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GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ

SYSTEM WITHOUT HEAT DIFFUSION AND WITH EITHER

ANISOTROPIC VISCOSITY OR INVISCID VOIGT-α

REGULARIZATION

ADAM LARIOS, EVELYN LUNASIN, AND EDRISS S. TITI

Abstract. We establish global existence and uniqueness theorems for the
two-dimensional non-diffusive Boussinesq system with viscosity only in the
horizontal direction, which arises in Ocean dynamics. This work improves the
global well-posedness results established recently by R. Danchin and M. Paicu
for the Boussinesq system with anisotropic viscosity and zero diffusion. Al-
though we follow some of their ideas, in proving the uniqueness result, we have
used an alternative approach by writing the transported temperature (density)
as θ = ∆ξ and adapting the techniques of V. Yudovich for the 2D incompress-
ible Euler equations. This new idea allows us to establish uniqueness results
with fewer assumptions on the initial data for the transported quantity θ. Fur-
thermore, this new technique allows us to establish uniqueness results without
having to resort to the paraproduct calculus of J. Bony.

We also propose an inviscid α-regularization for the two-dimensional invis-

cid, non-diffusive Boussinesq system of equations, which we call the Boussinesq-
Voigt equations. Global regularity of this system is established. Moreover, we
establish the convergence of solutions of the Boussinesq-Voigt model to the
corresponding solutions of the two-dimensional Boussinesq system of equations
for inviscid flow without heat (density) diffusion on the interval of existence
of the latter. Furthermore, we derive a criterion for finite-time blow-up of the
solutions to the inviscid, non-diffusive 2D Boussinesq system based on this
inviscid Voigt regularization. Finally, we propose a Voigt-α regularization for
the inviscid 3D Boussinesq equations with diffusion, and prove its global well-
posedness. It is worth mentioning that our results are also valid in the presence
of the β-plane approximation of the Coriolis force.

1. Introduction

The d-dimensional Boussinesq system of ocean and atmosphere dynamics (with-
out rotation) in a domain Ω ⊂ R

d over the time interval [0, T ] is given by

∂tu+

d∑

j=1

∂j(u
ju) = −∇p+ θed + ν△u, in Ω× [0, T ],(1.1a)

∇ · u = 0, in Ω× [0, T ],(1.1b)

∂tθ +∇ · (uθ) = κ△θ, in Ω× [0, T ],(1.1c)

u(x, 0) = u0(x), θ(x, 0) = θ0(x), in Ω,(1.1d)
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with appropriate boundary conditions (discussed below). Here ν ≥ 0 is the fluid
viscosity, κ ≥ 0 is the diffusion coefficient. The spatial variable is denoted x =
(x1, . . . , xd) ∈ Ω, and the unknowns are the fluid velocity field u ≡ u(x, t) ≡
(u1(x, t), . . . , ud(x, t)), the fluid pressure p(x, t), and the function θ ≡ θ(x, t), which
may be interpreted physically as a thermal variable (e.g., when κ > 0), or a density
variable (e.g., when κ = 0). We write ed = (0, . . . , 0, 1) for the dth standard basis
vector in R

d. We use the notation P 0
ν,κ, for the Boussinesq system with viscosity

ν > 0 and with diffusion κ > 0. We attach a subscript x to the viscosity ν when we
mean that the viscosity occurs in the horizontal direction only, i.e. in the case of
anisotropic viscosity (see equation (1.3) below). The superscript of zero is reserved
for a parameter α, introduced below.

In two dimensions, the global regularity in time of the problem P 0
ν,κ is well-

known (see, e.g., [8, 51]), and follows essentially from the classical methods for
Navier-Stokes equations. However, in the case ν = 0, κ = 0, (P 0

0,0), global existence
and uniqueness still remains an open problem (see, e.g., [14, 15] for studies in this
direction). The local existence and uniqueness of classical solutions to P 0

0,0 was

established in [15], assuming the initial data (u0, θ0) ∈ H3 ×H3. In particular, an
analogous Beale-Kato-Majda criterion for blow-up of smooth solutions is established
in [15] for the inviscid, non-diffusive Boussinesq system; namely, that the smooth

solution exists on [0, T ] if and only if
∫ T

0
‖∇θ(t)‖L∞ dt <∞.

One of our main results in this study, discussed in Section 4, involves the global
existence and uniqueness theorems for the two-dimensional non-diffusive Boussi-
nesq system with viscosity only in the horizontal direction, denoted as P 0

νx,0 (see
equations (1.3) below). These equations are sometimes called the non-diffusive
Boussinesq equations with anisotropic viscosity. In order to set the main ideas
of our proof, in Section 3 we first establish the global existence of a certain class
of weak solutions and the global existence and uniqueness to the two-dimensional
viscous and non-diffusive Boussinesq system of equations (denoted as P 0

ν,0) with
Yudovich-type initial data. The other main result we have in this study is presented
in Section 5. We propose an inviscid α-regularization for the two-dimensional invis-
cid, non-diffusive Boussinesq system of equations (denoted as Pα

0,0), which we call
the Boussinesq-Voigt equations, and also establish its global regularity. We include
in this section a study of the behavior of solutions to Pα

0,0 as the parameter α → 0,
which leads to a new criterion for the finite-time blow-up of solutions to the 2D, or
3D, inviscid, non-diffusive Boussinesq equations. We also give a short discussion of
a Voigt-regularization for the three-dimensional Boussinesq equations in the case
Pα
0,κ.

The two-dimensional viscous, non-diffusive Boussinesq system, (P 0
ν,0) is given

by:

∂tu+

2∑

j=1

∂j(u
ju) = ν∆u−∇p+ θe2, in T

2 × [0, T ],(1.2a)

∇ · u = 0, in T
2 × [0, T ],(1.2b)

∂tθ +∇ · (uθ) = 0, in T
2 × [0, T ],(1.2c)

u(x, 0) = u0(x), θ(x, 0) = θ0(x), in T
2.(1.2d)
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It has been shown in [14, 26] that the system P 0
ν,0, in the case of whole space

R
2, admits a unique global solution provided the initial data (u0, θ0) ∈ Hm(R2)×

Hm(R2) with m ≥ 3, m an integer. In fact, in [26], the authors only required
(u0, θ0) ∈ Hm(R2)×Hm−1(R2) with m ≥ 3. In [14], it is shown that a Beale-Kato-
Majda-type criterion is satisfied for the partially viscous system and therefore the
system is globally well-posed. In [14], it is shown that the problems P 0

0,κ and P 0
ν,0

both admit a unique global solution provided the initial data (u0, θ0) ∈ Hm(R2)×
Hm(R2) with m ≥ 3. Similar results are shown in [26] for P 0

0,κ but with initial data

(u0, θ0) ∈ Hm(R2) × Hm−1(R2). Global well-posedness results for rough initial
data (in Besov spaces) is established in [25].

We establish in Section 3 the global well-posedness of P 0
ν,0 in a periodic domain

T
2 = [0, 1]2 assuming weaker initial data, namely, u0 ∈ H1(T2), (we always assume

∇ · u0 = 0) and θ0 ∈ L2(T2). Our key idea in proving the uniqueness result is by
writing θ = ∆ξ, with

∫
T2 ξ dx = 0, for some ξ, and then adapting the techniques

of Yudovich in [27] (see also [39]). We note that the authors in [18] have shown
the global well-posedness results in the whole space under a weaker assumption
that u0, θ0 ∈ L2(R2). The proof of their main results arise under the Besov and
Lorentz space setting and involves the use of Littlewood-Paley decomposition and
paradifferential calculus introduced by J. Bony [6]. We include in this study global
well-posedness results for the problem P 0

ν,0 under a stronger assumption on the

initial data, namely u0 ∈ H1(T2), and θ0 ∈ L2(T2) but using only elementary
techniques in PDEs. Although this particular result is not an improvement to that
of [18], we will see that applying our method in the case of anisotropic viscosity,
we can establish an improvement to the global well-posedness results established in
[17].

In Section 4, we then consider the case where the viscosity ν occurs in the horizon-
tal direction only. More precisely, assuming initial vorticity ω0 ∈

√
L (defined below

in (1.4)), initial temperature (density) θ0 ∈ L∞(T2), and
∫
T2 ω0 dx =

∫
T2 θ0 dx = 0,

we establish global well-posedness for the following system, which we denote as
P 0
νx,0:

∂tu+

2∑

j=1

∂j(u
ju) = ν∂21u−∇p+ θe2, in T

2 × [0, T ],(1.3a)

∇ · u = 0, in T
2 × [0, T ],(1.3b)

∂tθ +∇ · (uθ) = 0, in T
2 × [0, T ],(1.3c)

u(x, 0) = u0(x), θ(x, 0) = θ0(x), in T
2.(1.3d)

Recently, in [17], a global well-posedness result for the system P 0
νx,0 (in the

whole space R2), under various regularity conditions on initial data, was successfully
established. More precisely, given that θ0 ∈ Hs(R2) ∩ L∞(R2), with s ∈ (1/2, 1],
u0 ∈ H1(R2) and ω0 ∈ Lp(R2) for all 2 ≤ p <∞, and such the ω0 satisfy

‖ω0‖√L := sup
p≥2

‖ω0‖Lp(R2)√
p− 1

<∞,(1.4)

the Boussinesq system (1.3) in the whole space with anisotropic viscosity admits a
unique global regular solution. The condition θ0 ∈ Hs with s ∈ (12 , 1] was needed for
establishing uniqueness in [17]. We relax this condition in our current contribution.
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We remark again that the main idea is to write θ = △ξ, and then proceed using
the techniques of Yudovich [27] for the 2D incompressible Euler equations to prove
uniqueness. Furthermore, our method uses more elementary tools than those used
in [17]. It is worth mentioning that very recently, in [2], the global regularity of
classical solutions to the two-dimensional Boussinesq system in the case of vertical
viscosity and vertical thermal diffusion was established provided an additional extra
thermal fractional diffusion of the form (−∆)δ for δ > 0 is added.

Let us denote by Pα
ν,κ the following system:

−α2△∂tu+ ∂tu+

d∑

j=1

∂j(u
ju) = −∇p+ θed + ν△u, in T

d × [0, T ],(1.5a)

∇ · u = 0, in T
d × [0, T ],(1.5b)

∂tθ +∇ · (uθ) = κ△θ in T
d × [0, T ],(1.5c)

u(x, 0) = u0(x), θ(x, 0) = θ0(x), in T
d.(1.5d)

In Section 5, we study in dimension d = 2 the inviscid (ν = 0), Voigt-α (with
α > 0) regularized momentum equation, namely the system Pα

0,0, and in dimension
d = 3 the system Pα

0,κ (with κ > 0). In the case d = 2 we establish global well-

posedness results for the problem Pα
0,0 given initial data u0 ∈ H2(T2) with ∇ · u0,

and θ0 ∈ L2(T2). This result also hold in the easier cases κ > 0 or ν > 0. In the case
d = 3, we require κ > 0 to establish global well-posedness results. We show that the
problem Pα

0,κ with given initial data u0 ∈ H3(T3) with ∇ · u0, and θ0 ∈ L∞(T3) is
well-posed globally in time. This result also hold in the easier case ν > 0. Observe
that the system Pα

0,0 formally coincides with the inviscid, non-diffusive Boussinesq
equations when α = 0. This type of inviscid α-regularization can be traced back
to the work of Cao, et. al. [9] who proposed the inviscid simplified Bardina model
(studied in [35]) as regularization of the 3D Euler equations. The model consists of
the Euler equations with the term −α2∆∂tu added to the momentum equation. We
refer to this term as the Voigt term, and we refer to equations with this additional
term as Voigt-regularized equations. The reason for this terminology is that if
one adds the Voigt term to the Navier-Stokes equations, the resulting equations
happen to coincide with equations governing certain visco-elastic fluids known as
Kelvin-Voigt fluids, which were first introduced and studied in the context of the
3D Navier-Stokes equations by A.P. Oskolkov [40, 41], and were studied later in
[28]. These equations are known as the Navier-Stokes-Voigt equations. They were
first proposed in [9] as a regularization for either the Navier-Stokes (for ν > 0) or
Euler (for ν = 0) equations, for small values of the regularization parameter α.

