed simultaneously to avoid donors backing out of a promised
donation. Thus any exchange with k patient-donor pairs requires k donor nephrectomies
(i.e., kidney removals) and k transplantations, each of which requires an operating theater
and a surgical team working simultaneously. This constraint creates significant logistical

1Kidney-exchange clearinghouses have been organized in the US (Wallis et al. 2011), UK (Manlove and
O’Malley 2012), the Netherlands (Keizer et al. 2005; De Klerk et al. 2005), South Korea (Park et al. 1999,
2004), Romania (Lucan 2007), Portugal, Australia, New Zealand, Canada, Spain (Constantino et al. 2013)
and others.

2The buying and selling of kidneys is forbidden almost everywhere in the world (Roth 2007).
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challenges which in practice limit the number of pairs who could participate in each ex-
change. Since each exchange takes the form of a trading cycle, where the first donor donates
a kidney to the second patient, whose donor donates to the third patient and so on, until a
donor closes the cycle by donating a kidney to the first patient, the length of these trading
cycles, as measured by the number of pairs in them, cannot be too large.

With this motivation, I study the problem of object exchange without monetary transfers
(Shapley and Scarf 1974), with strict ordinal preferences and with constraints on the length
of the trading cycles. The assumption of strict ordinal preferences is the main departure
from the existing kidney-exchange literature which is based on the assumption of binary
preferences, as initially postulated by Roth et al. (2005a), so that all compatible kidneys
are viewed as perfect substitutes from the point of view of the transplant patient. There
is mounting evidence in the transplantation literature, however, that a variety of factors
beyond simple compatibility can impact the short- and long-term survival rates of kidney
grafts, including, for example, age and sex.3 Thus reducing the problem to simple dichoto-
mous compatibility-based preferences disposes of some welfare-relevant information. Addi-
tionally, an individually rational mechanism that takes strict preferences into account can
also induce the participation of patients who are compatible with their related donor. This
would greatly increase the transplantation rates for incompatible pairs: for example, Roth
et al. (2005b) estimate that the rate would almost double. Finding a suitable mechanism in
this environment of great real-life interest has been an open problem until now.

After I show that deterministic mechanisms in this setting have poor properties, my main
result is to propose a random mechanism that satisfies the following three properties. Firstly,
it is individually rational. This guarantees compatible transplantations and the participation
of compatible pairs. Secondly, it is ordinally efficient, where ordinal efficiency is the natu-
ral form of efficiency for random environments with ordinal preferences (Bogomolnaia and
Moulin 2001). Thirdly, it is fair where fairness is represented by anonymity/name-invariance.
I explicitly define the mechanism for the kidney-exchange setting, where each trade can in-
volve no more than two pairs. I call it the 2-cycle probabilistic serial (2CPS) mechanism, as
it is based on the probabilistic serial (PS) mechanism (Bogomolnaia and Moulin 2001).4 The
mechanism can be extended to a setting including a social endowment of kidneys such as
kidneys coming from deceased or altruistic living donors. I also show that no mechanism can
simultaneously satisfy an arbitrary cycle constraint, individual rationality, ordinal efficiency,
and also guarantee that agents truthfully report their preferences, which, I argue, is the least
important desideratum in the setting of kidney exchange.5

Another reason to consider strict preferences is related to the participation of compatible
patient-donor couples in kidney exchange programs. Even if the differences in the graft

3I discuss this further in Section 1.2.
4It is notable that this setting is equivalent to the well-known roommate problem (Gale and Shapley

1962). Thus the 2CPS mechanism is also a general roommate-problem solution with desirable properties.
5Previous models of kidney exchange have been concerned with strategyproofness but blood testing for

kidney exchange has become more standardized and centralized over time, which has made misreporting of
compatibility-induced preferences harder. See Ashlagi and Roth (2014).
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survival and rejection rates between different kidneys are of secondary importance to actually
receiving a kidney, current mechanisms based on the binary-preference assumption do not
provide incentives for compatible pairs to enroll in kidney-exchange programs. Under these
mechanisms, the patient from a compatible pair would always be guaranteed to receive a
compatible kidney but the kidney she might end up receiving can have a worse expected
outcome than the one from her donor. Adding to that the waiting time and other extra
costs associated with enrolling in a kidney exchange, compatible pairs are unlikely to want to
participate. However, their involvement can increase the matching rate among incompatible
pairs, significantly improving efficiency: simulations in Roth et al. (2005b) suggest that
the match rate for incompatible pairs would double if known compatible pairs participate.6

Imposing individual rationality in my setting provides incentives for compatible patient-
donor pairs to enroll by guaranteeing the patient a kidney that is at least as good for her
as her donor’s kidney. Notice that it’s individually rational for compatible patient-donor to
participate in an ex-post way: compatible pairs would never want to back out of a proposed
kidney exchange.

I begin by showing that deterministic mechanisms do not perform very well in my environ-
ment. Namely, the mechanism desiderata of basic fairness (represented by anonymity/name-
invariance) and efficiency are incompatible with one another, as are individual rationality,
efficiency and strategyproofness. I then examine the performance of Gale’s Top Trading Cy-
cles (TTC) in my setting since TTC is the solution with the best properties in the absence
of cycle constraints.7 If we assume that patients’ preferences are drawn from a uniform dis-
tribution over the space of preference profiles, TTC fails to satisfy the cycle constraints with
probability approaching 1 as the number of patient-donor pairs diverges to infinity. If this
weren’t the case, TTC would have made a good solution: it would have selected a match-
ing that is cycle-constraint compliant with positive probability and, due to TTC’s desirable
properties, the cost of the occasional long cycle might have been acceptable. However, the
result suggests that TTC would not work, even approximately, in my setting.

Shifting attention to random mechanisms, I show that a couple of likely candidates for a
suitable mechanism fail to satisfy ordinal efficiency. Instead, I propose the 2CPS mechanism,
which is individually rational (ensuring compatible transplantations), ordinally efficient, and
anonymous, which I argue are the most important desiderata in this setting.

The 2CPS mechanism is based on a simultaneous-eating algorithm. The algorithm treats
all kidneys as if they are infinitely divisible and all agents as if they are claiming larger
and larger shares from the donors’ kidneys in continuous time starting with their most
preferred kidney. The algorithm ends when all the kidneys have been completely claimed
or, equivalently, when all patients have one unit of kidney shares. Then, for any patient i

6See also Gentry et al. (2007) for a similar estimate. In line with these recommendations, the National
Kidney Registry in the US is actively trying to recruit compatible pairs for participation in their program.
There is still, however, a debate in the medical literature on the ethics of allowing compatible pairs to
participate in kidney exchange. See Sönmez and Ünver (2014) for relevant references and a discussion.

7For example, TTC selects the unique allocation in the core (Roth and Postlewaite 1977) and is the
unique mechanism that is individually rational, Pareto efficient, and strategyproof (Ma 1994).
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and kidney from donor j, we treat the share that patient i has claimed from kidney j as
the probability with which patient i receives kidney j. Thus, at the end of the algorithm,
there is an associated probability-share matrix M , where M(i, j) denotes the probability that
patient i receives kidney j. If i = j, we interpret the corresponding diagonal matrix entries
to denote the probability that patient i does not participate in an exchange with other pairs.
Since the kidney of any donor i has to be assigned to exactly one patient (potentially patient
i) and each patient i receives exactly one kidney (potentially kidney i), these relationships
have to be true in expectation so we must have∑

j

M(i, j) = 1 and
∑
i

M(i, j) = 1

for each i and j. Matrices that satisfy these conditions are called bistochastic.
Not all bistochastic matrices represent valid lotteries over deterministic matchings, how-

ever. To see that, consider a simple problem with three patient-donor pairs, numbered 1
through 3, participating in a paired kidney exchange. That is to say, all exchanges are
limited to including no more than two patient-donor pairs. First, consider the matrix

P =

0 1 0
0 0 1
1 0 0

 .

P is not permissible in my setting since it represents a probability-one three-way exchange
where donor 1 donates to patient 3, whose willing donor donates to patient 2, whose donor
donates to patient 1.8 It is not hard to see, however, that, with two-pair trading cycles, the
probability with which patient i receives kidney j must equal the probability that patient j
receives kidney i. Thus any matrix that represents a lottery over permissible trades must be
symmetric. So for the case of paired kidney exchange we need to consider only symmetric
bistochastic matrices. But restricting our attention to symmetric bistochastic matrices is
also not enough. To see this, consider the matrix

Q =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 .

While Q is a symmetric bistochastic matrix, it also does not represent a lottery over two-pair
exchanges. To see that, note that the probability that a patient is left unmatched under Q is
zero since the trace of Q is zero but in any exchange at least one patient is left unmatched.
So this is impossible. In contrast, the matrix R, defined by

R =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 =
1

3

1 0 0
0 0 1
0 1 0

+
1

3

0 0 1
0 1 0
1 0 0

+
1

3

0 1 0
1 0 0
0 0 1

 ,

8Furthermore, it can be shown that P is a possible outcome of the Probabilistic Serial mechanism, which
means that that mechanism is not directly applicable in my setting.



CHAPTER 1. SHORT TRADING CYCLES 5

represents the lottery that places probability 1/3 on each two pairs trading. The adaptation
of the PS mechanism in my setting needs to output a matrix that represents a permissible
lottery like R. I accomplish this by using a corollary of the celebrated Edmonds’ charac-
terization of the matching polytope (Edmonds 1965), which gives sufficient and necessary
conditions for a bistochastic matrix to be the representation of a lottery over two-way ex-
changes. The 2CPS is constructed to guarantee that each of the conditions from Edmonds’
Theorem are satisfied for each interim probability-share matrix, which in turn guarantees
that those conditions are satisfied for the final matrix as well.

As far as I am aware, this is the first time that a variant of the PS mechanism is proposed
for an object-exchange or an agent-matching setting, such as the kidney exchange and the
roommate problems.9 Additionally, my proof of the ordinal efficiency of the mechanisms here
is simpler than the proofs used in the preceding literature (e.g. Bogomolnaia and Moulin 2001;
Budish et al. 2013), which are indirect and rely on the characterization of ordinal efficiency
via the acyclicity of a certain relation. The proof I offer is more direct, can be used to
simplify the analogous proofs in the existing literature, and allows me to prove the ordinal
efficiency of the most general class of mechanisms in my setting (Chapter 2).

Even though I adopt the language of kidney exchange for the rest of this chapter with
patient-donor pairs being the main agents, the theory developed here can find applications in
other settings. For example, the setup here permits a patient to have multiple willing donors.
A salient example from a different sphere of life can be found in housing exchanges: be it
public housing, on-campus housing, offices within a company or an academic department, and
prison cells and other rooms in institutional living facilities. For example, in the case of public
housing, all trades should be performed simultaneously to avoid inefficiencies associated with
some families remaining homeless, being forced into a short-term rental, having to move twice
for the same trade, or occupying the same unit simultaneously with another family. Since the
difficulty of finding a moving date that works for everyone involved in the trade increases with
the number of agents involved, it might be infeasible to perform trades with long exchange
cycles.10

In a similar vein, there are online platforms offering the possibilities of members ex-
changing real estate (GoSwap.org, DaytonaHomeTrader.com) or vacation rentals (Intervac-
HomeExchange.com, HomeExchange.com, ExchangeHolidayHomes.com). In addition to
homes and land, GoSwap.org also offers the possibilities of exchanging various vehicles (in-

9Yılmaz (2010) considers a modification of the PS mechanism, where the objects to be allocated are a
mix of social and private endowment. If all objects are part of the private endowment, his model can be
viewed as a model of pure exchange. However, his version of the PS mechanism offers little benefit over
Gale’s Top Trading Cycles in that setting.

10A similar feature occurs in commercial real-estate markets. There is anecdotal evidence that some
cities’ tradition that the majority of rental leases should expire on the same date improves the quality
of the renter-housing match. This might explain the longevity of these customs. Examples include New
York City’s Moving Day (until WWII), Quebec’s fête du déménagement, Boston’s Allston Christmas, and
Madison’s Hippie Christmas. Conversely, the tight residential real-estate market in the UK has caused the
appearance of so-called “upward chains”, where a home sale transaction would be delayed until the current
owners complete their own purchase of a new home, which could further be delayed for the same reason, etc.
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cluding planes and boats), as well as businesses. Thus far exchanges are restricted to two-way
swaps. Other platforms with similar constraints include barter exchanges for shoes (The Na-
tional Odd Shoe Exchange; oddshoe.org), books (ReadItSwapIt, www.readitswapit.co.uk),
and used goods (Netcycler). More generally, the structure here can be applied to any object-
exchange setting where trades are difficult or expensive to carry through and thus might
require significant coordination. Essentially, in any setting where trades cannot be executed
by a centralized clearinghouse by collecting all the objects and then redistributing them
among the recipients, high coordination costs could limit maximum trading-cycle length.

Literature Review

This study is part of a burgeoning matching literature.11 More precisely, it is situated at the
intersection of kidney exchange12 and random matching. The first economic study of kidney
exchange (Roth et al. 2004) proposed a modification of Gale’s Top Trading Cycles mecha-
nism in a setting with strict ordinal preferences but without cycle constraints. Subsequent
work, starting with Roth et al. (2005a), has accounted for the cycle constraints but assumes
dichotomous preferences. As noted above, my work combines the two approaches: I study
the kidney-exchange problem with strict ordinal preferences subject to cycle constraints.
The only similar work I am aware of is a trio of papers by Nicoló and Rodŕıguez-Álvarez
(2011, 2012, 2013), who consider a model identical to the one presented here. Two of the
papers (Nicoló and Rodŕıguez-Álvarez 2012, 2013) present impossibility results, while Nicoló
and Rodŕıguez-Álvarez (2011) proposes a solution for the kidney-exchange problem but on
a very restricted preference domain: namely, the authors assume that all patients rank all
kidneys in the same way, barring incompatibilities.

Some recent work on general random matching mechanisms include Budish et al. (2013);
Pycia and Ünver (2014); Akbarpour and Nikzad (2014); Kesten and Ünver (forthcoming).
Budish et al. (2013) is the one that is closest to this chapter. The authors study the feasibility
of a class of exogenously-existing constraints that need to be respected for some assignment
problem, such as school choice. If we interpret agents as students and objects as school seats,
these constraints can represent, for example, maximum quotas for a certain type of students.
The focus of their paper is finding a class of constraints such that whenever a bistochastic
matrix satisfies them, one can decompose the matrix as a convex combination of permutation
matrices, each one of which satisfies the same constraints, regardless of the desired lower and
upper bound of each constraint. The authors provide a sufficient condition for such universal
implementability, as they call this property. Namely, if the constraints satisfy a bihierarchical
property, then universal implementability obtains. The main difference with my approach
is that I care about a different class of constraints: for example, satisfaction of individual
rationality and the cycle constraints.

11See Sönmez and Ünver (2011) and Abdulkadiroğlu and Sönmez (2013) for a pair of recent reviews.
12See Sönmez and Ünver (2013) for a recent review of the kidney-exchange literature.
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Another similarity between their approach and mine is that the main mechanisms pro-
posed in each study are based on the Probabilistic Serial mechanism, initially defined by
Bogomolnaia and Moulin (2001) in the simple object-assignment setting. Since their seminal
contribution, their work has been generalized for ordinal preferences allowing indifferences
(Katta and Sethuraman 2006), for multi-unit demand (Kojima 2009), for property rights ne-
cessitating individual rationality (Yılmaz 2009, 2010), for fractional endowments (Athanas-
soglou and Sethuraman 2011), and for combinatorial demand (Nguyen et al. 2014).13

1.2 Background on Kidney Exchange

Kidney transplantation is generally the only long-term treatment for end-stage chronic renal
disease. Not only is transplantation associated with longer expected survival rate as com-
pared to dialysis but the quality of life of renal patients is higher after a kidney graft (Wolfe
et al. 1999). Most transplanted kidneys originate from deceased donors but, since the func-
tional capacity of a single kidney is sufficient for most people, living-donor transplantations
are also possible. Most living-donor transplantations come about when a patient in need of
a kidney transplant finds a donor (often a relative or a friend), who is willing to donate one
of her kidneys to the patient. If the pair is blood-type and tissue-type compatible, the trans-
plantation can take place. If they are incompatible, however, they still have the opportunity
to effect a transplantation if there exists another mutually incompatible patient-donor pair,
such that the donor of each pair is compatible with the patient of the other pair. In such
a case, the patient in the first pair receives a kidney from the donor in the second pair and
vice versa. This is referred to as paired kidney exchange.

Larger exchanges, involving three or more pairs, are also possible. However, the near
universal ban on the buying and selling of kidneys14 means that donors cannot contractually
commit to donate a kidney. Thus if all the surgeries in a kidney exchange are not performed
simultaneously, the last donor in the exchange might back out of the trade since her patient
has already received a kidney. That would be extremely damaging to the designated recipient
of her kidney since that patient’s donor has already donated a kidney: that patient, while
still in need of a kidney, would not be able to participate in another kidney exchange unless
she finds a new donor. Simultaneous kidney exchange places significant logistical burden on
the participating hospital (or hospitals), however: a kidney exchange with k pairs requires
the availability of 2k operating rooms and surgical teams working at the same time. This
availability is particularly hard to guarantee since living-donor kidney transplantations are
considered elective surgeries which are of secondary priority to emergency surgeries.

13Other work spurred on by Bogomolnaia and Moulin (2001) include characterizations of ordinal efficiency
(McLennan 2002; Abdulkadiroğlu and Sönmez 2003; Manea 2008; Carroll 2010), the study of the behavior of
the PS mechanism in large markets (Che and Kojima 2010; Kojima and Manea 2010; Liu and Pycia 2013),
and axiomatic characterizations of the PS mechanism and its extensions (Bogomolnaia and Heo 2012; Heo
and Yılmaz 2013; Hashimoto et al. 2014; Heo 2014a,b).

14The Islamic Republic of Iran is the only exception (Fatemi 2012).
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In order to maximize the possible benefit of such kidney exchanges, a number of regional
and national clearing houses have been organized in the US, the UK, the Netherlands and
a number of other countries. Following the seminal work of Roth et al. (2005a), models of
kidney exchange assume that all patients have binary preferences over the available kidneys:
each kidney is either compatible (acceptable) or incompatible (unacceptable) and, further-
more, patients find all compatible kidneys to be perfect substitutes for each other. In this
simplified setting, ex-ante, ordinal and ex-post efficiency coincide and, in fact, any efficiency
criterion reduces to the maximization of the number of potential transplantations. How-
ever, there is substantial medical evidence that a variety of interactions between the donor
and patient characteristics may significantly impact the graft long-term survival rates. For
example, the age and gender of living donors have been shown to affect graft failure rates
(Gjertson 2003; Øien et al. 2007).15

Tissue incompatibility stems from the human leukocyte antigen (HLA) system. The HLA
antigens are proteins with important roles in the immune system. There are six major HLA
antigens and different people have different sets of them. It is possible for an individual to
develop antibodies for antigens that she does not possess if she is exposed to them during
pregnancy or after blood transfusion, organ or tissue transplantation. If a potential kidney
transplant recipient has an antibody for a HLA antigen present in the kidney donor, that
would cause incompatibility. ABO blood-type incompatibility works in a similar fashion:
people who are of blood type A, for example, have type A antigens and type B antibodies.
Thus they can receive blood or organ donations from donors who were themselves type O
(who have neither of the two possible antigens) or type A.

