UC Irvine
ICS Technical Reports

Title
A Decision Tree Language

Permalink
https://escholarship.org/uc/item/5fp6x4d4

Authors

Tonge, Fred M.
Woodsmall, Roger

Publication Date
1970-03-01

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5fp6x4d4
https://escholarship.org
http://www.cdlib.org/

A DECISION TREE LANGUAGE

Fred M. Tonge and Roger Woodsmall

TECHNICAL REPORT No. 3, MARCH 1970

1. INTRODUCTION

This paper describes a language for creating, modifying, and manipulating
decision trees. The language is intended as a tool for students and decision-
makers in exploring the use of decision trees as a structﬁre for stating and
analyzing decision problems. It is intended to be implemented on a computer
system with typewriter ox teletype-like access. The language reflects the

viewpoint of Raiffa, Howard, Decision Analysis, Addison-Wesley, 1968, and is

perhaps best used in conjunction with that book.

The paper presents first an example of the use of the language'in
structuring a decision problem, then an informal description of the language,
then a further example of its use, and finally some proposed extension to the
language. Two technical appendices contain a precise and formal description

of the language and some comments on a particular computer system implementa-

tion.

2. EXAMPLE

Decision trees are a means of displaying a. decision problem so as to make
clear the structure of the problem and the computations neceésary to arrive at
a solution.

As an example, consider the following problem (adapted from Raiffa)a
There is a collection of 1000 ummarked urns, 800 of which (type 1 urns)
contain 4 red balls and 6 black balls and 200 of which (type 2 urné) contain
9 red balls and 1 black ball. A single urn is selected at random from the
collection, and you as the decision-maker are offered the following bet. You
are to guess whether the selected urn is type 1 or type 2. If you guess type
1 and the urn is type 1, you win $40, but if it is type 2 you lose $20. On
the other hand, if you guess type 2 and are right, you win $100; in that case,
if you are wrong you lose $5. You can, of course, refuse to bet. And, as an
added inducement, for a modest fee of $8, you can draw one ball from the
selected urn before guessing its type. What should you do?

One representation of this problem as a decision tree is given in figure
1. Squares indicate points at which the decision-maker has a choice; circles
indicate points at which the decision is determined by chance. Dollar values
at the ends of paths indicate the payoff if that particular sequence of
choices and chance events should occur, and the probabilitics associated with
paths from chance events are the probability of that chance event given the

previous events in the path to that event.

BeT

The analysis of such a decision tree is carried out by successively
(1) averaging the payoffs associated with the branches from a chance point to
find an expected payoff, and (2) choosing from among the branches at a choice
point that with the highest expected payoff (taking into account, of course,
any extra charge for making a particular choice). This process of analysis
is called "averaging out and folding back".

Figure 2 shows the result of such analysis for our example. On the
average, the opportunity to engage in this wager should result in a profit of
$28.00 for the decision-maker. He should not choose to pay $8.00 and draw a
ball from the selected urn, but rather should always guess that the urm is
type 1. The right to draw a ball is no bargainat $8.00, but it would be at
any charge less thanv$7.20.

(We shall omit here any discussion of whether it is reasonable, of even
permissible, to use averages and expected values in making a choice that is

not repeated. Raiffa discusses this point at some length.)

BET

‘The computer system described here will carry out the averaging-out-
and-folding-back process on a decision tree described to it. One way of
presenting the example tree, and the resulting computations, ig given

below. (Statements beginning with exclamation marks are comments.)

?

! LINES BEGINNING WITH AN '"!' ARE COMMENTS

#BET: CHOICE N=#REFUSE,#NODRAW,#DRAV V=0,0,-8

! BET IS A CHOICE POINT WITH BRANCHES NAMES REFUSE, NODRAW, AND
! DRAW, WHICH HAVE VALULS OF 0,0, and ~8 RESPECTIVELY.

! NEW BRANCH NAMES ARE PREFIXED WITH '#', AND COSTS ARE SHOWN

! AS NEGATIVE VALUES.