We briefly discuss the merits of the Navier-Stokes-Voigt equations, as they are
a special case of the Boussinesq-Voigt equations. Voigt-regularizations of parabolic
equations are a special case of pseudoparabolic equations, that is, equations of the
form Mut +Nu = f , where M and N are (possibly non-linear, or even non-local)
operators. For more about pseudoparabolic equations, see, e.g., [5, 11, 19, 42, 45–
49]. Whether in the presence of either periodic boundary conditions or physical
boundary conditions (under the assumption of the no-slip boundary conditions
u|∂Ω = 0), the Navier-Stokes-Voigt equations enjoy global well-posedness, even in
three-dimensions), as it has been pointed out in [9]. The Euler-Voigt equations
enjoy global well-posedness in the case of periodic boundary conditions (see, e.g.,
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[9, 34]). It is worth mentioning that the long-term dynamics and estimates for the
global attractor, and the Gevrey regularity of solutions on the global attractor, of
the three-dimensional Navier-Stokes-Voigt model were studied in [30] and [29], re-
spectively. Moreover, it was shown recently in [43] that the statistical solutions (i.e.,
invariant probability measures) of the three-dimensional Navier-Stokes-Voigt equa-
tions converge, in a suitable sense, to a corresponding statistical solution (invariant
probability measure) of the three-dimensional Navier-Stokes equations.

In the context of numerical computations, the Navier-Stokes-Voigt system ap-
pears to have less stiffness than the Navier-Stokes system (see, e.g., [21, 36]). In
[36], the statistical properties of the Navier-Stokes-Voigt model were investigated
numerically in the context of the Sabra shell phenomenological model of turbulence
and were compared with the corresponding Navier-Stokes shell model.

Due to its simplicity, the Voigt α-regularization is also well-suited to being ap-
plied to other hydrodynamic models, such as the two-dimensional surface quasi-
geostrophic equations, demonstrated in [31], and the three-dimensional magneto-
hydrodynamic (MHD) equations, demonstrated in [34]. See also [21] for the appli-
cation of Navier-Stokes-Voigt model in image inpainting. It is also worth mention-
ing that in the case of the inviscid Burgers equation, ut + uux = 0, this type of
regularization leads to −α2uxxt+ut+uux = 0, which is the well-known Benjamin-
Bona-Mahony equation of water waves [4]. One goal of the present work is to lay
some of the mathematical groundwork necessary to extend the Voigt regulariza-
tion to the two-dimensional Boussinesq-equations, for the purpose of simplifying
numerical simulations of the solutions to these equations.

It is worth mentioning that all the results reported here are equally valid in the
presence of the Coriolis rotation term.

2. Preliminaries

In this section, we introduce some preliminary material and notations which are
commonly used in the mathematical study of fluids, in particular in the study of
the Navier-Stokes equations (NSE). For a more detailed discussion of these topics,
we refer to [16, 23, 50, 52].

Let F be the set of all trigonometric polynomials with periodic domain T
d :=

[0, 1]d. We define the space of smooth functions which incorporates the divergence-
free and zero-average condition to be

V :=

{
ϕ ∈ Fd : ∇ · ϕ = 0 and

∫

Td

ϕ dx = 0

}
.

For the majority of this work, we take d = 2.
We denote by Lp, W s,p, Hs ≡ W s,2, C0,γ the usual Lebesgue, Sobolev, and

Hölder spaces, and defineH and V to be the closures of V in L2 andH1 respectively.
We restrict ourselves to finding solutions whose average over the periodic box T

d

is zero. Observe from the evolution equation of θ in the Boussinesq system of
equations (as well as the Boussinesq-Voigt system of equations), if we assume that
the average

∫
Td θ0(x)dx = 0, then the average of

∫
Td θ(x, t) dx = 0 for all t ≥ 0,

and also
∫
Td u(x, t) dx = 0 for all t ≥ 0 provided

∫
Td u0(x) dx = 0. Therefore, we

can work in the spaces defined above consistently. The notation V s := Hs(Td)∩ V
will be convenient. When necessary, we write the components of a vector y as yj,
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j = 1, 2. We define the inner products on H and V respectively by

(u,v) =

2∑

i=1

∫

Td

uivi dx and ((u,v)) =

2∑

i,j=1

∫

Td

∂ju
i∂jv

i dx,

and the associated norms |u| = (u,u)1/2, ‖u‖ = ((u,u))1/2. (We use these nota-
tions indiscriminately for both scalars and vectors, which should not be a source
of confusion). Note that ((·, ·)) is a norm due to the Poincaré inequality, (2.16),
below. We denote by V ′ the dual space of V . The action of V ′ on V is denoted by
〈·, ·〉 ≡ 〈·, ·〉V ′ . Note that we have the continuous embeddings

(2.1) V →֒ H →֒ V ′.

Moreover, by the Rellich-Kondrachov Compactness Theorem (see, e.g., [1, 22]),
these embeddings are compact.

Following [17], we define the spaces
√
L :=

{
w
∣∣‖w‖√L <∞

}
,

where ‖ · ‖√L is defined by (1.4). This space arises naturally, due to the following
inequality, proven in [38] (see also [17]), which is valid in two dimensions:

‖w‖p ≤ C
√
p− 1‖w‖H1 ,(2.2)

for all w ∈ H1(T2), for any p ∈ [2,∞), and where we denote by ‖ · ‖p the usual Lp

norm. Note that clearly L∞ ⊂
√
L ⊂ Lp for every p ∈ [2,∞). We also recall the

well-known elliptic estimate, due to the Biot-Savart law for an incompressible vector
field u, satisfying ∇ · u = 0, and ∇× u = ω, by means of the Calderón-Zygmund
theory for singular integrals:

(2.3) ‖∇u‖p ≤ Cp‖ω‖p
for any p ∈ (1,∞) (see, e.g., [27]).

Let Y be a Banach space. We denote by Lp([0, T ], Y ) (which we also denote
as Lp

TYx), the space of (Bochner) measurable functions t 7→ w(t), where w(t) ∈ Y

for a.e. t ∈ [0, T ], such that the integral
∫ T

0 ‖w(t)‖pY dt is finite (see, e.g., [1]). A

similar convention is used in the notation Ck([0, T ], X) for k-times differentiable
functions of time on the interval [0, T ] with values in Y . Abusing notation slightly,
we write w(·) for the map t 7→ w(t). In the same vein, we often write the vector-
valued function w(·, t) as w(t) when w is a function of x and t. We denote by

Ċ∞(T2 × [0, T ]) the set of infinitely differentiable functions in the variable x and t

which are periodic in x with
∫
T2 ϕ(·, t) dx = 0. Similarly, we denote by L̇p(T2) ={

ϕ ∈ Lp(T2) :
∫
T2 ϕ(x) dx = 0

}
.

We denote by Pσ : L̇2 → H the Leray-Helmholtz projection operator and define
the Stokes operator A := −Pσ△ with domain D(A) := H2 ∩ V . For ϕ ∈ D(A),
we have the norm equivalence |Aϕ| ∼= ‖ϕ‖H2 (see, e.g., [16, 52]). In particular, the
Stokes operator A can be extended as a linear operator from V into V ′ associated
with the bilinear form ((u,v)),

〈Au,v〉 = ((u,v)) for all v ∈ V.

It is known that A−1 : H → D(A) →֒ H is a positive-definite, self-adjoint, compact
operator from H into itself, and therefore it has an orthonormal basis of positive
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eigenvectors {wk}∞k=1 in H corresponding to a non-increasing sequence of eigen-
values (see, e.g., [16, 50]). The vectors {wk}∞k=1 are also the eigenvectors of A.
Since the corresponding eigenvalues of A−1 can be ordered in a decreasing order,
we can label the eigenvalues λk of A so that 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · . Let
Hn := span {w1, . . . ,wn}, and let Pn : H → Hn be the L2 orthogonal projection
onto Hn. Notice that in the case of periodic boundary conditions in the torus T

2

we have λ1 = (2π)−2. We will abuse notation slightly and also use Pn in the scalar
case for the corresponding projection onto eigenfunctions of −△, but this should
not be a source of confusion. Furthermore, in our case it is known that A = −△
due to the periodic boundary conditions (see, e.g., [16, 50]) and the eigenvectors
wj are of the form ake

2πik·x, with ak · k = 0.
It will be convenient to use the standard notation of the Navier-Stokes bilinear

term

(2.4) B(w1,w2) := Pσ

d∑

j=1

∂j(w
j
1w2)

for w1,w2 ∈ V . We list some important properties of B which can be found for
example in [16, 23, 50, 52].

Lemma 2.1. The operator B defined in (2.4) is a bilinear form which can be
extended as a continuous map B : V × V → V ′ such that

(2.5) 〈B(w1,w2),w3〉 =
∫

Td

(w1 · ∇w2) ·w3 dx,

for every w1,w2,w3 ∈ V. satisfying the following properties:

(i) For w1, w2, w3 ∈ V ,

(2.6) 〈B(w1,w2),w3〉V ′ = −〈B(w1,w3),w2〉V ′ ,

and therefore

(2.7) 〈B(w1,w2),w2〉V ′ = 0.

(ii) For w1, w2, w3 ∈ V ,

| 〈B(w1,w2),w3〉V ′ | ≤ C|w1|1/2‖w1‖1/2‖w2‖|w3|1/2‖w3‖1/2(2.8)

| 〈B(w1,w2),w3〉V ′ | ≤ C|w1|1/2‖w1‖1/2|w2|1/2‖w2‖1/2‖w3‖.(2.9)

Let us define another very similar bilinear operator motivated by the transport
term in the temperature equation.

(2.10) B(w, ψ) :=
d∑

j=1

∂j(w
jψ)

for w ∈ V and ψ ∈ F with
∫
Td ψ dx = 0. We have the following similar properties

for B which can be proven easily as in the proof of Lemma 2.1.

Lemma 2.2. The operator B defined in (2.10) is a bilinear form which can be
extended as a continuous map B : V ×H1 → H−1, such that

(2.11) 〈B(w, ψ), φ〉H−1 = −
∫

Td

w · ∇φ ψ dx,

for every w ∈ V and φ, ψ ∈ Ċ1. Moreover,

(2.12) 〈B(w, ψ), φ〉H−1 = −〈B(w, φ), ψ〉H−1 ,
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and therefore

(2.13) 〈B(w, φ), φ〉H−1 = 0.

Furthermore, B is also a bilinear form which can be extended as a continuous map
B : D(A)× L2 → H−1.

Here and below, C,Cj , etc. denote generic constants which may change from
line to line. Cα, C(· · · ), etc. denote generic constants which depend only upon
the indicated parameters. K,Kj, etc. denote constants which depend on norms
of initial data, and also may vary from line to line. Next, we recall that for an
integrable function f such that

∫
T2 f dx = 0, we have in two dimensions,

(2.14) ‖f‖L4 ≤ |f |1/2‖f‖1/2.
We also recall Agmon’s inequality in two dimensions (see, e.g., [3, 16]). For w ∈
D(A) we have

(2.15) ‖w‖L∞ ≤ C|w|1/2|Aw|1/2 .

Furthermore, for all ϕ ∈ V , we have the Poincaré inequality

(2.16) ‖ϕ‖L2 ≤ λ
−1/2
1 ‖∇ϕ‖L2.

We will also make use of the following inequality, valid in two dimensions, which is
based on the Brézis-Gallouet inequality, and which we prove in the appendix. For
every ǫ > 0, sufficiently small, and w ∈ H2(T2),

‖w‖L∞ ≤ C
(
‖w‖ǫ−1/4 + |Aw|e−1/ǫ1/4

)
,(2.17)

where C is independent of ǫ. Finally, we note a result of deRham [52, 53], which
states that if g is a locally integrable function (or more generally, a distribution),
we have

(2.18) g = ∇p for some distribution p iff 〈g,w〉 = 0 for all w ∈ V ,
which one uses to recover the pressure.

