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Femtosecond and attosecond X-ray transient absorption experiments are becoming increasingly sophis-
ticated tools for probing nuclear dynamics. In this work, we explore and develop theoretical tools needed
for interpretation of such spectra,in order to characterize the vibrational coherences that result from
ionizing a molecule in a strong IR field. Ab initio data for F2 is combined with simulations of nuclear
dynamics, in order to simulate time-resolved X-ray absorption spectra for vibrational wavepackets after
coherent ionization at 0 K and at finite temperature. Dihalogens pose rather difficult electronic structure
problems, and the issues encountered in this work will be reflective of those encountered with any core–
valence excitation simulation when a bond is breaking. The simulations reveal a strong dependence of the
X-ray absorption maximum on the locations of the vibrational wave packets. A Fourier transform of the
simulated signal shows features at the overtone frequencies of both the neutral and the cation, which
reflect spatial interferences of the vibrational eigenstates. This provides a direct path for implementing
ultrafast X-ray spectroscopic methods to visualize coherent nuclear dynamics.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The ability to produce extremely short (<1–10 fs) soft X-ray
pulses using the coherent high-harmonic generation (HHG) pro-
cess [1–3] is allowing the study of molecules at previously
unthinkable time scales. Although the apparatuses to perform
experiments using such pulses currently exist in only a few labora-
tories, the fact that these systems are of table-top scale opens the
possibility that they will become commonplace in chemistry and
physics departments as the necessary expertise advances and
spreads. HHG experimental set-ups have been used to probe
motions of nuclei in systems with up to five atoms [4], and even
the motions of the electrons themselves in a single atomic ion [5].

There is a pressing need to assemble the theoretical tools
needed to simulate and understand the time dependence of the
X-ray spectra of molecules as they undergo nuclear motion on dif-
ferent electronic surfaces. The essential ingredients for this are (1)
the energies and oscillator strengths of core–valence electronic
excitations as a function of nuclear coordinates, (2) simulation of
the relevant nuclear dynamics, and (3) a framework for modeling
an experimental spectrum from this information. Each of these
presents its own challenges, both generally and in the context of
a given system of interest. Additionally, each of these topics con-
tains a number of sub-topics. For example, concerning electronic
structure, many levels of approximation may be applied, and there
are multiple approaches to treating the core-hole lifetimes that
will affect precise line shapes. Concerning nuclear dynamics, these
might be qualitatively modeled, or they may be predicted by
detailed simulation of some physical process. The manner in which
these data are incorporated into a simulated spectrum will, of
course, depend on the targeted experimental set-up.

In this report we present work on each of these three primary
aspects, ultimately producing an X-ray transient absorption spec-
trum (XTAS) for ionized F2, in which both the ion and the remain-
ing neutral are undergoing a model dynamic qualitatively
consistent with a coherent ionization process. Importantly, we
explore the nature of core–valence excitations under bond-break-
ing conditions, and we develop a straightforward approach to
building a spectrum, projecting nuclear wavepackets distributed
along spatial coordinates onto the corresponding excitation-energy
distribution. This work should be thought of as a starting point,
which can be expanded upon in a number of complex directions,
most importantly, extension to other molecules.

The study undertaken here is most directly related to recent
experiments collecting the XTAS of Br2 molecules, as a function
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of delay time after these molecules have been ionized by a strong
IR field [6]. The predominant character of these spectra is that the
energies of the absorption maxima andminima oscillate in time. As
analyzed, this is due to a coherent nuclear dynamic that was initi-
ated during the ionization process. Since the core–valence excita-
tion energy depends on the nuclear separation, the energy of the
absorption maximum/minimum oscillates in time with the nuclei.
However, the nuclear wavepackets are evolving on two different
potential energy surfaces; the production of a coherent wave-
packet on the electronic ground-state surface of the cation leaves
behind a coherently depleted wavefunction on the ground-state
surface of the neutral, which also oscillates. In addition, both of
these surfaces are anharmonic, leading to a potentially quite com-
plicated nuclear dance.

Concerning the action of the extreme ultraviolet/soft X-ray
probe, the cation has available a new core!valence-p�

g resonance,
leading to an oscillatory enhancement of absorption at lower
energy. Meanwhile, assuming that the core!valence-r�

u resonance
has a different energy for the neutral and the cation (more gener-
ally, a different dependence of this energy on internuclear separa-
tion), then this drives additional enhancement features, as well as
depletion features, which oscillate with either the cation or neutral
vibrational wavepackets, respectively. The core–valence excitation
energy should not be expected to differ very dramatically between
the cation and the neutral. Disentangling these dynamics, which
therefore occur in overlapping regions of the spectrum, is vital to
learning what kind of vibrational coherences are produced by the
strong IR pulse, and therefore gaining insight into the impact of a
strong field on a chemical bond, an important topic of several
recent experimental investigations [7–12,6].

In the publication of the aforementioned Br2 experiments, cal-
culations had been done for core–valence excitations of the neutral
at different internuclear separations. This already provided con-
vincing evidence that the dominant core–valence excited state is
steeply repulsive in the neighborhood of the neutral ground-state
equilibrium bond distance, indeed admitting the explanation that
the energy of strongest X-ray absorption would be a function of
bond distance, and therefore have a significant dependence on
delay time. However, this only qualitatively explains depletion fea-
tures of the spectrum. Furthermore, those simulations had not yet
incorporated any information about oscillator strengths. The qual-
ity of the calculations is also still uncertain, as they were based on a
variant of linear-response density functional theory (LR-DFT),
which has yet to be well validated at X-ray energies. Dihalogens
and their molecular cations have particularly difficult electronic
structures [13,14], with F2 being highly diradicaloid (bond-broken)
already at equilibrium bond distances. Accurate treatment of bond
breaking is a known issue for DFT [15,16]. For all these reasons it is
important to revisit the XTAS of coherently ionized dihalogens,
particularly starting with F2, with a more systematic and calibrated
approach.
Fig. 1. Ground-state dissociation curves of F2 at several levels of theory, using both
spin restricted and spin unrestricted reference wavefunctions. The only acceptable
curves are UCCSD and UCCSD(T). UCCSD is the method chosen for all subsequent
calibrations, on account of expense and lack of an associated response theory for
UCCSD(T). The points on the curves indicate the bond distances at which
calculations were performed. All energies are relative to the UCCSD asymptote.
2. Electronic structure calculations

All calculations were done with an unmodified test (beta) ver-
sion of a recent release of the Q-Chem program package [17]. The
cc-pVTZ basis is used for all calculations, and an increment of
0.02 Å along the F–F coordinate was used for all electronic surfaces.

2.1. Neutral and cation ground states

A number of high-quality computational [13,14,18–21] and
experimental [22–25] studies have been undertaken on F2 and its
molecular cation Fþ2 (see also references contained in citations).
Because of its pathological electronic structure, in which the
mean-field (Hartree–Fock, HF) solution is spin-polarized already
at the equilibrium geometry, F2 has provided an excellent test case
for ab initio method development. We will not recount all of the
findings of these studies, but, given the central role played by the
particulars of this system, we reproduce and discuss the most
important electronic structure aspects here.

For each level of theory reported, for the neutral and the cation,
the position (re) and energetic depth (De) of the bonding minimum,
as well as the harmonic vibrational frequency (me), were deter-
mined by a quadratic fit to the lowest three computed points. This
is sufficiently accurate for comparison to experiments, in which
the vibrational wavefunction of F2 anyway has a full width at half
maximum (FWHM) of about 10� the grid spacing (�0.2 Å, as
obtained from the experimental me [26]). These fits should provide
roughly three decimal places for re, and even greater precision for
De (energy derivative vanishes). Comparison to a quadratic fit with
an increment of twice the grid spacing quickly verifies this conver-
gence and establishes that the finite-difference me values are also
converged to three significant figures.

We will be satisfied with a level of theory in which the ground-
state wavefunctions for the neutral and cation have the correct
qualitative structure. It should then be expected that a response
theory for the core–valence excitations built on top of these should
provide, at a minimum, qualitatively accurate insight.
2.1.1. Neutral
For neutral F2, coupled-cluster with single and double substitu-

tions (CCSD) is a qualitatively complete wavefunction. On account
of the two-particle correlations explicitly in the wavefunction,
CCSD is exact (within a basis) for two-electron systems, such as
H2, regardless of the bond distance. CCSD is therefore a good choice
of wavefunction for a system whose dominant characteristic is the
breaking of a two-electron (single) bond. Furthermore, the ‘‘specta-
tor” electrons are correlated at a high enough level that CCSD is
known to give quantitatively useful thermochemical results.
Fig. 1 compares CCSD against a few other options, including such
disastrous results as restricted and unrestricted HF (RHF and
UHF, respectively) and second-order Møller–Plesset perturbation
theory (MP2).



Table 1
Comparison of selected computational results to experiment for F2.

re (Å) me=c (cm�1) De (eV) De (kJ/mol)

UCCSD 1.377 1070 1.21 117
UCCSD(T) 1.398 968 1.49 144
Experiment [26] 1.412 917 1.66 160
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RHF is overbound because the bond is never allowed to break;
the lack of electron correlation admits ionic (Fþ � F�) configura-
tions into the wavefunction even at infinite distance, raising the
asymptote. UHF allows the electrons to unpair and mimic correla-
tion (if one of the bonding electrons is on one atom, then the other
is on the other atom). A homolytically cleaved bond is eventually
obtained, giving an energy that is asymptotically much lower than
RHF, but at the expense of having a symmetry-broken, spin-polar-
ized molecule. The necessity of spin polarization in order to break
the bond would be represented in a configuration-interaction (CI)
language as having forced an admixture of triplet spin, which, by
definition is completely diradicaloid at all distances. This destroys
some of the interatomic electronic resonance that accounts for the
bond, and constitutes an unnatural energetic penalty to unpairing
(relative to a pure-singlet CI). This keeps the electrons paired well
into the region where the bonding minimum should be, raising the
energy there, after which they suddenly unpair. This ultimately
prevents the formation of a bonding minimum, as has been
famously noted some time ago [13]. At the root of this problem
is the fact that electron unpairing occurs relatively early along
the internuclear coordinate for F2, near where the energetic mini-
mum should be. This is on account of high ionization energy of flu-
orine; even at short distance, neither F atom is ‘‘willing” to be
found as Fþ next to an F�, which arises in a description of indepen-
dently resonating electrons. This unpairing would occur early in
the CI treatment as well, but without the triplet contamination that
erases the bonding minimum.

