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Abstract 

Background:  Methods for inferring the three-dimensional (3D) configuration of 
chromatin from conformation capture assays that provide strictly pairwise interac-
tions, notably Hi-C, utilize the attendant contact matrix as input. More recent assays, 
in particular split-pool recognition of interactions by tag extension (SPRITE), capture 
multi-way interactions instead of solely pairwise contacts. These assays yield contacts 
that straddle appreciably greater genomic distances than Hi-C, in addition to instances 
of exceptionally high-order chromatin interaction. Such attributes are anticipated to 
be consequential with respect to 3D genome reconstruction, a task yet to be under-
taken with multi-way contact data. However, performing such 3D reconstruction using 
distance-based reconstruction techniques requires framing multi-way contacts as 
(pairwise) distances. Comparing approaches for so doing, and assessing the resultant 
impact of long-range and multi-way contacts, are the objectives of this study.

Results:  We obtained 3D reconstructions via multi-dimensional scaling under a variety 
of weighting schemes for mapping SPRITE multi-way contacts to pairwise distances. 
Resultant configurations were compared following Procrustes alignment and rela-
tionships were assessed between associated Procrustes root mean square errors and 
key features such as the extent of multi-way and/or long-range contacts. We found 
that these features had surprisingly limited influence on 3D reconstruction, a finding 
we attribute to their influence being diminished by the preponderance of pairwise 
contacts.

Conclusion:  Distance-based 3D genome reconstruction using SPRITE multi-way 
contact data is not appreciably affected by the weighting scheme used to convert 
multi-way interactions to pairwise distances.

Keywords:  Multi-dimensional scaling, SPRITE, Conformation capture, Pairwise 
distance, Procrustes alignment

Background
The task of reconstructing the three-dimensional (3D) configuration of chromatin 
within the eukaryotic nucleus from pairwise contact data, notably Hi-C [1–3], is moti-
vated by (at least) three considerations. First, such architecture is critical to an array 
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of cellular processes, particularly transcription, but also, for example, memory forma-
tion [4]. Second, armed with such an inferred configuration, it is possible to superpose 
genomic attributes, enabling biological insights not accessible from a primary Hi-C con-
tact matrix readout. Examples here include the identification of gene expression gra-
dients and co-localization of virulence genes in the malaria parasite [5], the impact of 
spatial organization on double strand break repair [6], and the elucidation of ‘3D hot-
spots’ corresponding to (say) overlaid ChIP-Seq transcription factor extremes that can 
reveal novel regulatory interactions [7]. Third, despite notable gains in imaging method-
ologies [8], direct access to structure is yet to enjoy the resolution and uptake provided 
by Hi-C assays.

This set of factors has led to a wealth of 3D reconstruction algorithms: a recent review 
[9] identified over 30 methods and there have been numerous additions in subsequent 
years. However, the very notion of ‘a’ 3D reconstruction is simplistic as genomes are 
dynamic and variable with structural differences by organism, tissue, cell-type, cell-
cycle, and cell. Hi-C experiments are frequently performed on large, synchronized, cell-
type specific populations so that a resulting reconstruction is interpreted as providing a 
consensus configuration. The emergence of single cell Hi-C (scHi-C; [10, 11]) has ena-
bled dissection of inter-cellular structural variation, at the expense of yielding appreci-
ably sparser data.

Another component of structural variation is allelic: in diploid organisms maternal 
and paternal homologs can adopt differing configurations. This poses difficulties for 
reconstruction algorithms since Hi-C data is generally unphased so that it is ambiguous 
whether contacts are intra- or inter- homolog. Until recently, these concerns have been 
ignored, but novel approaches attempt to resolve identifiability issues by either prescrib-
ing (strong) assumptions and/or invoking additional data sources (detailed next) [12, 
13]. We do not address these aspects here, but note that the concerns can be sidestepped 
if Hi-C data is phased, HiCHap [14] being an accurate tool for this purpose.