3. Global Well-posedness Results for the Viscous and Non-diffusive
Boussinesq Equations. (P 0

ν,0)

Let us first define the weak formulation of problem P 0
ν,κ in T

2 × [0, T ]. By
choosing a suitable phase space which incorporates the divergence free condition
of the Boussinesq equations, we can eliminate the pressure from the equation, as
is standard in the theory of the Navier-Stokes equations. Consider the scalar test
functions ϕ(x, t) ∈ Ċ∞(T2 × [0, T ]), such that ϕ(x, T ) = 0; and the vector test

functions Φ(x, t) ∈ [Ċ∞(T2 × [0, T ])]2 such that ∇ · Φ(·, t) = 0 and Φ(x, T ) = 0.
Then the weak formulation of problem P 0

ν,κ in T
2× [0, T ] (and similarly of problem

P 0
ν,0, when κ = 0, in T

2 × [0, T ]) is written as follows:
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−
∫ T

0

(u(s),Φ′(s)) ds+ ν

∫ T

0

((u(s),Φ(s))) ds +

2∑

j=1

∫ T

0

(uju, ∂jΦ) ds

= (u0(x),Φ(x, 0)) +

∫ T

0

(θ(s)e2,Φ(s)) ds(3.1a)

−
∫ T

0

(θ(s), ϕ′(s)) ds+

∫ T

0

(uθ,∇ϕ) ds + κ

∫ T

0

((θ(s), ϕ(s))) ds

= (θ0(x), ϕ(x, 0)).(3.1b)

Remark 3.1. Note that it will become clear later that (3.1) will hold for a larger
class of test functions, and consequently it will be sufficient to consider only test
functions of the form

Φ(x, t) = Γm(t)e2πim·x, with Γm ∈ [C∞([0, T ])]2 and m · Γm(t) = 0,(3.2a)

and

ϕ(x, t) = χm(t)e2πim·x, with χm ∈ C∞([0, T ]),(3.2b)

for m ∈ (Z\{0})2, since such functions form a basis for the corresponding larger
spaces of test functions.

In the two-dimensional case, the global well-posedness of system P 0
ν,κ in (1.1),

that is, in the case κ > 0, ν > 0, is well-known, and can be proved in a similar
manner following the work of [24] (see also [8, 51]). We have the following existence
and uniqueness results for the system P 0

ν,κ, which will be used to prove the existence

of weak solutions for the system P 0
ν,0. From here on, we only work on spaces of

functions which are periodic and with spatial average zero. Therefore, to simplify
notation, we write L̇2 as L2, Ċk as Ck, etc.

Theorem 3.2. Let T > 0, ν > 0 be fixed but arbitrary. Then, the following results
hold:

(i) If u0 ∈ H, θ0 ∈ L2 then for each κ > 0, (1.1) has a unique solution
(uκ, θκ) in the sense of (3.1) such that uκ ∈ C([0, T ], H)∩L2([0, T ], V ), θκ ∈
Cw([0, T ], L

2). Furthermore, there exists a constant K0 > 0 independent of κ
such that the following bounds hold: ‖uκ‖L2([0,T ],V ) ≤ K0, ‖uκ‖L∞([0,T ],H) ≤
K0, ‖ d

dtuκ‖L2([0,T ],V ′) ≤ K0, ‖θκ‖L∞([0,T ],L2) ≤ |θ0|, ‖ d
dtθκ‖L2([0,T ],H−2) ≤ K0

and
√
κ‖θκ‖L2([0,T ],H1) ≤ K0.

(ii) If the initial data u0 ∈ V and θ0 ∈ L2, then the solution uκ ∈ C([0, T ], V ) ∩
L2([0, T ],D(A)) and we also have the following bounds: ‖uκ‖L2([0,T ],D(A)) ≤
K0, ‖uκ‖L∞([0,T ],V ) ≤ K0, ‖ d

dtuκ‖L2([0,T ],H) ≤ K0 and ‖ d
dtθκ‖L2([0,T ],H−1) ≤

K0.
(iii) If θ0 ∈ L∞ and u0 ∈ H, then ‖θκ‖L∞([0,T ],L∞) ≤ ‖θ0‖∞.

(iv) If u0 ∈ H3 and θ0 ∈ H2 then for each κ > 0, (1.1) has a unique solution
uκ ∈ C([0, T ], H3) ∩ L2([0, T ], H4) and θκ ∈ C([0, T ], H2) ∩ L2([0, T ], H3).

Proof. Parts (i) and (ii) are essentially proven in [8, 24, 51] following the classi-
cal theory of Navier-Stokes equations. The uniform bounds in part (ii) will be
established explicitly in the later proofs when called for. Part (iii) can be proven
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using maximum principle and is proven for example in [8, 51]. An explicit proof
of this theorem will also be provided below. Part (iv) can be proved using basic
energy estimates and Grönwall’s inequality again following the classical theory of
the Navier-Stokes equations. �

For the current study, we now define what we mean by weak solutions and strong
solutions for the viscous non-diffusive Boussinesq equations (P 0

ν,0). We then state
and prove our main results.

Definition 3.3 (Weak solution). Let T > 0. Suppose u0 ∈ H and θ0 ∈ L2. We say
that (u, θ) is a weak solution to P 0

ν,0 (that is, (1.2) with κ = 0) on the interval [0, T ],

if (u, θ) satisfies the weak formulation (3.1) (with κ = 0), and u ∈ L2([0, T ], V ) ∩
C([0, T ], H), du

dt ∈ L1([0, T ], V ′), with θ ∈ C([0, T ], L2) and dθ
dt ∈ L1([0, T ], H−2).

Definition 3.4 (Strong solution). Let T > 0. Suppose θ0 ∈ L2 and u0 ∈ V .
We say that (u, θ) is a strong solution to P 0

ν,0 (that is, (1.2) with κ = 0) on the
interval [0, T ], if it is a weak solution in the sense of Definition 3.3, and furthermore,
u ∈ L2([0, T ],D(A)) ∩C([0, T ], V ), du

dt ∈ L1([0, T ], H), and dθ
dt ∈ L1([0, T ], H−1).

We now state and prove our main results regarding global existence of weak and
strong solutions to problem P 0

ν,0.

Theorem 3.5 (Existence of weak solutions). Let T > 0 be given. Let u0 ∈ H
and θ0 ∈ L2. Then there exists a weak solution of (1.1) on the interval [0, T ].
Furthermore, system (3.1) with κ = 0 is equivalent to the functional form

du

dt
+ νAu+B(u,u) = Pσ(θe2) in L2([0, T ], V ′) and(3.3a)

dθ

dt
+ B(u, θ) = 0 in L2([0, T ], H−2).(3.3b)

Moreover, if we assume θ0 ∈ L∞, then θ ∈ L∞([0, T ], L∞).

Proof. Our method of proof involves passing to the limit of the weak solution of
(1.1) as κ → 0, that is, we consider κ > 0 to be a regularization parameter to
system (1.2). Without loss of generality, we can assume 0 < κ < 1. In accordance
with Remark 3.1 and Definition 3.3, we only consider test functions of the form
(3.2).

We will show that the weak formulation

−
∫ T

0

(uκ(s),Γ
′
m(s)e2πim·x) ds+ ν

∫ T

0

((uκ(s),Γm(s)e2πim·x)) ds

+

2∑

j=1

∫ T

0

(ujκuκ,Γm(s)∂je
2πim·x) ds

= (u0,Γm(0)e2πim·x) +

∫ T

0

(θκ(s)e2,Γm(s)e2πim·x) ds(3.4a)

−
∫ T

0

(θκ(s), e
2πim·x)χ′

m(s) ds+

∫ T

0

(uκ(s)θκ(s),∇e2πim·xχm(s)) ds

+ κ

∫ T

0

((θκ(s), e
2πim·xχm(s))) ds = (θ0, e

2πim·x)χm(0)(3.4b)
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converges to the weak formulation of P 0
ν,0 (see (3.1) with κ = 0) as κ → 0. After

passing to the limit in the system we then show that the limiting functions satisfy
the aforementioned regularity properties. We proceed with the following steps.

Step 1: Using compactness arguments to prove convergence of a subsequence.
From Theorem 3.2, in particular from the uniform bounds (with respect to κ) of

uκ,
duκ

dt , θκ and dθκ
dt in the corresponding norms, one can use the Banach-Alaoglu

Theorem and the Aubin Compactness theorem (see, e.g., [16, Lemma 8.2] or [52])
to justify that one can extract a subsequence of (uκ, θκ) (which we still write as
(uκ, θκ)) as κ→ 0 and elements u and θ, such that

uκ → u strongly in L2([0, T ], H),(3.5a)

uκ ⇀ u weakly in L2([0, T ], V ) and weak-∗ in L∞([0, T ], H),(3.5b)

duκ

dt
⇀

du

dt
weakly in L2([0, T ], V ′),(3.5c)

θκ ⇀ θ weakly in L2([0, T ], L2) and weak-∗ in L∞([0, T ], L2),(3.5d)

dθκ
dt

⇀
dθ

dt
weakly in L2([0, T ], H−2).(3.5e)

Step 2: Passing to the limit in the system.
The results from Step 1 imply that for the linear terms in (3.4), we have, by the

weak convergence in (3.5b) and (3.5d), as κ→ 0,
∫ T

0

(uκ(s),Γ
′
m
(s)e2πim·x) ds→

∫ T

0

(u(s),Γ′
m
(s)e2πim·x) ds,

ν

∫ T

0

((uκ(s),Γm(s)e2πim·x)) ds→ ν

∫ T

0

((u(s),Γm(s)e2πim·x)) ds,

∫ T

0

(θκ(s)e2,Γm(s)e2πim·x) ds→
∫ T

0

(θ(s)e2,Γm(s)e2πim·x) ds,

∫ T

0

(θκ(s), e
2πim·x)χ′

m
(s) ds→

∫ T

0

(θ(s), e2πim·x)χ′
m
(s) ds,

κ

∣∣∣∣∣

∫ T

0

((θκ(s), e
2πim·xχm(s))) ds

∣∣∣∣∣ ≤ C
√
κ(
√
κ‖θκ‖L2([0,T ],H1)) ≤ CK0

√
κ→ 0

It remains to show the convergence of the remaining non-linear terms. Let

I(κ) :=

2∑

j=1

∫ T

0

(ujκuκ,Γm(s)∂je
2πim·x) ds−

2∑

j=1

∫ T

0

(uju,Γm(s)∂je
2πim·x) ds

J(κ) :=

∫ T

0

(uκ(s)θκ(s), χm(s)∇e2πim·x )ds−
∫ T

0

(u(s)θ(s), χm(s)∇e2πim·x )ds

The convergence I(κ) → 0 as κ→ 0 is standard in the theory of the Navier-Stokes
equations, thanks to (3.5a) and (3.5b) (see, e.g., [16, 52]). To show J(κ) → 0 as
κ→ 0, we write J(κ) = J1(κ)+J2(κ), the definitions of which are given below. We
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have

J1(κ) :=

∫ T

0

((uκ(s)− u(s))θκ(s),∇e2πim·x)χm(s) ds→ 0

as κ→ 0, since uκ → u strongly in L2([0, T ], H) and θκ → θ weakly in L2([0, T ], H).
For J2, we have

J2(κ) :=

∫ T

0

(
u(s)(θκ(s)− θ(s)),∇e2πim·x)χm(s) ds→ 0

thanks to the weak convergence in (3.5d) and the fact that u ∈ L2([0, T ], H). Thus,
J(κ) = J1(κ)+J2(κ) → 0. Hence, sending κ→ 0, we see that u and θ satisfy (3.1).

Step 3: Show that u ∈ C([0, T ], H), that θ ∈ Cw([0, T ], L
2), and that in fact

θ ∈ C([0, T ], L2) .
The uniform bound with respect to κ on the time derivative of uκ given in

Theorem 3.2 (ii) allows us to pass to an additional subsequence if necessary to
find that du

dt ∈ L2([0, T ], V ′). Since u ∈ L2([0, T ], V ) and du
dt ∈ L2([0, T ], V ′),

following the standard theory of NSE, (see, e.g. Theorem 7.2 of [44]) we obtain
that u ∈ C([0, T ], H).

Next, we would like to show that θ ∈ Cw([0, T ], L
2). This can be proven without

difficulty using standard arguments. For completeness and for use in the later
section we present the proof here. We follow similar arguments as in [37, 52].
We start by showing that the sequence of solutions {θκ} (as κ → 0) is relatively
compact in Cw([0, T ], H). By the Arzela-Ascoli theorem, it suffices to show that
(a) {θκ(t)} is a relatively compact set in the weak topology of L2([0, T ],T2) for
a.e t ≥ 0 and (b) for every φ ∈ L2(T2) the sequence {(θκ, φ)} is equicontinuous in
C([0, T ]). Condition (a) follows from the uniform boundedness of θκ(t) in L2(T2)
for a.e. t ≥ 0, as stated in Theorem 3.2 part (i). Next, we show that condition (b)
is satisfied. Following classical arguments, we start by assuming that φ is smooth,
for example we can assume that φ is a trigonometric polynomial. We have

(3.6)

|(θκ(t2), φ)− (θκ(t1), φ)|

≤
∣∣∣∣κ
∫ t2

t1

((θκ(t), φ)) dt

∣∣∣∣+
∣∣∣∣
∫ t2

t1

(∇(uκθκ)(t), φ) dt

∣∣∣∣

≤ κ

∫ t2

t1

‖θκ(t)‖|∇φ| dt+
∫ t2

t1

(uκ(t)θκ(t),∇φ) dt

≤ Cκ1/2|t2 − t1|1/2
(
κ

∫ t2

t1

‖θκ(t)‖2 dt
)1/2

+ ‖∇φ‖∞|t2 − t1|1/4
(∫ t2

t1

‖uκ(t)‖44 dt
)1/4 (∫ t2

t1

|θκ(t)|2 dt
)1/2

.