MP2 accounts for electron correlation perturbatively, but bond
breaking is not a small perturbation. At smaller nuclear separation,
before the bond breaks in earnest, the total magnitude of the MP2
correlation correction agrees very well with the higher-level CCSD
calculations, whether using either a restricted or unrestricted refer-
ence wavefunction (RMP2 and UMP2, respectively). In the case of
RMP2, at long bond stretches, the attempt to account for the
large-amplitude change inherent to the bond-breaking wavefunc-
tion without self-consistent, iterative optimization of correlation
leads to a break-down of the non-variational projectiveMP2 energy
expression, giving a divergent result. For UMP2 the bond breaking is
taken care of by localization of half-occupied orbitals. These change
character suddenly at about 1.3 Å, when the molecule spin polar-
izes, and the perturbative correction to the energy suddenly
changes at that point. The perturbative correction fails to reintro-
duce the bonding resonance, and the energy arrives quickly at the
asymptote. It is worth noting here, for the sake of discussion to
come, that the orbitals themselves are not discontinuous functions
of the stretch coordinate; only the manner in which they change
(the derivative) is discontinuous. Therefore, the UHF and UMP2
energies are continuous, but have discontinuous derivatives.

CCSD indeed provides normal looking dissociation curves. In the
vicinity of the minimum, there is little dependence of the binding
potential on the choice between an RHF or UHF reference wave-
function (RCCSD or UCCSD, respectively). This is related to the fact
that CCSD is exact for a two-electron problem, so that the choice of
orbital representation does not have a major impact on the
description of breaking a single bond. However, F2 is not really a
two electron problem, and the difference between these reference
wavefunctions affects the predicted dissociation energy. At long
distances, the spin-polarized reference is a better description of
the dominant character of the wavefunction and, therefore, a bet-
ter starting point from which to describe the weaker atomic-like
correlations. This results in a much lower UCCSD asymptote.

The perturbative inclusion of explicit three-electron correla-
tions [triple substitutions in CCSD(T)] shifts the RCCSD(T) and
UCCSD(T) minima down together. The fully self-consistent inclu-
sion of three-electron correlations (CCSDT) provides a yet smaller
correction [14], suggesting that there are unlikely to be significant
correlations beyond triples. For RCCSD(T), as with the RMP2 result,
the use of an RHF reference is deleterious in a perturbative calcu-
lation, giving unphysical behavior at long bond lengths. We there-
fore focus on UCCSD(T). Inclusion of triples does not shift the
UCCSD asymptote as much as it shifts the minimum, indicating
that such correlations are much more important in the molecule
than for the individual atoms. Their inclusion affects the depth of
the binding well and brings UCCSD(T) into good agreement with
experiment, whereby the majority of the remaining error in the
bond energy is due to the limited basis set size [14].

The UCCSD and UCCSD(T) bond lengths, vibrational frequencies,
and dissociation energies are compared to experiment in Table 1.
The F2 bond is one of the weakest ‘‘single bonds” known, having a
well depth of less than 2 eV; this and its associated high reactivity
are well explained by the forgoing discussion that the bond is
substantially broken even at the equilibrium geometry. Therefore,
even the good agreement of UCCSD(T) for De on an absolute scale
(16 kJ/mol � 4 kcal/mol) for this subtle and difficult problem does
leave something to be desired in terms of the percentage of the well
depth recovered, but all of the important electronic physics have
clearly been accounted for. The smaller percent error in the vibra-
tional frequency is evidence of the quality of the potential in the
neighborhood of the minimum, which is more important in this
work. The seemingly odd fact that the shallower UCCSD potential
has a larger vibrational frequency is explained by the shorter equi-
librium distance, since it is closer to the steeply repulsive part.

We will be satisfied that, since a perturbation treatment of tri-
ples on top of UCCSD can provide semi-quantitative results, that
UCCSD itself is a qualitatively acceptable wavefunction, especially
in the region of the bonding minimum. In addition to the increased
computational cost of even perturbative inclusion of triple substi-
tutions, CCSD(T) does not yet have a well-validated associated
response theory to allow for the computation of core–valence exci-
tations. We therefore focus any further attention on UCCSD alone.
2.1.2. Cation
For a comparable treatment of Fþ2 , the UCCSD dissociation curve

for the cation is shown along with that of the neutral in Fig. 2; the
vertical distance between the curves at any point is the ionization
energy at that bond stretch.

We should not necessarily expect UCCSD to do as well for the
cation as it does for the neutral. As the bond stretches, the original
(neutral-like) single bond is still being broken in the r-symmetry
space, and, in addition, a completely separate p-symmetry half
anti-bond is being broken. The overall bond order of Fþ2 is 3/2,
and it is effectively a strongly interacting three-body problem
(two electrons and one hole), dressed by the smaller correlations
of the other electrons.

Recently, quite good experimental data have become available
for Fþ2 [25], and our computed values of re; me, and De are compared
to these in Table 2. The qualitative result for both computation and
experiment is that the bond strengthens and shortens relative to
F2, since the loss of an antibonding electron increases the bond
order. In both computation and experiment, the bond shortens
by �0.1 Å, though the computational result is too short by a couple



Fig. 2. Ground-state dissociation curves of F2 and Fþ2 at the UCCSD level of theory.
Upon ionization from the antibonding 2p�

g orbital, the bond strengthens and
shortens. All energies are relative to the neutral asymptote.

Table 2
Comparison of selected computational results to experiment for Fþ2 . The experimental
value of De is computed as D0 þ hme=2 (from values given in Ref. [25], where D0 is the
measured dissociation energy).

re (Å) me=c (cm�1) De (eV) De (kJ/mol)

UCCSD 1.284 1260 2.80 270
Experiment [25] 1.312 1090 3.40 328
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hundredths of an Ångstrom for both F2 and Fþ2 . The quality of the
UCCSD well depth for Fþ2 is either better or worse than that for
F2, depending on whether judged by ratio (73%? 82%) or absolute
deviation (0.45 eV? 0.60 eV). Similarly, though the absolute error
in me is worse for the cation, the percent error is roughly the same
for both systems (�16%), illustrating again that the shape of the
potentials are indeed most reliable in the neighborhood of the
minimum.

Another figure of merit is the adiabatic F2 ionization energy of
15.69 eV [25], though this will play no role in our simulations,
since the ionization process is not explicitly addressed. Given the
foregoing comparisons of De and me for both F2 and Fþ2 , the only
remaining variable is how well the computed difference of
17.16 eV between the F2 and the Fþ2 dissociation asymptotes
matches the experimental F-atom ionization energy of 17.42 eV
[27]. The quite precise match to experiment here (0.26 eV error),
in light of lesser agreement for the molecules, is a reflection on
the complexity of the F2 bond, relative to the physics of atomic
electrons. This result, and the relatively reliable shape of the poten-
tial in the neighborhood of the bond, indicates that the greatest
shortcoming in our electronic structure model (UCCSD) is in repre-
senting relative energy changes as the bond breakage nears com-
pletion (also called the spin-recoupling region). Fortunately, our
wavepackets will largely be confined to the regions of the bonding
minima of both F2 and Fþ2 .

2.2. Neutral and cation core–valence states

Core-to-valence excitations are actually electronic resonances
that decay on the femtosecond time scale. Nevertheless, they
may be preliminarily modeled as stationary states in a finite basis,
which will locate their central energies. If no special measures are
taken, such as the application of complex absorbing potentials [28],
the finite basis prevents the decay of the excited state via autoion-
ization channels. This is certainly acceptable when the spacings
between bright resonances are on the order of an eV or more, since
a 1 fs lifetime corresponds to a line-width of about 1 eV, and it is
still qualitatively useful even as this limitation is approached.

Such core–valence calculations are far from trivial. A typical
electronic structure calculation for the ground state, or the lowest
excited states, of a molecule relies on the variational theorem; the
easiest eigenvalues to obtain for any matrix are those at the upper
or lower boundary of the spectrum. This is made again easier for
the lower and ground states of most electronic problems because
the largest energy spacings are at the low-energy part of the spec-
trum. For high-lying states, one must focus on a densely populated
part of the spectrum, riddled with dark states of lesser interest.
Furthermore, it is necessary to have a relatively precise estimate
of the energy of the state of interest, lest the computational work
increase dramatically with the size of the energy window consid-
ered. Given the complexity of this task, algorithms for this are
not generally robust, in particular for automated calculation of sur-
faces as a function of geometric distortions. Furthermore, at the
coupled-cluster level of theory, due to the non-Hermitian projec-
tive nature of the energy expression and response theory, once
the eigenvalues and eigenstates are obtained, a subsequent itera-
tive calculation is needed to converge any property of each state,
such as oscillator strength.

Given the foregoing, it has not presently been feasible to use lin-
ear-response theory on top of the UCCSD wavefunctions discussed
above (LR-UCCSD), in order to compute the full core–valence
potential curves and associated oscillator strengths. However,
given the exacting demands of this system on the level of elec-
tronic structure model applied, it is certainly necessary to calibrate
any proposed model against it. We begin with a discussion of the
approximations used in lieu of LR-UCCSD for F2 and then proceed
to Fþ2 , which is further complicated by the breaking of charge sym-
metry along with spin-space symmetry.

In the molecular-orbital (MO) picture of F2, the only unoccupied

valence orbital is 2r�ðpÞ
u . [The ðpÞ superscript denotes a linear com-

bination of the 2pz atomic orbitals aligned with the molecular
axis.] Though we understand from the above that the MO picture
is a largely inadequate concept of F2 bonding, the most notable
bright excitation in this system at equilibrium bond length will still

be mostly 1rg ! 2r�ðpÞ
u in character. In Fþ2 , at equilibrium, the

vacancy from the ionized electron admits also a bright excitation
that is mostly 1r�

u ! 2p�
g in character. Asymptotically, however,

for both systems, the relevant excitations are best thought of as
either local excitations on the atomic fragments or charge-transfer
(CT) excitations between the fragments.
2.2.1. Neutral
Fig. 3 shows the spectrum of excited states obtained from LR-

UCCSD calculations on neutral F2. These calculations were done
by first converging single eigenstates while restricting their orbital
character. The energy of the lowest state that vacates one of the
lowest two (core) orbitals is then used to provide an energetic shift
to the Hamiltonian necessary to focus on the correct spectral win-
dow. A subsequent pseudo-variational calculation captures a fixed
number of nearby excited states with smallest shifted energy. Only
the spectrum from the second calculation is shown, of which, a
subset of these points are the same as from the first calculation
(convergence details notwithstanding).

As is evidenced from this plot, LR-UCCSD convergence is spotty,
but clear core–valence resonance surfaces are present that suffice
for calibration purposes. At short internuclear separation, there
are two states that are close in energy, but one begins to rise
rapidly just before 1.5 Å (after the point at which the UHF reference
for the ground state is known to have localized spins). At interme-
diate distances of 1.5–2.0 Å, this upper curve has CT character,
while the lower curve has the character of local atomic excitations.