The additional data deployed by Belyaeva et  al. [13] to resolve allelic ambiguity and 
obtain diploid 3D reconstructions derives from multi-way (as opposed to pairwise) con-
tact assays, such as split-pool recognition of interactions by tag extension (SPRITE, [15]) 
or genomic architecture mapping (GAM, [16]). In this paper we explore the use of such 
data as the direct basis for effecting 3D reconstruction, a task yet to be undertaken as 
far as we are aware. The rationale for so doing derives from key features of SPRITE data 
as they contrast with standard Hi-C and relate to nuclear chromatin organization, spe-
cifically, high-order multi-way and long range contacts. Without deriving a 3D recon-
struction [15] showed that SPRITE not only recapitulates structural features found 
using Hi-C, but additionally identifies hubs of inter-chromosomal interactions that are 
arranged around the nucleolus and nuclear speckles. Importantly, these features were 
also detected using single-cell SPRITE assays (scSPRITE, [17]). Thus, it is of interest to 
determine what structural findings emerge from SPRITE-based 3D reconstruction in 
contrast with Hi-C-based reconstruction.

Figure  1, which recapitulates Fig.  3B from Quinodoz and others [15], provides fur-
ther motivation for our work. By stratifying the genomic distance straddled by contacts 
according to degree of interaction it clearly demonstrates that high-order multi-way 
( > 10 ) contacts broach appreciably greater distances than low-order (2–10) contacts, 
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this latter stratum closely approximating Hi-C. Given these differences, and the pre-
sumed influence of long-range contacts on 3D reconstruction, we anticipate that differ-
ential weighting of contacts by their interaction degree will strongly impact resulting 3D 
configurations. Exploring and quantifying such relationships is the purpose of this work.

In pursuing this agenda we deliberately simplified the choice of reconstruction scope 
and algorithm. For the former, we only investigated intra-chromosomal reconstructions 
owing to the relative sparsity of Hi-C inter-chromosomal contacts. For the latter, we uti-
lized a simple multi-dimensional scaling (MDS) routine with minimal parameter tuning. 
The reason we opted for such simplicity was to better facilitate comparisons between 
reconstructions based on the two assay types without added confounding.

For Hi-C-based deployment of MDS reconstruction techniques the first step is con-
version of pairwise contacts to pairwise distances, this typically being achieved using 
power-law transformation [5, 18–21]. For SPRITE, converting multi-way contacts to 
pairwise distances is less immediate and investigation of differing strategies for so doing, 
described in Methods “Contact matrices"section, forms a central part of our work. These 
schemes allowed us to investigate the key differentiating factors (highly long-range and 
highly multi-way contacts) on attendant 3D reconstructions. It is anticipated that these 
factors, seemingly substantive contributors as suggested by Fig.  1, could significantly 
impact 3D reconstruction by anchoring more distal and complex folding. Possibilities 
for utilizing higher-order distances are addressed briefly in the Discussion.

Evaluating 3D reconstructions based on contact data is limited by the absence of gold 
standards. While recent, higher-resolution imaging modalities such as multiplex FISH 
[22] or in situ genomic sequencing (IGS, [8]), have facilitated accuracy assessment meth-
ods for 3D reconstructions ([23, 24] respectively), the absence of such image data on 
the same cells as SPRITE data precludes applying such approaches. Consequently, we 

Fig. 1  Contact frequency by maximum distance between reads for standard Hi-C [3] and SPRITE stratified by 
k-mer size
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appraise the role of multi-way contact weighting schemes, and the extent of long-range 
interactions and the degree of high-order contacts by comparing reconstructions across 
chromosomes where these latter features exhibit natural variation.

Methods
Data sources

We obtained SPRITE interaction data for the human lymphoblastoid cell line GM12878 
from the Gene Expression Ominbus (GEO) repository GSE114242. As indicated above, 
we restricted analyses to intrachromosomal interactions for the twenty two autosomes. 
Specifically, we identified SPRITE “clusters” (“k-mers”)—the terms from Quinodoz et al. 
[15] for contacts of order k—with at least two intra-chromosomal contacts and with 
quality score MAPQ ≥ 30. These where then used to construct intra-chromosomal con-
tact matrices for each of the autosomes.