Without loss of generality assume 0 < κ < 1 and use (2.14), one then obtains

(3.7)

|(θκ(t2), φ) − (θκ(t1), φ)| ≤ C|t2 − t1|1/2
(
κ

∫ t2

t1

‖θκ(t)‖2 dt
)1/2

+ C|t2 − t1|1/4
∫ t2

t1

|uκ(t)|2‖uκ(t)‖2 dt.



BOUSSINESQ EQUATIONS 13

From Theorem 3.2 part (i), since uκ is uniformly bounded with respect to κ in

L∞([0, T ], H) ∩ L2([0, T ], V ) and κ

∫ T

0

‖θκ(t)‖2 dt < K0, with K0 independent of

κ, we have that the set {(θκ, φ)} is equicontinuous in C([0, T ]). We now extend this

result for all test functions φ in L̇2(T2) using a simple density argument of trigono-

metric polynomials in L̇2(T2). Let ǫ > 0. We choose a trigonometric polynomial
φǫ such that |φ− φǫ| < ǫ

3|θ0|+1 . Then, we have

(3.8)
|(θκ(t2), φ)− (θκ(t1), φ)| = |(θκ(t2)− θκ(t1), φ− φǫ) + (θκ(t2)− θκ(t1), φǫ)|

≤ |φ− φǫ| (|θκ(t2)|+ |θκ(t1)|) + |(θκ(t2)− θκ(t1), φǫ)|.
From the uniform L∞([0, T ], L2) bound of θκ, with respect to κ, we conclude

that the first term on the right-hand side of (3.8) is less than 2
3ǫ. Choosing |t2− t1|

small enough in (3.7) we can make the second term on the right-hand side of (3.8)
to be less than ǫ/3. Thus, the whole expression can be made less than ǫ. This
completes the proof that θ ∈ Cw([0, T ], L

2). Finally, as pointed out by the authors
[17], since θ is transported by the div-free velocity field u ∈ L2([0, T ], V ), we get in
addition that θ ∈ C([0, T ], L2), (see, e.g. [20] ).

From these results, standard arguments from the theory of the Navier-Stokes
equations (see, e.g., [16, 44, 52]) now show that the initial conditions are satisfied
in the sense of Definition 3.3.
Step 4: Show that if θ0 ∈ L∞ then θ ∈ L∞([0, T ], L∞).

Here we will use E. Hopf and G. Stampacchia technique which are very similar
to those used in [24] (see also [32, 51]), but we give the details here for the sake
of completeness. For any function f ∈ H1, we use the standard notation f+ :=
max{f, 0}. It is a standard exercise to show that if f ∈ H1, then f+ ∈ H1. Let
(uκ, θκ) be a solution of (1.1), as given in Theorem 3.2. Let us denote Θκ :=
θκ−‖θ0‖L∞ . Notice that Θκ satisfies the evolution equation (1.1c) with θ replaced
by Θκ and u replaced by uκ. Thus we have (Θκ)

+ ∈ L2([0, T ], H1). Taking the
action of (1.1c) with (Θκ)

+ yields

1

2

d

dt
‖(Θκ)

+‖2L2 = −κ
∫

T2

|∇(Θκ)
+|2 dx+

∫

T2

uκΘκ · ∇Θ+
κ dx

= −κ
∫

T2

|∇(Θκ)
+|2 dx+

1

2

∫

T2

uκ · ∇(Θ+)2 dx

= −κ
∫

T2

|∇(Θκ)
+|2 dx ≤ 0,

thanks to (1.1b). Thus ‖(Θκ)
+(t)‖L2 ≤ ‖(Θκ)

+(0)‖L2 = 0 which implies that
(θκ(x, t)−‖θ0‖L∞)+ ≤ 0 a.e. Similarly, one can show that (‖θ0‖L∞−θκ(x, t))+ ≥ 0
a.e. It now follows that ‖θκ‖L∞([0,T ],L∞) ≤ ‖θ0‖L∞ for all κ > 0. Thus, we
have θκ is bounded uniformly with respect to κ in L∞([0, T ], L∞). Therefore,
it follows from the Banach-Alaoglu Theorem, that there exists a subsequence of
the previous subsequence which we also denote as θκ converging in weak-∗ topol-
ogy of L∞([0, T ], L∞) to θ and satisfies the following bounds: ‖θ‖L∞([0,T ],L∞) ≤
lim inf

κ→0
‖θκ‖L∞([0,T ],L∞) ≤ ‖θ0‖L∞ <∞.

The equivalence of (3.1) to the functional form (3.3) follows from the standard
argument of NSE (see, e.g., [52]).

�
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Theorem 3.6 (Existence of strong solutions). Let u0 ∈ V and θ0 ∈ L2. Then
there exists a strong solution of P 0

ν,0. Furthermore, the functional equation (3.3a)

now holds in L2([0, T ], H), and (3.3b) now holds in L2([0, T ], H−1).

Proof. Since u0 ∈ V and θ0 ∈ L2, we have by Theorem 3.2 that there exists a solu-
tion (uκ, θκ) of (1.1) with uκ ∈ L∞([0, T ], V ) ∩ L2([0, T ],D(A)), and furthermore,
d
dtuκ ∈ L2([0, T ], H). In order to show that in fact the bounds on higher-order
norms are independent of κ (as stated in Theorem 3.2 part (ii)), let us take the
inner product of (1.2a) with Auκ. Using the Lions-Magenes lemma (see, e.g., [52])
to show that

〈
du
dt , Au

〉
= 1

2
d
dt‖u‖2 and the fact that (B(uκ,uκ), Auκ) = 0 due to

the periodic boundary conditions, we have

1

2

d

dt
‖uκ‖2 + ν|Auκ|2 = (θκe2, Auκ) ≤ |θ0||Auκ| ≤

1

2ν
|θ0|2 +

ν

2
|Auκ|2.

Subtracting ν
2 |Auκ|2 and using Grönwall’s inequality yields

‖uκ(t)‖2 + ν

∫ t

0

|Auκ|2 ds ≤ ‖u0‖2 +
1

ν
|θ0|2t ≤ ‖u0‖2 +

1

ν
|θ0|2T := K3.(3.9)

Thus uκ is bounded in L∞([0, T ], V ) ∩ L2([0, T ],D(A)) independently of κ. Fur-
thermore,∣∣∣∣

duκ

dt

∣∣∣∣ = sup
|w|=1

(B(uκ,uκ),w) + ν sup
|w|=1

(Auκ,w) + sup
|w|=1

(θκe2,w)

≤ sup
|w|=1

|Auκ|‖uκ‖|w|+ ν sup
|w|=1

|Auκ||w|+ sup
|w|=1

|θκ||w|

≤ K3|Auκ|+ ν|Auκ|+ |θ0|
Thus, d

dtuκ is bounded in L2([0, T ], H) independently of κ due to (3.9). We also
have, ∥∥∥∥

dθκ
dt

∥∥∥∥
H−1

= sup
‖w‖=1

|〈B(uκ, θκ),w〉|+ κ sup
‖w‖=1

|〈∇θκ,∇w〉|

≤ sup
‖w‖=1

‖uκ‖L∞ |θκ|‖w‖+ κ sup
‖w‖=1

‖θκ‖‖w‖

≤ ‖uκ‖H2 |θ0|+
√
κ‖θκ‖,

where we have used here the assumption that 0 < κ < 1. Hence, from Theorem
3.2, we have that dθκ

dt is bounded in L2([0, T ], H−1) independently of κ. The above
estimates allow us to use the Banach-Alaoglu Theorem and the Aubin Compactness
Theorem (see, e.g., [16, 52]) , as κ→ 0, to extract a further subsequence (extracted
from the sequences in (3.5a), (3.5b) and (3.5d), and which we still label with a
subscript κ, such that

uκ → u strongly in L2([0, T ], V ),(3.10a)

uκ ⇀ u weakly in L2([0, T ],D(A)) and weak-∗ in L∞([0, T ], V ),(3.10b)

duκ

dt
⇀

du

dt
weakly in L2([0, T ], H),(3.10c)

dθκ
dt

⇀
dθ

dt
weakly in L2([0, T ], H−1),(3.10d)

where the limit u and θ are the same elements as in (3.5), by the uniqueness of
limits since the current topology are stronger than those in (3.5). Furthermore,
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since u ∈ L2([0, T ],D(A)) and du
dt ∈ L2([0, T ], H), following the standard theory of

NSE, (see, e.g. Theorem 7.2 of [44]) we obtain that u ∈ C([0, T ], V ). Thus we have
shown the existence of a strong solution as defined in Definition 3.4. �

In the next theorem we will show the uniqueness of strong solutions. We note
that in the work of [18], global well-posedness in the case of whole plane R

2 was
established with initial data u0 and θ0 both only in L2. This optimal global well-
posedness result was established using elegantly a priori estimates in Besov spaces
for the heat equation and the transport equation. Here we give an alternate proof
which uses more elementary techniques but we require stronger initial data for the
velocity field. This will allow us to fix some basic ideas that we will use to get
the optimal global well-posedness results for the anisotropic Boussinesq equations
which we will present in the next section.

Theorem 3.7 (Uniqueness of Strong Solutions of P 0
ν,0). Let T > 0. Suppose

θ0 ∈ L2 and u0 ∈ V . Then there exists a unique strong solution (u, θ) to P 0
ν,0.

Proof. The existence of solutions satisfying the hypothesis is already given by The-
orem 3.6. It remains to show the uniqueness. Let (uℓ, θℓ) be two strong solutions,
ℓ = 1, 2, and define ξℓ := △−1θℓ such that

∫
T2 ξℓ dx = 0 on the interval [0, T ]. Write

ũ := u1 − u2, and ξ̃ := ξ1 − ξ2. These quantities satisfy the functional equations

dũ

dt
+ νAũ+B(u1, ũ) +B(ũ,u2) = Pσ(△ξ̃e2) in L2([0, T ], H) and(3.11a)

d△ξ̃
dt

+ B(ũ,△ξ1) + B(u2,△ξ̃) = 0 in L2([0, T ], H−1).(3.11b)

Taking the inner product in H of (3.11a) with ũ , and taking the action in H−1 of

(3.11b) on ξ̃ ∈ L2([0, T ], H2), we obtain, thanks to Lemmas 2.1 and 2.2,

1

2

d

dt
|ũ|2 + ν‖ũ‖2 = −(B(ũ,u1), ũ) + (△ξ̃e2, ũ),(3.12a)

1

2

d

dt
‖ξ̃‖2 = (ũ△ξ1,∇ξ̃)− (u2△ξ̃,∇ξ̃).(3.12b)

In (3.12b) we used the Lions-Magenes Lemma (see, e.g., [52]) to obtain 1
2

d
dt‖ξ̃‖2 =〈

dξ̃
dt , ξ̃

〉
. Let K = maxℓ=1,2

{
‖uℓ‖L∞([0,T ],V ), ‖θℓ‖L∞([0,T ],L2)

}
. From equation

(3.12a), (2.8) and since u1 ∈ L∞([0, T ], V ) we have

1

2

d

dt
|ũ|2 + ν‖ũ‖2 ≤ C|ũ|‖ũ‖‖u1‖+ ‖ξ̃‖‖ũ‖

≤ K

ν
|ũ|2 + ν

6
‖ũ‖2 + 3

2ν
‖ξ̃‖2 + ν

6
‖ũ‖2.(3.13)

Next, let ǫ > 0 be given such that ǫ≪ 1. For the equation (3.12b), we integrate
by parts and use (2.13) to find
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1

2

d

dt
‖ξ̃‖2 =

(
ũ△ξ1,∇ξ̃

)
+

2∑

j=1

(
∂ju2,∇ξ̃∂j ξ̃

)

≤ ‖ũ‖L∞ |△ξ1|‖ξ̃‖+ ‖∇u2‖L2/ǫ‖ξ̃‖‖∇ξ̃‖L2/(1−ǫ)

≤ K
(
‖ũ‖ǫ−1/4 + |Aũ|e−1/ǫ1/4

)
‖ξ̃‖+ C‖∇u2‖L2/ǫ‖ξ̃‖‖ξ̃‖1−ǫ‖ξ̃‖ǫH2

≤ ν

6
‖ũ‖2 + C

(
K2

ν
ǫ−1/2 + 1

)
‖ξ̃‖2 + |Aũ|2e−2/ǫ1/4(3.14)

+Kǫǫ−1/2|Au2|‖ξ̃‖2−ǫ,

where we have used (2.2), (2.17), and the interpolation inequality ‖∇ξ̃‖L2/(1−ǫ) ≤
C‖ξ̃‖1−ǫ‖ξ̃‖ǫH2 , noting that C is independent of ǫ.