Recent medical research, however, has made possible the transplantation of organs, in-
cluding kidneys, even when there is blood- or tissue-type incompatibility. The process al-
lowing that, called desensitization, has been described as “risky, technically demanding and
costly,” however (Wallis et al. 2011). Additionally, kidneys transplanted after such a treat-
ment have slightly lower survival rates than similar compatible kidneys. For more details
see Tobian et al. (2008) and Montgomery et al. (2011), for example. Furthermore, there is
evidence in the medical literature that similarity in patient and donor’s HLA antigens affects
transplantation success (Opelz 1997, 1998; Opelz and Döhler 2007; Sasaki and Idica 2010).16

Other factors contributing to the view that patients’ preferences over kidneys aren’t
binary are considerations of logistical feasibility (for example, all else held equal, a patient-
donor pair prefers being matched with a pair that is geographically closer) or fairness (the
UK national kidney exchange prefers that the age difference of the two donors in each two-
pair kidney exchange is not too great and uses the actual age difference as a final tiebreaker
when determining the proposed matching).

15The literature on the effect of deceased donor characteristics on graft survival rates is much more
extensive. Some statistically important factors include donor’s age, sex, race, pre-decease health status,
cause of death, as well as the mass of the transplanted kidney (Chertow et al. 1996; Koning et al. 1997; Ojo
et al. 2000; Pessione et al. 2003).

16For a contradictory view, see Delmonico (2004).
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As noted in the introduction, another reason for why studying the model with strict pref-
erences is valuable has to do with the provision of sufficient incentives to patient-donor pairs
who are compatible with each other to enroll in the kidney exchange program. This would
be guaranteed by individual rationality, the most important desideratum for mechanisms
in my setting. In addition to providing incentives for compatible pairs to participate, it is
of paramount importance since it ensures compatible transplantations. I define individual
rationality (together with the other mechanism properties) in Section 1.3 and discuss its
implications at the beginning of Section 1.4.

Conditional on recommending only compatible transplantations, I would like my mech-
anism to be efficient. This is captured by Pareto efficiency in the case of deterministic
matchings and by ordinal efficiency for random matchings. I discuss the connection between
these two concepts in Section 1.6. The third most important condition is some notion of
fairness. Fairness, in addition to efficiency, is one of the fundamental requirements in the
setting of matching without monetary transfers.17 I use the notion of equal treatment of
equals, which in my setting reduces to anonymity. Essentially, it requires that the outcome
of a mechanism depends only on the profile of preferences and not on the identity of the
agents. I discuss other possible justice criteria in Section B.1.

Finally, the least important criterion in my setting is strategyproofness. Early economic
models of kidney exchange were concerned with providing incentives to the patients and
their doctors to report their preference truthfully. Recent work, however, has moved away
from this paradigm. Ashlagi and Roth (2014) note:

During the initial startup period [of kidney exchange in the US], attention to the
incentives of patients and their surgeons to reveal information was important.
But as infrastructure has developed, the information contained in blood tests has
come to be conducted and reported in a more standard manner (sometimes at a
centralized testing facility), reducing some of the choice about what information
to report and with what accuracy. So some strategic issues have become less
important over time (and indeed current practice does not deal with the provision
of information that derives from blood tests as an incentive issue).

In line with this, the mechanism I propose will satisfy the first three desiderata but will
have poor incentive properties. I discuss this issue in Section 1.7.

1.3 Set-Up

Let A = {1, . . . , n} be a set of n patient-donor pairs. I assume that each patient i has a
preference order �i over the set of kidneys. I will identify each of the kidneys via its donor

17See Roth et al. (2005a); Yılmaz (2011) for some work aimed to achieve fairness in kidney exchanges
with binary preferences.
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so each patient can be said to have a preference order over the set A.18 I will assume that
�i represents a strict order so that for any i, j, k ∈ A, j 6= k implies either j �i k or k �i j
but not both. I write j %i k whenever either j = k or j �i k. Denote all possible strict
preference orders over A by P and let P = Pn be all possible preference profiles for the n
patients. I will denote a generic element of P by �. For any A′ ( A, I will denote the
preference profile of all patients not in A′ by (�−A′). For simplicity, when A′ = {i} is a
singleton, I will denote the preference profile by (�−i).

The goal is to study the ways in which the agents can organize a kidney exchange among
themselves so that each donor donates a kidney if and only if her patient has received a
kidney in order to avoid a situation where a donor has given a kidney, but her patient has
not received one. Any exchange among the agents resulting in a final (deterministic)
matching can be represented by a bijective function m : A→ A, where m(i) = j indicates
that patient i receives donor j’s kidney. I interpret m(i) = i to mean that patient i either
receives her donor i’s kidney or, equivalently for our purposes, is left unmatched and does
not participate in the kidney exchange. I will denote the set of all such matchings by M.
Given a preference profile �, I will say that a matching m ∈M is efficient if it is not Pareto
dominated: i.e., if there does not exist a matching m′ ∈ M such that m′(i) %i m(i) for all
i ∈ A and m′(i) �i m(i) for some i ∈ A.

For any k ∈ N, I will say that m satisfies the k-cycle constraint if there do not
exist k + 1 distinct elements of A denoted by a1, . . . , ak+1 such that for i = 1, . . . , k we have
m(ai) = ai+1. I will denote the set of all matchings that satisfy the k-cycle constraint by
Mk. Given a preference profile �, I will say that a matching m ∈ Mk is k-constrained
efficient if there does not exist a matching m′ ∈ Mk such that m′(i) %i m(i) for all i ∈ A
and m′(i) �i m(i) for some i ∈ A.

Note that each m ∈M can be represented as a matrix Pm with a generic entry Pm(i, j)
defined by

Pm(i, j) =

{
1 if m(i) = j,
0 otherwise.

So Pm(i, j) equals 1 if and only if patient i receives donor j’s kidney under matching m.
In all other cases, Pm(i, j) = 0. Thus the matrix Pm for each m ∈ M has exactly one entry
equal to 1 in each row and in each column. Matrices of this kind are called permutation
matrices.19 In fact, every permutation matrix represents some deterministic matching so
there is a bijective relationship between the set of permutation matrices and the set M.

I denote the space of lotteries over deterministic matchings as ∆M and refer to its ele-
ments as random matchings. Each random matching µ ∈ ∆M can in turn be represented
as a convex combination of the matrices corresponding to the elements of M which form

18In fact, I use each i ∈ A to refer to the patient from patient-donor pair i, to the donor of that pair, or
to that donor’s kidney. The corresponding context makes it clear in case I have not specified what i refers
to.

19Note that one can view each such matrix Pm as the adjacency matrix of a directed graph. Then m
satisfies the k-cycle constraint if and only if that directed graph does not have directed cycles of length
greater than k.
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the support of µ. It is then easy to see that µ can be represented as a bistochastic matrix
Pµ, where, as usual, I use the term bistochastic matrix to refer to any non-negative ma-
trix, such that the sum of its entries along any given row or column is 1. Note then that
Pµ(i, j) denotes the probability that patient i receives donor j’s kidney. Note that row i of
Pµ denotes the probabilities with which patient i receives each of the n kidneys. I will refer
to this as patient i’s probability-share allocation and will denote it by Pµ(i). I similarly
define a sub-bistochastic matrix to be any non-negative matrix, such that the sum of its
entries along any given row or column is no more than 1.

Assume that �i ranks the kidneys in A in the order (a1, a2, . . . , an) from best to worst.
Consider p and q to be two probability-share allocations and let paj and qaj denote the
probability with which patient i receives donor aj’s kidney. Then I say that p first-order
stochastically dominates q with respect to �i if

j∑
l=1

pal ≥
j∑
l=1

qal (1.1)

for each j = 1, . . . , n. I will say that p strictly first-order stochastically dominates q
with respect to �i if (1.1) holds and p 6= q.

I refer to functions f : P → M and g : P → ∆M as a deterministic mechanism
and a random mechanism, respectively. Abusing terminology, I say that a deterministic
mechanism f is efficient (resp. k-constrained efficient) if for all �, f(�) is efficient
(k-constrained efficient) with respect to �. A random mechanism f is ex-post efficient
(k-constrained ex-post efficient) if for all �, f(�) places positive probability only on
deterministic matchings that are efficient (k-constrained efficient) with respect to �. Note
that any efficient (k-constrained efficient) deterministic mechanism can be viewed as an
ex-post efficient (k-constrained ex-post efficient) random mechanism.

A random mechanism f is ordinally efficient if for all � there does not exist an element
µ in ∆M such that Pµ(i) first-order stochastically dominates Pf(�)(i) with respect to �i for
all i ∈ A and strictly so for some i ∈ A. A random mechanism f is k-constrained ordinally
efficient if for all � we have f(�) ∈ ∆Mk and there does not exist µ ∈ ∆Mk such that
Pµ(i) first-order stochastically dominates Pf(�)(i) with respect to �i for all i ∈ A and strictly
so for some i ∈ A.

If i �i j for some i, j ∈ A, I will say that i finds kidney j unacceptable. Consequently,
I say that a matching m ∈ M is individually rational if m(i) %i i for all i ∈ A. Analo-
gously, a random matching µ is individually rational if the deterministic matchings in its
support are all individually rational themselves. Equivalently, Pµ(i, j) = 0 whenever i finds j
unacceptable. A deterministic mechanism (random mechanism) f is individually rational
if for all �, f(�) is an individually rational deterministic matching (random matching).

I move to defining the incentive and fairness properties of mechanisms. I will define them
only for random mechanisms but the same definitions apply to deterministic mechanisms
when viewed as a subset of the random ones. A random mechanism f is strategyproof if
for all preference profiles �, all patients i and all preference orders �′i, Pf(�)(i) first order
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stochastically dominates Pf(�′i,�−i)(i) with respect to �i. I say that a random mechanism f
is weakly strategyproof if for all preference profiles � and all patients i, there does not
exist an alternative preference order �′i such that Pf(�′i,�−i)(i) strictly first-order stochas-
tically dominates Pf(�)(i) with respect to �i.20 It is easy to see that the two notions of
strategyproofness are equivalent for deterministic mechanisms since first-order stochastic
dominance is a total order over deterministic allocations.

A random mechanism f is said to be anonymous if the patient-donor pairs’ names are
irrelevant for the outcome of the mechanism. Formally, start by fixing an arbitrary bijective
function π : A→ A and a preference profile �. If �i for some i ∈ A ranks the kidneys from
A in the order (a1, . . . , an) (from best to worst), construct the preference relation �ππ(i) as

the preference relation corresponding to the order (π(a1), . . . , π(an)). I.e.,

π(a1) �ππ(i) · · · �ππ(i) π(an).

I say that µ is anonymous if for all � the matrices Pf(�) and Pf(�π) are identical up to the
permutation π. In other words, Pf(�)(i, j) = Pf(�π)(π(i), π(j)) for all i, j ∈ A.

I end by noting some relationships between the properties outlined in this section. It is
clear that strategyproofness implies weak strategyproofness. In addition, ordinal efficiency
is stronger than ex-post efficiency. See Bogomolnaia and Moulin (2001) for the full proof but
the intuition is clear: if a random matching µ placed positive probability on an inefficient
deterministic matching m then one can shift some of that probability to a matching that
Pareto dominates m and thus improve µ in the ordinal-efficiency sense. Analogously, k-
constrained ordinal efficiency implies k-constrained ex-post efficiency.

1.4 Preliminary Observations and Results

I start this section with a remark about the connection between transplantation incompati-
bility and individual rationality in my setting from Section 1.3. Individual rationality can be
defined in one of two ways. First, the method adopted here is to assume that a matching is
individually rational only if each patient i receives a compatible kidney that she ranks higher
than kidney i or, failing that, she is left unmatched.21 This guarantees that no patient will
receive a kidney that has worse graft survival expectations than her own donor’s kidney.
Under this interpretation individual rationality is a stronger condition than simply ensuring
compatible transplantations. The alternative way to think about individual rationality, how-
ever, is to define it to be equivalent to compatibility. Thus patient i finds a kidney acceptable

20This is not a misnomer. Weak strategyproofness is a very weak property indeed. In Chapter 3, I
show that weak strategyproofness fails to satisfy even a simple intuitive incentive property. Namely, weak
strategyproofness is not enough to guarantee that there exists a von Neumann-Morgenstern utility vector,
under which the agent would prefer reporting truthfully.

21Again, being left unmatched could mean either that the patient does not undergo a kidney trans-
plantation or that she receives her donor’s kidney. In either case, the patient does not participate in any
exchanges.
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if and only if that kidney is compatible for her. In this case it might be possible for an agent
to receive a kidney that she ranks lower than her donor’s kidney. However that might deter
compatible pairs from being part of the kidney exchange. This might hurt overall efficiency
as the participation of compatible pairs may significantly improve the outcome’s efficiency
(Roth et al. 2005b; Gentry et al. 2007; Sönmez and Ünver 2014). However, while this is
not the approach I take here, what follows can be modified in a straightforward manner to
accommodate it.

One of the strongest assumptions in my set-up is that each donor-patient pair either
receives and donates a kidney, or neither receives nor donates a kidney at the end of the
mechanism. This assumption is obviously justified from the point of view of the bioethics
of kidney exchange: it would be unfair for a patient’s donor to donate a kidney without the
patient receiving one since that destroys the patient’s “bargaining chip” in any future kidney
exchanges. And, since each donor can donate at most one kidney, there are n kidneys to
be donated and received and so, conversely, there cannot exist a donor-patient pair which
receives a kidney but does not donate one. This symmetry allows representing all exchanges
as permutation matrices and lotteries over exchanges (what I call random matchings) as
bistochastic matrices, which simplifies the analysis.22

I noted above that any random matching can be represented as a bistochastic matrix.
The following celebrated result, shown by Birkhoff (1946) and von Neumann (1953), also
provides the converse.

Theorem 1 (Birkhoff-von Neumann Theorem). The convex hull of all n × n permutation
matrices equals the set of all n× n bistochastic matrices.

I continue by explicitly considering the case k = 2. Note that for any matching in M2

in which patient i receives donor j’s kidney, patient j must receive donor i’s kidney in order
for the matching to satisfy the 2-cycle constraint. This implies that any permutation matrix
representing a matching inM2, and thus any bistochastic matrix representing a matching in
∆M2, is symmetric: the probability that any patient i receives donor j’s kidney must equal
the probability that patient j receives donor i’s kidney. The converse is also true for the
permutation matrices: it is easy to see that any symmetric permutation matrix represents a
matching in M2. Consider the converse in the case of bistochastic matrices. In particular,
consider the following bistochastic matrix for n = 3: 0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

 (1.2)

I claim that this matrix cannot be decomposed into a convex combination of symmetric
permutation matrices and, therefore, it cannot represent a random matching in ∆M2. To
see that, observe that in each 3×3 symmetric permutation matrix at least one of the diagonal

22I allow the existence of “unattached” kidneys (such as kidneys donated by deceased or undirected
altruistic donors) in an extension of the main model below.
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elements is equal to 1. Thus in all 3 × 3 symmetric permutation matrices, the trace is at
least 1 and, since this property is preserved under convex combinations, this must also be the
case for any convex combination of 3× 3 symmetric permutation matrices. Clearly, matrix
(1.2) does not satisfy that property and so it does not represent an element of ∆M2. In
the language of kidney exchange, if the planner can organize only two-way exchanges and if
there are three patient-donor pairs, at least one of them must not be a part of the exchange.
At the same time, the probability that any given patient is not part of the exchange is
zero for any random matching represented by (1.2). This, however, cannot happen in any
lottery over deterministic matchings in which there is always a patient who is not in the
exchange. Consequently, it need not be the case that every symmetric bistochastic matrix
is a convex combination of symmetric permutation matrices (Katz 1970; Cruse 1975). In
fact, as pointed out by Schrijver (2003), Edmonds’ (1965) celebrated matching polytope
characterization implies the following result.

Theorem 2 (Edmonds’ Theorem). A symmetric bistochastic matrix P can be represented
as a convex combination of symmetric permutation matrices if and only if∑

i∈E

∑
j∈E\{i}

P (i, j) ≤ 2p

for all p ∈ N, for all E ⊆ A with |E| = 2p+ 1.

Each of the possible sets E defines a separate constraint that the matrix P must satisfy. I
call such sets Edmonds sets and the corresponding constraints Edmonds constraints.23

I will speak about Edmonds constraints containing a pair {i, j} or an entry P (i, j) if the
corresponding Edmonds set contains both i and j. Analogously, I will refer to the sum on the
left-hand side of the Edmonds constraint as a Edmonds sum. To illustrate the intuition
behind the result, I provide a brief proof of the necessity condition. For the more involved
sufficiency condition, see Edmonds (1965), Balinski (1972) or Cruse (1975).24

Proof of necessity: Assume that a given symmetric bistochastic matrix P (i, j) can be rep-
resented as a convex combination of symmetric permutation matrices. Equivalently, P rep-
resents the matching probabilities induced by a lottery over the deterministic matchings
associated with the permutation matrices. Take some k ∈ N and an Edmonds set E with
|E| = 2k + 1. Note that in any deterministic matching, at least one patient i ∈ E does
not receive a kidney from the set E \ {i} since E has odd cardinality. Therefore, since the
Edmonds sum for the associated permutation matrix equals the number of patients in E
who receive a kidney from E other than their own donor’s kidney, the Edmonds constraint is
satisfied for all permutation matrices. Since the bistochastic matrix is a convex combination
of the permutation matrices, it also satisfies the constraint.

23It is worth noting that the Edmonds constraints do not satisfy the bihierarchy condition of Budish et al.
(2013). So the results here are logically independent.

24Schrijver (2003) has a list of additional alternative proofs proposed in the literature.
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Finally, I will call symmetric bistochastic matrices that satisfy the Edmonds constraints
2-implementable. Generally, I call any bistochastic matrix P that satisfies P = Pµ for
some µ ∈ ∆Mk k-implementable.

1.5 Deterministic Mechanisms with Cycle Constraints

In the setting of kidney exchange, the main desideratum for the mechanism should be indi-
vidual rationality in order to guarantee compatible transplantations and, potentially, provide
incentives for compatible couples to participate in the exchange. The other desiderata, in
order of importance, are efficiency, anonymity (the fairness criterion25), and, if possible,
good incentive properties. In this section, I consider to what extent these properties are
compatible for deterministic mechanisms when we have cycle constraints.

First, note that without (binding) cycle constraints, Gale’s Top Trading Cycles (TTC),
introduced by Shapley and Scarf (1974), is individually rational, efficient, anonymous and
strategyproof (Ma 1994; Miyagawa 2002). In addition, TTC is quite simple: at any stage,
each patient i “points” to the patient, whose donor’s kidney is the highest-ranked for i among
the kidneys remaining. Note that i could point to herself. This forms a directed graph and,
by finiteness of A, it must have at least one directed cycle. We perform the trades implied by
that cycle and remove the patient-donor pairs involved in that trade. We iterate this process
until all agents have been involved in a trade or have dropped out in cycles of length 1. It
should be noted that the order of elimination of the cycles does not change the outcome of
the mechanism; that is to say, the same cycles are selected, regardless of that order. In fact,
the first mechanism proposed for the kidney-exchange problem was an adaptation of Top
Trading Cycle (Roth et al. 2004).