In situ Hi-C [3] data from the GM12878 cell line were obtained from GEO repository 
GSE635625. We considered only the “primary” data series from this cell line. We utilized 
RAWobserved contact matrices for all autosomes with quality scores MAPQ ≥ 30.

All analyses were performed at 25kb resolution (following binning contacts into inter-
vals of corresponding genomic distance) in part to facilitate comparisons with respect to 
previously identified regions of interest. Multiple reads from the same SPRITE cluster in 
the same bin were only counted once. Therefore, the k in each k-mer was the number of 
bins that had at least one read. The exception was if all reads were in one bin, which were 
counted as 2-mers.

Contact matrices

The Hi-C data readout is typically summarized by an n× n symmetric and non-negative 
matrix called a contact matrix that we denote by C. Each element Cij corresponds to the 
number of contacts between the ith and jth bins. As we have emphasized, SPRITE data 
features multi-way contacts rather than the strictly two-way (pairwise) contacts cap-
tured by Hi-C. While Hi-C data lends itself to immediate formation of C, with each pair-
wise contact between bins i and j incrementing Cij by one, this is not the case for SPRITE 
contacts as there are differing weighting possibilities for mapping multi-way contacts 
to their pairwise components [15]. Since we anticipated that highly multi-way contacts 
could exert a disproportionate influence on 3D chromatin configuration reconstruction, 
as motivated in the Background, we evaluated different schemes for mapping multi-way 
contacts to contact matrices.

The first approach we term “under-weighting” (U-W). It consists of adding 2/k to Cij 
for every pairwise interaction from a k-mer multi-way contact. This down-weighting 
was used (selectively) by Quinodoz et  al. [15], following some reasoning surrounding 
minimally connected graphs, and was presumably favored because it more faithfully 
recapitulated Hi-C contact matrices than alternate weighting approaches. However, it 
is potentially detrimental to 3D reconstruction that might benefit from emphasizing 
multi-way and long-range proximities.

The second approach we call “neutral-weighting” (N-W). Here every pairwise interac-
tion from a multi-way contact adds one to Cij . The third approach we term “over-weight-
ing” (O-W). Under this method every pairwise interaction from a k-mer adds k(k − 1) to 
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Cij . Thus, for a k-mer interaction the sum of U-W weights is 2, the sum of N-W weights 
is k

2  , and the sum of O-W weights is k2.
Many approaches to normalizing Hi-C contact matrices have been advanced [25–29]. 

To prevent any normalization-dependent results, and because our analyses are purely 
comparative, our primary analyses do not utilize contact matrix normalization. How-
ever, we selectively explored the impact of a representative normalization scheme using 
the Hi-Corrector method [28].

3D reconstruction

As noted in the Background, we used multidimensional scaling to effect 3D reconstruc-
tion of individual chromosome configurations. MDS takes as input a (pairwise) distance 
matrix and outputs the 3D coordinates that best recapitulates these distances, the solu-
tion being prescribed to lie in 3D. There are several measures of ‘best recapitulates’ [18] 
and a variety of MDS algorithms. Here we utilize the mds function from the smacof R 
package that is based on a minimization-majorization algorithm [30]. We incorporated 
weights that are inversely proportional to distance [18], unweighted results (not shown) 
being similar. To obtain the input distance matrix from the respective contact matrices 
we applied a power-law transformation with index −1/3 [19], with, again, results being 
insensitive to alternative, previously used specifications ( −1.08 ; [1]).

Akin to our handling of normalization we have opted to base primary analyses on a 
simple approach (multidimensional scaling, MDS) to 3D reconstruction that requires 
minimal tuning so as not to complicate conclusions surrounding competing multi-way 
contact weighting schemes. But, to ensure conclusions are not overly MDS-specific, 
we additionally utilized a second reconstruction method, PoisMS [31], that is based on 
principal curve metric scaling, which prioritizes a fundamental property of 3D chroma-
tin architecture, namely, that its configuration constitutes a 1D smooth curve within the 
nucleus.