Next, we will use the fact that, ξ̃(0) = 0 and ũ(0) = 0, and also that ‖ξ̃(t)‖ and

|ũ(t)| are continuous in time and thus there exist a τ > 0 such that ‖ξ̃(t)‖ < 1

and |ũ(t)| < 1 for all t ∈ [0, τ ]. Let t∗ = sup{τ ∈ (0, T ] : |ũ(t)| < 1 and ‖ξ̃(t)‖ <
1 for all t ∈ [0, τ)}. Adding (3.13) and (3.14) and rearranging, we have on [0, t∗],

1

2

d

dt

(
|ũ|2 + ‖ξ̃‖2

)
+
ν

2
‖ũ‖2

≤ Kν

(
1 +

1

ǫ1/2

)(
|ũ|2 + ‖ξ̃‖2

)
+ |Aũ|2e−2/ǫ1/4 +Kǫǫ−1/2|Au2|‖ξ̃‖2−ǫ

≤ Kν

(
1 +

1

ǫ1/2
+
Kǫ

ǫ1/2
|Au2|

)(
|ũ|2 + ‖ξ̃‖2

)1−ǫ

+ |Aũ|2e−2/ǫ1/4 .(3.15)

Let η > 0, be arbitrary and let z := |ũ|2 + ‖ξ̃‖2 + η. Dividing (3.15) by z1−ǫ, we
find

1

ǫ

d

dt
zǫ ≤ Kν

(
1 +

1

ǫ1/2
+
Kǫ

ǫ1/2
|Au2|

)
+ zǫ−1|Aũ|2e−2/ǫ1/4

≤ Kν

(
1 +

1

ǫ1/2
+
Kǫ

ǫ1/2
|Au2|

)
+ (η)ǫ−1|Aũ|2e−2/ǫ1/4 ,

since z ≥ η. Integrating over [0, t], for t ∈ (0, t∗], we find

z(t) ≤ K1/ǫ
ν

(
ǫT + ǫ1/2T +Kǫǫ1/2

∫ T

0

|Au2(s)| ds
)1/ǫ

(3.16)

+ ǫ1/ǫ(η)1−1/ǫe−2ǫ−5/4

(∫ T

0

|Aũ(s)|2 ds
)1/ǫ

+ η1/ǫ.

Sending η → 0, we obtain

|ũ(t)|2 + ‖ξ̃(t)‖2 ≤ K1/ǫ
ν

(
ǫT + ǫ1/2T + cKǫǫ1/2

∫ T

0

|Au2(s)|2 ds
)1/ǫ

(3.17)

for t ∈ [0, t∗]. Taking the limit of (3.17), as ǫ → 0, we find that ‖ξ̃(t)‖ = 0 and

|ũ(t)| = 0 on [0, t∗]. In particular, |ũ(t∗)|2 = ‖ξ̃(t∗)‖2 = 0 < 1. Therefore, from the

continuity of |ũ(t)|2 and ‖ξ̃(t)‖2 and the definition of t∗, we conclude that t∗ = T ,
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otherwise we a contradiction to the definition of t∗. Hence, ũ(t) = 0 and ξ̃(t) = 0
for all t ∈ [0, T ]. �

4. Global Well-posedness Results for the non-diffusive Boussinesq
Equations with Horizontal Viscosity (P 0

νx,0)

We now consider the Boussinesq equations with anisotropic viscosity as given in
(1.3) (P 0

νx,0). We will establish here global well-posedness results under some not
too restricted initial conditions. In the first part of this section we will first define
what we mean by weak solution to system (1.3) and then show its existence. Then,
under some additional requirements on initial data, we can show uniqueness. To
set additional notation, we denote the vorticity ω := ∂1u

2 − ∂2u
1, which satisfies

the following equation

∂tω +∇ · (ωu)− ν∂21ω = ∂1θ.(4.1)

The best global well-posedness result we are aware of for problem (1.3) in the
case of the whole plane R

2 is stated in following theorem, established in [17].

Theorem 4.1 (Danchin and Paicu,[17]). Let Ω = R
2. Suppose θ0 ∈ L2∩L∞ , and

u0 ∈ V with ω0 ∈
√
L. Then system (1.3) admits a global solution (u, θ) such that

θ ∈ CB([0,∞);L2) ∩ Cw([0,∞);L∞) ∩ L∞([0,∞), L∞) and u ∈ Cw([0,∞);H1),

u · e2 ∈ L2
loc([0,∞);H2), ω ∈ L∞

loc([0,∞),
√
L), ∇u ∈ L2

loc([0,∞),
√
L). If in

addition θ0 ∈ Hs for some s ∈ (0, 1], then θ ∈ C([0,∞);Hs−ǫ) for all ǫ > 0.
Finally, if s > 1/2, then the solution is unique.

In the present work, we improve the above result by weakening the requirements
on the initial data needed for the uniqueness portion of the theorem. To begin
with, we weaken the notion of solution by making the following definition.

Definition 4.2 (Weak Solutions for the Anisotropic Case). Let T > 0. Let θ0 ∈ L2,
ω0 ≡ ∇⊥ · u0 ∈ L2. We say that (u, θ) is a weak solution to (1.3) on the interval
[0, T ] if ω ∈ L∞([0, T ];L2) ∩ Cw([0, T ];L

2) and θ ∈ L∞([0, T ];L2) ∩ Cw([0, T ];L
2),

u2 ∈ L2([0, T ], H2), du
dt ∈ L1([0, T ], V ′), dθ

dt ∈ L1([0, T ], H−2) and also (u, θ) satisfies
(1.3) in the weak sense; that is, for any Φ, ϕ, chosen as in (3.2), it holds that

−
∫ T

0

(u(s),Φ′(s)) ds+ ν

∫ T

0

(∂1u(s), ∂1Φ(s)) ds+

2∑

j=1

∫ T

0

(uju, ∂jΦ) ds

= (u0,Φ(0)) +

∫ T

0

(θ(s)e2,Φ(s)) ds(4.2a)

−
∫ T

0

(θ(s), ϕ′(s)) ds+

∫ T

0

(θu,∇ϕ) ds = (θ0, ϕ(0)),(4.2b)

where ′ ≡ d
ds .

Remark 4.3. Again following standard arguments as in the theory of NSE [52] one
can show that the above system is equivalent to the functional form

du

dt
+ ν∂21u+B(u,u) = Pσ(θe2) in L2([0, T ], V ′) and(4.3a)

dθ

dt
+ B(u, θ) = 0 in L2([0, T ], H−2).(4.3b)
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We now state and prove our main results for the system (1.3) (P 0
νx,0). The

global existence and regularity results will be stated in the theorem below and the
uniqueness theorem will follow.

Theorem 4.4 (Global Existence and Regularity). Let T > 0 be given. Let θ0 ∈ L2

and ω0 ∈ L2. Then, the following hold:

(1) There exists a weak solution to (1.3) (P 0
νx,0) in the sense of Definition 4.2.

(2) If ω0 ∈ Lp, and θ0 ∈ Lp, with p ∈ [2,∞) fixed, then this weak solution
satisfies ω ∈ L∞([0, T ], Lp) and θ ∈ L∞([0, T ], Lp).

(3) Furthermore, if ω0 ∈
√
L and θ0 ∈ L∞, then there exists a solution ω ∈

L∞([0, T ],
√
L)∩Cw([0, T ], L

2), du
dt ∈ L2([0, T ], V ′) and θ ∈ L∞([0, T ], L∞)∩

C([0, T ], w∗-L∞) (where w∗-L∞ denotes the weak-∗ topology on L∞) with
dθ
dt ∈ L∞([0, T ], H−1).

Proof. The outline of our proof is as follows. We begin by generating approxi-
mate sequence of solutions (u(n), θ(n)) to P 0

νx,0 by adding artificial vertical viscosity

ν
(n)
y > 0, artificial diffusion κ(n) > 0, where κ(n), ν

(n)
y → 0 as n → ∞, and also by

smoothing the initial data. Global existence of solutions to the fully viscous system
P 0
ν,κ, given smoothed initial condition is guaranteed (see, Theorem 3.2 part (iii)).

Next, we establish uniform bounds, for the relevant norms of the approximate se-
quence of solutions which are independent of n using basic energy estimates. We
then employ the Aubin Compactness Theorem (see, e.g., [16, 52]) to show that
the sequence of approximate solutions has a subsequence converging in appropriate
function spaces. This limit will serve as a candidate weak solution. We then show
that one can pass to the limit to show that the candidate functions satisfy the weak
formulation (4.2). Then we establish some regularity results.

Step 1: Generating solutions to the regularized system given smoothed initial
data.

Let νx > 0 be fixed and let κ(n), ν
(n)
y be a sequence of positive numbers, con-

verging to zero. In fact, we can also assume that both κ(n) ≤ νx and ν
(n)
y ≤ νx.

Let (u
(n)
0 , θ

(n)
0 ) is a sequence of smooth initial data such that u

(n)
0 → u0 in V and

θ
(n)
0 → θ0 in L2, chosen in such a way that for each n ∈ N, ‖u(n)

0 ‖ ≤ ‖u0‖ + 1
n

and |θ(n)0 | ≤ |θ0|+ 1
n . Notice, since u

(n)
0 is smooth it follows that ∇⊥ · u(n)

0 = ω
(n)
0

and so ω
(n)
0 are smooth functions bounded in L2. From Theorem 3.2 part (iii),

by slightly modifying the proof of this result to account for values of the viscosity
which differ in the horizontal and vertical directions, we have that for each n, there
exist (u(n), θ(n)) satisfying the following equations:
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−
∫ T

0

(u(n)(s),Φ′(s)) ds+ νx

∫ T

0

(∂1u
(n)(s), ∂1Φ(s)) ds

(4.4a)

+ν(n)y

∫ T

0

(∂2u
(n)(s), ∂2Φ(s)) ds +

2∑

j=1

∫ T

0

(uj,(n)u(n), ∂jΦ) ds

= (u
(n)
0 ,Φ(0)) +

∫ T

0

(θ(n)(s)e2,Φ(s)) ds

−
∫ T

0

(θ(n)(s), ϕ′(s)) ds+ κ(n)
∫ T

0

(∇θ(n)(s),∇Φ(s)) ds +

∫ T

0

(θ(n)u(n),∇ϕ) ds

(4.4b)

= (θ
(n)
0 , ϕ(0)).(4.4c)

Step 2: A priori estimates and using compactness arguments to prove convergence
of a subsequence.

We next establish a priori estimates on (u(n), θ(n)) uniformly in n (independent

of ν
(n)
y and κ(n)). From the above smoothness properties of (u(n), θ(n)), we can now

derive a priori estimates using basic energy estimates in which the derivatives and
integrations are well defined. First, one can obtain, because div u(n)=0, that

|θ(n)(t)| ≤ |θ(n)0 | ≤ |θ0|+
1

n
,(4.5)

and

|u(n)(t)|2 + 2νx

∫ t

0

|∂1u(n)(τ)|2 dτ + 2ν(n)y

∫ t

0

|∂2u(n)(τ)|2 dτ

≤ (|u0|+
1

n
+ t(|θ0|+

1

n
))2.

The calculations above are justified by replacing the test functions by θ(n) and u(n)

in (4.4) and then integrating by parts.
Using the evolution equation of the vorticity, namely the equation

∂tω
(n) + u(n) · ∇ω(n) − νx∂

2
1ω

(n) − ν(n)y ∂22ω
(n) = θ(n)x ,(4.6)

we also have
1

2

d

dt
|ω(n)|2 + νx|∂21ω(n)|+ ν(n)y |∂22ω(n)| = −(θ(n), ∂1ω

(n))

≤ νx
2
|∂1ω(n)|2 + 1

2νx
|θ(n)|2.