As long as k < n, however, it is possible that TTC’s outcome might fail to satisfy the
k-cycle constraint. Even if n = k+ 1, it is conceivable that the only cycle in the mechanism
is a cycle that includes all n agents. A natural question to ask at this stage is indeed how
often TTC’s outcome fails to satisfy the k-cycle constraint. The approach I take to answer
this question is inspired by Pittel (1989), who studies the core in stable-marriage problems
by looking at randomly-drawn preferences.26 I look at a random iteration of the problem by
drawing a preference profile from a uniform distribution over P .

Proposition 3. For any k, if the preferences are drawn from a uniform distribution over
P, the probability that TTC selects at least one cycle of length greater than k goes to one as
n goes to infinity.27

Of course, preferences in many problems such as kidney-exchange would be correlated
and not independently drawn from a uniform distribution but, nevertheless, this result sug-

25I later consider the compatibility of the other desiderata with other possible fairness properties.
26See also Knuth et al. (1990); Pittel (1992) and, more recently, Ashlagi et al. (2014) for papers studying

the same question with similar methods.
27The proofs of all propositions are in the Appendix.
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gests that, especially for problems with large n, TTC would not make for a satisfactory
mechanism even approximately since it is vanishingly unlikely that all the cycles it selects
will be sufficiently short. This motivates me to turn to other potential deterministic mech-
anisms. However, it turns out that deterministic mechanisms do not have good properties
either. First, there does not exist a deterministic mechanism that is anonymous and efficient.

Proposition 4. If cycle length cannot exceed k > 1, there does not exist an anonymous
k-constrained efficient deterministic mechanism for all n ≥ k + 1.

Proposition 4 suggests a question. Since I view efficiency as being more important than
anonymity, if one insists on using a deterministic mechanism, they must dispense with my
fairness criterion. Ma (1994) characterizes the TTC mechanism as being the unique mech-
anism that is individually rational, Pareto-efficient, and strategyproof. One can then ask
whether a mechanism similar to TTC can be found that is individually rational, k-constrained
efficient, and strategyproof; i.e., a mechanism that satisfies the three remaining desiderata.
It turns out, however, that these properties are also incompatible.

Proposition 5. If cycle length cannot exceed k > 1, there does not exist an individually
rational, k-constrained efficient, and strategyproof deterministic mechanism for all n ≥ k +
1.28

Since without cycle-length constraints TTC satisfies anonymity, Pareto optimality, in-
dividual rationality and strategyproofness, the results in this section suggest that imposing
cycle-length constraints significantly limits the range of desirable properties of all determin-
istic mechanisms. Indeed, the best one can do within the class of deterministic mechanisms
is to construct a mechanism that satisfies individual rationality and k-constrained efficiency.
Indeed, a suitably redefined version of the serial dictatorship satisfies these two conditions.29

One can achieve anonymity by using the analogously modified random serial dictatorship.
This observation and the results above provide a compelling motivation for my consideration
of the performance of random mechanisms in this setting.

1.6 The 2-Cycle Probabilistic Serial Mechanism

The proposed mechanism is based on the simultaneous eating mechanism (Bogomolnaia and
Moulin 2001) and its extension (Budish et al. 2013). The intuition behind the mechanism
is simple: all kidneys are viewed as infinitely divisible and the patients, each endowed with
a claiming-speed function, continuously claim shares of their most preferred kidney in con-
tinuous time. Once all the kidneys have been completely claimed, we interpret the share

28The same result was independently discovered by Nicoló and Rodŕıguez-Álvarez (2012). I am indebted
to Antonio Miralles for pointing that out to me.

29For the case k = 2, such a mechanism would, at each step, match the remaining pair that is highest in
a given priority order with their most-preferred mutually compatible remaining pair. This approach can be
extended to k > 2. I do not formally study this mechanism here. See, however, Example 2.
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each patient has claimed of each kidney as the probability with which that patient receives
the kidney. For the simpler object-assignment setting, the Birkhoff-von Neumann theorem
and its generalization proved by Budish et al. (2013) guarantee that the resulting matrix of
probability shares would be implementable as a lottery over deterministic matchings. In my
setting, I need to make sure that the resulting bistochastic matrix is symmetric and satisfies
the Edmonds’ conditions.

Budish et al. (2013) allow the existence of additional exogenously-imposed constraints
that need to be respected for each ex-post assignment at the conclusion of the mechanism.
In the school-choice problems, these constraints can be interpreted as quotas related to
affirmative action, for example. In my setting, I similarly need to respect a set of constraints
but they arise in order to guarantee individual rationality and k-implementability. I note
here that the Edmonds constraints are not a special case of the constraints considered in
Budish et al. (2013). However, the approaches of the two mechanisms in the way that they
guarantee the desired constraints is similar: each patient is allowed to claim probability
shares of her highest-ranked kidney among the ones available to her as long as none of the
Edmonds constraints corresponding to that patient and that kidney bind. To make that clear,
I proceed by describing the algorithm defining the outcome of the 2-cycle simultaneous eating
(2CSE) mechanism given a preference profile �.

Definition 1. The 2-Cycle Simultaneous Eating mechanism. Time runs continuously
starting at t = 0. For each point in time, there is an associated sub-bistochastic matrix M t,
where M0 is the initial zero matrix. Each patient i has an associated claiming-speed function
ei : [0,∞) → R+ with

∫∞
0
ei(t)dt ≥ 1. I say that kidney j is available to patient i at time

t ≥ 0 if the following three conditions are satisfied: first, neither of the patients i and j finds
the other one’s donor’s kidney unacceptable; second, the row sums corresponding to patients
i and j are strictly less than 1 at time t (i.e., both i and j have remaining probability shares
and remaining demand); third, none of the Edmonds constraints containing i and j bind at
time t. Note that due to the symmetry, if j is available to i at time t, then i is available to
j at the same time. For simplicity, I then say that the pair (i, j) is available.

At each instance of time t, each patient i claims with speed ei(t) the available remaining
probability shares of her highest-ranked reported kidney j (possibly j = i) among the kidneys
that are available to i at that instance. That increases the probability that patient i receives
kidney j but, since I am restricted to cycles of length 2, it must also increase the probability
that patient j receives kidney i. In other words, this action increases both M t(i, j) and
M t(j, i). Note that j claiming kidney i’s probability shares would increase the same two
matrix entries. This activity also decreases the remaining probability shares of both i and
j. Since the Edmonds constraints do not depend on any of the values of M t(i, i), the “pair”
(i, i) is available if and only if i’s row constraint doesn’t bind. This guarantees that any
point of time in the mechanism, each agent has available kidneys whose probability shares
she is allowed to claim. Each patient (together with her associated donor) exits when her
demand is met or, equivalently, when her donor’s kidney’s probability shares are depleted.
The algorithm ends when all agents have exited.
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The final output of this procedure is a probability-shares matrix M that is symmetric
(since whenever M t(i, j) increases, so does M t(j, i) for all i, j ∈ A), bistochastic (since the
procedure ends only when all patients’ row sums equal 1) and satisfies all the Edmonds
constraints (since M t satisfies them for any t). Hence, M is implementable as a lottery over
deterministic matchings that satisfy the 2-cycle constraint. That lottery is set to be the
outcome of the 2CSE mechanism. Since, for our purposes, we are indifferent between all
lotteries represented by a given bistochastic matrix, I write:

2CSE(�, e) = M,

where e denotes the profile of claiming-speed functions. Additionally, M is individually
rational with respect to the reported preferences—this is guaranteed by the first condition
defining availability above: no patient i is allowed to claim probability shares from kidney
j if patient j finds kidney i unacceptable. Thus patient i is prevented from increasing
the probability that patient-donor pairs i and j form a paired kidney exchange. Hence
M(i, j) = 0. Following Bogomolnaia and Moulin (2001), whenever all the patients have the
same claiming speeds (which, without loss of generality, I can assume to satisfy ei(t) = 1 for
all i and t), I will call this mechanism the 2-cycle probabilistic serial (2CPS) mechanism.

As an illustration, consider the following example of the 2CPS mechanism in action. Let
A = {1, 2, 3, 4} and let the preferences be defined by:

�1 : 2 �1 3 �1 4 �1 1,

�2 : 1 �2 3 �2 4 �2 2,

�3 : 1 �3 2 �3 4 �3 3,

�4 : 1 �4 2 �4 3 �4 4.

Since all kidneys are initially available to all agents, between t = 0 and t = 1/4 during
the mechanism’s implementation, patient 2, 3, and 4 claim kidney 1’s probability shares,
while 1 claims kidney 2’s probability shares. This increases M t(1, 3) and M t(1, 4) from 0 to
1/4, while M t(1, 2) increases to 1/2 since 1 and 2 are claiming each other’s donors’ kidneys’
probability shares. The matrix entries in its lower-diagonal part change correspondingly to
preserve its symmetry. Thus at t = 1/4, the probability-share matrix looks like this:

M1/4 =


0 1/2 1/4 1/4

1/2 0 0 0
1/4 0 0 0
1/4 0 0 0

 .

At this point of time, patient 1 exits since her her unit-demand has been met or, equiv-
alently, kidney 1’s probability shares have been completely claimed. Afterward, 3 and 4’s
highest-ranked available kidney becomes 2, while patient 2’s is 3. So at time t = 3/8, the



CHAPTER 1. SHORT TRADING CYCLES 19

probability-share matrix looks like this:

M3/8 =


0 1/2 1/4 1/4

1/2 0 1/4 1/8
1/4 1/4 0 0
1/4 1/8 0 0

 .

Notice that at this point of time the Edmonds constraint corresponding to the set E =
{1, 2, 3} starts binding. Hence the pair {2, 3} becomes unavailable, in addition to all the
pairs containing 1. In what follows, 4’s highest-ranked kidney remains 2, while the only
kidney available to 2 and 3 is 4. At t = 7/16 the probability-share matrix has taken the
following form:

M7/16 =


0 1/2 1/4 1/4

1/2 0 1/4 1/4
1/4 1/4 0 1/16
1/4 1/4 1/16 0

 .

At this time, 2 exits. With only 3 and 4 remaining, it is easy to verify that the final
probability-share matrix and the outcome of the 2CPS mechanism is

M =


0 1/2 1/4 1/4

1/2 0 1/4 1/4
1/4 1/4 0 1/2
1/4 1/4 1/2 0

 =
1

2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+
1

4


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

+
1

4


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


The definition of the 2CSE mechanism guarantees that it is individually rational. A

fortiori, so is the 2CPS mechanism. Additionally, since all agents have the same claiming-
speed function, it is easy to see that the 2CPS mechanism is also anonymous. In this
section, I will show that the 2CPS mechanism also satisfies the last desideratum in my
setting. Namely, I demonstrate that the 2CSE mechanism (including 2CPS) is 2-constrained
ordinally efficient. I start with a brief illustration of the concept of ordinal efficiency and a
discussion of why it is preferable over the weaker ex-post efficiency condition.

The current efficiency criterion used by kidney-exchange clearinghouses involves maximiz-
ing the number of transplantations performed by finding a maximum-cardinality matching
on the compatibility graph. Anonymity could be attained by uniformly randomizing over
all maximum-cardinality matchings. Since Bogomolnaia and Moulin (2001) show that ex-
post efficiency is strictly weaker than ordinal efficiency in the object-assignment setting, it
is also worth asking to what extent ex-post and ordinal efficiency are mismatched in the
setting of kidney exchange. For example, I observe in Proposition 4 that there are no anony-
mous 2-constrained efficient deterministic mechanisms but anonymity can be easily attained
by mixing uniformly over all Pareto optimal matchings for a given preference profile. We
consider both of these two approaches in the following example.
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Example 1. Let A = {1, 2, 3, 4, 5} and let the preference profile � be defined by

�1 : 2 �1 3 �1 4 �1 5 �1 1,

�2 : 5 �2 4 �2 1 �2 3 �2 2,

�3 : 4 �3 2 �3 5 �3 1 �3 3,

�4 : 1 �4 5 �4 3 �4 2 �4 4,

�5 : 3 �5 1 �5 2 �5 4 �5 5.

It can be checked easily that every possible matching with cardinality 4 is Pareto optimal
and every Pareto optimal matching has cardinality 4. There are fifteen such matchings so
the maximal-cardinality ex-post efficient random mechanism assigns probability of 1/15 to
each one of them. The resulting ex-post efficient bistochastic matrix is

M =


1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5

 .

For example, one can calculate that the outcome of the 2CPS mechanism can be repre-
sented by

M ′ =


1/5 2/5 0 2/5 0
2/5 1/5 0 0 2/5
0 0 1/5 2/5 2/5

2/5 0 2/5 1/5 0
0 2/5 2/5 0 1/5

 .

Notice that each patient is unambiguously better off under the 2CPS outcome than under the
random matching represented by M : each patient i prefers M ′(i) over M(i) in first-order
stochastic dominance sense. Thus the matrix M does not represent an ordinally efficient
assignment as it is dominated by M ′.

Example 1 demonstrates that maximum-matching efficiency and ex-post efficiency, while
intuitive, turn out to not satisfy the simple and theoretically appealing property of ordinal
efficiency. Ex-post efficiency is strictly weaker than ordinal-efficiency in my setting, as well.
This is further related to the surprising observation that the same bistochastic matrix might
represent both an ex-post efficient random matching and a random matching that is not
ex-post efficient (Abdulkadiroğlu and Sönmez 2003). So, as Bogomolnaia and Moulin (2001)
remark, ex-post efficiency is quite a subtle concept.

The following example is analogous. Consider the following version of the serial-dictatorship
mechanism for the case k = 2. Given a priority order over A, at each step, the remaining
pair that is highest in the priority order is matched with their most-preferred mutually-
compatible remaining pair. The two pairs are removed from the problem and the iterative
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step is repeated. It is easy to see that the mechanism is Pareto efficient. Looking at a
random version of this mechanism with the priority order drawn from a uniform distribution
over all priority orders, I now show that it also fails to satisfy ordinal efficiency. This result
echoes one of the main motivating observations of Bogomolnaia and Moulin (2001).

Example 2. Let A = {1, 2, 3, 4, 5, 6} and let the preference profile � be defined by

�1 : 3 �1 2 �1 1,

�2 : 1 �2 4 �2 6 �2 2,

�3 : 4 �3 1 �3 2 �3 3,

�4 : 5 �4 1 �4 3 �4 6 �4 4,

�5 : 6 �5 2 �5 3 �5 4 �5 1 �5 5,

�6 : 1 �6 1 �6 5 �6 3 �6 6.

The bistochastic matrix that represents the outcome of the random serial dictatorship
here is

M =


1/12 11/24 11/24 0 0 0
11/24 1/12 0 0 0 11/24
11/24 0 1/12 11/24 0 0

0 0 11/24 1/12 11/24 0
0 0 0 11/24 1/12 11/24
0 11/24 0 0 11/24 1/12

 ,

which is dominated by the outcome of the 2CPS mechanism, which can be represented
by

M ′ =


0 1/2 1/2 0 0 0

1/2 0 0 0 0 1/2
1/2 0 0 1/2 0 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2
0 1/2 0 0 1/2 0


Proposition 6. Every 2-cycle simultaneous eating mechanism is 2-constrained ordinally
efficient.

The proofs of ordinal efficiency for the PS and the generalized PS (Budish et al. 2013)
mechanisms both require first characterizing ordinal efficiency as being equivalent to the
acyclicity of a certain suitably specified relation (see also Katta and Sethuraman 2006; Ko-
jima 2009; Yılmaz 2010). The idea of the proof above can be used to avoid the auxiliary
characterization lemma for those settings as well, thus significantly simplifying those proofs.
Conversely, the approach in the previous literature cannot be applied here: the existence of a
cycle in the mentioned relation implies the existence of a Pareto-improving trade in probabil-
ity shares. However, the existence of such a trade in my setting does not guarantee that the
new, Pareto-improving profile of probability-share allocations would form a 2-implementable
matrix.
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Multiple Donors, Social Endowment and Chains

While, for reason of simplicity of the exposition, I talk about patients having a single donor,
the model here applies without modification to settings where patients may have multiple
willing donors. Then in each kidney exchange each participating patient receives a kidney
and one of her donors donates a kidney. The preferences over the set A for each patient can
be inferred from the preferences over all donors’ kidneys. Namely, if each patient i has a
number of donors, denoted i1, i2, . . ., then each patient j has strict preferences over all the
donors denoted by �′j. Then for each i, j, l ∈ A, I say

i �j l if max
�′j
{i1, i2, . . .} �′j max

�′j
{l1, l2, . . .},

where max� S for some set S and some strict preference order � is the unique element
satisfying max� S ∈ S and max� S � s′ for all s′ ∈ S. Note that individual rationality can
be interpreted analogously: no patient receives a kidney that has worse prospects for her
than any of her donors’ kidneys.

In this section, I consider what happens if some of the kidneys come from deceased
or undirected altruistic donors. Deceased donors have historically been the most common
source of transplantable kidneys, but transplantation from living altruistic donors is becom-
ing increasingly common. These ”living” kidneys have two chief advantages. First, kidney
grafts from living donors have better survival rates than those from deceased donors. Sec-
ond, living donors can act as the first link in an altruistic chain of donations, wherein the
first patient receives the altruistic donor’s kidney, freeing her own donor to give her kidney
to another compatible patient. This patient’s willing donor can then continue the chain.
Non-simultaneous chains avoid the main undesirable feature of non-simultaneous exchange
cycles. Namely, if a donor backs out of the swap after a transplantation has already been
performed in an exchange cycle, a patient would lose her donor’s kidney without receiving
one in return. In chains, on the other hand, even if a donor backs out after her patient
receives a kidney, the anticipated next link in the chain is left no worse off than before, as
her donor has not yet given up a kidney. Thus each successive transplantation in a chain can
be delayed until a patient who is particularly compatible with the last transplantee’s donor
becomes available. As they need not be performed simultaneously, chains are particularly
helpful in maximizing the number of compatible transplantations because the short-cycle
feasibility constraints are relaxed for them. The longest chain ever completed included 60
people and 30 transplants (Sack 2012). The longest active chain as of November 2014 is
coordinated by the University of Alabama at Birmingham School of Medicine and has so
far included 56 people with 28 transplants. See Ashlagi et al. (2011, 2012) for more on
transplantation chains.

The importance of chains motivates the study of what happens when some of the kidneys
belong to an unattached donor in my framework. In terms of the model considered here,
this translates into the following modification. While the set of patient-donor pairs remains
A = {1, . . . , n}, the set of altruistic donors is A′ = {n + 1, . . . , p}. Each patient in A has
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a strict preference order over the set A ∪ A′. The rest of the model remains the same.
I am still interested in a mechanism that is individually rational, ordinally efficient and
anonymous. But before I define the modified 2CSE mechanism, I consider the question of
implementability. How does one need to modify Edmonds’ theorem in order to guarantee
that a family of probability-share allocations {P (i)}i∈A can be represented as a lottery over
deterministic matchings where each patient-donor pair is either matched up with another
such pair from the set A or receives a single kidney from A′?

To answer that, consider the following way to represent the profile of probability-share
allocations as a symmetric bistochastic matrix:

P =



p11 p12 · · · p1n q1,n+1 q1,n+2 · · · q1p

p21 p22 · · · p2n q2,n+1 q2,n+2 · · · q2p
...

...
. . .

...
...

...
. . .