Evaluating reconstruction differences

In order to compare competing 3D reconstructions, which are inherently coordinate 
system free, alignment thereof is necessary. Here we are interested in reflection similar-
ity shape, under which two configurations that only differ by a reflection, rotation, trans-
lation and scaling are deemed equivalent. We effected such Procrustes alignment using 
the corresponding function from the vegan R package [32], from which we obtained 
the between-structure root mean square error (RMSE), our chosen measure of 3D 
reconstruction agreement. As a secondary method to evaluate the similarity between 
reconstructions, we utilized the generalized RV (GRV) test [33], which represents a 
generalized correlation coefficient applicable to 3D reconstructions and their attendant 
interpoint distance matrices. R software to perform the test was provided by the authors.

Regions of interest

In addition to these global comparisons, we pursued some focal investigation of two spe-
cific genomic regions showcased by Quinodoz et al. [15, Figure 2] with a view to quali-
tatively assessing how contact matrices derived from the differing weighting schemes 
above compare in detecting previously identified features. The first region, Chromosome 
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6 (6p21-p22, 25.5Mb-28.0Mb), encodes 55 human histone genes and is highlighted since 
it illustrates SPRITE’s ability to detect multiple (here three) non-contiguous interacting 
genomic regions that skip intervening transcriptionally inactive segments. The second 
region, Chromosome 8 (8q24, 133.77Mb-134.57Mb) is highlighted as it displays how 
multiple loops may form higher-order interactions that simultaneously bring together 
distinct genomic regions, in this example three consecutive CTCF anchored loops.

Results
SPRITE differs from Hi-C in capturing multi-way contacts and, as illustrated in Fig. 1, 
higher-order interactions straddle appreciably greater genomic distances than lower-
order interactions. Accordingly, exploring the impact of ascribing differing weights to 
such k-mers and, in conjunction, providing the first 3D reconstructions utilizing SPRITE 
data is of interest.

We commence by characterizing the distributions of k-mers and genomic distances 
straddled by clusters across the 22 GM12878 autosomes. For display purposes we parti-
tion SPRITE k-mers into three groups according to there being two, three, or more than 
three contacts. A barplot of corresponding proportions by chromosome is presented 
in Fig.  2a that reveals the preponderance of two-mers but also shows inter-chromo-
somal variation. There are significant relationships , as determined by linear regression, 
between the percentage of many-contact k-mers, defined either as those with more than 
three ( p = 9e−4 ) or more than 10 contacts ( p = 2e−5 ), and chromosome length. Simi-
larly, we examined the distribution of cluster extent (in terms of genomic distance) by 
chromosome by first determining overall distance quintiles and then plotting per chro-
mosome proportions thereof in Fig.  2b. If we further define long-distance clusters as 
those belonging to the upper quintile, which roughly corresponds to those straddling 
more than 8Mb, we again observe significant association by linear regression between 
the number of long-distance k-mers and chromosome length ( p = 2e−10).

Table  1 provides further detail by jointly summarizing k-mer counts according to 
genomic distance straddled, stratified by k-mer degree with strata selected to corre-
spond to those in Fig. 1. While the preponderance of low-order k-mers is again evident, 
the contrasting impressions given by Table 1 and Fig. 1 is germane to subsequent find-
ings surrounding 3D reconstruction as we discuss later.