Integrating this gives

|ω(n)|2 + νx

∫ t

0

|∂1ω(n)|2 dτ + 2ν(n)y

∫ t

0

|∂2ω(n)|2 dτ(4.7)

≤
(
|ω0|+

1

n

)2

+
t

2νx

(
|θ0|+

1

n

)2

,(4.8)
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which implies that ω(n) is uniformly bounded in L∞([0, T ], L2) with respect to
n, and therefore u(n) is uniformly bounded in L∞([0, T ], V ) with respect to n.
Furthermore, (4.7) shows that ∂1ω

(n) is uniformly bounded in L2([0, T ], L2) with
respect to n. We also observe that

∂1ω
(n) = ∂21u

2,(n) − ∂1∂2u
1,(n) = ∂21u

2,(n) + ∂22u
2,(n) = △u2,(n).

Therefore, △u2,(n) is uniformly bounded in L2([0, T ], L2), so that u2,(n) is uni-
formly bounded in L2([0, T ], H2) by elliptic regularity, and thus∇u2,(n) is uniformly
bounded in L2([0, T ], H1), all with respect to n. Next we derive uniform bounds

on the derivatives (du
(n)

dt )n∈N. Note that

dω(n)

dt
= −B(ω(n),u(n)) + νx∂

2
1ω

(n) + ν(n)y ∂22ω
(n) + ∂1θ

(n)

Thus,

(4.9)

∥∥∥∥
dω(n)

dt

∥∥∥∥
H−2

≤ sup
‖w‖Ḣ2=1

∣∣∣
〈
B(ω(n),u(n)),w

〉∣∣∣+ νx sup
‖w‖Ḣ2=1

∣∣∣
〈
∂21ω

(n),w
〉∣∣∣

+ ν(n)y sup
‖w‖Ḣ2=1

∣∣∣
〈
∂22ω

(n),w
〉∣∣∣+ sup

‖w‖Ḣ2=1

∣∣∣
〈
∂1θ

(n),w
〉∣∣∣

= sup
‖w‖Ḣ2=1

∣∣∣
〈
ω(n)u(n),∇w

〉∣∣∣+ νx sup
‖w‖Ḣ2=1

∣∣∣
〈
ω(n), ∂21w

〉∣∣∣

+ ν(n)y sup
‖w‖Ḣ2=1

∣∣∣
〈
ω(n), ∂22w

〉∣∣∣+ sup
‖w‖Ḣ2=1

∣∣∣
〈
θ(n), ∂1w

〉∣∣∣

≤ |ω(n)||u(n)|1/2‖u(n)‖1/2 + νx|ω(n)|+ νx|ω(n)|+ |θ(n)|,
Since each of the terms on the right-hand side of the inequality above is bounded
independently of n, we deduce by the Calderón-Zygmund elliptic estimate (2.3)
that ∂tu

(n) is bounded in L∞([0, T ], V ′) independently of n. Similarly, one can
show easily that

(4.10)

∥∥∥∥
dθ(n)

dt

∥∥∥∥
H−2

≤ |θ(n)||u(n)|1/2‖u(n)‖1/2,

which implies also that dθ(n)

dt is bounded in L∞([0, T ], H−2) independently of n. To
summarize, we have from the above results that

(θ(n))n∈N is bounded in L∞([0, T ], L2),(4.11a)

(u(n))n∈N is bounded in L∞([0, T ], V ),(4.11b)

(u2,(n))n∈N is bounded in L2([0, T ], H2)(4.11c)
(
du(n)

dt

)

n∈N

is bounded in L∞([0, T ], V ′),(4.11d)

(
dθ(n)

dt

)

n∈N

is bounded in L∞([0, T ], H−2).(4.11e)

Using Banach-Alaoglu and Aubin Compactness theorems (see, e.g., [16, 52]), the
uniform bounds with respect to n as stated in (4.11) implies that one can extract
a further subsequence (which we relabel with the index n if necessary) such that
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θ(n) ⇀ θ weakly in L2([0, T ], L2) and weak-∗ in L∞([0, T ], L2).(4.12a)

u(n) → u strongly in L2([0, T ], H),(4.12b)

u(n) ⇀ u weakly in L2([0, T ], V ) and weak-∗ in L∞([0, T ], V ),(4.12c)

u2,(n) ⇀ u2,(n) weakly in L2([0, T ], H2),(4.12d)

du(n)

dt
⇀

du

dt
weakly in L2([0, T ], V ′) and weak-∗ in L∞([0, T ], V ′),(4.12e)

dθ(n)

dt
⇀

dθ

dt
weakly in L2([0, T ], H−2) and weak-∗ in L∞([0, T ], H−2).(4.12f)

Step 3: Pass to the limit in the system.
It remains to show that (4.12) is enough to pass to the limit in (4.4) to show that

(u, θ) satisfies (4.2). To do this, in accordance with Remark 3.1 and Definition 4.2,
we only consider test functions of the form (3.2), which we note is sufficient for
showing that (u, θ) satisfies (4.2). For the linear terms in (4.4), we have, by the

weak convergence in (4.12c) and (4.12a), as n→ ∞ (that is, κ(n), ν
(n)
y → 0),

∫ T

0

(u(n)(s),Γ′
m(s)e2πim·x) ds →

∫ T

0

(u(s),Γ′
m(s)e2πim·x) ds,

νx

∫ T

0

(∂1u
(n)(s),Γm(s)∂1e

2πim·x) ds → νx

∫ T

0

(∂1u(s),Γm(s)∂1e
2πim·x) ds,

∫ T

0

(θ(n)(s)e2,Γm(s)e2πim·x) ds →
∫ T

0

(θ(s)e2,Γm(s)e2πim·x) ds,

∫ T

0

(θ(n)(s), e2πim·x)χ′
m(s) ds →

∫ T

0

(θ(s), e2πim·x)χ′
m(s) ds,

κ(n)
∫ T

0

(∂2u
(n)(s),Γm(s)∂2e

2πim·x) ds → 0,

κ(n)

∣∣∣∣∣

∫ T

0

((θκ(s), e
2πim·xχm(s))) ds

∣∣∣∣∣ ≤ C
√
κ(n)

(√
κ(n)‖θκ‖L2

TH1
x

)

≤ CK0

√
κ(n) → 0.

It remains to show the convergence of the remaining non-linear terms. Let

I(n) :=

2∑

j=1

∫ T

0

(uj,(n)u(n),Γm(s)∂je
2πim·x) ds−

2∑

j=1

∫ T

0

(uju,Γm(s)∂je
2πim·x) ds

J(n) :=

∫ T

0

(u(n)(s)θ(n)(s), χm(s)∇e2πim·x )ds−
∫ T

0

(u(s)θ(s), χm(s)∇e2πim·x )ds.
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To show I(n) → 0 as n → ∞, we write I(n) = I1(n) + I2(n), the definitions of
which are given below. We have

|I1(n)| :=

∣∣∣∣∣∣

2∑

j=1

∫ T

0

((uj,(n)(s)− uj(s))u(n)(s), ∂je
2πim·x)χm(s) ds

∣∣∣∣∣∣

≤
∫ T

0

|u(n)(s)− u(s)||u(n)(s)||∇e2πim·xχm(s)| ds

≤ ‖u(n) − u‖L2
THx

‖u(n)‖L∞

T Hx‖∇e2πim·xχm‖L2
TL∞

x
→ 0,

as n→ ∞, since u(n) → u strongly in L2([0, T ], H) and u(n) is uniformly bounded
in L∞([0, T ], V ) and hence in L∞([0, T ], H) . Similarly, for I2, we have that as
n→ ∞

I2(n) :=

2∑

j=1

∫ T

0

(
uj(s)(u(n)(s)− u(s)), ∂je

2πim·x
)
χm(s) ds→ 0.

To show J(n) → 0 as n→ ∞, we write J(n) = J1(n) + J2(n). We have

J1(n) :=

∫ T

0

((u(n)(s)− u(s))θ(n)(s),∇e2πim·x)χm(s) ds → 0,

as n → ∞, since u(n) → u strongly in L2([0, T ], H) and θ(n) → θ weakly in
L2([0, T ], H). For J2, we have

J2(n) :=

∫ T

0

(
u(s)(θ(n)(s)− θ(s)),∇e2πim·x

)
χm(s) ds → 0,

by the weak convergence in (4.12a) and the fact that u ∈ L2([0, T ], H). This estab-
lishes the existence of weak solution to the system P 0

νx,0 when u0 ∈ H1 and θ0 ∈ L2.

Step 4: Show that ω ∈ Cw([0, T ];L
2).

By the Arzela-Ascoli theorem, it suffices to show that (a) {ω(n)} is a relatively
weakly compact set in L2(T2) for a.e t ≥ 0 and (b) for every φ ∈ L2(T2) the
sequence {(ω(n), φ)} is equicontinuous in C([0, T ]). Condition (a) follows from the
uniform boundedness of ω(n) in L2(T2) for a.e. t ≥ 0 given in (4.7). Next, we show
that condition (b) is satisfied. We follow similar argument as in Step 3 of Section
3 equation (3.6), where, we start by assuming that φ is a trigonometric polynomial
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to obtain,

|(ω(n)(t2), φ)− (ω(n)(t1), φ)|

≤ |νx
∫ t2

t1

(∂1ω
(n)(t), ∂1φ) dt|+ |νy

∫ t2

t1

(∂2ω
(n)(t), ∂2φ) dt|

+ |
∫ t2

t1

(u(n) · ∇φ, ω(n)) dt|+ |
∫ t2

t1

(θ(n), ∂xφ) dt|

≤ νx

∫ t2

t1

|∂1ω(n)||∂1φ| dt+ νx

∫ t2

t1

|ω(n)||∂22φ| dt

+ ‖∇φ‖∞
∫ t2

t1

|u(n)||ω(n)| dt+
∫ t2

t1

|θ(n)||∇φ| dt

≤ |∇φ|∞||t2 − t1|1/2νx
∫ t2

t1

|∂1ω(n)|2 dt+ |∂22φ|∞||t2 − t1|‖ω(n)‖L∞

T L2
x

+ ‖∇φ‖∞|t2 − t1|
(
‖u(n)‖L∞

T L2
x
‖ω(n)‖L∞

T L2
x
+ ‖θ(n)‖L∞

T L2
x

)
,

where recall we have assumed without loss of generality that ν
(n)
y < νx. From

the uniform boundedness of ω(n) (4.7) and θ(n) (4.5), the right-hand side can be
made small when |t2 − t1| is small enough. Thus we have that the set {(ω(n), φ)} is
equicontinuous in C([0, T ]). Then one can extend this result for all test functions
φ in L2(T2) using a simple density argument as before. This completes the proof
of part (1) of Theorem 4.4.

Step 5 Proof of part (2) of Theorem 4.4.

We choose a sequence of smooth initial data ω
(n)
0 → ω0 and similarly θ

(n)
0 → θ0

in every Lp with p ≥ 2 chosen in such a way that for each n ∈ N, ‖ω(n)
0 ‖p ≤

‖ω0‖p + 1
n and ‖θ(n)0 ‖p ≤ ‖θ0‖p + 1

n . From Theorem 3.2, we obtain for each n, a

solution u(n) ∈ H3 which then gives us ω(n) ∈ H2 which is a topological algebra,
hence |ω(n)|p−2ω(n) ∈ H2. We take the inner product of (4.6) with |ω(n)|p−2ω(n).
Integrating by parts, we have

1

p

d

dt
‖ω(n)‖pp + νx(p− 1)

∫

T2

|∂1ω(n)|2|ω(n)|p−2 dx+ ν(n)y (p− 1)

∫

T2

|∂2ω(n)|2|ω|p−2 dx

≤ (p− 1)

∫

T2

|θ(n)||∂1ω(n)||ω(n)|p−2 dx

≤ νx(p− 1)

∫

T2

|∂1ω(n)|2|ω(n)|p−2 dx+
p− 1

4νx

∫

T2

|θ(n)|2|ω(n)|p−2 dx

≤ νx(p− 1)

∫

T2

|∂1ω(n)|2|ω(n)|p−2 dx+
p− 1

4νx
‖θ(n)‖2p‖ω(n)‖p−2

p .