...
pn1 pn2 · · · pnn qn,n+1 qn,n+2 · · · qnp
qn+1,1 qn+1,2 · · · qn+1,n 1−

∑
qi,n+1 0 · · · 0

qn+2,1 qn+2,2 · · · qn+2,n 0 1−
∑
qi,n+2 · · · 0

...
...

. . .
...

...
...

. . .
...

qp1 qp2 · · · qpn 0 0 · · · 1−
∑
qip


,

Essentially, I treat each kidney i in A′ as an artificial patient-donor pair which is matched
with each patient-donor pair j in A with the same probability with which patient j receives
kidney i. Thus P (i, j) = P (j, i) represents the probability that patient j receives kidney i.
At the same time, P (i, l) = 0 for all other l ∈ A′ \ {i} denotes that two kidneys in A′ cannot
be matched together and P (i, i) is the probability with which kidney i is left unclaimed. In
a similar fashion, one can think of the set of permutation matrices of dimension p × p as
having a one-to-one and onto correspondence with all deterministic matchings with social
endowment. Once one recasts the problem in this fashion, it becomes clear that if one
applies the Edmonds’ bounds to the bordered matrix, they get the same easy sufficient
and necessary conditions for implementability in the social-endowment-augmented random
assignment problem. Observe that the Edmonds constraint have no bite in the lower right
quadrant of the representation matrix since all the off-diagonal entries are always zero.

The 2CSE mechanism is modified in a corresponding fashion. The main difference is that
in terms of participation in the mechanism I treat all kidneys in A′ as agents (i.e., patient-
donor pairs) except for the fact that they have no preferences and can claim no probability
shares from other patient-donor pairs. Thus a kidney i ∈ A′ is available to an agent j ∈ A
at time t if none of the Edmonds constraints containing i and j binds for M t and the row
corresponding to i is strictly less than 1.30 Then j claiming probability shares from kidney
i increases both M t(i, j) and M t(j, i), which correspond to qij and qji respectively.

30One does not need to specifically worry about individual rationality since if patient j finds kidney i
unacceptable, patient j would never want to claim probability shares from kidney i as she prefers kidney j,
which is always available to her.
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As before, it is easy to see that the bistochastic matrix that is the outcome of this
mechanism will satisfy individual rationality. Also, if I endow all patient-donor pairs in A
with the same claiming speed (as in the 2CPS), the mechanism would also be anonymous
in the sense that after permuting the names of the patient-donor pairs amongst themselves
(i.e., within A) and the names of the other kidneys amongst themselves (i.e., within A′) the
new outcome of the mechanism would be represented by the same matrix with its rows and
columns appropriately permuted. Finally, it is not hard to modify the proof of Proposition 6
to show that the mechanism is also ordinally efficient.

With this in mind, it is easy to see that if I add a number of kidneys from altruistic
donors and all patient-donor pairs in A find each other unacceptable, the random allocation
problem of Bogomolnaia and Moulin (2001) becomes a special case of the 2-cycle constrained
setting from this section. The only difference is that each agent now has an outside option:
being left unmatched.

1.7 Incentives and Impossibility Results

In this section, I discuss the incentive properties of the 2CPS and GCPS mechanisms.

Proposition 7. The 2CPS mechanism is not weakly strategyproof for n ≥ 3.

Proof. Consider the following counterexample for A = {1, 2, 3}:

�1 : 3 �1 2 �1 1,

�2 : 1 �2 2 �2 3,

�3 : 1 �3 2 �3 3.

Under these preferences, the 2CPS mechanism matches couple 1 with couple 2 with
probability 1/3 and with couple 3 with probability 2/3. However, if patient 1 instead reported
kidney 2 as unacceptable, the 2CPS will match couples 1 and 3 with probability 1, thus
strictly improving 1’s probability-share allocation in FOSD manner.

The 2CPS mechanism fails to be even weakly strategyproof. Since I allow the presence
of unacceptabilities, these poor incentive properties are not surprising since most interesting
mechanism will fail weak strategyproofness when one allows unacceptabilities (for example,
in the object-allocation setting, the PS mechanism is not weakly strategyproofness if one
allows for unacceptabilities).

I next present an impossibility result that shows that the 2CPS mechanism is indeed a
second best mechanism in the sense that there does not exist a mechanism that is individually
rational, 2-constrained ex-post efficient, and weakly strategy proof.

Proposition 8. There does not exist a random mechanism that is individually rational,
2-constrained ex-post efficient and weakly strategy proof whenever n ≥ 4.
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I end with the impossibility result for general cycle-length constraints.

Proposition 9. For any k > 2, there does not exist a random mechanism that is individually
rational, k-constrained ex-post efficient and weakly strategyproof whenever n ≥ k + 1.

I next argue that Proposition 9 is tight in the sense that there are mechanisms that respect
the k-cycle constraints and satisfy any two of the three axioms, as well as a mechanism (in
this case, Top Trading Cycles) which satisfies the three axioms but does not satisfy the
k-cycle constraints. The GCSE mechanism, introduced in Chapter 2, will be shown to
be individually rational and k-constrained ex-post efficient. The no-trade mechanism is
individually rational and (weakly) strategyproof.

Finally, consider the following example of a mechanism that satisfies the k-cycle con-
straints, constrained ex-post efficiency and weak strategyproofness. Let there be some pri-
ority order over A and let each agent i point at the agent who has i’s highest-ranked object.
Starting with the agent, call her 1, who is highest in the priority order, one of three things
can occur. One possibility is that 1 is part of a cycle of length no longer than k, in which
case we perform the trades implied by that cycle, remove all agents and objects in that cycle,
and move to the next step. Another possibility is that 1 is part of a cycle of length longer
than k. In that case, considering the chain starting at 1, we take the k-th agent in that chain
and close the cycle by giving her 1’s object. So for example, if k = 2 and 1 points at 2 who
points at 3 who points back at 1, the first selected trading cycle here would have 1 receiving
2’s object and 2 receiving 1’s object, even if that is individually irrational for her. The last
possibility is that 1 is not part of a cycle. Then starting with the chain anchored at 1, we
should reach some cycle. For example, in a very simple case we could have

1→ 2→ 3→ 2.

If k = 4 here, we can “break the cycle” in a strategyproof way by considering who agent
3’s second highest choice is. If that is 4 for example, we implement the trade implied by the
cycle 1 → 2 → 3 → 4 → 1. It is not hard to prove that this mechanism is k-constrained
ex-post efficient and strategyproof. It is, however, obviously not individually rational.

1.8 Conclusion

In this chapter, I propose a mechanism that is suitable for the setting of kidney exchange
with strict ordinal preferences. The mechanism is individually rational so it recommends
compatible transplantations and provides sufficient incentives for compatible patient-donor
pairs to enter the kidney-exchange program. It is also ordinally efficient and anonymous.

One question I haven’t addressed until now is the problem of considering ordinal versus
cardinal preferences. For example, the United Network for Organ Sharing/Organ Procure-
ment and Transplantation Network’s (UNOS/OPTN) guidelines for deceased donors’ kidney



CHAPTER 1. SHORT TRADING CYCLES 26

allocation changed recently to address considerations of differential survival rates of kid-
neys.31 Their system computes a Kidney Donor Profile Index, which indicates how long a
kidney is likely to function once transplanted. The goal is to maximize the net life-years
benefit of transplanted kidneys over the life expectancy under dialysis treatment. So why
shouldn’t the matching algorithm simply select an allocation that maximizes the sum of
expected gained life-years? The answer is multi-fold. First, these cardinal preferences would
be hard to estimate. See Freeman (2007) for a discussion, for example. Any proposal for es-
timating these would necessarily involve ad-hoc assumptions: for example, Freeman (2007)
mentions that for the purposes of quality-of-life adjustment, the social planner needs to
decide how much is a year with a functioning renal graft worth in terms of years on dial-
ysis. Furthermore, the expected life-year benefit for a given patient-donor pair is hard to
determine with much precision, or at least harder than defining ordinal preferences for the
patient over the available kidneys. Second, maximizing total gained life-years creates fair-
ness issues. Specifically, younger and healthier patients receive preferential treatment since
a kidney is likelier to extend their lives more than older patients’. One can account for that
by making suitable adjustments. For example, the system adopted by UNOS/OPTN makes
adjustments to give preferential treatment to patients who have been on the waiting list for
a long time. But, again, any such adjustment would necessarily be ad-hoc. I believe that
the mechanism proposed here does a better job of balancing utility and justice, as desired by
UNOS (Wallis et al. 2011). Finally, a utility-maximizing system would introduce a new set
of incentive-compatibility issues. For example, doctors could falsify their patients’ medical
records to make them appear healthier (to inflate the estimate of expected life-years they can
gain from a kidney) or sicker (if that gives them a waitlist priority). For accounts of a series
of similar cases in the liver- and heart-transplantation programs in the US and Germany, see
Snyder (2010); Pondrom (2013); Roth (2014).

There is significant potential for future work extending and refining the results presented
here. Extending the 2CPS mechanism to the case of non-strict ordinal preferences would
be valuable. I note here that the techniques from network flow theory used by Katta and
Sethuraman (2006) (and adapted in Yılmaz (2009) and Budish et al. (2013)) cannot be
extended in a straightforward manner to my setting. The main issues is that the Edmonds
constraints are not nested within each other so constructing an auxiliary network representing
the constraints would not help here.

Here I have assumed a hard cap on the possible length of trading cycles. It would be
interesting to see if one can arrive at a better mechanism by relaxing the requirement that
the mechanism satisfies the cycle constraints with probability 1. A mechanism that has
better properties and fails to satisfy the cycle-length constraints “relatively seldom” could
be acceptable in the sense that the extra cost of the occasional long trading cycles might be
outweighed by the benefit of a better overall mechanism.32

31See Roth (2013) for more details.
32For recent work on matching mechanisms that satisfy desirable properties in an approximate manner

see Budish (2011) and Akbarpour and Nikzad (2014).
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As noted in Section B.2, the 2CSE mechanism does not fully characterize all possible
ordinally efficient random allocations. It would be valuable to know what properties charac-
terize the allocations that can be selected by that mechanism. Conversely, does there exist
a mechanism parameterized by a certain vector that selects all possible ordinally efficient
allocations by varying the parameter? Another open area is finding a “better” fairness con-
dition that the 2CPS mechanism satisfies (see Section B.1). While anonymity implies that
patients’ names do not matter, there are anonymous mechanisms that are arguably unfair.33

However, since the 2CPS affords all agents the same initial conditions and is procedurally
fair, I expect that it would satisfy some stronger fairness conditions.

33For example, consider an object-allocation setting with two agents {1, 2} with multi-unit demand and
two objects {a, b}, where being assigned both objects is preferred to having either one of them. Let f be a
mechanism that gives both objects to the agent whose preferences are {a, b} � a � b whenever the preferences
are different and flips a fair coin for who gets what if the preferences are the same. The mechanism is clearly
anonymous but it can be argued that it is unfair in the sense that one agent receives an “unreasonably large”
share of the endowment under certain preferences.
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Chapter 2

A General Solution for Matching
Problems with Constraints

2.1 Introduction

In the previous chapter, I showed that, for any preference-profile, the 2-Cycle Probabilistic
Serial (2CPS) mechanism selects a lottery over deterministic allocations, in each of which all
trades satisfy individual rationality and the cycle-length cap. The cycle-length constraint and
individual rationality limit the set of deterministic allocations on which a random allocation
could place positive probability. In this chapter, I consider the general case of arbitrary
ex-post constraints. My main result is to show how the 2CPS mechanism can be adapted to
account for any possible such constraints while maintaining (constrained) ordinal efficiency
and (if the constraints allow it) anonymity. This result is striking since it includes not only
the setting of object exchange with caps on the cycle length and a requirement for individual
rationality, as in the previous chapter, but also more general object-exchange and object-
allocation problems, as well as two-sided matching markets such as school-choice problems or
the assignment of medical interns to hospitals.1 Moreover, any of these markets can include
arbitrary constraints, including not only cycle-length caps and individual rationality but also
requiring maximum-cardinality matchings, quotas, regional caps, the assignment of couples
in close proximity to each other in job-placement services, and other constraints motivated
by geographical or diversity considerations.

More specifically, in this chapter I show how to construct a set of constraints on the
probability-share matrices that guarantees the following two things. First, the adaptation
of the PS mechanism under those constraints selects a bistochastic matrix that represents a
lottery over allowable deterministic allocations. Second, that lottery is constrained ordinally
efficient. The conditions in question are the minimal set of constraints defining a naturally-
defined bounded convex polytope and are in theory computable given a list of allowable

1For the sake of maintaining consistency with Chapter 1, I will retain the kidney-exchange terminology
in this chapter.
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ex-post allocations.
As I discuss further on, this result is far from trivial due to a variety of issues that need

to be surmounted. For one, not all possible constraints on the probability-share matrices
would guarantee that a PS adaptation selects an ordinally efficient allocation. Since patients
claim kidneys in the order of their preferences, if a constraint becomes slack after binding,
the resulting outcome might not be ordinally efficient. So the constraints need to be of a
form where once binding, they remain binding throughout. Another issue is the risk of the
algorithm getting “stuck” during implementation. It is conceivable that at some instance
t, the constellation of binding constraints is such that a patient does not have any kidneys
that she is allowed to claim. I discuss these and other issues more in Section 2.2.

Note that the ex-post restrictions can include requiring the maximum possible number
of recommended transplantations. Adding this restriction can be viewed as a refinement of
the ordinal efficiency since it also ensures the ex-post satisfaction of the binary-preference
efficiency criterion. The reason for this is that, as Roth et al. (2005a) show, efficiency for
binary preferences reduces to maximizing the number of proposed matches. Going back to
kidney exchanges, consider a simple problem with three patient-donor pairs, numbered 1
through 3, as an illustration. Assume that the maximum cycle length is at least 3 so it does
not represent a binding constraint. Let’s also assume that any patient is compatible with
the other two patients’ donors. Also, let patients 1 and 2 find each other’s donors to be
most preferable. Then the kidney exchange which matches pairs 1 and 2 is Pareto optimal.
However, it might be preferable to match all three patient-donor pairs in a cycle of length
3 to avoid leaving patient 3 without a kidney. It is not hard to verify that the two possible
three-way exchanges are also Pareto optimal.

See Section 1.1 for a detailed review of the related literature. Here, I note only that
one of the mechanisms that Budish et al. (2013) propose is a special case of the most
general mechanism defined in this chapter. More broadly speaking, the general result in
this chapter here proposes a desirable mechanism for matching under arbitrary constraints,
which includes two-sided matching markets. Some work related to that includes three recent
papers (Kamada and Kojima forthcoming, 2014a,b) studying two-sided matching markets
under relatively general constraints. Their main concerns, however, are stability concepts,
while I do not address stability in this work.

2.2 Main Result

In this section, I consider the feasibility of extending the main results of the previous chapter
not only to the case k > 2 but also to cases with arbitrary ex-post constraints. More specif-
ically, I look into the set of constraints that need to be imposed on the simultaneous-eating
algorithm that would guarantee that the algorithm outputs a valid bistochastic assignment
matrix that can be decomposed into a lottery over deterministic permutation matrices, each
of which satisfies the desirable ex-post constraints. To fix ideas, I start by supplementing
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the set-up of Section 1.3 with a few basic definitions, and defining the simultaneous-eating
algorithm subject to a set of constraints Ω.

We call any correspondence C : P → 2M \ {∅} a constraint correspondence. I
interpret C(�) as the set of allowable ex-post deterministic matchings for the preference
profile �. I say that a constraint correspondence is anonymous if it is name-invariant.
Formally, for an arbitrary bijective function π : A → A and a permutation matrix M , let
Π(M) be defined from M via Π(M)(i, j) = M(π−1(i), π−1(j)). Then I say that a constraint
correspondence C satisfies anonymity if for all �∈ P one has Π(M(C(�))) = M(C(�π)),
where M(C(�)) is the set of permutation matrices corresponding to each of the elements
in C(�). Given a set of ex-post deterministic matchings C ′ ⊂ M and a preference profile
�, I say that a random matching µ ∈ ∆C ′ is C ′-constrained ordinally efficient with
respect to � if there does not exist another random matching µ′ ∈ ∆C ′ such that Pµ′(i)
first-order stochastically dominates Pµ(i) with respect to �i for all i ∈ A and strictly so for
some i ∈ A. Given a constraint correspondence C, I define a mechanism f : P → ∆M to
be C-constrained ordinally efficient if every f(�) is C(�)-constrained ordinally efficient
with respect to �.

Let Ω0 be the collection of all ordered pairs (a, b) comprised of a function a : A×A→ R+

and a scalar b ∈ R+. I interpret each one of these pairs as the representation of a constraint
of the form ∑

(i,j)∈A×A

a(i, j)M(i, j) ≤ b,

where b ≥ 0 and a(i, j) ≥ 0 for all (i, j). The simultaneous-eating algorithm will be subject
to a subset Ω of Ω0.

Definition 2. The generalized constrained simultaneous-eating algorithm subject
to Ω. Each patient i has an associated claiming-speed function ei : [0, 1] → R+ with∫ 1

0
ei(t)dt = 1. Time runs continuously starting at t = 0. For each point in time there is an

associated sub-bistochastic matrix M t where M0 is the initial zero matrix. I say that kidney
j is available to patient i at time t ≥ 0 if none of the constraints in Ω for which a(i, j) > 0,
bind at that time. Note that M0 satisfies all the constraints in Ω and, in particular, all
kidneys that patient i finds acceptable are available to her. At time t, each patient i claims
with speed ei(t) the available remaining probability shares of her favorite reported kidney j
among the kidneys that are available to i at that instance. That increases the probability
that i receives j’s kidney—i.e., it increases M t(i, j). Also note that i = j can be true in this
case. The algorithm ends at time t = 1 and the final matrix is M1.

For simplicity, I refer to the outcome of the generalized constrained simultaneous-eating
algorithm subject to Ω given a preference profile � as GCSE(�, e,Ω). If the claiming-speed
functions for all patients are the same (assumed, without loss of generality, to be ei(t) = 1
for all i ∈ A and t ∈ [0, 1]), we will call the resulting mechanism the generalized constrained
probabilistic serial mechanism subject to Ω (or GCPS for short) and will refer to its outcome
by GCPS(�,Ω).
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Note that the class of constraints Ω0 contains “zero” constraints (such as M(i, j) ≤
0, which represents the case where patient i finds kidney j unacceptable and individual
rationality is a requirement2), as well as constraints similar to the Edmonds constraints.
Other types of constraints, such as M(i, j)−M(h, l) ≤ 1/2 or M(i, j) +M(h, l) ≥ 1 are not
included. The first one of these has the potential to become slack after binding during the
course of the algorithm. This is problematic since patient i would have stopped claiming
shares from kidney j and moved on to her next-best available kidney. If that constraint
becomes slack, however, patient i could benefit from coming back to kidney j and claiming
more shares from it, which the algorithm does not allow. This would jeopardize the efficiency
of the outcome. The second one of these constraints is not initially satisfied for the matrix
M0. It is crucial for each matrix M t to satisfy all the constraints in Ω, however, since my
goal is to define Ω in a way guaranteeing that M1 is a valid bistochastic matrix that is
implementable as a lottery over deterministic matchings that satisfy the ex-post constraints.
Now I show that there exists a natural way to define the set of constraints so that they are
all within Ω0.