Fig. 4. The energy of the UADC core–valence states for F2 as a function of bond
distance are plotted as points (against the left-hand axis). The area of each point is
proportional to the oscillator strength from the ground state. Where the UHF
solution breaks symmetry, the separation of local and CT excitations is accompa-
nied by singlet–triplet mixing, artifactually giving two bright states. Per the
discussion in the text, the sum of the oscillator strengths of these two UADC states
is plotted as a line (against the right-hand axis); this is compared to the oscillator
strength of the lowest RADC state (the only bright one). The summed UADC
oscillator strengths smoothly connects the RADC result at short distances where it
is reliable to a correct flat asymptote.

Fig. 3. Excited states in the core–valence energy window for F2 at three levels of
theory. LR-UCCSD is the excited-state analogue of UCCSD, but its convergence is
irregular, and it is computationally expensive. RADC reproduces the shape of the
lower state (the only bright one) reasonably well near the equilibrium bond
distance. UADC provides a better overall representation of this lower curve,
especially asymptotically, because the reference is allowed to dissociate to radical
fragments; however, it is too low at short distances, due to spin contamination. All
energies are relative to the UCCSD neutral ground-state asymptote.
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The local character of the lower state persists asymptotically,
whereas the CT state mixes with higher states, raising the remain-
der of its Coulombic asymptote off the plot. The atom-local asymp-

totic state connects to the core ! 2r�ðpÞ
u molecular excitation at

short distance, and the CT state connects at short distance to a state
best described as having multiple excited electrons. A full discus-
sion of the character of these states is found in appendix B. The
word ‘‘core” is used in the forgoing to be intentionally ambiguous.
Since the 1rg and 1r�

u levels are degenerate, there are two degen-

erate singlet excitations to the 2r�ðpÞ
u orbital, just as there are two

spin-allowed atom-local excitations asymptotically. Just as only

the 1rg ! 2r�ðpÞ
u excitation is bright at short distance, asymptoti-

cally, only the in-phase superposition of the two atomic excitations
will be spectroscopically bright. This bright asymptotic superposi-

tion transforms into the 1rg ! 2r�ðpÞ
u excitation at (very) short

distance.
In order to compute smooth surfaces, including associated oscil-

lator strengths, we use the algebraic diagrammatic construction
[29] (ADC) for the core–valence states, specifically the extended
second-order variant (ADC2x) [30]. ADC has a long history of being
applied to highly energetic electronic states and resonances
[30–54]. In particular, we employ the recently implemented
core–valence separated approximation of ADC2x (CVS-ADC2x)
[49,50,53], in which excitations that do not have one index refer-
ring to the annihilation of one of the target core orbitals are
neglected entirely, this being justified by the large energetic sepa-
ration of this group of resonances from other states (at least, from
those to which there are nonzero Hamiltonian couplings). As with
coupled-cluster theory, ADC may be applied on top of a spin-
restricted reference (RADC) or an unrestricted reference (UADC).
Since all ADC calculations in this work are CVS-ADC2x, we hence-
forth simply use the abbreviations RADC and UADC.

Both RADC and UADC results for F2 are included in Fig. 3. State
energies are obtained by adding the RADC and UADC excitation
energies to the RMP2 or UMP2 ground-state energies, respectively.
One can consider MP2 to be the ground-state level of theory asso-
ciated with ADC excitation energies; the exact same correlation
amplitudes that build the MP2 correlation correction are used to
dress the excitation energy in ADC.
RADC gives a better representation of the energy of the LR-

UCCSD result for core ! 2r�ðpÞ
u excitations for separations around

1.5 Å, but it starts to perform very poorly a little after 2 Å, consis-
tent with the breakdown of the RMP2 energy for the ground state
at this distance (see Fig. 1). The CT state is not at all included with
RADC; it is intuitive that the mere existence of a CT state is inti-
mately connected with the breaking of the bond, which is not rep-
resented in an RHF reference. The nature of the local and CT states
is better reflected in the UADC calculation where the bond is
already broken (albeit spin-asymmetric) in the reference; however,
there is a clear artifact for the CT-like state at about 1.3 Å, when the
UHF reference spin polarizes. It is interesting, though somewhat
beyond scope, that the combination of UMP2 + UADC can recover
a visually smooth curve for the lower state, even when UMP2
has a discontinuous slope at this point.

Although we might be satisfied with RADC for F2 (vibrational
wavepackets will anyway be confined to separations of less than
about 2 Å), it is expedient to look at UADC in more detail because
the F2 r-bond breaking is similar to that in Fþ2 , where we will soon
see that RADC is not acceptable anywhere.

We begin by observing the oscillator strengths of the UADC
curves in Fig. 4. Here, only the lower two curves previously men-
tioned are visible, because only they are bright (at some distance).
We have mentioned that the lower LR-UCCSD states change char-

acter from core ! 2r�ðpÞ
u at short distance to atomically local exci-

tations asymptotically, whereas the upper LR-UCCSD states are
multiply excited at short distance and have CT character at large
separation. This means that the upper LR-UCCSD states should
always be dark (dim, technically) and one of the two lower states
is always bright. However, the upper and lower states in UADC
appear to be mixing and transferring oscillator strength from one
to the other, in addition to the unsettling sudden change in slope
of the upper states.

The strange appearance of the UADC result is due to the fact

that the CT-like states are connecting to the core ! 2r�ðpÞ
u singlets

at short distance, whereas the asymptotically local excitations are

connecting to the core ! 2r�ðpÞ
u triplets. Therein lies the essential

difficulty with unrestricted calculations; neither the ground state
nor the excited states are spin pure. The asymptotic states are
equal mixtures of singlets and triplets. These spin-contaminated



Fig. 5. Excited states in the core–valence energy window for Fþ2 at several levels of
theory. The LR-UCCSD convergence is again irregular. RADC is clearly unacceptable
at all bond lengths. UADC reproduces the 1s ! 2r�ðpÞ

u excitation energy fairly well,
but the UADC 1s ! 2p�

g transition rises too quickly and bifurcates already at very
short distances, due to broken symmetry. The final state of the 1s ! 2p�

g transition
can be represented well by what we call a-RADC, which uses an unconventional
(but spin-restricted) choice of reference; however, the associated oscillator strength
is meaningless. All energies are relative to the UCCSD neutral ground-state
asymptote.
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states mix at short distance to allow spin-pure states when the ref-
erence symmetrizes (see appendix B). It is therefore tempting to
simply ‘‘by hand” assign to the lower UADC energetic curve (which
has approximately the shape of the correct bright excitation) the
sum of the oscillator strengths from both curves, which each match
the character of the correct lower state at one end or the other. As
preliminary evidence that we will be able to justify this, Fig. 4
shows this sum compared to the oscillator strength from the RADC
calculation. The sum clearly builds a smooth curve with the correct
(flat) asymptotic behavior for atom-local excitations, and which
agrees well with RADC in the regime where RADC is reliable.

Let us now endeavor to understand in more detail why this is
reliable, in order that it will be justified when we do something
similar for Fþ2 . Appendix B exposes in detail how the intuitive

bright MO-basis excitation at short separation (1rg ! 2r�ðpÞ
u )

should adiabatically transition to being the bright (in-phase) linear
combination of atom-local excitations that are well described by
the lower UADC state asymptotically. In doing so, it is shown that
the lower two UADC excitations at all separations collectively pos-
sess all of the oscillator strength inherent to the space of the lowest
core–valence transitions. Knowing that all of this oscillator
strength should be concentrated in a single transition in the fully
symmetric picture allows the use of a limited sum rule, presented
in appendix A, to approximate the oscillator strength of the prop-
erly symmetric state as the sum of the oscillator strengths of these
two lowest states from the symmetry-broken calculation. This can
then be assigned to the lower UADC curve, which has roughly the
right shape, even though it is too low at short distance by an offset
of the singlet–triplet exchange splitting.

It is worth noting before we move on to the cation that we
expect excellent agreement between the oscillator strengths that
should be obtained from LR-UCCSD and those that are obtained
from summed UADC (and RADC below �2 Å). To support this
assertion, consider first that the excitation energies are in excellent
agreement on an absolute scale (we have hitherto been focusing on
the finer points of the last few eV of a �700 eV excitation). It is the
values of the oscillator strengths on an absolute scale that will enter
our simulations later. In light of the forgoing arguments, and the
appendices that support in detail that the correct parts of the rel-
evant many-body space have all been accounted for, the only
remaining consideration is how the different approximations affect
the orbital spaces upon which the many-body spaces are built.
Given the excellent agreement of absolute energies among differ-
ent methods, the description of the orbitals must be sufficient to
expect a quantitative comparison for the oscillator strengths.
2.2.2. Cation
For the cation, three different variants of ADC were explored, by

starting from differing reference configurations. These are shown
along with the spotty LR-UCCSD results in Fig. 5.

The standard ‘‘out-of-the-box” RADC variant is unacceptable, as
the accuracy is severely degraded already at 1.2 Å. The increase in
complexity of the bonding interaction in going from F2 to Fþ2 is too
much for perturbation theory to correct for, given this starting
point.

With UADC, a relatively accurate reflection of the energy of the
asymptotically lowest LR-UCCSD state is obtained; this LR-UCCSD

state adiabatically connects the core ! 2r�ðpÞ
u transition at short

internuclear separation to an atomic excitation specifically on the
neutral fragment at large separation (see appendix B). Once again,
we see that the UADC state is too low at short distances because it
is erroneously connecting to the quartet instead of the doublet. (To
be precise, the quartet is not exactly represented, but rather, this is
dominantly a quartet with some admixture of a dark doublet that
has a similar exchange energy, due to orbital-extent considerations.)
The structure of the lowest UADC asymptotes are the same as
for LR-UCCSD, but higher in energy. While there should be degen-
erate bright and dark excitations from 1rg and 1r�

u to the empty

2r�ðpÞ
u orbital at short distance, these should also mix (along with

spin polarization of the empty r-symmetry valence orbital) to give
rise to two energetically distinct states asymptotically, a local exci-
tation on the cation and the local excitation on the neutral just dis-
cussed. This excitation on the cation will be asymptotically
degenerate with excitation to the empty p-symmetry orbital,
which also localizes as an perpendicular atomic 2p orbital. These
two cation excitations are indeed the next highest LR-UCCSD
asymptote. Inward from this asymptote, the excitation to the r
space rises in energy, away from the energy window we will be
interested in, whereas the LR-UCCSD state that decreases in energy
and connects to the core ! 2p�

g excitation.
Due to the polarization of the p-symmetry singly occupied orbi-

tal already around 1.2 Å in the UHF reference, the core ! 2p�
g exci-

tation is pushed up in energy relative to LR-UCCSD at any bond
distance much beyond 1.5 Å, making it not very useful. This brings
us to our third choice of reference wavefunction. By manipulating
the initial orbital guess, it was possible to converge the RHF refer-
ence to an alternate local minimum on the orbital-energy land-
scape, moving the radical character into the r space. Though
spin-pairing of all but one electron is enforced at all bond dis-
tances, right-left symmetry does eventually break, and the refer-
ence used asymptotes to a singlet Fþ and a doublet F atom,
where the double vacancy that eventually localizes on the Fþ ion
keeps r symmetry throughout. [It was attempted to also force a
solution where the double vacancy keeps p symmetry, but we
were not successful in doing this by employing standard user input
options.] We will call this ‘‘asymmetric RADC” (a-RADC); however,
this spatial-only symmetry breaking is postponed until after the
end of the 3 Å domain shown in the plots. From this odd choice

of reference, excitation into the 2r�ðpÞ
u vacancy results in the same

final state as a core ! 2p�
g excitation from the ground-state-like

configuration of the cation. From this, we obtain an energetic curve
that is very close to that obtained from LR-UCCSD. However, the



Fig. 7. Selected polarized UHF canonical orbitals of Fþ2 at 1.4 Å separation (density
isosurface at 0.02 atomic units). The molecule has lost a spin-down (‘‘b”) electron,
and only b orbitals are shown. The nearly degenerate core orbitals (e.g., 1b) localize
completely at the point of symmetry breaking (at 1.2 Å). However, the Fþ2 valence
orbitals are still substantially delocalized near and just beyond the equilibrium
bond length. For example, the 6b bonding orbital (� 2rðpÞ

g ) is only negligibly
polarized at 1.4 Å. Orbital 9b (� 2p�

g) best describes from where the electron was
taken, and 7b (� 2pu) describes the remaining occupied part of the p-symmetry
space.
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oscillator strength from this calculation will be meaningless, since
it is from a lower state with the wrong character.