NODRAW: CHOICE N=#/CHOOSEL,#CHOOSE2

! NODRAW WITHOUT A '#" REFERS TO THE PREVIOUSLY DEFINED NODRAW
CHOOSEL: CHANCE N=#IS1,#182 V=40,-20 W=.8,.2

! THE RELATIVE WEIGHTS OF IS1 AND IS2 ARE .8,.2

CHOOSE2: SAME AS CHOOSEl V = -5,100

DRAW: CHANCE N=#RED,#BLACK W=.5,.5

RED: SAME AS NODRAW

<RED.IS1 W=.64

.RED.IS2 W=.36

! \RED.IS1 REFERS TO ALL BRANCHES "FURTHER OUT" THAN RED WITH NAME IS1
BLACK: SAME AS NODRAW "

.BLACK.IS1 W=.96

.BLACK.IS2 W=.04

! WE MAY NOW DISPLAY THE TREE (TO ANY DEPTH) AND ALSO AVERAGE
! OUT AND FOLD BACK

DISPLAY TREE BET TO 5

BET
2,7.7
7,7,1

REFUSE
1, 0,?

NODRAW
1, 0,7
H H

DRAW
1,-8,7

CHOOSE1L
1,2,7

CHOOSE2
1,2,7

RED
«5,7,17

BLACK
.5,7,7

Is1
.8,40,7

IS2
.2,-20,7

ISl
.8,-5,7

182
.2,100,7

CHOOSEL
1,7,?

CHOOSE?2
1,2,2

CHOOSE1L
1,2,7

CHOOSE2
1.72,2

IS1
.64,40,7

IS2
.36,~20,2

Is1

64,57

1S2
.36,100,7

ISl
.96,40,2

" IS2

.04,-20,7

151
.96,-5,2

182
4,100,7

? ! IN THE TRIPLE GIVEN WITH BACH BRANCH, THE FIRST
? IS A "!'' FOR A CHOICE PT AND THE APPROPRIATE WEIGHT

? 1 (OR A "2', IF UNDEFINED) FOR A CHANCE BRANCH. THE SECOND
? ! IS COST OR VALUE, IF DEFINED, AND THE THIRD FIGURF IS
? | THE EXPECTED PAYOFF COMPUTED FOR THAT BRANCH

? AFB BET

Ev= 28

OPTIMAL CHOICE IS NODRAW

7 DISPLAY TREE BET TO 5

BET
?,7,28

'REFUSE
1, 0, 0,

NODRAW
1, 0,28

DRAW
!,-8,35.2

CHOOSEL
i,7,28

CHOOSE2
1,7,16

RED
.5,7,32.8

BLACK
«5,7,37.6

IS1

8,40, 0

152
.2,-20, 0

151
.8,-5, 0
1S2
.2,100, 0

CHOOSEL
1,7,18.4

CHOOSE2
1,7,32.8

CHOOSEL
t,7,37.6

1S1
.64,40,0

152
.36,-20, O

Is1
64,~5, 0

IS2
.36,100, 0O

151
96,40, 0

Is2

.04,-20, 0

CHOOSEZ2 ISl

1,7,-.8 .96,-5, 0
152
.04,100, 0

3. THE DECISION TREE LANGUAGE

A formal description of the decision tree language appears in appendix
A; this section presents the language informally.

Names refer both to a branch and to the node ending that branch.
Simple names are composed of one or more alphabetic characters; as, "X,
“BCD'", or "ALPHA". |

It is possible for a tree to contain several branches with the same
name (see below). Compound names are formed by concatenating (with a dot)
branch names so as to uniquely specify a single branch. ©Not all branches
leading to a specific branch need be given, nor need those given be adjacent,
hs long as a unique branch is specified. In case of an ambiguity, the branch
closest to the root of the tree is taken; if there is no one closest branch,
an ambiguity error occurs. Thus, in the example, C refers to the first

(leftmost) branch so named and C.C to the second. C.D and B.D refer to

different branches.

e \Q

10

Since several branches may have the same name, it is necessary in
specifying a branch to indicate whether the name refers to a previously
defined branch with that name or a new branch with that name. By convention,
branches being newly created are named with simple names preceeded by a "'#".
Thus, the example tree given above would be defined by specifying:

branch #B with subbranches #C, #D, and then

branch C with subbranches #C, #D.