Definition 3. Lower contour set. Given a set C ′ ⊂ Rn×n
+ , I say that the set defined by

{M ∈ Rn×n
+ |∃M ′ ∈ C ′ : M ′ ≥M}

is the lower contour set of C ′. I denote it by lcs(C ′).

In what follows, I abuse notation in the following way. If C ′ ⊂ M, I use lcs(C ′) to
denote the lower contour set of the set of permutation matrices corresponding to each of the
elements in C ′. Similarly, lcs(∆C ′) denotes the lower contour set of the convex hull of those
permutation matrices.

Proposition 10. For any set C ′ ⊂ M, there exists an essentially unique3 minimal set of
constraints Ω ⊂ Ω0 such that

lcs(∆C ′) =
⋂

(a,b)∈Ω

M ∈ Rn×n
+

∣∣∣∣∣∣
∑

(i,j)∈A×A

a(i, j)M(i, j) ≤ b

 .

I denote these constraints by ΩC′.

Proposition 11. For any non-empty set of allowable ex-post deterministic matchings C ′ ⊂
M and any preference profile �, the GCSE mechanism subject to ΩC′ terminates at an allow-
able bistochastic matrix that represents a C ′-constrained ordinally efficient random matching
in ∆C ′ with respect to �.

2More formally, this means Pµ(i, j) = 0 for all µ ∈ C(�).
3For the pairs (a, b) with b > 0, the constraints are unique up to rescaling by a positive scalar. For

the case b = 0, this is not the case since multiple sets of constraints can be equivalent here: for example,
M(1, 2) + M(1, 3) ≤ 0 and M(1, 2) + 2M(1, 3) ≤ 0 are equivalent to each other and also to the pair of
constraints M(1, 2) ≤ 0 and M(1, 3) ≤ 0. They all denote the fact that M(1, 2) = M(1, 3) = 0 for all
allowable allocations.
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Proposition 12. If C is an anonymous constraint correspondence, the GCPS mechanism
subject to ΩC(�) for any given preference profile � is C-constrained ordinally efficient and
anonymous.

2.3 Discussion

In the following discussion, I attempt to unpack the intuition behind Propositions 10, 11
and 12. At first blush, finding a suitable set Ω guaranteeing that the outcome of the GCSE
algorithm subject to Ω is C-constrained ordinally efficient appears quite difficult. The case
k = 2 has a number of benefits. For one, the permutation matrices (representing the deter-
ministic matchings) and bistochastic matrices (representing the random matchings) are all
necessarily symmetric when k = 2 which simplifies the constraints that are sufficient and
necessary for implementation.

One consequence of the simplicity of the Edmonds constraint is that any patient always
has an acceptable available kidney at any point during the run of the mechanism’s algo-
rithm, thus vastly simplifying the individual rationality guarantee. Due to the fact that the
Edmonds constraints do not pertain to the trace entries of the probability-shares matrix, as
pointed out above, the only way that a patient would not find her donor’s kidney available
at any point during the run of the algorithm is if that kidney has had its entire unit mass of
probability shares claimed already. But then, by the enforced symmetry of the procedure,
this would imply that the patient has also fulfilled her unit demand. So each patient can
always “retreat” to her donor’s kidney even if all the other acceptable kidneys are unavailable
to her. So the algorithm can never get “stuck.”

So merely applying the Edmonds constraints, which are intended to characterize the con-
vex hull of symmetric permutation matrices, to the higher-dimensional set of sub-bistochastic
matrices, such as the interim probability-shares matrices at any instance during the running
of the 2CSE’s algorithm, is enough to guarantee that at no point does the algorithm get
“stuck”. There is no reason to believe, however, that constraints characterizing the convex
hull of some other set of allowable deterministic matchings would have the same property,
even if those constraints are simple. For example, the case of the object-allocation problem
with unacceptabilities has a simple set of constraints guaranteeing individual rationality:
Pµ(i, o) ≤ 0 if agent i finds object o unacceptable. However, naively attempting to run a
simultaneous-eating mechanism with these constraints would quickly result in problems.

To be more specific, assume that there are two agents, 1 and 2, and two objects, o1 and
o2. Agent 1 finds only object o1 acceptable, while agent 2 finds both of them acceptable
but prefers o1. So the only constraint characterizing the individually rational polytope is
Pµ(1, o1) ≤ 0. If one attempts to run a simultaneous-eating algorithm with this as the
only constraint, however, they would not be able to guarantee individual rationality. To see
that, observe that if 2 starts claiming probability shares from her favorite object o1, this
would make the only individually rational allocation (where 1 gets o1 with probability 1)
impossible. The focus of Yılmaz (2010), who studies an individually-rational version of the
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PS mechanism, is characterizing the other constraints necessary for guaranteeing individual
rationality. Those constraints are derived from Gale’s Supply-Demand Theorem (Gale 1957)
and essentially serve in the same manner as the Edmonds constraint serve to define the
mechanism in the previous section.

This suggests, though, that any case other than the symmetric k = 2 would first require
obtaining a characterization similar to Edmonds’ theorem. Then one would need to find a set
of additional constraints Ω (similar to those from Gale’s theorem) that need to be imposed
on the interim probability-shares matrices in order to guarantee that the bistochastic matrix
obtained at the end of the algorithm satisfies the characterization from step one. This
would still not be enough, however, as the resulting lottery also needs to be constrained
ordinally efficient. It is easy to see that guaranteeing just implementability is easy: one
can choose any allowable deterministic ex-post matching and set the constraints so that
the patients can claim only shares of the object they receive in that matching. This need
not be constrained-ordinally efficient though. So the constraints need to guarantee that the
mechanism’s algorithm always selects a constrained-ordinally efficient matching.

Consider an implementation of the simultaneous-eating algorithm under a certain set of
constraints Ω. Let the preference profile be � and let D′ be the set of all matrices that
represent lotteries over allowable deterministic matchings in C(�). If at any time during the
algorithm, there is an interim probability-share matrix M t such that there does not exist
M ′ ∈ D′ with M ′ ≥ M t, the algorithm would not output an allowable bistochastic matrix.
This follows from the fact that the interim probability-share matrices are increasing in t.
Thus, at the very least, we need the constraints to guarantee that M t ≤M ′ for some M ′ ∈ D′
for all t. This motivates Definition 2. It turns out that constraining the mechanism to the
lower contour set of D′ suffices in all cases: this guarantees that the algorithm terminates at
an allowable matrix and that matrix represents a constrained ordinally efficient allocation.

The key observation summarized in Propositions 10 and 11 is that if D′ is the convex hull
of the allowable permutation matrices, the set lcs(D′) satisfies a handful of nice properties.
First, if the GCSE algorithm is constrained within lcs(D′), the algorithm never gets “stuck”
and always outputs a bistochastic matrix within D′. Second, lcs(D′) is a bounded convex
polytope, so it equals the set of all the matrices whose entries satisfy certain constraints and,
importantly, those constraints are well behaved in the sense that they are of the form∑

(i,j)∈A×A

a(i, j)M(i, j) ≤ b

for some b ≥ 0 and a(i, j) ≥ 0 for all (i, j).4 In other words, those constraints are from
the set Ω0.5 As noted above, the constraints ensure that during the running of the GCSE

4These exclude the non-negativity constraints but those are automatically satisfied since the interim
probability-share matrix is initially the zero matrix and it is increasing in t.

5Computing these constraints given the set of extreme points is known as the “convex hull problem”.
This problem has been well studied in the computational-geometry literature. See Chazelle (1993); Clarkson
et al. (1993); Burnikel et al. (1994); Barber et al. (1996), as well as Seidel (2004) for a recent survey. Since
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mechanism’s algorithm, once a constraint starts binding, it remains binding until the con-
clusion of the algorithm. Thus, whenever a constraint starts binding and a kidney becomes
unavailable to a patient, that patient can move to the next highest-ranked available kidney
and not worry about coming back to the one whose probability shares she was just claiming
in case the constraint ever becomes slack again. Thus ordinal efficiency is not jeopardized. I
note here that even though the objects in my setting have unit supply and their total supply
equals the demand of the agents, the GCSE mechanism can be generalized in a straightfor-
ward manner to the multi-unit demand and/or supply, as well unequal total demand and
supply.

Observe that in Proposition 12 I require that the constraint correspondence is anonymous
in order to guarantee that GCPS is anonymous. C-constrained ordinal efficiency would be
preserved for any constraint correspondence C. Note that if the constraint correspondence
C is generated from individual rationality and limiting cycle length to be at most k, C-
constrained ordinal efficiency is equivalent to k-constrained ordinal efficiency.

So the main result, Proposition 11, together with Proposition 12 guarantee that GCPS
is constrained ordinally efficient, no matter what the set of allowable ex-post deterministic
matchings is and possibly anonymous if the constraint correspondence is anonymous itself.
The constraint correspondence is anonymous if the constraints placed on the possible ex-
post deterministic matchings do not depend on the names of the agents. It is easy to see
that individual rationality and satisfaction of the k-cycle constraints jointly or separately
define an anonymous constraint correspondence. Since individual rationality and the k-cycle
constraints pertain only to the possible ex-post deterministic matchings, a consequence of
that result is that for any k ≥ 2 the GCPS mechanism is individually rational, k-constrained
ordinally efficient and anonymous. As I showed in Proposition 9, just as in the case k = 2,
there does not exist a mechanism that satisfies k-constrained ordinal efficiency, individual
rationality and weak strategyproofness.

Corollary 13. Fix k ≥ 2. If the constraint correspondence C is such that C(�) equals the
set of individually rational matchings in Mk, the GCPS subject to ΩC(�) for each preference
profile � is k-constrained ordinally efficient, anonymous and individually rational.

2.4 Examples

The power of the result is not just confined to considerations of individual rationality and
cycle implementability. Any desired outcome that can be represented as a constraint on the
final possible deterministic matchings can be accommodated here. I next consider a few
examples as illustrations of the result’s power. The first three examples, for instance, show
that the ordinal efficiency results of a handful of preceding papers are implied by Proposi-

the polytopes of interest here are all 0/1-polytopes (Ziegler 2000), there is the potential to define specialized
algorithms with good performance (potentially even running in polynomial time).
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tion 11 but, furthermore, that the constraints that they use to guarantee implementability
are special cases of the constraints defining the lower contour set of permissible matchings.

Example 3. (No constraints.) If C(�) = M, we are back to the realm of pure object-
allocation problems without any additional constraints as in Bogomolnaia and Moulin (2001).
The constraints defining the set lcs(∆C(�)) are simply the sub-bistochasticity conditions:
M ∈ lcs(∆C(�)) if and only if∑

j

M(i, j) ≤ 1 and
∑
i

M(i, j) ≤ 1 for all i, j ∈ A, (2.1)

which are the constraints used in Bogomolnaia and Moulin (2001).

Example 4. (Individual rationality.) If

C(�) = {m ∈M|i �i j ⇒ m(i) = 0},

the only ex-post constraint here is individual rationality. Yılmaz (2010) adapts the simultaneous-
eating algorithm by imposing constraints to guarantee that it would output a matrix that
satisfies individual rationality. In addition to the sub-bistochasticity constraints (2.1), the
following must also be true for any interim matrix

|UT | − |T | ≥
∑

i∈A\T,j∈UT

M t(i, j) for all T ⊂ A, (2.2)

where UT ⊂ A is the set of objects that at least one agent in T finds acceptable. Yılmaz’
(2010) result implies that if a sub-bistochastic matrix satisfies these constraints, then that
matrix is in lcs(∆C(�)) because, as noted above, if an interim matrix is ever not in this set,
the outcome of the algorithm would not satisfy individual rationality. Here I show that the
converse is also true. Let M ∈ lcs(∆C(�)) and let M ′ be a bistochastic matrix representing
an individually rational lottery with M ′ ≥ M . For any T ⊂ A, the agents in T must
have received only probability shares in UT by individual rationality. The remainder of the
probability shares of objects in UT must be distributed among agents outside T . Since agents
and objects have unitary demand and supply, respectively, the following must be true:∑

i∈A\T,j∈UT

M ′(i, j) = |UT | − |T |.

Since M(i, j) ≤M ′(i, j), we have∑
i∈A\T,j∈UT

M(i, j) ≤ |UT | − |T |.

Thus, in addition to the non-negativity constraints, (2.1) and (2.2) characterize the set
lcs(∆C(�)).
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Example 5. (Individual rationality and constraint on the trading-cycle lengths:
k = 2.) Now consider the case C(�) equals all individually rational matchings in M2. The
GCPS in this setting is individually rational, 2-constrained ordinally efficient and anonymous
but differs from 2CPS. The set of constraints describing the polytope lcs(∆C(�)) for the
case n = 3, k = 2 are M(i, j) ≤ 0 if i �i j or j �j i, the sub-bistochasticity constraints from
(2.1), as well as

M(1, 2) +M(1, 3) +M(2, 3) ≤ 1,

M(1, 2) +M(1, 3) +M(3, 2) ≤ 1,

M(1, 2) +M(3, 1) +M(2, 3) ≤ 1,

M(1, 2) +M(3, 1) +M(3, 2) ≤ 1,

M(2, 1) +M(1, 3) +M(2, 3) ≤ 1,

M(2, 1) +M(1, 3) +M(3, 2) ≤ 1,

M(2, 1) +M(3, 1) +M(2, 3) ≤ 1,

M(2, 1) +M(3, 1) +M(3, 2) ≤ 1.

If the preference profile � is

�1:2 �1 3 �1 1,

�2:1 �2 3 �2 2,

�3:1 �3 2 �3 3,

then

GCPS(�,ΩC(�)) =

 0 1/2 1/2
1/2 1/2 0
1/2 0 1/2

 ,

while the 2CPS selects

2CPS(�) =

 0 2/3 1/3
2/3 1/3 0
1/3 0 2/3

 .

Example 6. (Bihierarchical constraints.) Budish et al. (2013) define a class of con-
straints called bihierarchical constraints and generalize the probabilistic serial mechanism
for those constraints. Even though their paper allows multi-unit supply of objects, as noted
above, the GCPS mechanism readily generalizes to that case. A set of bihierarchical con-
straints includes maximum quotas placed on all rows (agent demand) and all columns (object
supply). In the case of single-unit demand and supply, these reduce to (2.1). Additionally,
the constraints may also include constraints placed on some subcolumns such that for any j
the constraints ∑

i∈A′
M(i, j) ≤ b′ and

∑
i∈A′′

M(i, j) ≤ b′′
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must satisfy either A′ ⊂ A′′, A′′ ⊂ A′ or A′ ∩ A′′ = ∅.
In the case of school choice, for example, the subcolumnar constraints can be interpreted

as not allowing too many students with certain domicile neighborhood or background char-
acteristics into a given school. In my language, the constraint correspondence C here is
constant. For any �, the set C(�) equals all matchings in M that are represented by per-
mutation matrices that satisfy all the bihierarchical constraints. Analogously to Example 4,
the results of Budish et al. (2013) imply that if an interim sub-bistochastic matrix satisfies
the bihierarchical constraints, then it is in the set lcs(∆C(�)). The converse is straightfor-
ward as well: if M ∈ lcs(∆C(�)), then there exists some assignment matrix M ′ ≥ M that
satisfies the bihierarchical constraints. Since M ≤ M ′ and all constraints are from the set
Ω0, M must satisfy them as well.

Maximum-cardinality matchings are currently essentially, as noted above, the main ef-
ficiency criterion for kidney-exchange clearinghouses. Thus the GCPS mechanism allows
generalizing the workhorse mechanism introduced by Roth et al. (2005a), whose main con-
sideration is maximizing the number of patients receiving kidneys, by adding any other
applicable constraints and, crucially, by respecting any strict preferences that the agents
might have over the available kidneys.

For the case k = 3, another salient anonymous constraint correspondence requires all
three-way exchanges to have a back arc. That is to say, if a cycle 1→ 2→ 3→ 1 is selected
with positive probability, it is required that at least one of patients 1, 2, or 3 finds kidney
3, 1, or 2, respectively, acceptable. Then if one of the patients becomes too sick to undergo
a transplantation and the proposed three-way exchange cannot go through, then there is a
chance that the remaining two agents would be able to form a two-way exchange. This is
known as failure-aware kidney exchange (Dickerson et al. 2013).

Another important class of problems that can be accommodated by the GCSE mechanism
are two-sided matching problems. The constraints in that case divide the agents in two
groups and make it impossible for any agent in either group to be matched with any other
agent in that group. The simple marriage problem (or the one-to-one two-sided matching
problem) can be accommodated under 2CPS as it is a special case of the roommate problem.
However, since Proposition 11 can be extended to allow for multi-unit demand and supply,
it holds for many-to-many two-sided markets as well.

2.5 Conclusion

In this chapter, I provide a method to generalize the mechanism from Chapter 2 to an
arbitrary matching setting with arbitrary constraints: regardless of what the set of acceptable
ex-post allocations is, the mechanism would select an ordinally efficient lottery over that set
and would do that in an anonymous way if the constraints allow it. The settings include
one-sided (such as object-exchange and object-assignment problems) and two-sided matching
markets (such as school-choice problems and the assignment of workers to institutions).
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The constraints can include individual rationality, cycle constraints, maximal-cardinality
matchings, and various quotas, caps etc.

Understanding the properties of the general mechanism presented here would be a valu-
able further avenue of research. Examples include finding a natural fairness property it
satisfies. Also, that mechanism embeds the PS (Bogomolnaia and Moulin 2001) and the
Generalized PS mechanisms (Budish et al. 2013), which are weakly strategyproof. However,
it also includes those mechanisms with unacceptabilities, where weak strategyproofness fails
(Yılmaz 2010). A natural question to ask is: what conditions guarantee weak strategyproof-
ness? For that matter, what conditions guarantee stronger incentive criteria, such as convex
strategyproofness as defined in Chapter 3?
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Chapter 3

Convex Strategyproofness with an
Application to the Probabilistic Serial
Dictatorship

3.1 Introduction

In this chapter, I consider some questions of strategyproofness arising in mechanisms for the
random assignment of heterogeneous indivisible objects among participating agents, based
on their reported ordinal preferences over the objects. The two main (ex-ante symmetric)
such mechanisms considered in the literature are the random serial dictatorship (Abdulka-
diroğlu and Sönmez 1998), and the probabilistic serial (PS) mechanism (Bogomolnaia and
Moulin 2001). The main trade-off between the two mechanisms is that while the PS mecha-
nism satisfies a stronger efficiency property, it fails to be strategyproof. Instead, it satisfies
a weaker condition, called weak strategyproofness. Here, I define two natural intermediate
incentive properties that are stronger than weak strategyproofness but weaker than strate-
gyproofness. I show that these two concepts are equivalent and call the resulting property
convex strategyproofness. Then, using a simple geometric characterization, I show that the
PS mechanism and its generalization due to Budish et al. (2013) are convex strategyproof.

More specifically, weak strategyproofness means that, holding the reports of the other
agents constant, an agent deviating to a false report cannot induce a probability distribution
over the available objects that strictly first-order stochastically dominates the outcome that
a true report would induce.1 Equivalently, for any outcome corresponding to a false report,
there exists a utility function compatible with the agent’s true ordinal preferences, under
which the truth-telling outcome has higher expected utility. Strategyproofness, on the other
hand, means that the outcome corresponding to the true report first-order stochastically
dominates all outcomes corresponding to false reports. Equivalently, for any utility function
compatible with the agent’s true ordinal preferences, the agent’s expected utility from the

1First-order stochastic dominance here is defined with respect to the agent’s true preferences.
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truth-telling outcome is weakly greater than her expected utility for any other outcome.
Note that, by contrast, weak strategyproofness does not even guarantee the existence of a
single utility function compatible with the agent’s preferences, under which the truth-telling
outcome is the best one (see Example 7 in Section 3.3).