We now have reasonable approximations for the energies of the
necessary bright states. The state best characterized (at short dis-

tance) as core ! 2r�ðpÞ
u is well described by UADC, and our a-RADC

calculation reproduces the energetic curve for the state best
described (at short distance) as core ! 2p�

g . The focus then falls
on obtaining the oscillator strengths for these states along each
curve. These will all be obtained from the UADC calculations, but,
in each case, we will have to sum the oscillator strengths from
two artifactually split and/or mixed UADC states.

Fig. 6 shows the UADC oscillator strengths. One of the charac-
teristics that is clear on this de-cluttered plot is that each of the
excitations at short distance splits into two states at about 1.2 Å.
This is due to the effect on the core of the sudden polarization of
the valence orbitals. The previously degenerate 1rg and 1r�

u orbi-
tals mix with even a tiny perturbation to create completely local-
ized 1s orbitals on each of the atoms. The excitations from these
then differentiate in energy, due to their asymmetric electronic
environment. The valence orbitals polarize more slowly, however
as shown in Fig. 7.

Let us first discuss the excitations to the p-symmetry orbitals.
For the core ! 2p�

g state, our a-RADC calculation for the energy
uses a completely different transition, so the a-RADC oscillator
strengths are not useful; the energy is valid because we reached
the same final state by accordingly adjusting the reference. In the
properly symmetric picture, the 1r�

u ! 2p�
g state should mix with

the bright 1rg ! 2pu transition that opens up as the hole localizes,
causing it to change smoothly to being an atom-local excitation on
the cationic fragment asymptotically. This state possesses all of the
oscillator strength in space of excitations to the p orbitals at all dis-
tances (the orthogonal state is either CT-like or multiply excited,
depending on distance). As discussed in appendix B, at all dis-
tances, this sole bright state may be approximated as a linear com-
bination of the two UADC excitations that describe transitions of
site-localized core orbitals into the empty orbital that begins as
2p�

g and becomes a site-localized p orbital (9b in Fig. 7). Therefore,
by the limited sum-rule argument of appendix A, we only need to
add the oscillator strengths of these two UADC states to recover the
intensity of the properly symmetric transition.
Fig. 6. The energy of the UADC core–valence states of Fþ2 as a function of bond
distance. The area of each point is proportional to the oscillator strength from the
ground state. The differentiation by symbol shape and color is to visually separate
excitations to the p valence space from those to the r valence space. Lines illustrate
the behavior of bright states in regions where they lose their intensity. At the point
when the UHF reference breaks symmetry, each state splits into two because
polarization of the odd valence electron affects the core levels.
The situation with the core excitations to the r-symmetry
valence orbitals appears more complicated. In addition to the split-
ting of each bright transition into two transitions of different ener-
gies (from distinguishable core states), we again have artifactual
spin-symmetry mixings. We can again fall back on the same robust
abstract arguments as for the neutral. In the exact, symmetric pic-
ture, the Fþ2 bond breaking wavefunction can be described largely
in the same language as the F2 bond breaking, but where the
spin-orbital state of the p-symmetry valence vacancy is entangled
with the spins on the atoms (see appendix B). Asymptotically, the
two atom-local excitations are energetically distinguishable
because one will occur on a neutral and the other on a cation.
These have the same character as the lower two asymptotically flat
UADC states in Fig. 6. The state with the next highest energy
asymptotically is from a CT state that transfers an electron from
the neutral to the cation, such that it is also flat. The fourth state
that branches off from this family of curves is a CT state that gen-
erates a dication and an anion, and this rises quickly in energy.

The two asymptotically local UADC states connect to the dark

degenerate core ! 2r�ðpÞ
u quartets at short distance, whereas the

CT states connect to the degenerate core ! 2r�ðpÞ
u doublets, similar

to the situation with the neutral. As with the neutral, in the prop-
erly symmetric picture, at short distance, there is one bright tran-

sition, here described as a doublet 1rg ! 2r�ðpÞ
u transition in the MO

basis. For UADC at short separation, the oscillator strength for this
state is spread over the two upper states that adiabatically connect
to the CT states. As the bond breaks (in the symmetric picture), the

1r�
u ! 2rðpÞ

g excitation opens up; this mixes with the 1rg ! 2r�ðpÞ
u

excitation to create two bright, atomically local excitations. This is
represented in UADC through the polarization of orbitals and
increase of oscillator strength for the lower local excitations.
Therefore, the correct oscillator strength for the lowest bright exci-
tation to the r-symmetry valence space in the symmetric picture is
simply that of the lowest UADC state at long distance, and it is
approximately the sum of the two upper UADC states at short
distance (more detail in appendix B). This is easily executed by
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summing the oscillator strengths of all but one of the UADC states
at all distances, where the one left out is the asymptotically local
cation excitation (second lowest asymptote).

2.3. Ab initio data for nuclear dynamics and X-ray spectra

According the specific model of strong-field ionization that will
be discussed in the coming section, the relevant nuclear dynamics
will take place on the UCCSD electronic ground-state surfaces
shown in Fig. 2 for neutral F2 and its molecular cation Fþ2 . The rel-
ative displacement of the bonding minima upon ionization will
contribute significantly to the character of the nuclear dynamics
on these surfaces.

For the purpose of following these dynamics using X-ray spec-
troscopy, Fig. 8 shows the result of the preceding prescriptions
for assigning reasonable oscillator strengths to the core–valence
energetic curves that were identified to mimic those from
LR-UCCSD for both species. Even single occupancy of the very

antibonding 2r�ðpÞ
u orbital in either the neutral or the cation creates

a purely repulsive state, which has similar shape for both
molecules. Excitation to the 2p�

g orbital of the cation, however,
restores the valence electronic structure of the neutral, and this
core–valence state is seen to be vibrationally bound, and it is there-
fore much less steep in the neighborhood of 1.3 Å, around which
the cation will oscillate. The steepness of these core–valence
curves will dramatically impact the appearance of the spectrum.
3. Wavepacket dynamics

In contrast to the ab initio calculations, the nuclear dynamics of
a one-dimensional oscillator are quite simple. There are two essen-
tial steps, defining the initial conditions and propagating the
nuclear wavefunction. The core excitation that is probing the
nuclear motion is considered to be effectively instantaneous on
this time scale, and this will be considered separately in the next
section.

The process that initiates the nuclear dynamics is modeled here
as a sudden and completely coherent ionization, assuming that the
molecule is originally prepared in a well-defined vibrational eigen-
state on the neutral surface. A portion of the neutral vibrational
wavefunction for vibrational quantum number v is simply trans-
ferred to the cation surface, leaving also some fraction of the
Fig. 8. The bright core-excited states for F2 and Fþ2 that will be used in the XTAS
simulation. The area of each point is proportional to its oscillator strength. There is
one state for the neutral which is 1rg ! 2r�ðpÞ

u in character at short separations,
connecting to in-phase degenerate atomic excitations at long distances. The cation
has two bright states, best described as 1rg ! 2r�ðpÞ

u and 1r�
u ! 2p�

g , connecting to
local excitations on the neutral and the cation, respectively.
now-distorted vibrational wavefunction on the neutral surface.
The spectra obtained for each value of v may be used to build
finite-temperature simulations.

We imitate (only qualitatively) the Lochfrass process [8,9,6], in
which ionization is more efficient at shorter bond distances
because the antibonding orbital from which the electron comes
is pushed up in energy there. To do this we define two vibrational
wavepackets at the time origin by multiplying the vibrational
wavefunction on the neutral surface (for given v) by two comple-
mentary functions

WneutralðR; t ¼ 0Þ ¼ f ðRÞ1=2Wneutral;vðRÞ
WcationðR; t ¼ 0Þ ¼ ð1� f ðRÞÞ1=2Wneutral;vðRÞ

ð1Þ

where f is a real, positive function, whose value is bounded between
0 and 1. This leaves the nuclear density (electronic coordinates inte-
grated over) unchanged, relative to that of the original vibrational
state. The only other requirement that we will place on f is that it
should be small at short distances, tend towards unity at longer dis-
tances, and pass through 1/2 at approximately the equilibrium dis-
tance of the neutral. Therefore, we choose for convenience
f ðRÞ ¼ 1

2 ½1þ erfð20ððR=ÅÞ � 1:38ÞÞ� because re � 1:38 Å for the neu-
tral, and the multiplier of 20 was found to result in wavefunctions
with roughly symmetric character on both the neutral and cation
surfaces, as seen in Fig. 9 for an initial v ¼ 0. This model assumes
that the ionizing IR field has an equivalent effect on all orientations
of the molecule. The extent to which this is a good model is a topic
that is ripe for investigation by XTAS experiments.