Therefore, we have

1

p

d

dt
‖ω(n)‖pp ≤ p− 1

4νx
‖θ(n)‖2p‖ω(n)‖p−2

p ≤ p− 1

4νx

(
‖θ0‖p +

1

n

)2

‖ω(n)‖p−2
p .

That is,

d

dt
‖ω(n)‖2p ≤ p− 1

2νx
‖θ(n)0 ‖2p ≤ p− 1

2νx

(
‖θ0‖p +

1

n

)2

.
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Integrating in time, we have

‖ω(n)(t)‖2p ≤ ‖ω(n)
0 ‖2p +

p− 1

2νx

(
‖θ0‖p +

1

n

)2

t(4.13)

≤
(
‖ω0‖p +

1

n

)2

+
p− 1

2νx

(
‖θ0‖p +

1

n

)2

t.

That is, ω(n) is uniformly bounded in L∞([0, T ], Lp) for each p ∈ [2,∞), inde-
pendent of n. It follows from the Banach-Alaoglu Theorem and diagonalization
process, that there exists a further subsequence which we also denote as ω(n) con-
verging weak-∗ in L∞([0, T ], Lp) to some limit which we denote as ω and this limit
also enjoys the limit of the upper bound, that is

‖ω‖2p ≤
(
‖ω0‖p +

1

n

)2

+
p− 1

2νx

(
‖θ0‖p +

1

n

)2

t.(4.14)

This implies that ω ∈ L∞([0, T ];Lp) for all p ∈ [2,∞). Similarly we find that

‖θ(n)(t)‖p ≤ ‖θ(n)0 ‖p ≤ ‖θ0‖p +
1

n
,(4.15)

which implies that θ(n) converges weak-∗ in L∞([0, T ];Lp) to θ ∈ L∞([0, T ];Lp)
for all p ∈ [2,∞), and ‖θ‖L∞([0,T ],Lp) ≤ ‖θ0‖p.

Step 6 Proof of part (3) of Theorem 4.4.
To prove Theorem 4.4 part (3) we divide both sides of (4.14) by p− 1 and then

taking the supremum over all p > 2 of both sides, we get that ω ∈ L∞([0, T ],
√
L)

provided that ω0 ∈
√
L and θ0 ∈ L∞. Next, we want to show that θ ∈ C([0, T ];w∗-L∞).

We will use the Arzela-Ascoli theorem as in Step 4. Notice that if θ0 ∈ L∞ then
(4.15) holds uniformly for all p ∈ [2,∞) and hence

‖θ(n)(t)‖∞ ≤ ‖θ0‖∞ +
1

n
.(4.16)

This implies that the sequence θ(n)(t) is a relatively compact set in the weak−∗
topology of L∞([0, T ] × T

2). It suffices to show that the sequence {
(
θ(n), φ

)
} is

equicontinuous in C([0, T ]) for every φ ∈ L1. It follows automatically from the
previous result and the density of L2(T2) in L1(T2) that θ ∈ Cw([0, T ], L

2). Finally,
we would like to show that dθ

dt ∈ L∞([0, T ], H−1) and hence dθ
dt ∈ L2([0, T ], H−1).

Since ω ∈ L∞([0, T ],
√
L), we have in particular that ω ∈ L∞([0, T ], L3), and

hence u ∈ L∞([0, T ],W 1,3) ⊂ L∞([0, T ], L∞) by (2.3), (2.16), and the Sobolev
Embedding Theorem. From equation (4.3b), using (2.11) and the fact that θ ∈
L∞([0, T ], L2), we obtain,

∥∥∥∥
dθ

dt

∥∥∥∥
H−1

= sup
‖w‖=1

|〈B(u, θ), w〉| ≤ ‖u‖∞|θ| <∞ a.e t ∈ [0, T ].(4.17)

This completes the proof of part (3) of Theorem 4.4. �

Theorem 4.5 (Uniqueness for the Anisotropic Case). Let θ0 ∈ L∞, ω0 ∈
√
L.

Then, for every T > 0, there exists a unique solution ω ∈ L∞([0, T ],
√
L) ∩

Cw([0, T ];L
2) and θ ∈ L∞([0, T ], L∞) ∩ C([0, T ]), w∗-L∞) to (1.3).
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Proof. Let T > 0 arbitrarily large. The existence of solution on the interval [0, T ] is
established above, therefore it suffices to show uniqueness. We note that some very
important a priori estimates that we need in the beginning of this proof were first
elegantly derived in [17]. We recall those estimates that we have borrowed from
[17]. We have derived them rigorously in the previous theorem and we derive them
here again formally to make the proof of uniqueness self-contained. First, one may
easily show that for any p ∈ [2,∞], we have

‖θ(t)‖p ≤ ‖θ0‖p,(4.18)

so θ ∈ L∞([0, T ], Lp), p ∈ [2,∞]. Given that ω0 ∈
√
L, and hence ω0 ∈ L2, we have

1

2

d

dt
|ω|2 + ν|∂21ω| = −(θ, ∂1ω) ≤

ν

2
|∂1ω|2 +

1

2ν
|θ|2.

Integrating this gives

|ω|2 + ν

∫ t

0

|∂1ω|2 dτ ≤ |ω0|2 +
t

ν
|θ0|2.

This implies that ω ∈ L∞([0, T ], L2), and therefore u ∈ L∞([0, T ], V ). Further-
more, ∂1ω ∈ L2([0, T ], L2). Using the divergence free condition (1.3b), we observe
that

∂1ω = ∂21u
2 − ∂1∂2u

1 = ∂21u
2 + ∂22u

2 = △u2.
Therefore, △u2 ∈ L2([0, T ], L2), so that u2 ∈ L2([0, T ], H2) by elliptic regularity,
and thus ∇u2 ∈ L2([0, T ], H1). By inequality (2.2), we have

‖∇u2‖p ≤ C
√
p− 1‖∇u2‖H1 .(4.19)

so that ∇u2 ∈ L2([0, T ],
√
L).

Next, we recall that we have global in time control over the ‖ω‖√L. Taking the

inner product of (4.1) with |ω|p−2ω for some p > 2 and integrating by parts, and
integrating in time, we have

‖ω(t)‖2p ≤ ‖ω0‖2p +
p− 1

2ν
‖θ0‖2pt.(4.20)

This shows that ω ∈ L∞([0, T ],
√
L). Using this, and the facts that ∂1u

1 =
−∂2u2 (by (1.3b)) and ∂2u

1 = ∂1u
2 − ω, we have thanks to (4.19) that ∇u1 ∈

L2([0, T ],
√
L). Combining this with (4.19) shows that

∇u ∈ L2([0, T ],
√
L).(4.21)

We recall again that all the estimates above were first derived in [17] for the case
where Ω = R

2.
We are now ready to show that if (u1, θ1) and (u2, θ2) are two solutions to (4.2)

on the interval [0, T ], with the same initial data (u0, θ0) then they must be the equal.

Define ũ := u1 − u2, θ̃ := θ1 − θ2, and ξℓ := △−1θℓ, ℓ = 1, 2, and ξ̃ := ξ1 − ξ2.
Based on Remark 4.3, these quantities satisfy the following functional equations.

dũ

dt
+ ν∂11ũ+ B(ũ,u1) +B(u2, ũ) = Pσ(△ξ̃e2) in L2([0, T ], V ′) and(4.22a)

d△ξ̃
dt

+ B(ũ,△ξ1) + B(u2,△ξ̃) = 0 in L2([0, T ], H−1).(4.22b)
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Taking the action of (4.22a) on ũ in L2([0, T ], V ) and the action of (4.22b) in

L2([0, T ], H−1) with ξ̃ ∈ L2([0, T ], H2), thanks to the properties of the operator B
in Lemma 2.1 and the operator B in Lemma 2.2 we obtain the following:

1

2

d

dt
|ũ(t)|2 + ν‖∂1ũ‖2 =

2∑

j=1

(ũju1, ∂jũ) + (△ξ̃e2, ũ)

1

2

d

dt
‖ξ̃(t)‖2 = −(ũ△ξ1,∇ξ̃)− (u2△ξ̃,∇ξ̃),

where again we have used Lions-Magenes Lemma (see, e.g., [52]) to get that
〈
dũ
dt , ũ

〉
=

1
2

d
dt |ũ(t)|2 and

〈
d△ξ̃
dt , ξ̃

〉
= 1

2
d
dt‖ξ̃(t)‖2. By Lemma 2.1, we obtain

1

2

d

dt
|ũ|2 + ν|∂1ũ|2 ≤

∫

T2

|∇u1| |ũ|2 dx+
∣∣∣(△ξ̃e2, ũ)

∣∣∣

and

1

2

d

dt
‖ξ̃‖2 ≤

∣∣∣∣
∫

T2

ũ · ∇ξ̃△ξ1 dx
∣∣∣∣+
∣∣∣∣
∫

T2

u2 · ∇ξ̃△ξ̃ dx
∣∣∣∣ .

Next, observe that, due to the divergence free condition, e1 · ∂1ũ = −e2 · ∂2ũ, we
have

|(△ξ̃e2, ũ)| ≤
∫

T2

(
|∂1ξ̃e2 · ∂1ũ|+ |∂2ξ̃e2 · ∂2ũ|

)
dx

=

∫

T2

(
|∂1ξ̃e2 · ∂1ũ|+ |∂2ξ̃e1 · ∂1ũ|

)
dx

≤ 1

ν
|∂1ξ̃|2 +

ν

4
|e2 · ∂1ũ|2 +

1

ν
|∂2ξ̃|2 +

ν

4
|e1 · ∂1ũ|2.

Combining the above estimates, we find

1

2

d

dt
|ũ|2 + ν|∂1ũ|2 ≤

∫

T2

|∇u1| |ũ|2 dx+
2

ν
‖ξ̃‖2 + ν

2
|∂1ũ|2

≤ ‖ũ‖2/p∞

∫

T2

|∇u1| |ũ|2−2/p dx+
2

ν
‖ξ̃‖2 + ν

2
|∂1ũ|2

≤ ‖∇u1‖p‖ũ‖2/p∞ |ũ|2−2/p +
2

ν
‖ξ̃‖2 + ν

2
|∂1ũ|2

where we have used Hölder’s inequality. Similarly, by Lemma 2.2

1

2

d

dt
‖ξ̃‖2 ≤

∣∣∣∣
∫

T2

ũ · ∇ξ̃△ξ1 dx
∣∣∣∣ +
∫

T2

|∇u2||∇ξ̃|2 dx

≤ |ũ||∇ξ̃|‖△ξ1‖∞ + ‖∇u2‖p‖∇ξ̃‖2/p∞ |∇ξ̃|2−2/p.

From the estimates above we can now adapt the well-known Yudovich argument for
the 2D incompressible Euler equations (see, e.g., [27]) to complete the uniqueness

proof. Let X2 := |ũ(t)|2 + ‖ξ̃(t)‖2+ η2 for some arbitrary η > 0. Adding the above



BOUSSINESQ EQUATIONS 27

two inequalities and using Young’s inequality gives,

1

2

d

dt
X2 +

ν

2
|∂1ũ|2

≤ Kν

(
|ũ|2 + ‖ξ̃‖2 + η2

)

+ (‖∇u2‖p + ‖∇u1‖p)
(
‖ũ‖2/p∞ + ‖∇ξ̃‖2/p∞

)(
|ũ|2−2/p + |∇ξ̃|2−2/p

)

≤ KνX
2 + C (‖∇u2‖p + ‖∇u1‖p)

(
‖ũ‖2/p∞ + ‖∇ξ̃‖2/p∞

)
X2−2/p.

Neglecting the term ν
2 |∂1ũ|2, dividing by X , and making the change of variables

Y (t) = e−KνtX(t), we have after a simple calculation,

Ẏ ≤ Ce−2Kνt/p (‖∇u2‖p + ‖∇u1‖p)
(
‖ũ‖2/p∞ + ‖∇ξ̃‖2/p∞

)
Y 1−2/p.

Integrating this equation and using the fact that e−2Kνt/p ≤ 1, we get that

Y (t) ≤
[
η2/p + C

∫ t

0

1

p
(‖∇u2(s)‖p + ‖∇u1(s)‖p)

(
‖ũ(s)‖2/p∞ + ‖∇ξ̃(s)‖2/p∞

)
ds

]p/2
.