Occasionally it is desirable to refer to all of the branches with a
certain name. This is done by preceding the name with a ".". For example,
in the program in section 2, .RED.IS1 refers to two branches, specifically
BET.DRAW.RED.CHOOSE1.IS1 and BET,DRAW.RED.CHOOSEZuISl.'

The define command is used to create a new branch and subbranches, to
join together existing trees, or to modify existing trees. It is begun by
naming a (possibly new) branch. A value, weight (if it emanates from a chance
node) and/or a new name may be given for the branch. Values are specified by
"v="", weights by "W=", and names by "N=". _

Thus, the name of the existing branch now named DRILL is changed to
EXPLORE by)
| DRILL N=EXPLORE ,
and a new branch ALPHA is created with weight 27.3 and value -50 by

BALPHA V=-50 W=27.3 |

Substructure for the branch is specified by giving a colon optionally
followed by CHOICE or CHANCE to indicate the type of branch and by correspon-
ding lists of subbranch names, values, and (if a chance branch) weights.
Alternatively, the substructure can be indicated by indicating a similar branch
(e.g., SAME AS or COPY OF) followed by those names, values, and weights which
are to be different. _

Thus, the example tree given above would be defined precisely with

#B: CHANCE N=#C,#D and
C: CHANCE N=#C,#D

Weights may be non-negative expressions, or -, meaning the previously
defined weight, or ?, meaning undefined. Values may be expressions, -, or ?
Expressions are composed of variables or numbers combined using the arithmetic

operators -, -, %, /, 4, and parentheses for grouping variable names are

formed using the same rules as simple names.

11

The assign command assigns the value of the given expression to the

specified variable. Thus,

GROSS = 3.6

NET = 2.5%GROSS + 1.242
assigns the value 3.6 to GROSS and 10.44 to NET.

The display command is used to print out specified information. This
may be the value of a variable, the roots branch nodes of all defined trees,
a particular tree to a specified depth, or the expected value of a node. In
the latter case, if averaging-out-and-folding-back has not yet occurred, a
message to that effect will be printed. The four options of display are

illustrated by the following.

DISPLAY NET
DISPLAY - ALL ROOTS
DISPLAY TREE B TO 3
DISPLAY EV OF B.C

The erase command deletes the branch (or branches, if ambiguous)
specified and all of its (their) subtrees, as in |
ERASE B.C. .
The break command disconnects the specified (unique) branch énd its

subtrees, thus forming a new tree (unless the specified branch was already a

root).
BREAX B.D

The average-out-and-fold-back command causes the specified tree or subtree

to be evaluated, defining expectéd values for each node from the leaves of the
tree to the root. The expected value of the specified root and the optimal
choice, if a choice node, are printed. For example,

AFB DRILL
4. EXTENDING THE EXAMPLE

Suppose that, in the situation described in section 2, you are offered
an additional course of action. For a mere $12, you can draw not one but two
balls from the selected urn before guessing its type. Should you invest the
$12 rather than guessing without any information?

Je can construct the tree representing this new alternative with the

following commands.

! FIRST, CYMPUTE THE PROBABILITES @F DRAWING TW@
! REDS, §NE RED AND @NE BLACK, @R TW¢ BLACKS

PRR = ,8%.4%3/9+, 2%,9%8/9
PBB = ,8%.6%5/9+4, 2% ,1%0
PRB = 1-PRR-PBB

! NEXT, SPECIFY THE TREE .)
#DRAW2 V=-12: CHANCE N=fRR,#RB,#BB W=PRR,PRB,PBB
RR: C@PY ¢F N¢DRAW

RR.IS1 W= (.4%3/9)%.8/PRR

.RR.IS2 W= (.9*8/9)*.2/PRR

RB: CPPY ¢F NPDRAW

RB.ISI W= (.4%6/9+.6%4/9)%.8/PRB

\RB.IS2 W= (.9%1/9+.1%1)%.2/PRB

BB: CGPY GF NODRAW

.BB.IS1 W= 1

.BB.IS2 W= 0 '

! NW WE CPULD FIND THE EXPECTED VALUE ¢F

! DRAW2 DIRECTLY WITH THE FOLLOWING CHMMAND

AFB DRAW2 |

! ($UTPUT HAS BEEN SUPPRESSED)

! $R WE CHULD ADD DRAW2 INT($ THE THTAL

! DECTISI@N TREE AND REEVALUATE THAT

BET: N=DRAW2

AFB BET

Checking that the above commands do perform as specified, and do
produce the same result as given in Raiffa, is left as an exercise for the

user.
5. FUTURE EXTENSIONS

Iwo types of additional features can be added to this program, those
simplifying the handling of calculations already introduced and those introduc-—
ing new functions.