In order to define the initial wavepackets for the neutral and the
cation, we first solve for Wneutral;v on the UCCSD neutral electronic
surface discussed in section 2.1 and shown in Figs. 2 and 9. The
wavefunction is represented on the same grid as is used for com-
puting the electronic potential-energy surface, having a spacing
of 0.02 Å and a domain of 0.8–3.0 Å. The Fourier transform of the
vibrational wavefunction on this grid (with periodic boundaries)
is used to represent the momentum operator. With the vibrational
Hamiltonian now completely defined, the ground-state (v ¼ 0)
wavefunction is converged upon by diagonalizing repeated Lanc-
zos projections [55] of the Hamiltonian (with dimension of 50),
until the norm of the change in the wavefunction between itera-
tions is less than 1� 10�3, meaning the energy is converged to
Fig. 9. The initial nuclear wavepackets on the neutral and cation electronic ground-
state surfaces, assuming ionization from v ¼ 0 of the neutral. The sum of their
densities is equal to the density of the neutral v ¼ 0 wavefunction. This has been
divided into an ‘‘inner” portion on the cation surface and an ‘‘outer” portion on the
neutral surface, in order to imitate the Lochfrass process. The v ¼ 0 state is
represented by the dotted envelope in the background. The vertical spread of each
envelope is proportional to the wavefunction amplitude. Each state has uniform
phase (same sign everywhere).
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roughly six digits of precision. The same procedure is used to
obtain the excited vibrational states (v > 0), with the previously
obtained lower states projected out of each successive calculation.
Since states only up to v ¼ 3 will be needed for the temperatures in
this work, this is sufficiently stable. Relative to the ground state,
these lowest excitations are computed to be at (in cm�1) 1079,
2129, and 3136 (the harmonic fundamental from Table 1 is
1070 cm�1).

OnceWneutral;v has been obtained, eq. (1) defines the initial states
at the time of coherent ionization. These have non-trivial time evo-
lution on their respective UCCSD neutral and cation surfaces. The
time evolution is handled via the split-operator algorithm [56]. A
time-step of 5� 10�3 fs was found to be sufficient to have no
noticeable impact on the results.
4. Spectrum construction

An overview of the procedure by which the spectrum is
constructed for a given delay between strong-field ionization and
X-ray excitation is shown in Fig. 10, for a molecule that starts in
vibrational state with v ¼ 0 before ionization. To first order in
the probe intensity, there are no interferences between the two
possible excitations of the cation; similarly, excitation of the neu-
tral and cation do not interfere. Therefore the absorption spectrum
at any time is the incoherent sum of the contributions from these
Fig. 10. Overview of the XTAS simulation procedure. (A) The initial wavepackets on
the neutral and cation ground-state surfaces from Fig. 9 are shown now 100 fs after
the model ionization event. The vertical spread of the envelope is proportional to
wavefunction amplitude.Complex phase information is illustrated in two ways.
First, the real and imaginary parts are plotted separately. Second, the phase angle (/
in the scalar qei/) is mapped onto the color wheel. (B) The excited state surfaces of
Fig. 8 have their respective ground state curves subtracted from them, to obtain a
vertical axis in photon energy hmX-ray, retaining the horizontal axis in (A). The
oscillator strengths at each point have been scaled by the relevant nuclear densities
from panel (A), and this determines the areas of the points. (C) Instantaneous values
of the components comprising the differential XTAS. Each of the three components
from panel (B) is projected onto the vertical photon-energy axis using the
procedure discussed in the text. The horizontal axis is used to represent the optical
density as a function of energy. A shallower slope of the excited-state surface
results in a sharper absorption feature. The shaded curve represents the background
signal from a completely un-ionized sample.
three transitions. The background X-ray absorption from an
un-ionized sample in the same vibrational state is also subtracted
from this spectrum, in order to obtain a signal that is relatively
independent of the total strong-field ionization rate (to the extent
that this is decoupled from the shapes of the wavepackets
produced), and reflective of the manner in which shot-to-shot
noise is cancelled experimentally.

The XTAS from simulations beginning with different vibrational
eigenstates of the neutral may be Boltzmann weighted and inco-
herently summed to construct finite-temperature results. Vibra-
tional states with less than 1% population in the Boltzmann
distribution are neglected, and the truncated distribution is nor-
malized to unit probability.

We now turn to the manner in which an individual instanta-
neous XTAS contribution may be computed for a wavepacket on
one of the two electronic ground-state surfaces (neutral or cation)
being excited to (one of) the core-excited surface(s), for which we
know both the energy and oscillator strength at every point. The
definition of oscillator strength implicitly averages over rotational
degrees of freedom for isotropically oriented molecules, which we
have already presumed are all exhibiting the same vibrational
dynamics. If we assume that nuclear motion is not important over
the duration of the short X-ray pulse, then absorption AðRÞ at each
nuclear separation R contributes incoherently to the absorption at
the respective photon energy EðRÞ (hmX-ray) for that separation. This
contribution AðRÞ should be proportional to the product of the
instantaneous nuclear density and the oscillator strength as func-
tions of R. The total (energy-integrated) absorption should there-
fore be obtainable by integrating AðRÞ over the nuclear
coordinate; however, the contributions from different nuclear sep-
arations will contribute to an energy-dispersed absorption signaleAðEÞ over an energy window of variable size, depending on the rel-

ative slopes of the ground and excited states, but this eAðEÞ should
have the same integral as AðRÞ.

We now have one function AðRÞ that describes absorption as a
function of nuclear distance, and another EðRÞ that describes exci-
tation energy as a function of distance, and we must convert these

to absorption as a function of energy eAðEÞ. All of these are repre-
sented in Fig. 10 for a 100 fs delay after ionization, along with
the corresponding nuclear wavepackets on each surface at that
time, for a molecule that started with v = 0. Noting that EðRÞ is a
monotonic function over the region of interest, it can be inverted
to define RðEÞ such that the method of integration by substitution
gives for the integrated absorptionZ R2

R1

dRAðRÞ ¼
Z EðR1Þ

EðR2Þ
dE eAðEÞ ð2Þ

where

eAðEÞ ¼ �AðRðEÞÞ dR
dE

� �
ð3Þ

The negative sign here is a direct consequence of the negative
slope of EðRÞ, which motivates us to switch the limits of integration
on the right-hand side to run from low to high energy, thus also

ensuring that we arrive at a positive distribution for eAðEÞ. Eq. (3)
is rather intuitive, as it indicates that a small slope of EðRÞ will
cause absorption over a large stretch domain to coalesce into a nar-
row energy window. This is illustrated in Fig. 10, where the com-
ponent from the excitation with a shallower slope gives a
sharper contribution.

A final technical detail concerns the summation of the compo-

nent signals. Each of the eAðEÞ components at a given time was
obtained by computing the necessary derivative in Eq. (3) at each
R on the nuclear-coordinate grid (finite difference, using the two
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adjacent points), taking the product of this with the oscillator

strength and density at that R, and assigning the resulting eA value
to the appropriate energy. This results in points that are not evenly
spaced in energy, with different energy points used for different
spectrum contributions. For the purposes of adding several func-
tions together, a uniform grid was introduced with a spacing of
0.01 eV, and the value of each spectrum component was computed
for each energy grid point via simple linear interpolation from the
existing data at the nearest non-uniform points on either side of
that energy.

The three components of the signal and the subtractive back-
ground were computed at intervals of 0.2 fs. Fig. 11 shows the indi-
vidual components for a 0 K simulation (starting with the molecule
in v ¼ 0 only). The components arising from the core excitations of
Fþ2 are rendered as purely positive. The background has been sub-
tracted only from the component arising from F2 core excitations,
leaving an almost purely negative feature, since this is thought of
as leading to missing absorption in the overall background-sub-
tracted signal. The combination of all three absorption components
with the background subtraction is shown in Fig. 12 for both 0 K
and for 950 K.
Fig. 11. The first 200 fs of the XTAS components due to F2 and Fþ2 , obtained from the
initial wavepackets shown in Fig. 9. These components will overlap in the complete
signal. The background absorption from an un-ionized sample has been subtracted
from the signal for the neutral, leaving an almost uniformly negative contribution.
Oscillations of the two cation core-excitation signals share the vibrational
frequency of that surface, which is slightly higher than that of the neutral surface.
Both neutral and cation wavepackets begin with an inward trajectory. The neutral
feature moves to lower energies in the first moments because the region of lower-
energy excitation is increasingly depleted. The cation enhancement features move
to higher energies because the inward trajectory is towards increasing core–valence
excitation energy. The Fþ2 core ! 2p�

g feature is the sharpest because its excitation-
energy slope is the most shallow. While the slopes for the two core ! 2rðpÞ�

u

excitations energies are similar, the motion on the cation surface is larger in
amplitude, spreading the corresponding XTAS feature over a broader energy range.
The change in optical density is in arbitrary units on a linear scale.
5. Discussion and conclusions

Figs. 11 and 12 show the behavior of the XTAS signal for F2 as a
function of delay since the coherent ionization event that initiates
the dynamics on both surfaces. Fig. 11 shows the separate compo-
nents from the cation and the neutral, which are summed in
Fig. 12. As the wavepackets on each of the neutral and cation sur-
faces oscillate, the energies of the core–valence absorption maxima
oscillate with them, since the core-excited states are all steeply
repulsive near the neutral and cation equilibrium distances.

Fig. 11 shows the two most important distinctions between the
neutral and cation dynamics; the cation oscillation has a larger
amplitude and a slightly higher frequency. The sizes of the
oscillations in the spectra are functions of both the amplitude of
oscillations along the F–F coordinate and also the slopes of the
core–valence energies with respect to this distance. This is well
illustrated in Fig. 11, in light of what is seen in Fig. 10, by compar-
ison of the two enhancement features from the cation, and by com-

parison of the 2r�ðpÞ
u excitations of the neutral and the cation. The

two cation features share the same underlying vibrational
dynamics, but have different slopes for the core–valence energies,
resulting in different size oscillations in the energy of the absorp-

tion maxima. The two 2r�ðpÞ
u excitations have similar slope, but

the vibrational oscillations themselves differ in amplitude.
In the overall signal in Fig. 12, the same features are present as

in Fig. 11, but with some clear overlap of the signals from the
cation and neutral molecules. Interestingly, this overlap is less
after a delay of about 100 fs, as the oscillations of absorption max-
ima come temporarily into phase. A simulation was also done for
molecules at 950 K, where the first vibrationally excited state of
F2 is roughly 20% populated, commensurate with the thermal exci-
tation of Br2 molecules at room temperature. The fact that the
spectrum is not substantially different than at 0 K is easy to
rationalize, since the dominant character is simply oscillation of
the absorption maxima. For the stretches represented in the lowest
few vibrational states, the electronic surfaces are still nearly har-
monic, such that oscillation frequency is largely independent of
amplitude. Ionization from a molecule in a higher vibrational
wavefunction will result in wavepackets with slightly different
centers (leading to some blurring and loss of signal coherence),
but they will still oscillate with roughly the same frequencies
and have the same phases (because they start on the same side
of the potential minima).