We next obtained 3D reconstructions, using MDS, for each chromosome based on 
contact matrices derived from the U-W, N-W and O-W weighting schemes described 
in “Methods” section. To compare these 3D reconstructions we performed Procrustes 
alignment, with the (intermediary) N-W weight reconstruction serving as the refer-
ent (target) structure, and then computed root mean squared errors (RMSEs) relative 
to the U-W and O-W reconstructions. Results are displayed in Fig. 3. Based solely on 
RMSE magnitudes, it is apparent that 3D reconstructions using O-W weights scheme 
are closer to N-W weights than those obtained using U-W weights. For the latter N-W: 
U-W comparisons (black in Fig. 3) regression analyses reveal RMSE relationships with 
chromosome length ( slope = −0.0004 ; p = 0.09 ), the percentage of many ( k > 3 ) con-
tact k-mers ( slope = −2.02 ; p = 0.01 ) and the percentage of long (upper quintile ≈ 8 
Mb) distance k-mers ( slope = −0.50 ; p = 0.02 ). However, after adjusting for chromo-
some length, many-contacts is barely not significant ( p = 0.07 ) and long-distance is 
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barely significant ( p = 0.03 ). Similar results pertained to using alternative cutoffs to 
define many-contact k-mers ( k > 10 ) and long-distance k-mers (upper decile). With the 
3D reconstruction obtained using N-W weights again serving as the reference target, 
analogous regression analyses did not reveal any RMSE—feature relationships when 
comparing to aligned 3D reconstructions obtained using O-W weights (green in Fig. 3) 
as follows: length ( slope = 0.00001; p = 0.95 ), percentage of many-contact k −mers 
( slope = 1.5; p = 0.59 ), and percentage of long distance k-mers ( slope = −0.01; p = 0.94

).
We examined whether our conclusion about the lack of impact of differing weights was 

dependent on our analysis choices. Specifically, we examined normalizing the contact 
matrices with Hi-Corrector [28], reconstructing the contact matrices with PoisMS [31], 
and comparing similarity with the GRV test [33]. The GRV test when comparing O-W 
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and fifth quintile cyan) of k-mers by chromosome. The first quintile ranged from 18 to 27%, the second from 
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and U-W to N-W has a p-value of 0 for every chromosome to the six digits reported, 
so the formal test was not useful, but the test statistic was. Similar to Procrustes, the 
GRV statistic, is higher (equivalent to Procrustes being lower) for the majority of chro-
mosomes for O-W as compared to U-W. For normalized contact matrices, for the U-W 
comparison, neither chromosome length ( slope = −0.0001 ; p = 0.68 ), nor percentage of 
many contact k-mers ( slope = −0.18 ; p = 0.53 ), nor percentage of long distance k-mers 
( slope = −0.48 ; p = 0.67 ) is statistically significant. These same comparisons are simi-
larly not significant for the O-W comparisons. For the PoisMS comparison, neither the 
U-W nor the O-W comparison is significant for any comparison. For example, for U-W 
the slope for length is 0.0006 ( p = 0.2 ), for many contacts is 0.48 ( p = 0.26 ) and for 
long contacts is 1.1 ( p = 0.52).

From these findings it is apparent that assigning differing weights to SPRITE multi-
way contacts did not have the anticipated impacts on 3D genome reconstructions: after 
adjustment for chromosome length, 3D reconstructions do not differ according to the 
extent of multi-way or long-range contacts. The reason for this result is clear from 
Table 1, namely, the dominance of low-order contacts. Such contacts, for which the dif-
ferent weighting schemes have the least effect, are so preponderant that they largely dic-
tate the configuration of the respective MDS solutions.

As mentioned, the reason for Quinodoz et al. [15] selectively favoring the U-W down-
weighting scheme was that it produced better agreement with Hi-C contact matrices 
by preventing large SPRITE clusters from disproportionately impacting (pairwise) con-
tact frequencies. This determination was made in part visually and in part by appeal to 
Spearman correlations between the respective contact matrices. However, it has been 
argued [34] that such global correlation summaries are inappropriate for contact matri-
ces. Accordingly, it is of interest to compare 3D reconstructions based on Hi-C with 
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those deriving from SPRITE data under the differing weighting schemes. Resulting per 
chromosome RMSEs are displayed in Fig. 4. While it is the case that U-W weights gen-
erally (12/22 chromosomes) gave rise to 3D reconstructions closest to those from Hi-C 
(smallest RMSEs, often appreciably), the fact that this represents a bare majority implies 
that alternate weights cannot be discounted.