This observation gives us the first natural candidate for an intermediate property: requir-
ing the existence of a compatible utility function, such that truth-telling maximizes utility.
The second one is similar to weak strategyproofness but allows for mixed strategies: namely,
this version of strategyproofness holds if no mixed reporting strategy induces a probability
distribution that strictly first-order stochastically dominates the truth-telling outcome. As
noted above, I show that these two properties are equivalent.

This study is related most closely to Mennle and Seuken (2013) who also study an
intermediate strategyproofness concept, which they call partial strategyproofness, and apply
it to convex combinations (hybrids) of the random serial dictatorship and the PS mechanism.
In particular, they show that the set of utility functions for which the hybrid mechanism is
strategyproof (i.e. truth-telling maximizes utility) is increasing as one increases the weight
placed on the random serial dictatorship. One can view convex strategyproofness as a form
of minimal partial strategyproofness. Note that the two studies are logically unrelated.2

Kojima and Manea (2010) study a different aspect of the incentive properties of the PS
mechanism. They show that it becomes strategyproof if there are sufficiently many copies of
each object. By comparison, I show that, for markets of all sizes, the PS mechanism satisfies
an incentive property that is stronger than weak strategyproofness.

3.2 Set-up

In what follows, I present a simplified representation of the strategic situations that agents
participating in object-assignment mechanisms face. At the end of this section, I further
discuss how this set-up pertains to the incentive compatibility of such mechanisms.

I assume that an agent with unit demand (the decision maker or the DM ) can take
several actions. Each action is associated with some probability distribution over the avail-
able objects which the DM receives. The DM has some strict 3 preference order over the
objects, which, via first-order stochastic dominance, induces a partial order over the possible
probability distributions.

Assume that there are n + 1 different objects4 (numbered 1, 2, . . .) and, without loss of
generality, that the DM prefers objects with smaller indices (i.e. 1 � 2 � . . . � n + 1). I
assume that the probability shares of the objects in each probability distribution sum up to

2See also Lubin and Parkes (2012) for a survey of other ways of relaxing strategyproofness.
3I restrict my attention to strict preference orders. The main reason for that is that the version of the

(generalized) PS mechanism which allows for indifferences (Katta and Sethuraman 2006; Budish et al. 2013)
fails to even be weakly strategyproof. However, the strictness assumption is not crucial. A result essentially
identical to Proposition 15 here can be derived for non-strict preference orders, as well.

4I allow there to be more than one copy of each object.
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1. This is also without loss of generality since one can always add a least-preferred “null
object” to the list of objects and assign the rest of the probability weight to it. Thus one
can denote any possible probability distribution as an element of

P :=

{
x ∈ Rn :

n∑
i=1

xi ≤ 1, x ≥ 0

}
.

Consider all utility vectors compatible with the DM’s preferences, which have been nor-
malized so that un+1 = 0. Denote them by

U := {u ∈ Rn : u1 > u2 > . . . > un > 0} .

For a given utility vector u ∈ U , the von Neumann-Morgenstern expected utility the DM
derives from a probability distribution p ∈ P is u · p =

∑n
i=1 uipi.

A probability distribution p ∈ P is said to first-order stochastically dominate a probability
distribution q ∈ P (with respect to �) if

∑j
i=1 pj ≥

∑j
i=1 qj for all j = 1, . . . , n. I say that p

strictly first-order stochastically dominates q if p first-order stochastically dominates q and
p 6= q. I write p %FOSD q and p �FOSD q, respectively. A useful fact is that a probability
distribution p ∈ P first-order stochastically dominates q ∈ P if and only if u · p ≥ u · q for all
u ∈ U (Hadar and Russell 1969). Note that the partial order %FOSD can be extended from
P to Rn using the same definition of first-order stochastic dominance. Abusing notation, I
call that order %FOSD as well.

Let the DM’s set of (finitely many) possible actions (e.g. possible reports of her prefer-
ences) be A = {a, b1, . . . , bk} and let the function g : A → P associate each action with a
probability distribution. Note that if the DM chooses a mixed action strategy, she can in-
duce any probability distribution in the convex hull of the set {g(a), g(b1), . . . , g(bk)}, which
I denote co{g(a), g(b1), . . . , g(bk)} as usual. The converse is, naturally, also true—any mixed
action strategy induces a probability distribution in that convex hull. I say that the action
a is a dominant strategy if g(a) first-order stochastically dominates all g(bi)’s. I say that
the action a is an undominated strategy if no g(bi) first-order stochastically dominates g(a).
I say that the action a is compatible with utility maximization if there exists u ∈ U such
that u · g(a) ≥ u · g(bi) for all i. Finally, I say that the action a is convexly undominated
if there doesn’t exist a mixed action strategy that induces a probability distribution that
strictly first-order stochastically dominates g(a). This is equivalent to saying that there is
no p ∈ co{g(a), g(b1), . . . , g(bk)} such that p �FOSD g(a). The preceding four concepts were
defined with respect to particular set A and function g but the definition of these objects
will be always clear from the background and I will suppress their mention.

Assume that f is a random object-assignment mechanism; i.e. f is a map between the
reported preferences of a set of participating agents and a profile of probability-share distri-
butions for each agent. Each element of the action set of each agent corresponds to some
possible preference order over the objects. Each possible report by an agent i is mapped
into a probability-share distribution by the function fi(·,�−i), where �−i denotes the fixed
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preference profile of the other agents participating in the mechanism. A mechanism is strat-
egyproof (resp. weakly strategyproof ) at a given profile (�i,�−i) if for every participating
agent i reporting truthfully is a dominant strategy (resp. an undominated strategy) with
respect to fi(·,�−i)). Furthermore, a mechanism is (weakly) strategyproof if it is (weakly)
strategyproof at all possible preference profiles.

Convex Cones and Polyhedra

I provide another useful characterization of first-order stochastic dominance using convex
cones. A convex cone C ⊆ Rn is a set such that for all x, y ∈ C we have αx + βy ∈ C for
all α, β ≥ 0. For every partial order % on Rn compatible with the vector-space operations5

on Rn, there exists a convex cone C% such that p % q if and only if p ∈ {q} + C%, where
{q} + C% := {q + x : x ∈ C%} is the usual Minkowski set summation. In fact, one can
show C% = {x ∈ Rn : x % 0} (e.g. see Section 8.1 in Aliprantis and Border (2006)). The
convex cone C := C%FOSD then satisfies C = {x ∈ Rn : x %FOSD 0} or, in other words,

C = {x ∈ Rn :
∑j

i=1 xi ≥ 0 for all j = 1, . . . , n}. Using the convex cone C, one can easily
give a geometric characterization of an undominated strategy directly from its definition:
given a set A = {a, b1, . . . , bk} and a function g : A→ P , the action a is undominated if and
only if

({g(a)}+ C) ∩ {g(a), g(b1), . . . , g(bk)} = {g(a)}.
In this section, I also state a result due to McLennan (2002). Before I do that, I introduce

a couple of additional convex-analysis concepts. Any subset of Rn that is a finite intersection
of closed half-spaces is called a polyhedron. It is easy to verify that the convex hull of any
finite set is a polyhedron, as is the convex cone C corresponding to %FOSD. The set of all
finite affine combinations of elements of a set S ⊆ Rn is called the affine hull of S and I
denote it by aff(S):

aff(S) :=

{
k∑
i=1

αisi : s1, . . . , sk ∈ S, α ∈ Rk,
k∑
i=1

αi = 1

}
.

It is easy to verify that if p · s is constant for some p ∈ R \ {0} and all s ∈ S, then
p · s′ = p · s for all s ∈ S and all s′ ∈ aff(S). In other words, if a set is entirely contained
within a hyperplane, then so is its affine hull.

Given a polyhedron P , the empty set, P itself, and any set of the form P ∩ H for a
hyperplane H, one of whose closed half-spaces contains P , are called faces of P . Finally,
McLennan (2002, Lemma 2) shows that for any convex subset S of a polyhedron P , there
exists a smallest face of P that contains S. That Lemma permits us to state the following
theorem, which is also due to McLennan (2002).

Theorem 14 (The Polyhedral Separating Hyperplane Theorem). For two polyhedra
P1, P2 ⊂ Rn, let F1 and F2 be the smallest faces of, respectively, P1 and P2 that contain

5That is to say, whenever x % y for some x, y ∈ Rn then αx+ z % αy + z for all z ∈ Rn and α ≥ 0.
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P1 ∩ P2. Let also aff(F1 ∪ F2) 6= Rn. Then there exists u ∈ Rn, u 6= 0 such that u · p1 >
u · f1 = u · f2 > u · p2 for all pi ∈ Pi \ Fi, fi ∈ Fi for i = 1, 2.

3.3 The Characterization Result

Proposition 15. Given a set A = {a, b1, . . . , bk} and a function g : A → P , the following
are equivalent:

(i) action a is compatible with utility maximization;

(ii) action a is convexly undominated;

(iii) ({g(a)} + C) ∩ co{g(a), g(b1), . . . , g(bk)} = {g(a)}, where C is the convex cone corre-
sponding to the partial order induced by first-order stochastic dominance.

Proof. (i)⇒(ii) We know that there exists some u ∈ U such that u · g(a) ≥ u · g(bi) for
all i. This implies u · g(a) ≥ u · x for all x ∈ co{g(a), g(b1), . . . , g(bk)}. Assume toward
contradiction that there exists some y ∈ co{g(a), g(b1), . . . , g(bk)} that strictly first-order
stochastically dominates g(a). As remarked above, however, this implies u · y > u · g(a) for
all u ∈ U , which is a contradiction since u ∈ U .

(ii)⇒(iii) This follows from the facts that the set co{g(a), g(b1), . . . , g(bk)} equals the set
of elements in P that can be induced by a mixed action strategy, and that the set of points
that strictly first-order stochastically dominates g(a) is the set ({g(a)}+ C) \ {g(a)}.

(iii)⇒(i) For notational simplicity, denote the convex hull co{g(a), g(b1), . . . , g(bk)} by
D. First, note that {g(a)}+C (a translation of the polyhedron C) and D (a convex hull of
a finite set) are both polyhedra. Additionally, it is clear that the smallest face of {g(a)}+C
containing {g(a)} is the singleton F1 := {g(a)}. Now consider F2—the smallest face of
D that contains {g(a)}. Note that we have F1 = {g(a)} ⊆ F2. So, in order to invoke
McLennan’s theorem, it suffices to show that aff(F2) 6= Rn.

Note that g(a) is on the boundary of D (since g(a) + ε(1, . . . , 1) ∈ {g(a)} + C for all
ε > 0). Then there exists a hyperplane H separating g(a) and D: i.e. g(a) ∈ H and D is
entirely contained in one of the closed half-spaces defined by H. Therefore, H ∩D is a face
of D containing g(a), and the smallest such face F2 must satisfy F2 ⊆ H ∩D ⊂ H. As noted
above, if a set is entirely contained within a hyperplane H, then so is its affine hull. Therefore,
aff(F2) ⊆ H ( Rn. Thus the two sets satisfy the conditions of the Polyhedral Separating
Hyperplane Theorem and there exists u ∈ Rn, u 6= 0 such that u · x > u · g(a) ≥ u · y for all
x ∈ ({g(a)}+ C) \ {g(a)} and y ∈ D.

Now, it suffices to show that u1 > u2 > · · · > un > 0. Indeed, denoting the standard
basis vectors by e1, . . . , en, note that g(a) + ei − ej ∈ ({g(a)} + C) \ {g(a)} for i < j and
g(a)+en ∈ ({g(a)}+C)\{g(a)}. Hence, we have the inequalities u ·(g(a)+ei−ej) > u ·g(a)
for i < j and u · (g(a) + en) > u · g(a). They imply ui > uj whenever i < j and un > 0,
respectively.
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I say that a mechanism is convexly strategyproof at a given preference profile if for ev-
ery agent reporting truthfully is either convexly undominated or, equivalently, compatible
with utility maximization. As above, I also say that a mechanism is convexly strategyproof
if it is convexly strategyproof at all possible preference profiles. It is obvious that convex
strategyproofness is strictly weaker than strategyproofness and that it implies weak strate-
gyproofness. The converse is not true, as the following example demonstrates.

Example 7. Consider a set A = {a, b1, b2} and g : A→ P , such that for n = 2:

g(a) = (.3, .3)

g(b1) = (.29, .7)

g(b2) = (.41, 0) .

The action a is undominated since g(a) is not first-order stochastically dominated by either
g(b1) (because g(b1)1 < g(a)1) or g(b2) (because

∑
g(b2)i <

∑
g(a)i). However, a is not

convexly undominated (or, equivalently, not compatible with utility maximization) because
the convex combination

1

2
g(b1) +

1

2
g(b2) = (.35, .35)

first-order stochastically dominates g(a). Since weak strategyproofness is defined via undom-
inatedness and convex strategyproofness via convex undominatedness, this also implies that
convex strategyproofness is strictly stronger than weak strategyproofness. Furthermore, it
is straightforward to check that this example can be generalized to show that convex strat-
egyproofness is strictly stronger than weak strategyproofness as long as n > 1.

See also Figure 3.1 for a geometric illustration of the difference between undominated
and convexly undominated actions and thus between weak and convex strategyproofness.
The Figure illustrates two possible scenarios with n = 2 and 5 possible actions, which are
then mapped into probability-share distributions via the function g. In both panels, taking
action a is undominated since none of the other actions result in first-order stochastic dom-
inance improvement. In other words, none of the other actions result in a probability-share
distribution that lies in the set {g(a)}+ C. However, the action a is convexly undominated
only in panel (a), where no element of the convex hull co{g(b1), g(b2), g(b3), g(b4)} lies in
{g(a)} + C. In panel (b), however, it is clear that a convex combination of the actions b1

and b2 can result in first-order stochastic dominance improvement over a.

3.4 The Probabilistic Serial Mechanism

I start this section with a brief description of the PS mechanism. While being executed,
it treats each object as one unit of infinitely divisible probability shares. Time runs con-
tinuously, starting at t = 0. The mechanism then allows each agent to continuously claim
probability shares of her favorite object among those that have not been entirely claimed yet.
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g(a)

0 Good 1

Good 2

g(b1)

g(b2)

g(b3)
g(b4)

{g(a)}+ C

1

1

(a) Action a is UD and cUD

g(a)

0

Good 2

g(b1)

g(b2)

g(b3)
g(b4)

{g(a)}+ C

1

1

(b) Action a is UD but not cUD

Fig. 3.1 Undominated (UD) vs. convexly undominated (cUD) actions

The speed with which each agent claims probability shares is equal to 1. The mechanism
runs until t = 1, when each agent will have claimed a total of one unit of probability shares.
The probability shares claimed by each agent represent the probability-share distribution
induced by the PS mechanism for that agent. For a more detailed and formal definition, see
Bogomolnaia and Moulin (2001).

Bogomolnaia and Moulin (2001) show that the PS mechanisms is weakly strategyproof.
6 In this section, I extend their arguments to show that the PS mechanism is also convexly
strategyproof. As above, I will call the agent of interest the DM and I will assume that
her true preferences (denoted by �) are as above: she strictly prefers objects with lower
indices over those with higher ones. I will denote the fixed preference profile of the other
agents by �− and PS(·) will be a function that maps a preference profile to the probability
distribution that the PS mechanism assigns to the DM for that preference profile.

Let us first briefly examine the idea behind the proof of weak strategyproofness in Bogo-
molnaia and Moulin (2001). The authors show that if the DM reports a preference �′ (which
is potentially different from �) that yields a probability-share distribution q = PS(�′,�−)
such that q1 ≥ p1 for p = PS(�,�−), then this is possible only if q1 = p1. The authors
then iterate this argument to establish weak strategyproofness. The iterated argument can
be summarized in the following lemma.7

6Budish et al. (2013) generalize the mechanism by adding group-specific quotas and show that it remains
weakly strategyproof. The results here hold for their Generalized Probabilistic Serial mechanism as well.

7Budish et al. (2013) use a similar arguments so the following Lemma would hold in their setting as well.
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Lemma 1. Let p := PS(�,�−) and q := PS(�′,�−) and let some j = 1, . . . , n be given.
If pi = qi for all i < j and if qj ≥ pj, then qj = pj.

The implicit understanding in the statement of Lemma 2 is that if j = 1, the only
condition is q1 ≥ p1. I omit the proof of Lemma 2 as it can be straightforwardly derived
from arguments in Bogomolnaia and Moulin (2001) as outlined above.

Proposition 16. The PS mechanism is convexly strategyproof.

Proof. Consider an agent (our decision maker) with true preference �. Let some possible
preferences over the objects be �1, . . . ,�k (not necessarily different from each other or from
�). Finally, let p = PS(�,�−) and qi = PS(�i,�−) for i = 1, . . . , k. Assume toward
contradiction that the truthful report of DM’s preferences (i.e. reporting �) is not convexly
undominated, which would imply that the PS mechanism is not convexly strategyproof.

By the definition, this means that there exist some α1, . . . , αk ≥ 0 with
∑k

i=1 α
i = 1 such

that
k∑
i=1

αiqi �FOSD p (3.1)

In fact, without loss of generality, I can assume α1, . . . , αk > 0. Then note that (3.1)
implies

k∑
i=1

αiqi1 ≥ p1.

This is possible only if there exists i such that qi1 > p1 or if qi1 = p1 for all i. By Lemma 2,
the first case is impossible. Therefore we have qi1 = p1 for all i.

The argument can be extended inductively. Consider the induction step: assume that
pl = qil for all l ≤ j. Now (3.1) implies

k∑
i=1

αiqij+1 ≥ pj+1.

Analogously to the above, this implies either qij+1 > pj+1 for some i or qij+1 = pj+1 for all i.
Using the inductive hypothesis, Lemma 2 implies that the first case is impossible. Therefore,
qij+1 = pj+1 for all i.

We conclude that p = q1 = · · · = qk. But then (3.1) doesn’t hold. Contradiction!

I end by considering a related question regarding envy-freeness and the random serial
dictatorship mechanism. The random serial dictatorship mechanism (Abdulkadiroğlu and
Sönmez 1998) starts by drawing from a uniform distribution over all possible strict priority
orders over the participating agents. Then the first agent in the resulting priority order
is assigned her most preferred object, the second agent in the order is assigned her most
preferred object among the remaining objects etc. The mechanism clearly induces a profile
of probability-share allocations.
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As above, I denote the probability-share allocation of agent i under a random-assignment
mechanism f and a preference profile � by fi(�). Then f is said to be envy-free if it is true
that fi(�) %FOSD

i fj(�) for all i, j and �. I say that f is weakly envy-free if there is no
pair of agents i and j such that fj(�) �FOSDi fi(�). Analogously to the definition of convex
strategyproofness, convex envy-freeness can also be defined by saying that f is convexly envy-
free if for all agents i and �, there exists a utility vector u ∈ Rn that is compatible with �i
such that u·fi(�) ≥ u·fj(�) for all agents j. Proposition 15 implies that this is equivalent to
saying that there is no convex combination of elements in {fj(�)}j 6=i that strictly first-order
stochastically dominates fi(�). Bogomolnaia and Moulin (2001) show that while the random
serial dictatorship is strategyproof, it is only weakly envy-free. The method of their proof
can be summarized in a statement that is essentially identical to Lemma 2, except in that
it concerns the probability-share allocations of the other agents rather than the probability-
share allocations an agent can induce by misreporting. The method used in the proof of
Proposition 16 can then be applied to show that the random serial dictatorship is in fact
convexly envy-free.8 I summarize the results of this section in the following stronger version
of Bogomolnaia and Moulin (2001)’s Proposition 1:

Proposition 17.