Finer details of the dynamic, including the extent to which the
surfaces are not harmonic may be drawn out by Fourier transfor-
mation. The spectral density (squared norm) of the Fourier trans-
form is shown in Fig. 13 for the 0 K signal of Fig. 12; the result at
950 K is substantially similar. The artificial coloration of the all-
positive data in Fig. 13 was actually produced by separately Fourier
transforming the cation and neutral plots in Fig. 11 and overlaying
the results, providing a plot that is imperceptibly different from the
result of directly transforming the data in Fig. 12 (except for color).
This works because the frequency content of the neutral and cation
contributions are non-overlapping here. In order to obtain reason-
ably sharp peaks, a simulation of 2000 fs was transformed, with
data for the transform being generated at intervals of 2 fs. This cor-
responds to roughly 70 oscillation periods for either the cation or
neutral, over which it should be reasonable to neglect vibrational
relaxation and dephasing in a dilute gas, especially since the sys-
tems have no dipoles. Since the discrete Fourier transform must
assume boundary conditions that are not necessarily met by an
arbitrary signal (in this case, periodicity of 2000 fs), the signal

was first multiplied by the window function ½sin ðpt=ð2000fsÞÞ2�,
which damps the signal and its derivative to zero at the time-
domain ends. Applied to a perfectly periodic signal, this window



Fig. 12. The first 200 fs of the background-subtracted XTAS at 0 K and at 950 K (initially 20% vibrationally excited). In both spectra, the features from the individual F2 and Fþ2
systems are most easily identified at times around 100–150 fs, when their oscillations come into phase. Due to the approximate amplitude independence of oscillation
frequency on nearly harmonic potentials, the difference between the 0 K and finite-temperature cases is minimal.
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would introduce line broadenings on the order of 500 GHz
(20 cm�1), but here it prevents the inherent broadenings from
transforming finite data from being even larger and more jagged.
Only positive frequencies are shown in Fig. 13, since the spectral
density is a symmetric function.

Though it will be interesting to explore the phase information of
the Fourier transform in future work, there is already much that
can be seen from only the magnitude we have plotted. The struc-
ture of the Fourier transform is best understood by considering
the time dependence of the nuclear density along the vibrational
coordinate for either the neutral or cation. If the vibrational eigen-
functions on one of the surfaces belong to the set f/v ðRÞg, each
with energy Ev , and the coherent wavepacket at t ¼ 0 is
WðR;0Þ ¼ P

vcv/v ðRÞ, then the dynamic density qðR; tÞ associated
with the evolution of this wavepacket may be decomposed as
Fig. 13. Spectral density of the Fourier transform of the 0 K plot in Fig. 12 along the
time axis (extended and windowed to remove artifacts — see text); the frequency
axis is converted to wavenumber. Two families of overtone clusters (red and green)
can be seen, having spacings of roughy the harmonic fundamentals of the neutral or
cation (1070 cm�1 and 1260 cm�1, respectively, in this work). The formation of
clusters is the result of anharmonicities, giving different overtones with the same
jDv j slightly different frequencies. Nodal structures of the vibrational wavefunc-
tions are reflected in the structure of each line along the X-ray energy axis. The
coloration is artificial and does not indicate sign.
qðR; tÞ ¼
X
v1 ;v2

½c�v1
cv2 �½/�

v1
ðRÞ/v2

ðRÞ�ei2ptðEv1�Ev2 Þ=h ð4Þ

Therefore, every significantly represented pair of vibrational
eigenstates makes a contribution to the dynamic density in the
form of the product (interference) distribution /�

v1
ðRÞ/v2

ðRÞ, which
has nodes at any location where either of the individual wavefunc-
tions have nodes. Due to themonotonic mapping of X-ray energy to
bond stretch over the region of interest, as seen in Fig. 10, the spa-
tial structure of the density is projected onto the X-ray energy axis
in the spectrum. In a systemwith anharmonicities, each such inter-
ference contributes to a unique Fourier component of frequency
ðEv1 � Ev2 Þ=h, giving rise to the individual vertical lines in Fig. 13.

Drawing on the above, any difference of two vibrational energies
will always be roughly an integer multiple of the v ¼ 0 !1 funda-
mental for that surface, but slightly shifted. This explains why the
vertical lines of Fig. 13 separate into clusters spaced approximately
by the fundamental frequencies, with a larger spacing between the
clusters of cation lines. For the overtones (jDv j > 1), the anhar-
monicities are more evident as higher states are accessed, causing
multiple lines to appear. The lines indeed carry the expected struc-
ture of the vibrational interferences. For example, there are three
clearly visible jDv j ¼ 3 overtone lines for the neutral at around
3000 cm�1. The 0!3 line at highest energy has 0þ 3 zeros, consis-
tent with the combined number of nodes for the v ¼ 0 and v ¼ 3
wavefunctions, whereas the 1!4 line immediately to its left has
1þ 4 zeros, with two occurring very close together. Such structure
is evident elsewhere too, but node counting is often obscured if the
nodes are close together, which is very likely for even overtones
(jDvj ¼ 2;4; . . .). The 0!v lines (highest in energy for each overtone
cluster) for jDv j ¼ 1, 2, 3, and 4 of the neutral all have the expected
number of zeros clearly visible.

The implication of the forgoing for imaging vibrational
wavepackets is immediate, if it would be possible to extract such
a clean Fourier transform from an experiment. With the magnitude
and phase of each of the density interference terms, along with
quantitative theory for both the ground and core-excited electronic
surfaces, complete wavepacket reconstruction should be possible,
and this will be the subject of future work. This offers a route for-
ward for using XTAS as a means to unravel the structure of the
vibrational states produced by a strong-field ionization, thereby
probing the strong-field ionization process itself. This article then
makes clear the role that the modeling of ground-state and
core–valence surfaces may play in using XTAS experiments to
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investigate and even image nuclear dynamics. With regard to
extension beyond coherently ionized dihalogens, one feature that
is expected to be common is precisely the presence of a core–va-
lence resonance with a steep dependence of the energy on the
bond length, which allows for the important mapping of stretch
coordinate to energy. This rests only on the assumption that, in
the neighborhood of any bond, one of the low-lying resonances is
to an antibonding state, making it potentially quite general.

The approximations made in this work for the electronic struc-
ture may have rendered it non-quantitative, but the conclusions
drawn from the qualitative picture are on solid footing. The biggest
unknown with regard to predictive simulations is how line-widths
due to autoionization will impact the conclusions. Some of what
has been learned about dealing with the substantial broken-bond
character of F2 will also translate directly to techniques for pro-
ceeding to Br2 (though spin–orbit coupling will need to be modeled
in order to compare to experiment, since the core electrons come
from a near-degenerate d shell). The insight into how to deal with
XTAS simulation when bonds are breaking should prove to be gen-
erally valuable as well. However, given the difficulty of construct-
ing the spectrum here from symmetry-broken methods, more
general investigations will likely require advances in using lin-
ear-response (and perhaps multi-reference) coupled-cluster theory
to converge properties of high-lying states.

We now have a fully functioning framework by which diatomic
nuclear dynamics and ab initio calculations may be translated into
a time-domain XTAS signal, subject to refinement of the model for
producing the initial wavepackets, which may also be extended to
include orientational dependencies. This can now be used to pro-
vide insight into results from experiments focused on understand-
ing the production of these wavepackets.
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Appendix A. Application of sum rules to state mixings

Let us define a ‘‘brightness operator” B̂ so that an expectation
value taken with respect to it for state jni is roughly proportional
to its oscillator strength f n against the ground state j0i.

f n /
X

w2fx;y;zg
jhnjl̂wj0ij2

/ hnjB̂jni
B̂ ¼

X
w2fx;y;zg

l̂wj0ih0jl̂w

ð5Þ

where l̂w is the component of the dipole operator in the w direc-
tion. In addition to some fundamental constants, a factor of the
transition energy in the definition of the oscillator strength has
been suppressed. As long as we will only consider states whose
energies differ only by a small amount (relative to the ground state),
this too may be considered part of the proportionality constant. This
is a somewhat special-purpose operator in that it references the
ground state of whatever system is under discussion, but we may
now use some well-paved operator logic to make the necessary
point in two sentences. If, in some set of orthonormal states
fjmig, there is only one bright state jni, then, for the oscillator
strength of jni, we have

f n ¼ hnjB̂jni ¼
X
jmi

hmjB̂jmi ¼ TrV ½B̂� ð6Þ

where TrV denotes the trace in the subspace V ¼ spanfjmig. Since a
trace is invariant with respect to basis representation, oscillator
strengths of several states which are mixtures of the basis states
fjmig may be added to obtain the oscillator strength of jni, so long
as (1) the states summed fully span the bright state of interest jni,
and (2) there are no other bright states orthogonal to jni in the
space V.

The application of this rule will be to situations in appendix B
where oscillator strength transfers artifactually between two
energy adiabats, whereby the bright portion of each curve would
be adiabatically connected to each other in a theory with a less
restricted state space, and where these two halves are themselves
faithful representations of the state of interest away from this
region of mixing. In such situations of artifactual state mixing,
the oscillator strength of the state that should connect the two
halves (at the higher level of theory) may be approximately recon-
structed in this region of mixing by simply summing the oscillator
strengths of the two states involved at the lower level. The rule can
also be applied when a single bright state is artifactually split, due
to a symmetry breaking.
Appendix B. Symmetry breaking and state mixings

B.1. Notation and definitions for neutral F2

In order to efficiently discuss the connection between X-ray
excitations in the proper, symmetric CI picture of F2 bond breaking
and the results of symmetry-broken calculations, we first condense
the notation. The 1rg and 1r�

u MOs will be labeled by their inver-
sion symmetry alone, in lower case, as jgi and jui, respectively. The
atom-localized core orbitals will be labeled as jai and jbi, and these
may be constructed from the core MOs as

jai ¼ 2�1=2 jgi þ jui½ �
jbi ¼ 2�1=2 jgi � jui½ �

ð7Þ

Upper-case labels jGi and jUi will be used for the valence

r-symmetry MOs formed from the atomic 2pz orbitals, 2rðpÞ
g and

2r�ðpÞ
u , respectively. For these, it will be necessary to define general

polarized orbitals that continuously connect the bonding MO and
the atomic 2pz orbitals. Let the extent of polarization be character-

ized by the real, positive number 0 6 d 6 2�1=2, which is a
coefficient in the expansion of these orbitals.

jAi ¼ cjGi þ djUi
jBi ¼ cjGi � djUi ð8Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p
. It is presumed that the real-valued MOs form

an orthonormal set, and that their global phases are such that jai
and jAi localize to the same atom. Since we will be exciting core
electrons into the empty part of the valence space, it is also
necessary to define polarized versions of the antibonding MO as
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orthogonal complements to the polarized bonding orbitals jBi and
jAi, respectively, as
jA�i ¼ cjUi þ djGi
jB�i ¼ cjUi � djGi ð9Þ

When d ¼ 0, we have jAi ¼ jBi ¼ jGi, and jA�i ¼ jB�i ¼ jUi. If

d ¼ 2�1=2, then, to within a phase, jAi is the same as jA�i, and jBi
is the same as jB�i, these being the atomic 2pz orbitals at infinite
separation.