Current abilities could be enhanced by introducing notation for (a)

referring to branch weights, (b) using Bayes'lheorem, and (e) "flipping"

12

decision trees. We shall discuss each of these in turn.

(a) Often branch weights can be specified in terms of other branch
weights. For example, the weight of branch RR in the example could be given
as the weight of R.IS1%3/9 plus the weight of R.IS2%8/9. A more compact
notation would be:

W(RR) = W(R.ISL)*3/9 + N(R*ISZ)*8/9.

(b) A similar extension would allow the specification of (possibly
conditional) probabilities as a special class of variables, and the automatic
calculation of a conditional probability using Bayes' Theorem if that prob-
ability were undefined but its defining data were given. Thus, in the ex—

ample, if

P(RR) = W(RR)
P(1) = .8 |
P(RR|1) = .4%3/9 |

it

then‘

W(.RR.IS1) = P(1|RR)
could result in the automatic calculation of P(l}RR) as

P(RR| 1)*P(1) /P (RR).
" Since the notation makes clear the interdependencies among probabilities,
changes in the probability of an event could result in "automatic" undefining
of conditional probabilities involving that event.

- (¢) In some cases it is easier to find the probabilities of branches in

a decision tree by first specifying a related tree and then reordering

("f£lipping") the tree. For example, the tree
8

tf

O

Y ey
- ey
4;fé¥/’//<:i:¥;\\““-C3
3&55‘3& 12\‘ A9 -0
=

-f

follows directly from the problem statement. Since path probabilities must
remain the same, this gives an easy way to compute branch probabilities in the

"flipped" tree.

14

This operation could be carried out with a command of the form
FLIP BASIC

Among the most useful new functions would be ones enabling specification
of (d) individual utility functions, (e) individual subjective probabilities,
and (f) normal form of analysis.

(d) For those users of the decision tree program who ére unwilling to use
the average values of the costs and benefits inveolved, the program could elicit
an estimate of their indifference curve for money by proposing a series of
lotteries related to the decision problem. For example, if the decision
situation offered a maximum possible gain of $100 and a maximum possible loss
of $20, the first lottery would attempt to ascertain the value of an even
chance to win $100 or lose $20. Suppose such an oppeortunity were worth a sure
$25 to the decision—maker. ‘The next lottery proposed would be a 50-50 chance
at winning $100 or $25, and so forth. The program could generate lotteries
and check for '"reasonableness" (risk-aversion) in the indifference curve it
devéloped. (Not that risk-preference would be forbidden, but it would be
questioned.)

The dialogue establishing an indifference curve might start off as follows.

WOULD YOU RATHER HAVE $40 OR A 50-50 CHANCE AT WINNING
$100 OR LOSING $207

$40

WHAT ABOUT $30 OR THE 50-50 CHANCE?
$30 ,

$20 OR THE 50-50 CHANGE?

THE BET

FOR WHAT AMOUNT (BETWEEN $30 AND $20) WOULD YOU BE
INDIFFERENT?

$25

OKAY, A 50-50 CHANCE AT $100 OR -$20 IS WORTH $25
TO YOU. ©NOW LET'S TRY ANOTHER

WOULD YOU RATHER HAVE $65 OR A 50-50 CHANCE AT
WINNING $100 OR WINNING $257

15

THE 50-50 CHANCE
THAT SEEMS INCONSISTENT WITH YOUR PREVIQUS ANSWER.

And so forth.

(e) The estimation of subjective (or judgmental) probabilities could
follow much the same lottery format to establish the decision-maker's
subjective judgment as to the likely outcome of a chance event.