(i) The PS mechanism is only convexly strategyproof but envy-free;

(ii) The random serial dictatorship is strategyproof but only convexly envy-free.

8Note that Example 7 can be used to show that convex envy-freeness is strictly stronger than weak envy-
freeness. Namely, let g(a), g(b1), and g(b2) instead refer to the probability-share distributions of three agents
dividing three objects among themselves (note that the probability shares for each object sum up to 1), and
let their preferences be identical: they all prefer objects with smaller indices over objects with larger indices.
Then that allocation would satisfy weak envy-freeness. However, it would not satisfy convex envy-freeness
since the agent corresponding to g(a) would envy a convex combination of the other two agents’ allocations
as shown in the example.
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Appendix A

Omitted Proofs

Proof of Proposition 3: I consider the following algorithm for the implementation of the TTC
mechanism: at each step, we identify and remove only one trading cycle.

Fix the set of patient-donor pairs A = {1, 2, . . . , n} and the maximum allowed cycle
length k, and consider the directed graph induced by each patient pointing at her highest-
ranked kidney. I would like to estimate the probability that there exist no directed cycles of
length less than or equal to k in that graph. The probability that patient 1 is pointing at
a kidney other than kidney 1 is n−1

n
. If this is the case, I assume without loss of generality

that patient 1 is pointing at kidney 2. Then the probability that patient 2 is pointing at a
kidney other than 1 and 2 is n−2

n
. Again without loss of generality, I assume that patient 2

is pointing at kidney 3 if she is not pointing at 1 or 2.
We can continue in a similar fashion: at each stage, the probability that patient m ≤ k

is not pointing at one of the kidneys 1, 2, . . . ,m (and thus being part of a cycle of length no
greater than k) is n−m

n
. The probability that patient k+ 1 points at kidney 1 (thus closing a

cycle of length k + 1) or at any of the kidneys k + 2, . . . , n is n−k
n

. Each subsequent patient
k+ l may point at any of the kidneys 1, 2, . . . , l, k+ l+ 1, . . . , n without being part of a cycle
of length no longer than k. The probability that this happens is also n−k

n
. Since these events

are independent, the joint probability of this happening is:

p(n) :=

{(
n−1
n

) (
n−2
n

)
· · ·
(
n−k+1
n

) (
n−k
n

)n−k+1
if n > k,

0 if n ≤ k.

Note that patient k + l may not be a part of a short cycle even if she is pointing at
kidney k + l − 1 in case, for example, patient k + l − 1 is part of a long cycle herself. So
p(n) underestimates the probability that there are no short cycles in the first stage of the
algorithm. Therefore the probability that there is at least one cycle of length k or less is no
greater than 1− p(n).

Assume that there exists a short cycle. I remove all the kidneys and patients in a randomly
chosen cycle of length no greater than k from the mechanism and from the remaining patients’
preferences. Let’s say there are n′ remaining patient-donor pairs. Consider the next step in
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the algorithm. It is easy to see that the induced distribution over the reduced preferences
satisfy the same properties as the original problem. Thus, recursively, the probability that
the reduced problem has at least one short cycle is less than 1−p(n′). Denoting the remainder
after dividing n by k by remainder(n, k), the overall probability that the TTC mechanism
selects only short cycles is less than

q(n) = (1− p(n))(1− p(n− k)) . . . (1− p(remainder(n, k))),

where I have conservatively assumed that at each stage of the algorithm, one can find a cycle
of length exactly k.

We use the well-known fact that

lim
n→∞

(
n− k
n

)n
= e−k.

Thus all sufficiently large n satisfy p(n) ≥ 1
2
e−k, which implies 1 − p(n) ≤ 1 − 1

2
e−k.

Therefore

lim
n→∞

q(n) = lim
n→∞

(1− 1

2
e−k)n = 0,

which is what I wanted to show.

Proof of Proposition 4: Assume that such a mechanism indeed exists and call it f and let
A = {1, 2, . . . , n}.1 I consider the cases k = 2 and k ≥ 3 separately. I start with the case
k = 2. Let the preference profile � be

�1 : 2 �1 n �1 3 �1 4 . . . �1 n− 1 �1 1,

�2 : 3 �2 1 �2 4 �2 5 . . . �2 n �2 2,

...

�n−1 : n �n−1 n− 2 �n−1 1 �n−1 2 . . . �n−1 n− 3 �n−1 n− 1,

�n : 1 �n n− 1 �n 2 �n 3 . . . �n n− 2 �n n.

Consider the following permutation: π : A → A defined by π(i) = i + 1(modn). For
simplicity, in what follows I omit the modulo notation. Note that the permuted preference
profile �π is the same as the original preference profile �. Thus Pf(�)(i, j) = Pf(�π)(i, j).
By anonymity, we also have Pf(�)(i, j) = Pf(�π)(π(i), π(j)) and hence

Pf(�)(i, j) = Pf(�)(i+ 1, j + 1). (A.1)

Note that since f is 2-constrained efficient and there are no unacceptabilities, the match-
ing f(�) can have at most one patient who is unmatched. In fact, if n is odd, there is

1For maximum generality, the following proof assumes that there are no unacceptabilities in the patients’
preferences.
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exactly one patient who is unmatched. Let that be i and so Pf(�)(i, i) = 1. But then, by
(A.1), Pf(�)(i + 1, i + 1) = 1 as well, which implies that there are at least two people who
are unmatched, which is a contradiction.

If n is even instead, all agents must be matched. If patient 1 does not receive either of
her two highest-ranked kidneys 2 and n, by (A.1) none of the agents receives one of her two
highest-ranked kidneys. But such a matching is dominated by the feasible matching where
pairs 1 and 2, 3 and 4 etc. are matched together, since there each patient receives either her
highest- or second highest-ranked kidney. This implies that patient 1 must receive either
kidney 2 or kidney n. In the first case, (A.1) implies Pf(�)(2, 3) = 1, which is impossible
since cycles are of length no greater than 2. Similarly, if patient 1 receives kidney n, we must
have Pf(�)(1, 2) = 1, which is similarly impossible. This completes the case k = 2.

In the general case k ≥ 3, I consider the cases n−k being odd and even. If n−k is even,
let the preference profile � be

�1 : 2 �1 n �1 n− k + 2 �1 3 �1 4 . . . �1 n− 1 �1 1,

�2 : 3 �2 1 �2 n− k + 3 �2 4 �2 5 . . . �2 n �2 2,

�3 : 4 �3 2 �3 n− k + 4 �3 5 �3 6 . . . �3 1 �3 3,

...

�k : k + 1 �k k − 1 �k 1 �k k + 2 �k k + 3 . . . �k k − 2 �k k,
...

�n : 1 �n n− 1 �n n− k + 1 �n 2 �n 3 . . . �n n− 2 �n n.

In other words, patient i’s preference order is i+1, i−1, 1+i−k, i+2, i+3, i+4, . . . , i−2, i)
from most to least preferred, where all the operations are defined modulo n. Consider
the same permutation as above: π : A → A defined by π(i) = i + 1(modn). By an
analogous argument to above, (A.1) holds. As above, it is again impossible to have any
agent left unmatched. Therefore f(�) must match all the agents. Now assume that some
cycle in the decomposition of f(�) contains a segment (· · · − i− (i+ 1)− · · · ). This implies
Pf(�)(i, i + 1) = 1 and hence Pf(�)(i + 1, i + 2) = 1. So the cycle must contain the segment
(· · · − i − (i + 1) − (i + 2) − · · · ). Inductive reasoning suggests that the cycle must be
(1− 2− · · ·−n− 1), which is impossible since cycles are constrained to be of length at most
k. Thus no cycle contains the segment (· · · − i− (i+ 1)− · · · ). Analogously, one can show
that no cycle contains the segment (· · · − (i+ 1)− i− · · · ). Examining the preferences, one
can then see that in f(�) no agent can do better than her third best option. But this is
Pareto-dominated by the feasible matching

{(1−2−· · ·−k−1), ((k+1)−(k+2)−(k+1)), ((k+3)−(k+4)−(k+3)), . . . , ((n−1)−n−(n−1))},

in which patients 1, 2, . . . , k − 1, k + 1, k + 3, . . . , n − 1 receive their highest-ranked kidney,
k receives her third choice and everyone else—their second choice. But this contradicts the
fact that f is k-constrained efficient!
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Finally, if n− k is odd, let the preference profile � be

�1 : 2 �1 n �1 n− k + 3 �1 3 �1 4 . . . �1 n− 1 �1 1,

�2 : 3 �2 1 �2 n− k + 4 �2 4 �2 5 . . . �2 n �2 2,

�3 : 4 �3 2 �3 n− k + 5 �3 5 �3 6 . . . �3 1 �3 3,

...

�k−1 : k �k−1 k − 2 �k−1 1 �k−1 k + 1 �k−1 k + 2 . . . �k−1 k − 3 �k−1 k − 1,

�k : k + 1 �k k − 1 �k 2 �k k + 2 �k k + 3 . . . �k k − 2 �k k,
...

�n : 1 �n n− 1 �n n− k + 2 �n 2 �n 3 . . . �n n− 2 �n n.

The preferences are the same as above, except patient i’s third highest-ranked kidney
is 2 + i − k(modn) rather than 1 + i − k as above. The exact same arguments as above
guarantee that all agents are matched and that in f(�) no agent can be doing better than
her third best option. But any such matching is Pareto dominated by the feasible matching

{(1−2−· · ·−(k−1)−1), (k−(k+1)−k), ((k+2)−(k+3)−(k+2)), . . . , ((n−1)−n−(n−1))},

where, just like above, each agent receives her first, second or third best-choice. Contradic-
tion!

Proof of Proposition 5: Assume that such a mechanism indeed exists, call it f and let A =
{1, 2, . . . , k + 1}. What follows holds for all n > k since one can add additional patients
who find no kidney or only each other’s donors’ kidneys acceptable. Consider the following
preference profile �:

�1 : 2 �1 3 �1 . . . n �1 1,

�2 : 3 �2 4 �2 . . . 1 �2 2,

...

�n : 1 �n 2 �n . . . n− 1 �n n.

For each patient i, construct the preference �′i by making only her top choice in �i
acceptable. Using notation modulo n, this means:

�′i: i+ 1 �′i i �′i i+ 2 . . .

We first need to consider the case k = 2 and n = 3. There are three 2-efficient and
individually rational matchings for the profile �. Due to the symmetry of the problem,
I can assume without loss of generality that f(�) = {(1 − 2), (3)}, where a cycle of the
form (α − β − . . . − ω) means that patient α receives kidney β, and so on until patient ω
receives kidney α. Note that by strategyproofness, f(�′1,�2,�3) must also be {(1−2), (3)}.
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Otherwise, patient 1 would be able to unilaterally deviate from that profile to �, which gives
her her top choice. Finally, consider f(�′1,�′2,�3). The only possible individually rational
matching here is {(1), (2 − 3)}. But that implies that patient 2 has a profitable deviation
from (�′1,�2,�3) to (�′1,�′2,�3). Contradiction!

For the case of general k, consider the profile �0:= (�′1, . . . ,�′n−1,�n). I argue that the
only individually rational and k-efficient matching is the single cycle (2−3−. . .−n). First, it
is clear that 1 remains unassigned by f . If she were assigned, she must receive kidney 2, who
because of f(�0) being individually rational must receive kidney 3, and so on, until n − 1
receives kidney n and, to close the cycle, n must receive kidney 1. This cycle is of length
n = k + 1, however, which is impossible. Thus the best the other patients can do is for 2
through n−1 to receive their top-choice kidneys, and n to receive her second highest-ranked
kidney. Indeed, this is implementable in a cycle of length k: (2− 3− . . .− n). Hence, since
f is k-efficient, we must have

f(�0) = {(1), (2− 3− . . .− n)}.

Now consider the profile obtainable from �0 by changing the preferences of patient 2 from
�′2 to �2. Call that profile �∗. I will argue that f(�∗) = f(�0). Note that due to f being
strategyproof, agent 2 must receive her top choice (kidney 3) under f(�∗). Otherwise she can
unilaterally deviate back to �0 and receive her top choice. Then, completely analogously
to the above, one can show that 1 ends up unassigned under f(�∗) and thus the unique
k-efficient allocation is {(1), (2− 3− . . .− n)}.

Now define �1:= (�′1,�2,�′3, . . . ,�′n). Analogously to the case �0, due to the symmetry
of the problem, one can show that

f(�1) = {(3), (1− 2− 4− . . .− n)}.

Similarly to the above, one can show that by changing the preferences of patient n from
�′n to �n in �1, the matching that f selects for the resulting preference profile must remain
unchanged. But that profile is �∗ and f(�0) 6= f(�1). Contradiction!

Proof of Proposition 6: Fix a profile of preferences and claiming-speed functions (�, e). As-
sume that the probability-share matrix M corresponding to 2CSE(�) is weakly Pareto
dominated with respect to first-order stochastic dominance by a 2-implementable matrix
M ′. Note that this implies that M ′ is individually rational with respect to �. I will show
that M = M ′.

Note that a pair (i, j) can become unavailable during the mechanism in one of two ways:
one (or both) of patients i and j exits the mechanism, or an Edmonds constraint containing
{i, j} starts binding. Let T 1 be the set of all times, at which a patient i ∈ A exits the
mechanism’s procedure under (�, e) and M(i) 6= M ′(i). Let T 2 be the set of all times, at
which an Edmonds constraint corresponding to a set E starts binding during the procedure
and there exists {i, j} ⊂ E such that M(i, j) 6= M ′(i, j). Since there are finitely many such
events, let t∗ = minT 1∪T 2. Assume toward contradiction that the set T 1∪T 2 is not empty
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and so t∗ > 0 is well-defined. Consider the event that occurred at t∗ (if there is more than
one event occurring at that time, pick any one of them).

First, I consider the case in which the event is some patient i exiting. Since M(i) 6= M ′(i)
and since, therefore, M ′(i) is strictly better than M(i) in FOSD sense for i, there must exist
kidneys j and l such that

M(i, j) > M ′(i, j) ≥ 0 and 0 ≤M(i, l) < M ′(i, l) and l �i j.

If i = j, this implies that i had claimed probability shares of kidney i when she exited
even though she prefers kidney l. Note that l does not find i unacceptable since M ′(i, l) > 0
and M ′ represents an individually rational matching with respect to the preference profile.
So the pair (i, l) must have become unavailable at a time earlier than t∗. This is possible
if an Edmonds constraint corresponding to an Edmonds set containing {i, l} activated or l
exited. Either way, though, this is impossible since the time of those events must be included
in T 1 ∪ T 2.

So i 6= j must hold. Then, analogously to the above, there exists some patient h such
that h �j i and M(h, j) < M ′(h, j). Since M(i, j) > 0, either i claimed some of kidney j’s
probability shares when she prefers l, or j claimed kidney i’s probability shares when she
prefers h. But then, analogously to above, one of the pairs (i, l) and (h, l) must have become
unavailable earlier than. Using the same reasoning as above, this is impossible.

Therefore the first case is impossible. So I consider the case in which the event occurring
at t∗ is the activation of an Edmonds constraint. Let the corresponding Edmonds set be E
with i, j ∈ E, i 6= j and M(i, j) 6= M ′(i, j). Note that M ′ is 2-implementable. So we have∑

a

∑
b∈E\{a}

M ′(a, b) ≤ 2p =
∑
a

∑
b∈E\{a}

M(a, b),

where |E| = 2p + 1. I can assume that M(i, j) > M ′(i, j) since if M(i, j) < M ′(i, j)
instead, the inequality above implies that there exists some other pair i′, j′ ∈ E such that
M(i′, j′) > M ′(i′, j′). As in the first case, this implies that there exist h, l ∈ A such that

M(i, l) < M ′(i, l),M(j, h) < M ′(j, h), l �i j and h �j i.

The rest of the analysis proceeds as above, leading to a contradiction. So the set T1 ∪ T2

is empty and therefore M = M ′.

Proof of Proposition 10: Start by fixing the number of agents to n and their preference
profile to �. Let the set of permutation matrices that represent the permissible ex-post
deterministic matchings in C(�) be C ′ := {M1, . . . ,Mp}. Their convex hull co(C ′) is the set
of bistochastic matrices that are decomposable as a convex combination of matrices in C ′.
Define the set D to be the lower contour set of co(C ′).

It is clear that co(C ′) ⊂ D. Next I will show that D is the convex hull of finitely many
points and, hence, is a bounded convex polytope in Rn×n. First, I claim that

D = co

(
p⋃
i=1

Ei

)
, (A.2)
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where Ei is the set of all matrices each of whose entries equals either zero or the corresponding
entry in Mi ∈ C ′. In other words

Ei = {M ∈ Rn×n
+ |∀a, b ∈ A : M(a, b) = 0 or M(a, b) = Mi(a, b)}.

Note that if M ∈ Ei, then M ≤ Mi. It is easy to show that co(Ei) = {M ∈ Rn×n
+ |Mi ≥

M}. To start showing (A.2), take a matrix M that is in the convex hull on the right-hand
side of (A.2). This means that I can represent M in the following way:

M =

q∑
i=1

πiM
i,

where
∑q

i=1 πi = 1 and πi ≥ 0 for all i. Also for each M i, there exists j ∈ {1, . . . , p} such

that M i ∈ Ej and so there exists a corresponding matrix M
i ∈ C ′ such that M

i ≥M i. Then

M ≤
q∑
i=1

piM
i ∈ co(C ′).

Therefore M ∈ D. To show the other set inclusion for (A.2) assume that M ∈ D. Then
there exists some M ′ ∈ co(C ′) with M ′ =

∑p
i=1 πiMi such that M ′ ≥ M . Define for each

α, β ∈ {1, . . . , n}:

γ(α, β) =

{
0 if M(α, β) = 0,
M(α, β)/M ′(α, β) otherwise.

Define Mi entry-by-entry via Mi(α, β) = γ(α, β)Mi. Clearly, Mi ≤Mi and so

Mi ∈ co(Ei) ⊂ co

(
p⋃
i=1

Ei

)
.

Also, it is easy to verify that M =
∑p

i=1 πiMi. Thus M ∈ co (
⋃p
i=1 Ei), which is the second

set inclusion I wanted to show. Therefore, by (A.2), D is the convex hull of finitely many
points and, hence, a bounded convex polytope in Rn×n. So D can be represented as the
intersection of finitely many closed halfspaces in Rn×n.

Some matrix entries might be zero for all of the elements of D. Let there be q such entries.
For the remainder of the proof, I will consider the elements of D as vectors with all entries
which are zero for all elements from D removed. In other words, I will view D as a subset of
Rn2−q rather than Rn×n. I will show that the convex polytope D is fully dimensional when
viewed in this space. To do that, it is enough to show that D has a non-empty interior.2

Consider the following element of D:

N =

p∑
i=1

1

p
Mi.