The textbook MO-theory electronic configuration that describes
two bonded F atoms is now written as

jMO-theoryi ¼ jg�gu�u � � �GGi
¼ ja�ab�b � � �GGi ð10Þ

where the single bond is the result of double occupancy of the
bonding orbital jGi and non-occupancy of the antibonding orbital
jUi. Collection of an ordered string of orbital labels into a single
ket implies an antisymmetrized product, and a bar over an orbital
label indicates that an electron in that spatial state is spin down,
and it is spin-up otherwise. Orbitals that participate neither in the
bond nor the core excitation are omitted from the discussion

entirely (i.e., 2rðsÞ
g ;2r�ðsÞ

u ;2pðxÞ
u ;2p�ðxÞ

g ;2pðyÞ
u ;2p�ðyÞ

g ), referenced here
only by the ellipsis, which will also henceforth be suppressed. Com-
plete occupancy of both bonding and antibonding linear combina-
tions of a pair of atomic orbitals in a diatomic is mathematically
equivalent to placing a pair of electrons in each of the original
atomic orbitals, and this is the origin of the second line of eq.
(10), which is a reflection of the lack of a core-electron bond.

As the molecule dissociates, jGi and jUi become degenerate, and
the powerful repulsion between electrons introduces a configura-
tion interaction (CI). The bond-breaking singlet wavefunction is
dominated by the following mixing

jCIðRÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
jg�gu�uGGi � tjg�gu�uUUi ð11Þ

where the real, positive number 0 6 t 6 2�1=2 depends on the inter-
nuclear distance R. Asymptotically, t ! 2�1=2, and we obtain after
some algebra

jCIð1Þi ¼ 2�1=2 ja�ab�bABi � ja�ab�bABi
h i

ð12Þ

in which jAi and jBi are the completely polarized orbitals

(d ¼ 2�1=2). Equal occupation of both the doubly bonded and doubly
antibonded configurations results in no net bond, and the wave
interferences localize the previously bonding electrons on two rad-
ical fragments that are spin coupled to form an overall singlet, leav-
ing the spin on either site indefinite.

We have previously noted that the singlet F2 molecule has sub-
stantial broken bond character even at equilibrium, and the config-
urational mixing just discussed is the proper way to describe this.
However, the limited number of correlation amplitudes available
in an affordable calculation has rendered a spin-polarized UHF
wavefunction as our best choice for a single reference configura-
tion. At all separations, there are two degenerate choices, which
may be written as

jUHF��ðRÞi ¼ ja�ab�bABi
jUHF��ðRÞi ¼ ja�ab�bABi ð13Þ

where the extent of polarization d of the orbitals jAi and jBi depends
on the distance R. At small separation, d ¼ 0, and both solutions are
identical to the symmetric jg�gu�uGGi configuration, but, beyond a
critical distance only one of the two symmetry-broken configura-
tions is selected (randomly, by numerical noise). As the orbitals
polarize (d– 0), the doubly excited MO configuration jg�gu�uUUi is
mixed in implicitly, as well as the singly excited triplet, leading to
what is known as spin contamination. Asymptotically, d ! 2�1=2,
and the wavefunction converges to one of the two major configura-
tions that comprises the proper CI wavefunction, approximated in
eq. (12). In a minimal basis, it would have the same energy as the
wavefunction in eq. (12), but it would be an equal mixture of sin-
glet- and triplet-recoupled atoms, whereby the singlet and triplet
are themselves degenerate as R ! 1.

Let us now introduce a condensed notation for the core-excita-
tion basis in either the symmetric or symmetry-broken picture. For
example, let

j�a ! A�i ¼ ŵy
A� ŵ�aja�ab�bABi ¼ jaA�b�bABi

jg ! Ui ¼ ŵy
Uŵg jg�gu�uGGi ¼ jU�gu�uGGi

ð14Þ

where the operators ŵ and ŵy are the usual Fermionic field operators
for electrons. The left-hand side labels the transition in a notation
similar to that used in spectroscopy, and the right-hand side provides
the formal definitions needed to execute the algebra. In the ‘‘spectro-
scopic shorthand,” it is permissible here to suppress writing the ref-
erence onto which the excitation is applied because, for example, if
jA�i is the destination orbital, it means that the reference was
j � � �ABi because jBi is the spin-down one-electron state that is
orthogonal to the target jA�i (so they can both be occupied in the final
configuration). The only configurations ever acted upon by an excita-
tion operator here are the references j � � �ABi; j � � �ABi; j � � �GGi, and
j � � �UUi, with fully occupied cores.

Regardless of whether the symmetric MO basis or the basis of
polarized orbitals is chosen, for this minimal model, we have a
space of eight core–valence excitations that conserve MS (two ref-
erence configurations in either basis, each with two valence vacan-
cies, and two core electrons of appropriate spin to fill each
vacancy). Let us first introduce spin-pure excitations in the MO
basis. This provides four singlets, jSg!Ui, jSu!Ui, jSg!Gi, and jSu!Gi,
and four triplets, jTg!Ui, jTu!Ui, jTg!Gi, and jTu!Gi, of the forms

jSg!Ui ¼ 2�1=2½jg ! Ui þ j�g ! Ui� ¼ 2�1=2½jU�gu�uGGi � jUgu�uGGi�
jTg!Ui ¼ 2�1=2½jg ! Ui � j�g ! Ui� ¼ 2�1=2½jU�gu�uGGi þ jUgu�uGGi�

ð15Þ
This basis provides a bedrock in terms of spin-symmetry and

oscillator strength, into which we may resolve the eight excitations
from the symmetry-broken UHF references. The excitations from
the configuration jUHF��i are
j�a!A�i¼ 1

2 c jSg!Ui� jTg!Uiþ jSu!Ui� jTu!Ui
� ��d jSg!Gi� jTg!Giþ jSu!Gi� jTu!Gi

� �� �
jb!B�i¼ 1

2 c jSg!Uiþ jTg!Ui� jSu!Ui� jTu!Ui
� �þd jSg!Giþ jTg!Gi� jSu!Gi� jTu!Gi

� �� �
ja!B�i¼ 1

2 c jSg!Uiþ jTg!Uiþ jSu!Uiþ jTu!Ui
� �þd jSg!Giþ jTg!Giþ jSu!Giþ jTu!Gi

� �� �
j�b!A�i¼ 1

2 c jSg!Ui� jTg!Ui� jSu!Uiþ jTu!Ui
� ��d jSg!Gi� jTg!Gi� jSu!Giþ jTu!Gi

� �� �
ð16Þ

and the excitations from the configuration jUHF��i are
ja!A�i¼�1

2 c jSg!Uiþ jTg!Uiþ jSu!Uiþ jTu!Ui
� ��d jSg!Giþ jTg!Giþ jSu!Giþ jTu!Gi

� �� �
j�b!B�i¼�1

2 c jSg!Ui� jTg!Ui� jSu!Uiþ jTu!Ui
� �þd jSg!Gi� jTg!Gi� jSu!Giþ jTu!Gi

� �� �
j�a!B�i¼�1

2 c jSg!Ui� jTg!Uiþ jSu!Ui� jTu!Ui
� �þd jSg!Gi� jTg!Giþ jSu!Gi� jTu!Gi

� �� �
jb!A�i¼�1

2 c jSg!Uiþ jTg!Ui� jSu!Ui� jTu!Ui
� ��d jSg!Giþ jTg!Gi� jSu!Gi� jTu!Gi

� �� �
ð17Þ

In order to relate the excitations in the symmetry-broken pic-
ture to those in the properly symmetric picture, we immediately
note that we may eliminate the triplet components by defining
the following superpositions

jSa!A� i ¼ 2�1=2½j�a ! A�i � ja ! A�i�
jSb!B� i ¼ 2�1=2½jb ! B�i � j�b ! B�i�
jSa!B� i ¼ 2�1=2½ja ! B�i � j�a ! B�i�
jSb!A� i ¼ 2�1=2½j�b ! A�i � jb ! A�i�

ð18Þ
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These states mix excitations from each of the two symmetry-
broken references, and the form of these is recognized as being that
of spin-angular-momentum-conserving local excitation operators
(in-phase promotion of spins) acting on the subtractive superposi-
tion of polarized references that asymptotes to that given in eq.
(12). These states represent pure singlets that are either atom-local
or CT in character asymptotically, and they provide a good basis for
thinking about the excitation process at large interatomic
separation.

At large separation, the two local excitations jSa!A� i and jSb!B� i
and the two CT excitations jSa!B� i and jSb!A� i each form degenerate
pairs. Taking only the bright, in-phase linear combination of these
(which can be determined by detailed consideration of orbital
phases) provides superpositions of the only two MO-basis excita-
tions that are bright on account of spin and space symmetry,
jSg!Ui and jSu!Gi.

jlocali ¼ 2�1=2 jSa!A� i þ jSb!B� i½ � ¼ cjSg!Ui � djSu!Gi
jCTi ¼ 2�1=2 jSa!B� i þ jSb!A� i½ � ¼ cjSg!Ui þ djSu!Gi

ð19Þ

These two states are not orthogonal on account of the overlap of
jA�i with jB�i, and they both contain a larger component of jSg!Ui
than jSu!Gi, except at infinite separation where orbital polarization
is complete.

B.2. Discussion of neutral F2

The foregoing gives us now crucial insight into the relationship
of local and CT excitations at large separation to the MO-picture
excitations at short distance. At short distance, the jlocali and the
jCTi state mix as the energy difference between them lessens,
and the intuitive bright jSg!Ui excitation in the MO picture may
be recovered as

jSg!Ui / jlocali þ jCTi ð20Þ
The fact that jlocali and jCTi become highly overlapping as the

bond distance shortens simply means that the orthogonal
complement

jSu!Gi / jlocali � jCTi ð21Þ
is not well represented as a superposition of single-electron excita-
tions on top of the ground-state. Indeed, per the definition of jSu!Gi
as a single excitation relative to the j � � �UUi configuration, this is
best thought of as a multiply excited state, relative to the ground
state. Although it is a valid member of the Hilbert space, it is spec-
troscopically dim (formally allowed but effectively dark). At short
distance, the core-excited eigenstates are best described as jSg!Ui
as a lower bright state and jSu!Gi as an upper dim state. As the bond
distance increases, jSu!Gi is less dim because the bond breaking CI
opens vacancy in the jGi orbital in the ground state. Similarly
jSg!Ui decreases in brightness as jUi increases occupancy in the
ground state. Simultaneously, these two excitations mix, concen-
trating their combined spectroscopic strength in the lower jlocali
state, with the transition dipoles interfering in the orthogonal com-
plement jCTi, such that it is dim, as we intuitively expect from a CT
state.