Finally, we revisit the showcased focal regions of interest [15, Figure 2], again with the 
goal of comparing the competing weighting schemes. These regions were originally high-
lighted since they illustrate SPRITE’s capacity to identify simultaneously occurring, high-
order interactions, a hallmark of the assay. From the heatmaps depicting contact counts 
for the relevant segment of Chromosome 6 (Fig. 5) we observe that both U-W and N-W 
weighting highlight the appropriate sub-regions defining the simultaneous interaction, 
whereas O-W does not. Specifically, for the U-W and N-W weighting schemes, contact 
counts in the designated sub-regions exceed count totals in all equally-sized sub-regions 
at the corresponding genomic locus (following diagonal exclusion), while this is not the 
case for O-W. The same findings with respect to weighting scheme apply to identifying 
the three consecutive CTCF anchored loops that constitute a higher-order interaction 
resulting from simultaneously bringing together distinct genomic regions on Chro-
mosome 8 (Fig.  6). From this we can conclude that under-weighting is not unique in 
being able to capture multi-way interactions. That such weighting possibly serves to best 
recover pairwise Hi-C contacts is not in and of itself a justification for its adoption.

Discussion
Motivated by Fig. 1, we sought to examine the effect of differing approaches to count-
ing the multi-way contacts generated in large numbers by SPRITE assays. As the fig-
ure illustrates, such contacts straddle relatively large genomic distances, implying 
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that they may be particularly informative in capturing folding patterns not accessed 
by pairwise contact data, as provided by Hi-C assays. However, somewhat surpris-
ingly, we found that for the different weighting schemes considered, there was little 
impact on attendant 3D reconstruction and, after adjusting for chromosome length, 
little association with the degree of multi-way contacts and/or extent of long-range 
contacts. Reconciliation of these findings came by way of simple accounting: despite 
there being numerous multi-way contacts, their numbers were dwarfed by the num-
bers of low-order contacts (see Table  1), with these findings being relatively unaf-
fected by choice of weights.

The possibility remains that coercing SPRITE’s multi-way contacts to pairwise dis-
tances does not take full advantage of the power of higher-order interactions to anchor 
chromatin folds. Tensors provide a mathematically appropriate representation for multi-
way contacts and definitions of tensor inner product, norm and distance generalize their 
vector analogs. Therefore, conversion of multi-way contact counts to tensor distances 
could follow a similar power-law transformation as was used here with (pairwise) Hi-C 
contacts. Then attendant reconstruction approaches, in particular tensor distance based 
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multilinear multidimensional scaling [35], could be applied. Alternatively, higher-order 
distances as operationalized in the SPRITE context [13] could be utilized.

Further opportunities for additional work include utilizing SPRITE data to develop 
whole genome reconstructions for which existing methods for relative positioning of 
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Fig. 6  Same as Fig. 5. but for the contact matrices for the three consecutive CTCF anchored loops on 
Chromosome 8

Table 1  Cluster counts classified according to (genomic) distance extent and interaction degree

Distance (Mb) 2-mers 3-mers 4–10-mers 11–100-mers > 100-mers

0–25 5,812,319 448,566 356,702 37,258 74

25–50 246,091 58,501 79,751 23270 228

50–75 146,326 30,175 41,402 14,828 299

75–100 90,422 16,177 20,616 8309 229

100–125 64,820 11,409 12,509 5020 181

125–150 40,446 7112 7288 3137 153

150–175 24,856 4339 4467 1887 103

175–200 13,693 2407 2257 996 64

200–225 7470 1275 1099 470 26

225–250 1885 331 339 156 20
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individual chromosome solutions [21, 36] could be used. Also, attempting 3D recon-
structions based on single-cell SPRITE data could be pursued, thereby overcoming 
the problem that consensus structures based on bulk cell assays do not capture inter-
cellular structural variation. The main challenge facing such reconstruction, also true 
for single-cell Hi-C, is the appreciable sparsity of single-cell interaction data: often 
∼ 98% of contact matrices are zeros. To address this challenge we are devising distri-
bution-based MDS methods that allow for zero inflation [37].

Conclusion
Long-range, multi-way contacts, as provided by SPRITE assays, do not appreciably 
impact 3D genome reconstruction, since the number thereof, while sizeable, is dwarfed 
by the number of pairwise contacts.
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