2See Section 2.3 in Ziegler (2007) for the relevant definitions and result.
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Note that all of N ’s coordinates are positive because for all n2 − q coordinates, there exists
some Mi for which that coordinate is equal to 1. Also it’s clear that N ∈ co(C ′) ⊂ D.
Consider then the element 1

2
N . It’s clear that 1

2
N < N and so N ∈ D. Also there exists

some ε such that for every x in the open ball with radius ε around 1
2
N (i.e., Bε(

1
2
N)), x ≥ 0

holds but also x ≤ N and hence x ∈ D. Thus 1
2
N lies in the interior of D and D is fully

dimensional in Rn2−q.
Since the convex polytope D is fully dimensional, it can be uniquely minimally defined

(up to rescaling by a positive scalar) as all elements x in Rn2−q that satisfy Ax ≤ b for some
matrix A and a vector b. I will write each of the individual constraints as Ai · x ≤ bi, where
Ai is a row in A. Note that since D contains 0, bi ≥ 0 holds for all i. Furthermore, if some
Ai satisfies Ai ≤ 0, then the corresponding bi must equal zero (otherwise, that would violate
the minimality of the constraint set). Note that the corresponding constraint indicates that
a coordinate or a sum of coordinates from each element of D must be non-negative. I will
show that all the remaining constraints have positive coefficients. Indeed, take some Ai such
that Ai ·x ≤ bi is valid for all elements of D, and some coordinates of Ai are strictly positive
and some strictly negative. By full dimensionality of D, there exists some y ∈ D such that
Ai · y = bi but Aj · y < bj for all j 6= i.3 Then it is easy to see that one can find some x 6= z
distinct from y such that z ≥ x ≥ y with Ai · z = bi but Aj · z < bj for all j 6= i, while
Ai · x > bi. In other words, z ∈ D while x /∈ D. But by the way I defined D, there exists
some w ∈ co(C ′) such that w ≥ z and, since z ≥ x, w ≥ x must hold and hence x ∈ D.
Contradiction! Therefore all constraints, other than the ones guaranteeing non-negativity,
are of the form ∑

(i,j)∈A×A

a(i, j)M(i, j) ≤ b

for some b > 0 and a(i, j) ≥ 0 for all (i, j).

Proof of Propositions 11 and 12: Note that the notation from the proof of Proposition 10
carries through here. I start by revisiting the definition of the GCSE mechanism.

Each patient i has an associated claiming-speed function ei : [0, 1]→ R+ with
∫ 1

0
ei(t)dt =

1. Time runs continuously starting at t = 0. For each point in time there is an associated
sub-bistochastic matrix M t where M0 is the initial zero matrix. I say that kidney j is
available to patient i at time t ≥ 0 if none of the constraints defining the convex polytope D
for which a(i, j) > 0, bind at that time. Note that M0 is in D and satisfies all the constraints
defining D and, in particular, all kidneys that could be available for patient i are initially
available to her. At time t, each patient i claims with speed ei(t) the available remaining
probability shares of her favorite reported kidney j among the kidneys that are available to
i at that instance. That increases the probability that i receives j’s kidney—i.e., it increases

3See, for example, Corollary 8.2a in Schrijver (1986) regarding fully dimensional polytopes. It states
that given a constraint Ai · x ≤ bi, for each other constraint Aj · x ≤ bj , there exists some xj ∈ D such that
Ai · xj = bi but Aj · xj < bj . Then an equal-weight convex combination of all xj ’s would satisfy the desired
conditions.
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M t(i, j). Also note that i = j can hold in this case. Note that the constraints defining
D cannot be violated so M t ∈ D for all t and therefore there exists some implementable
individually rational bistochastic matrix M ′ ∈ co(C ′) such that M ′ ≥ M t for all t. This
means that for all agents who have not met their unit demand yet (i.e., for all agents for
whom M t(i) 6= M ′(i) yet), there exists a kidney j such that M t(i, j) < M ′(i, j). Note that if
patient i consumes some of kidney j, the new interim matrix would still be less than M ′(i, j)
and thus no constraint defining D would be violated. So all constraints involving the pair
(i, j) are slack at time t. Thus kidney j is available to patient i at time t. Therefore for each
patient there exist at least one kidney which is available to her at any point of time during the
algorithm. In other words, at no point of time, does the algorithm become “stuck” without
available kidneys’ probability shares for one or more of the patients. Thus the algorithm
ends at time t = 1 and the final matrix M1 must satisfy all agents’ unit demands. Therefore
the sum of all the entries in the matrix is n and therefore M t must be a bistochastic matrix.
Finally, since each M t is in D, the bistochastic matrix M1 must be in co(C ′).

Therefore M1 can be decomposed into allowable permutation matrices. I implicitly define
the mechanism f by setting f(�) such that Pf(�) = M1 for each possible preference profile
�. By giving all agents the same claiming-speed function, f can be made anonymous since
the constraint correspondence is anonymous itself. It remains to be shown that the f as
defined is C-constrained ordinally efficient.

Assume that the bistochastic matrix M1 is weakly Pareto dominated with respect to
first-order stochastic dominance by some M ′ ∈ co(C ′). I will show that M1 = M ′.

Let T be the set of times at which a constraint defining the polytope D starts binding and
there exists some (i, j) such that a(i, j) belonging to that constraint is strictly positive and
M1(i, j) 6= M ′(i, j). Note that the non-negativity of all the constraint coefficients guarantees
that once a constraint starts binding, it will bind for the rest of the mechanism. This follows
from the fact that all coefficients of the matrix M t are non-decreasing in t by construction
of the mechanism’s algorithm. Since there are finitely many such events, set t∗ = minT .

So at time t∗ in the mechanism’s algorithm, a constraint defining the polytope D starts
binding. Note that by a logic analogous to the one above, the all-positive coefficients and
M t being non-decreasing in t guarantee that the constraint must also bind for t = 1. In
other words: ∑

(i′,j′)∈A×A

a(i′, j′)M1(i′, j′) = b.

Since M ′ ∈ co(C ′), we also have∑
(i′,j′)∈A×A

a(i′, j′)M ′(i′, j′) ≤ b.

So ∑
(i′,j′)∈A×A

a(i′, j′)M1(i′, j′) ≥
∑

(i′,j′)∈A×A

a(i′, j′)M ′(i′, j′),
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while a(i, j) > 0 and M1(i, j) 6= M ′(i, j) hold. I can assume that M1(i, j) > M ′(i, j) since
if M1(i, j) < M ′(i, j), the inequality above implies that there exists some other pair (i′′, j′′)
with a(i′′, j′′) > 0 and M1(i′′, j′′) > M ′(i′′, j′′).

Since patient i must strictly prefer M ′(i) over M1(i), there must exist kidney l such that

M1(i, j) > M ′(i, j) ≥ 0 and 0 ≤M1(i, l) < M ′(i, l) and l �i j.

But then since M1(i, j) > 0, agent i must have consumed probability shares from kidney
j during the mechanism even though she prefers kidney l. So when i was consuming j’s
probability shares, kidney l must have already become unavailable to i. But j becomes
unavailable to i at time t∗. So l must have become unavailable to patient i strictly earlier
than t∗. But M1(i, l) 6= M ′(i, l), which contradicts the choice of t∗.

Proof of Proposition 8: It is enough to show the statement of the proposition for n = 4. If
n > 4, I can simply consider the example that follows with all additional agents finding the
original 4 agents unacceptable and vice versa. I start with the following simple Lemma.

Lemma 2. Let f be some 2-constrained ex-post efficient, individually rational, and weakly
strategyproof random mechanism. Then for all n, if

∀l ∈ A :j �i l
∀l ∈ A :i �j l,

we must have
Pf(�)(i, j) = Pf(�)(j, i) = 1.

Proof. Let � be such that

∀l ∈ A :2 �1 l

∀l ∈ A :1 �2 l,

Define �′1 and �′2 to be such that patient 1 finds only kidney 2 acceptable and vice versa.
Formally:

�′1: 2 �′1 1 . . .

�′2: 1 �′2 2 . . .

Note that individual rationality and ex-post efficiency require that

Pf(�′1,�′2,�−{1,2})(1, 2) = 1.

By weak strategyproofness, agent 2 cannot improve her probability-share allocation in
FOSD sense when deviating to a false report. Thus she must receive kidney 1 with probability
one under (�′1,�−1). Otherwise, she could unilaterally deviate to �′2 and receive her first-
best outcome. An analogous argument guarantees that pairs 1 and 2 are matched in a
two-way exchange with probability 1 under � as well, which is what I wanted to show.
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Toward contradiction, assume that such a mechanism exists. Call it f and consider the
preference profile � for A = {1, 2, 3, 4} defined by

�1 : 2 �1 4 �1 3 �1 1,

�2 : 3 �2 1 �2 4 �2 2,

�3 : 4 �3 2 �3 1 �3 3,

�4 : 1 �4 3 �4 2 �4 4.

Note that the set of 2-constrained Pareto optimal matchings are the two matchings
{(1, 2), (3, 4)} and {(1, 4), (2, 3)}, where a cycle of the form (α − β − . . . − ω) means that
patient α receives kidney β, and so on until patient ω receives kidney α. Thus, since the
f is 2-constrained ex-post efficient, f(�) can place positive probability only on these two
matchings. In particular, this implies that Pf(�)(i, i) = 0 for i ∈ {1, 2, 3, 4}.

Now consider the preference profile �∗, which is the same as � except for 1’s preferences:

�∗1: 2 �∗1 1 �∗1 4 �∗1 3.

With this profile, there are only two 2-constrained efficient and individually rational
matchings: {(1, 2), (3, 4)} and {(1), (2, 3), (4)}. (Note that {(1), (2, 4), (3)} is dominated by
the first of these two matchings.) Thus, when applied to �∗, the mechanism must select
some lottery over these two matchings. Consider a deviation by patient 4 to

�′4: 3 �4 1 �4 2 �4 4

from the profile �∗. Note that by Lemma 2, this deviation guarantees her

Pf(�∗1,�2,�3,�′4)(4, 3) = 1.

But then, by weak strategyproofness, patient 4 must receive kidney 3 with probability
1 under �∗ as well (otherwise, she has a strictly first-order stochastically dominant devi-
ation to �′4). In other words, the mechanism must assign probability 1 to the matching
{(1, 2), (3, 4)} under �∗. But then 1 gets her top choice for sure and, in particular, by weak
strategyproofness, f(�) must place probability 1 on the matching {(1, 2), (3, 4)}.

By a completely analogous argument considering a potential deviation by patient 2,
however, f(�) must place probability 1 on the matching {(1, 4), (2, 3)}. Contradiction!

Proof of Proposition 9: The proof is virtually identical to the proof of Proposition 5. I omit
the details.
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Appendix B

Further discussion of the properties of
the 2CSE/2CPS mechanisms

B.1 Justice

So far I have considered anonymity as a minimal fairness desideratum for any kidney-
exchange mechanism. As far as fairness requirements go, anonymity is relatively weak. In
this section I consider the compatibility of other justice criteria with the 2CSE (and 2CPS)
mechanism, as well as with the other desiderata of the mechanism.

An important fairness criterion that is often considered in the literature (Moulin 1995)
is non-envy. I say that a random mechanism f satisfies no envy if for every i ∈ A, the
probability-share allocation Pf(�)(i) first-order stochastically dominates Pf(�)(j) for all j ∈
A with respect to �i. A random mechanism f satisfies weak no envy if for every i ∈
A, there does not exist j ∈ A such that the probability-share allocation Pf(�)(j) first-
order stochastically dominates Pf(�)(i) with respect to �i. A random mechanism f satisfies
no justified envy if for all pairs of patients i, j ∈ A such that Pf(�)(j) does not first-
order stochastically dominate Pf(�)(i) with respect to �j there exist some l ∈ A such that
Pf(�)(j, l) > 0 and i �i l. It is clear that non-envy implies both weak non-envy and no
justified envy.

As first noted by Yılmaz (2010), it is easy to see that non-envy is incompatible with
individual rationality. A simple example would be an agent set A = {1, 2} where both
patients rank kidney 1 the highest. Then, by individual rationality, both patients must be
left unmatched with probability 1. But then patient 1’s probability-share allocation strictly
first-order stochastically dominates patient 2’s with respect to 2’s preferences. To get around
this issue, Yılmaz (2010) proposes no justified envy as a refinement of non-envy that is suited
for settings where individual rationality is of prime importance. Intuitively, no justified envy
requires that if patient i has a cause to envy patient j’s probability-share allocation, then
i must with positive probability receive kidneys that j finds unacceptable. In other words,
if i’s probability-share allocation does not FOSD dominate another patient j’s probability-
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share allocation with respect to i’s preferences, then there is some kidney l such that j finds
l unacceptable but i receives l with positive probability.

So does 2CPS satisfy no justified envy? It turns out that the answer is generally no. But,
moreover, I show that no justified envy is incompatible with 2-constrained ordinal efficiency.

Example 8. Let A = {1, 2, 3, 4, 5} and let the preference profile � be defined by

�1 : 2 �1 3 �1 4 �1 5 �1 1,

�2 : 5 �2 4 �2 1 �2 3 �2 2,

�3 : 4 �3 2 �3 5 �3 1 �3 3,

�4 : 1 �4 5 �4 3 �4 2 �4 4,

�5 : 3 �5 1 �5 2 �5 4 �5 5.

One can calculate that the outcome of the 2CPS mechanism is
1/5 2/5 0 2/5 0
2/5 1/5 0 0 2/5
0 0 1/5 2/5 2/5

2/5 0 2/5 1/5 0
0 2/5 2/5 0 1/5

 ,

but this does not satisfy the no-justified-envy condition. More specifically, patient 1 envies
patient 5’s allocation.

We next show that 2-constrained ordinal efficiency and no justified envy are incompatible.

Proposition 18. There is no 2-constrained ordinally efficient mechanism, whose outcomes
always satisfy no justified envy.

Proof. Consider the preferences from Example 8. Assume that f is a mechanism that is
2-constrained ordinally efficient, which satisfies no justified envy. Since there are no unac-
ceptabilities in �, this implies that Pf(�)(i) first-order stochastically dominates Pf(�)(j) with
respect to �i for all i and j. Then, denoting M := Pf(�), the following hold:

M(1, 2) ≥M(5, 2) = M(2, 5)

≥M(3, 5) = M(5, 3)

≥M(4, 3) = M(3, 4)

≥M(1, 4) = M(4, 1)

≥M(2, 1) = M(1, 2),

where the inequalities follow from the stochastic dominance between the rows, and the
equalities follow from the symmetry of M due to its representing 2-constrained ordinally
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efficient matching. Therefore all these matrix entries are equal. Denote their value by a.
Repeating the same logic, the following hold:

a+M(1, 3) ≥M(4, 2) + a = a+M(2, 4)

≥M(1, 5) + a = a+M(5, 1)

≥M(2, 3) + a = a+M(3, 2)

≥M(5, 4) + a = a+M(4, 5)

≥M(3, 1) + a = a+M(1, 3).

Thus let

b : = M(1, 3) = M(3, 1) = M(2, 4) = M(4, 2) = M(1, 5)

= M(5, 1) = M(2, 3) = M(3, 2) = M(4, 5) = M(5, 4).

So the matrix M equals
M(1, 1) a b a b

a M(2, 2) b b a
b b M(3, 3) a a
a b a M(4, 4) b
b a a b M(5, 5)

 .

Consider M(1). By no justified envy

M(1, 2) +M(1, 3) ≥M(5, 2) +M(5, 3)⇒ a+ b ≥ a+ a⇒ b ≥ a (B.1)

holds.
Note that since M must satisfy the Edmonds constraints, a+b ≤ 2/5 (from the Edmonds

constraint corresponding to the set E = A), 2a + b ≤ 1 and a + 2b ≤ 1 (from the Edmonds
constraint corresponding to the sets E with |E| = 3), where the first inequality clearly
implies the other two. In fact, 2-constrained ordinal efficiency implies a + b = 2/5 since
remaining unmatched is every patient’s lowest-ranked outcome. Thus by (B.1), b ≥ 1/5
but it is easily checked then that in such a case the matrix M is dominated in first-order
stochastic dominance sense by the matrix

1/5 2/5 0 2/5 0
2/5 1/5 0 0 2/5
0 0 1/5 2/5 2/5

2/5 0 2/5 1/5 0
0 2/5 2/5 0 1/5

 ,

which is clearly 2-implementable as it is, from Example 8, the outcome of the 2CPS
mechanism for these preferences. Contradiction!
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B.2 A note on welfare

Bogomolnaia and Moulin (2001) proposed their simultaneous eating mechanism as a way to
characterize all ordinally efficient object-assignment allocations given a preference profile.
They show that by varying the profile of claiming-speed functions of the agents, the mecha-
nism can output any given ordinally efficient outcome. Yılmaz (2010) shows a similar result
for his individually rational version of the PS mechanism. So a natural next question is to
ask whether the 2CSE mechanism satisfies the same properties. In other words, for a given
a preference profile � and a random matching µ that is ordinally efficient with respect to �,
does there exist some profile of claiming-speed functions e such that

Pµ = 2CSE(�, e)?

We can answer that in the negative as the following example shows.

Example 9. Let n = 3 with preferences � defined by

3 �1 2 �11,

3 �2 1 �22 and

1 �3 2 �33.

Consider a random matching µ with

Pµ =

0 1 0
1 0 0
0 0 1

 .

It is not hard to see that this random matching is 2-constrained ordinally efficient: the
only way that Pµ(1) can be improved in first-order stochastic dominance fashion is if one
increases the probability that patient-donor pairs 1 and 3 are matched together but that
must increase the probability that 2 is left unmatched, which cannot be part of a first-order
stochastic dominance improvement since being unmatched is patient 2’s worst outcome. The
same logic holds for Pµ(2) and Pµ(3) too. Thus µ is 2-ordinally efficient.

Note though that in any 2-cycle simultaneous eating mechanism, at least one of

P2CSE(�,e)(1, 3) and P2CSE(�,e)(2, 3)

must be positive since kidney 3 is patient 1 and 2’s top choice, kidney 1 is patient 3’s top
choice, and initially all kidneys are available to all patients.

In addition to providing an answer to my question, example 9 also suggests the reason for
why 2CSE fails to hit all ordinally efficient outcomes. More specifically, the example shows
that there exist deterministic 2-efficient matchings in which none of the agents receives her
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top choice.1 Since deterministic 2-efficient matchings are also ordinally efficient and, by
construction of the 2CSE mechanism, at least one patient receives her highest-ranked kidney
with positive probability (barring unacceptabilities), this means that it’s impossible for all
ordinally efficient random matchings to be outcomes of the 2CSE mechanism for some e.
This raises two questions in turn. First, does there exist an ordinally efficient mechanism
that is parameterized by some vector such that the mechanism selects all possible ordinally
efficient allocations by varying the parameter? Second, can the bistochastic matrices that
2CSE selects be characterized?2

1This is in contrast to the fact that, in the object-allocation setting, any Pareto optimal allocation can
be achieved via a serial dictatorship (Abdulkadiroğlu and Sönmez 1998), which means that at least one agent
receives her favorite object.

2See Heo and Yılmaz (2013); Heo (2014a) for some results characterizing the possible matrix outcomes
of an extension of the PS mechanism.