(f) An alternative form of analysis for such decision problems as are

discussed here is to spell cut all possible strategies, evaluate them for

~each -possible "state of nature" and choose that which maximizes expected
return given the decision-makers indifference function for money and Judg-
ment as to nature. In our example, such strategies would be: "don't play";
or, "always choose type 1"; or, "always choose type 2"; or, "draw one ball,
if red choose type 2, if black choose type 1"; and so forth. Of course, a
small subset of the possible strategies dominate all others, and it is from
these that the optimum strategy must be chosen. For example, the complete
set of strategies for our example probiem includes "always choose type 1"
and "draw one ball, if red choose type 1, if black choose type 1". Clearly,
no matter what the probability of type 1, the latter strategy returns $8 less
than the former.

Given the decision tree in the form specified earlier, it would be
straightforward for a mechanical procedure (a brogram) to select the
dominant strategies and list them according to the probabilities of various

states for which they were optimum.

16

APPENDIX A -- FORMAL SYNTAX

<command> 1= <define> | <assign> | <display> | <erase> | <break> |
<afb> | <comment> *

<display> 1= DISPLAY <display spec> %%

<display spec> ci= TREE <compound name> TO <integer> | ALL ROOTS |

EV OF <compound name> | <expression>

<erase> ::= ERASE <dotted name>

<break> i:= BREAK <compound name>

<afb> HHE AFB <compound name>
<assign> RS <$imple name> = <expression>
<comment> ‘ ti= ! <anystring>

<define> ::= <branch spec>,<NVW‘spec> |

<branch spec> <NVW spec> : <structure spec>

<branch spec> ::= <branch name> | <dotted name>
N = <simple nameﬂ4 Kk
<NVW spec> <.z W = <weight>
V = <value> J
<welght> 1:= <expression> | - | ?
<value> ::= <expression> | - | 2

i

<structure spec> <copy spec> <wvl spec> | <type> <nwvl spec> |

<wvl spec>
<copy spec> vt= COPY OF <compound name> | SAME AS <compound name>

<type> ::= CHOICE | CHANCE

* meaning: a command is a define or a assign or a display or ...

** meaning: a display is the word DISPLAY followed by a display spec.

waw meaning‘ a NVW spec is any or all of the alternatives, 1n any order,
but without repetitions.

17

. N = <pame list>
<nwvl spec> Tim W = <weight list>
V = <value list> |

<name list> S <name>,<name list> | <name>
<weight list} 1= <weighf>,<weight list> | <weight>
<value list> HEE <value>,<value list> | <value>
<expression> 11 <expression> + <term> | <expression> - <terﬁ> I
+ <term> | - <term> | <term>
<term> 1:= <term> * <factor> | <term> / <factor> | <factor5
<factor> ::= <factor> 4 <primary> | <primary>
<primary$ s <simple name> | <number> | €<expression>)
<dotted name> 1= ;<compound name> | <compound name>
<compound namé> = <simple name> . <compouﬁd name> I%simple name>
<branch name> 1oz # <simple name> | <simpie'name>
<%imple names 1= <character> <simple name> | <character>
<number> pr= <digits> . <digits> | . <digits> | <digits> . | <digits>
<integer> ::= <digits> -
<digits> 1:= 0 <digit> <digits> | <digit>
PRIMITIVES:
<character> A|B|....|Z
<digit> olxl... |9

<anystring>

18

APPENDIX B ~~ TYMSHARE IMPLEMENTATION

The language discribed in this paper has been implemented on the

interactive computing service, TYMSHARE; this implementation was coded in

TYMSHARE's SUPERBASIC. While exact details of access to that system are to be

found elsewhere, the following comments concerning the implementation are of

more general interest.

1

2)

3)

Two additional decision language commands allow the user to save and
recall the current status of defined trees and variables. These
commands are SAVE and RECALL. The system responds to SAVE by re-
questing FILENAME?; any name may be supplied. That same name, say
DECISION, is used in fecalling the file at a later time, as in
RECALL DECISION.

‘Errors in the form (syntax) of a command result in an error number

and a partial repetition of the input line indicating where the
apparent error occurred. Other errors during processing result in
error messages.

The maximum number of branches that can be defined at any time is
100. |