These are then the best qualitative descriptions of the charac-
ters of the two most well-represented LR-UCCSD curves seen in
Fig. 3. The lower asymptotic state jlocali adiabatically connects
to the intuitive MO-picture state jSg!Ui at short distance, and this
is the only bright state. This state traces a simple curve that is flat
at the asymptote and rises steeply at short distances, and it has the
lowest energy at all distances. The upper asymptotic jCTi state adi-
abatically connects to the multiply excited jSu!Gi at short distance,
and this state is both dim and higher in energy at all distances.
Both of these states can be represented in an LR-UCCSD calculation
because even the multiply excited state at short distance needs
only double excitations above the reference. Both of these states
will also mix with states of other character as they rise in energy
outside the window of interest near 1.4 Å, and this explains why
the CT state appears to have a flat asymptote (because the remain-
der of the Coulombic part has been raised off of the top of the plot
by such a mixing).

The forgoing has considered the situation in a minimal basis but
with no restrictions as to what excitations might be present, com-
menting only at the end that the excitations that arose naturally in
the discussion are available in LR-UCCSD. In a UADC calculation,
however, the state jSu!Gi is not present at short distances, due to
its doubly excited character (relative to the reference). The triplet
state jTu!Ui is present though, and, due to broken spin symmetries,
it and other triplets mix with the singlet states. Repeating the
above algebra with the states available from one of the symmetry
broken references, say jUHF��i, we obtain

jlocal��i ¼ 2�1=2 j�a ! A�i þ jb ! B�i
h i

¼ 2�1=2 cjSg!Ui þ djTg!Gi
� �� cjTu!Ui þ djSu!Gi½ �� �

jCT��i ¼ 2�1=2 ja ! B�i þ j�b ! A�i
h i

¼ 2�1=2 cjSg!Ui þ djTg!Gi
� �þ cjTu!Ui þ djSu!Gi½ �� �

ð22Þ
As in the fully symmetric picture, at short bond length, the local

and CT states mix. Accounting also for the fact that the orbitals are
not polarized at short distances (d ¼ 0; c ¼ 1), we have

jSg!Ui / jlocal��i þ jCT��i
jTu!Ui / jlocal��i � jCT��i ð23Þ

Since the orbitals jgi and jui are degenerate at this geometry,
only the exchange contribution differentiates the energies of these
two states, and, in this case, the lower state is the triplet; this is
dark with respect to excitation from the ground state (which tends
toward a spatially symmetric singlet at short bond distance).

As the atoms separate, however, the singlet jSg!Ui and triplet
jTu!Ui excitations must mix, in order to isolate the jlocal��i and
jCT��i states as they become very different in energy. Simultane-
ously components of the singlet jSu!Gi and the triplet jTg!Gi also
begin to mix in as a result of orbital polarization. Meanwhile, the
triplet components are no longer dark because the ground-state
wavefunction is also spin contaminated. The transition dipoles of
all these components nevertheless interfere constructively in the
jlocal��i state, which is bright, leaving the asymptotically higher
jCT��i state dim. This means the bright and the dim state must
cross energetically, due to the spin contamination. This then
explains the appearance of the curves in Fig. 4. Before the point
of symmetry breaking, the two curves are best thought of as
jSg!Ui and jTu!Ui, which are both descending steeply in energy,
with the dark triplet being lower. When the orbitals begin to
polarize, singlets and triplets mix, the local excitations separate
from the CT states, and the oscillator strength transfers from the
upper jSg!Ui state to the lower jlocal��i state over an interval of
roughly 0.5 Å.

One important thing that the above discussion shows us is that
the lower two states in the UADC calculations are well represented
as a superposition of the same two many-body basis states at all
distances, these being jlocal��i and jCT��i, which possess all of the
oscillator strength inherent to the low-lying single-electron transi-
tions. At each bond-distance limit, there is only one bright state. At
short bond distances, the upper state is purely jSg!Uiwhich has the
same oscillator strength as the lowest-energy singlet in the proper,
symmetric picture. At long distance, the lower state jlocal��i has
the same oscillator strength as jlocali in the symmetric picture.
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Therefore, by the argument forwarded in appendix A, the oscillator
strength of the state of maximum brightness in this space that con-
nects these two end points is given at all points by the sum of the
oscillator strengths of these two states at each point. It further
stands to reason that this approximates the oscillator strength of
the lowest state in the fully symmetric picture, this being the only
bright one.
B.3. Informal extrapolation to Fþ2 cation case

The situation with the cation excitations is in some ways much
more complicated, but many features are wholly analogous.

In the completely symmetric picture (such that dissociation is
to a superposition of F� � � Fþ and Fþ � � � F), the process can largely
be thought of as containing the same r-bond breaking as for neu-
tral F2, but where a p-symmetry hole of mostly definite spin is
entangled with the spin states of the two r-symmetry electrons
that are unpairing, in order to maintain that the cation (on which-
ever side it is located) is a triplet and that the neutral is a doublet,
these being recoupled to an overall doublet of definiteMS. In fact, it
is more complicated than that, since proper spin recoupling
demands that neither the spin projection of the p hole at short dis-
tance nor of the atomic fragments asymptotically can be definite.
This means also that the projection of the wavefunction in the r
bond-breaking space will also contain triplet components.

In spite of the formal increase in complexity, most features of
interest may be qualitatively discussed in analogy to the neutral
without needing to introduce the heavy notation necessary to dis-
cuss them formally. Asymptotically, excitation from the core to the
r valence space must contain four primitive excitations, two of
which are local to the neutral or the cationic atoms, and two of
which are CT-like in character. The local excitations are, as before,
the asymptotically bright excitations, but these are no longer
degenerate; the lower of the two is the excitation on the neutral.
At short bond distance the only bright excitation to the r valence

space is from the 1rg orbital to the 2r�ðpÞ
u orbital, which is also

the lowest energy excitation. Therefore, the local excitation on
the neutral atom (on whichever side it is located) will connect adi-

abatically to the 1rg ! 2r�ðpÞ
u excitation as the lowest state at all

distances, and this state will be bright. The higher state that
asymptotes to the bright local excitation on the cation must there-
fore adiabatically connect to a state that is dim at short distance.

In light of the prior discussion of the UADC excitations of the
neutral, the UADC curves for the excitations to the r space of the
cation in Fig. 6 have a relatively transparent structure. At short dis-
tance the lowest (only) two curves for excitations to the r space
are a bright doublet (the higher state), generated by the in-phase
excitation of the two spins out of the 1rg orbital and a dark state
generated by the out-of-phase spin excitations. The out-of-phase
transition (lower state) is predominantly a quartet, but there is
some contamination from a dark doublet with a similar exchange
energy. At the point when the symmetry breaks (�1.2 Å), the
valence orbitals polarize only slowly, but the degenerate core orbi-
tals localize immediately, due to the charge asymmetry. At this
point excitations from each of the localized cores rapidly differen-
tiate in energy, causing both the upper and lower state to bifurcate,
even as they are only slightly spin contaminated (locality of excita-
tion and spin purity are not strictly related, as demonstrated above
explicitly for the neutral). As the distance increases, the valence
orbitals continue to polarize and eventually localize letting each
of the four excitations be well described as either local or CT states.
Similar to what happened with neutral F2, this orbital polarization,
and separation of local and CT character, must be accompanied by
mixing of doublets and quartets, leaving all states heavily spin con-
taminated at the asymptote. In this mixing, it is the lower (after
bifurcation) doublet that mixes with the lower quartet as these
both describe an excitation from the core that has localized to
the atom that will eventually be neutral; the upper of these two
states is asymptotically a dark CT state, but it is energetically flat
because the result of the excitation is still a cation and a neutral;
the lower of these two states is a bright local excitation on the neu-
tral. When the upper doublet mixes with the upper quartet, the
result is a bright local excitation on the atomic cation, which has
the second highest asymptote overall (only the aforementioned
local excitation on the neutral atom is lower), and a dark CT state
which transfers an electron from the cation to the neutral, thus ris-
ing quickly in energy.

As with the neutral, the lowest-energyMS-conserving core exci-
tation (a doublet here) should be the sole bright state at short dis-
tance, but the asymptotically lowest-energy state that it should
connect to is now one of two bright states. These two asymptotic
bright local excitations are well represented in the UADC calcula-
tion, but, at short separation, they coalesce and erroneously con-
nect to the dark predominantly-quartet state. The oscillator
strength for the doublet state that it should connect to is, after
the symmetry breaking point, split over two upper states (distin-
guished by the location of the core hole), which themselves erro-
neously connect to the two CT states. This is in full analogy to
what we have seen with the neutral, except that there are two
CT states, differentiated by the cation–neutral asymmetry. There-
fore, it is reasonable to do as we did with the neutral and add
the oscillator strengths from the lowest state that starts as a dark
quartet and the bright upper two states that lose intensity as they
transition to being CT states, such that this smoothly describes the
intensity of the correct state that progresses from being the single
bright MO-picture excitation to being the lower of the two bright
local states asymptotically. The oscillator strength for the higher
local excitation (on the cation) separates out of this sum naturally,
as this state that is not included picks up its own intensity
asymptotically.

The situation with the core ! 2p�
g transitions (arbitrary x; y ori-

entation) is easier to understand, and these transitions are com-
pletely separate by symmetry from excitations to the valence r
space. In the properly symmetric picture, the only bright primitive
excitations are 1r�

u ! 2p�
g and 1rg ! 2pu. The 1rg ! 2pu excita-

tion is only relevant at longer distances when configurational mix-
ings localize the p hole to whichever atom is the cation in a given
half of the overall superposition. At short distances, only the
1r�

u ! 2p�
g is available. At the point at which the two core states

suddenly localize, the p-symmetry valence hole is still a good
approximation of a delocalized MO, as suggested by Fig. 7 (at
1.4 Å). It is then clear that the 1r�

u ! 2p�
g excitation can be approx-

imately constructed as a superposition of the transition from each
local core orbital to this delocalized valence orbital, and so, by the
arguments in appendix A, the oscillator strength of the 1r�

u ! 2p�
g

transition is simply the sum of the oscillator strengths of these two
UADC states. In the properly symmetric picture, this 1r�

u ! 2p�
g

transition adiabatically connects to an in-phase superposition of
local core ! 2p excitations on the cation, and the lower relevant
UACD asymptote is indeed a faithful representation of this transi-
tion (only where the side on which the cation is located on is def-
inite), so that adding to its oscillator strength the zero intensity
from the other curve continues to provide the correct oscillator
strength. The higher state represents the dark, neutral!cation CT
state asymptotically.

It is worth noting for completeness of discussion the double
degeneracy of the core ! 2p excitations on cation asymptotically
(at both the UADC and LR-UCCSD levels), where one of the excita-
tions is to the r-symmetry space and one is to the p-symmetry
space.
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