Letting η → 0 we discover that for all t ∈ [0, T ],

|ũ(t)|2 + ‖ξ̃(t)‖2 ≤
(
‖ũ‖L∞

T L∞

x
+ ‖∇ξ̃‖L∞

T L∞

x

)

·
(
C

∫ t

0

1

p
(‖∇u2(s)‖p + ‖∇u1(s)‖p) ds

)p/2

.(4.23)

Thanks to the fact that △ξ̃ = θ̃ ∈ L∞([0, T ], L∞) ⊂ L∞([0, T ], L4), we have by

elliptic regularity that ξ̃ ∈ L∞([0, T ],W 2,4), and therefore ∇ξ̃ ∈ L∞([0, T ],W 1,4).

Thus, by the Sobolev Embedding Theorem, we have ∇ξ̃ ∈ L∞([0, T ],W 1,4) ⊂
L∞([0, T ], C0,γ), for some γ ∈ (0, 1). Furthermore, ω̃ ∈ L∞([0, T ],

√
L) implies,

for instance that ũ ∈ L∞([0, T ],W 1,4) by the Calderón-Zygmund elliptic estimate
(2.3). Using the Sobolev Embedding Theorem again, we have ũ ∈ L∞([0, T ], C0,γ),
for some γ ∈ (0, 1). Therefore, the first factor on the right-hand side of (4.23)

is bounded. Now, since ∇uℓ ∈ L2([0, T ],
√
L), ℓ = 1, 2 by (4.21), we have by

Cauchy-Schwarz

∫ t

0

‖∇uℓ(s)‖p
p

ds ≤
(
t

∫ T

0

sup
p≥2

‖∇uℓ(s)‖2p
p− 1

ds

)1/2

.

Let Mℓ =

∫ T

0

sup
p≥2

‖∇uℓ(s)‖2p
p− 1

ds, ℓ = 1, 2 and M = max{M1,M2}. Thus, from the

above, for every fixed τ ∈ (0, T ] we have

|ũ(t)|2 + ‖ξ̃(t)‖2 ≤ K(2CMτ)p/2, for all t ∈ [0, τ ],(4.24)

where the constant C is the same constant which appears in (4.23) and K =(
‖ũ‖L∞

T L∞

x
+ ‖∇ξ̃‖L∞

T L∞

x

)
. Now choose τ = τ0 = min{T, 1

4CM }, and consider

(4.24) on [0, τ0]. Taking the limit as p → ∞, we get that |ũ(t)|2 + ‖ξ̃(t)‖2 ≤ 0 for
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all t ∈ [0, τ0]. Restarting the time at t = τ0 and noting the fact that

∫ t+τ0

τ0

‖∇uℓ(s)‖p
p

ds ≤
(
t

∫ T

0

sup
p≥2

‖∇uℓ(s)‖2p
p− 1

ds

)1/2

,

we obtain from the analogue of (4.23) on [τ0, T ] that |ũ(t)|2+‖ξ̃(t)‖2 ≤ K(2CMτ0)
p/2

for all t ∈ [τ0, 2τ0]. Since we defined τ0 ≤ 1
4CM , we take the limit p → ∞ and find

that on the interval [τ0, 2τ0], we also have that |ũ(t)|2 + ‖ξ̃(t)‖2 ≤ 0. We can
continue this argument on the intervals [2τ0, 3τ0], [3τ0, 4τ0], . . . , and so on. Thus,

we have |ũ(t)|2 + ‖ξ̃(t)‖2 ≤ 0 for all t ∈ [0, T ]. This implies that, |ũ(t)| = 0 and

‖ξ̃(t)‖ = 0 for all t ∈ [0, T ]. �

5. Global Well-posedness Results for the Voigt-regularized Inviscid
and Non-diffusive Boussinesq Equations (Pα

0,0)

In this section, we investigate the problem Pα
0,0, α > 0, given by (1.5) (with ν =

κ = 0) in 2D. We first establish global well-posedness results, and then investigate
the behavior of solutions as α → 0. In particular, we compare the limiting behavior
to sufficiently regular solutions of the P 0

0,0 problem. This leads to a new criterion

for the blow-up of solutions to the P 0
0,0 problem. A similar criterion was given

for the blow-up of the Surface Quasi-Geostrophic equations in [31], for the Euler
equations in [34], and for the inviscid, resistive MHD equations in [33].

Definition 5.1. Let T > 0. Suppose u0 ∈ V and θ0 ∈ L2. We say that (u, θ) is a
weak solution to the problem Pα

0,0 on the interval [0, T ] if for all test functions Φ,
ϕ chosen as in (3.2), (u, θ) satisfies

−
∫ T

0

(u(s),Φ′(s)) ds − α2

∫ T

0

((u(s),Φ′(s))) ds+
2∑

j=1

∫ T

0

(uju, ∂jΦ) ds

= (u0,Φ(0)) + α2((u0,Φ(0))) +

∫ T

0

(θ(s)e2,Φ(s)) ds,(5.1a)

−
∫ T

0

(θ(s), ϕ′(s)) ds+

∫ T

0

(θu,∇ϕ) ds = (θ0, ϕ(0)).(5.1b)

and furthermore, u ∈ C([0, T ], V ), du
dt ∈ L∞([0, T ], V ), θ ∈ L∞([0, T ], L2), θ ∈

Cw([0, T ], L
2) and dθ

dt ∈ L∞([0, T ], H−2).

Remark 5.2. Following similar arguments as those for the NSE presented in [52]
one can show that this definition is equivalent to the functional equation

(I + α2A)
du

dt
+B(u,u) = Pσ(θe2) in L2([0, T ], V ′) and(5.2a)

dθ

dt
+ B(u, θ) = 0 in L2([0, T ], H−2).(5.2b)

Theorem 5.3. Let u0 ∈ V , θ0 ∈ L2. Then there exists a solution to Pα
0,0, in the

sense of Definition 5.1. Furthermore, if θ0 ∈ L∞, then θ ∈ L∞([0, T ], L∞).
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Proof. We use the notation laid out in Section 2. Let us consider the Galerkin
approximation to Pα

0,0 (or equivalently, (5.2)) given by

(I + α2A)∂tun + PnB(un,un) = PnPσ(θne2),(5.3a)

∂tθn + Pn(∇ · (unθn)) = 0,(5.3b)

un(0) = Pnu0, θn(0) = Pnθ0.(5.3c)

This is a finite dimensional system of ODEs in Hn with quadratic polynomial non-
linearity, and therefore it has a unique local solution in C1([0, Tn), Hn) for some
Tn > 0. Let [0, T ∗

n) be the maximal interval of existence and uniqueness of solutions
to (5.3). We show below that T ∗

n = ∞ for every n.
Taking the inner product of (1.5c) with θn, using Lemma 2.2, and integrating in

time, we find that for t ∈ [0, T ∗
n),

|θn(t)| = |θn(0)| ≤ |θ0|.(5.4)

Next, we take the inner product of (1.5a) with un and use Lemma 2.1 to find

1

2

d

dt
(|un|2 + α2‖un‖2) = (θne2,un) ≤ |θn||un|

≤ |θ0|
√
|un|2 + α2‖un‖2(5.5)

Consequently, we have for t ∈ [0, T ∗
n),

|un(t)|2 + α2‖un(t)‖2 ≤ |u0|2 + α2‖u0‖2 + t2|θ0|2.(5.6)

According to (5.4) and (5.6), we see that if T ∗
n < ∞, then ‖un‖ and |θn| are both

bounded in time on [0, T ∗
n), and thus the solutions can be continued beyond T ∗

n ,
contradicting the definition of T ∗

n as the maximal time of existence. Thus, T ∗
n = ∞

for all n ∈ N. Next, we find bounds on the time derivatives. From now on, we
work on the interval [0, T ], where T was arbitrarily given in the statement of the
theorem. Using Lemma 2.1, along with (2.16) and (5.4), we have

∥∥∥∥(I + α2A)
dun

dt

∥∥∥∥
V ′

≤ sup
‖w‖=1

|(B(un,un), Pnw)|+ sup
‖w‖=1

|(θne2, Pnw)|(5.7)

≤ sup
‖w‖=1

|un|‖un‖‖w‖+ sup
‖w‖=1

|θn||w|

≤ |u(n)|‖u(n)‖+ λ
−1/2
1 |θ(n)|

≤ |un|‖un‖+ λ−1/2|θ0|.
Thanks to (5.6) and (5.7) we obtain that (I + α2A)dun

dt is uniformly bounded in

L∞([0, T ], V ′), which implies that dun

dt is uniformly bounded in L∞([0, T ], V ), with
respect to n. Similarly, using Lemma 2.2, we obtain

(5.8)

∥∥∥∥
dθn
dt

∥∥∥∥
H−2

≤ |θn||un|1/2‖un‖1/2,

which implies that dθn
dt is bounded in L∞([0, T ], H−2) independently of n by virtue

of (5.4) and (5.6).
The above bounds allow us to use the Banach-Alaoglu Theorem and the Aubin

Compactness Theorem (see, e.g., [16, 52]) to extract a subsequence, which we still
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write as (un, θn), and elements u and θ, such that

un → u strongly in L2([0, T ], H),(5.9a)

un ⇀ u weakly in L2([0, T ], V ) and weak-∗ in L∞([0, T ], V ),(5.9b)

dun

dt
⇀

du

dt
weak-∗ in L∞([0, T ], V ),(5.9c)

θn ⇀ θ weakly in L2([0, T ], L2) and weak-∗ in L∞([0, T ], L2),(5.9d)

dθn
dt

⇀
dθ

dt
weak-∗ in L∞([0, T ], H−2).(5.9e)

Next, for arbitrary ϕ and Φ, chosen as in (3.2), let us take the inner product of
(5.3a) with Φ, and of (5.3b) with ϕ and integrate in time on [0, T ]. After integrating
by parts several times, we have

−
∫ T

0

(un(s),Φ
′(s)) ds− α2

∫ T

0

((un(s),Φ
′(s))) ds +

2∑

j=1

∫ T

0

(ujnun, Pn∂jΦ) ds

(5.10a)

= (un(0),Φ(0)) + α2((un(0),Φ(0))) +

∫ T

0

(θn(s)e2,Φ(s)) ds,

−
∫ T

0

(θn(s), ϕ
′(s)) ds+

∫ T

0

(θnun, Pn∇ϕ) ds = (θ0, ϕ(0)),

(5.10b)

where we have again denoted ′ ≡ d
ds . We would like to pass to the limit as n→ ∞

to obtain (5.1). The convergence of the linear terms is straight-forward, thanks
to (5.9). As for the non-linear terms, notice that the convergence in (5.9) is in
stronger than the convergence in (3.5), and so the convergence of the non-linear
terms follows just as in the proof of Theorem 3.5 (note that PnΦ = Φ and Pnϕ = ϕ
for sufficiently large n, due to our choice of test functions in (3.2)). Thus, (u, θ)
satisfies (5.1). In particular, choosing φ and Φ to have compact support in (0, T ), we
see that the equations of (5.2a) and (5.2b) are satisfied in the sense of distributions
in time with values in V ′ and H−2, respectively. Acting with (5.2a) on Φ, with
(5.2b) on ϕ, and integrating in time on [t0, t1], we find

−
∫ t1

t0

(u(s),Φ′(s)) ds− α2

∫ t1

t0

((u(s),Φ′(s))) ds+
2∑

j=1

∫ t1

t0

(uju, ∂jΦ) ds

(5.11a)

= (u(t0),Φ(t0)) + α2((u(t0),Φ(t0)))− (u(t1),Φ(t1))− α2((u(t1),Φ(t1)))

+

∫ t1

t0

(θ(s)e2,Φ(s)) ds,

−
∫ t1

t0

(θ(s), ϕ′(s)) ds+

∫ t1

t0

(θu,∇ϕ) ds = (θ(t0), ϕ(t0))− (θ(t1), ϕ(t1)).

(5.11b)

Temporarily restricting our set of test functions to those which are compactly sup-
ported in time on [0, T ] and considering the case t0 = 0 and t1 = T , it is easy
to see from a simple density argument that (u, θ) satisfies the equations of (5.2)
in the sense of distributions, thanks to (5.11). Next, allowing Φ(0), and ϕ(0) to
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be arbitrary, but fixing Φ(T ) = 0 and ϕ(T ) = 0, we act on Φ with (5.2a) and
on ϕ with (5.2b) and integrate on [0, T ], resulting equations in (5.1). Compar-
ing (5.1) with (5.11), we find that that θ(0) = θ0 in the sense of H−1 and that
(I+α2A)u(0) = (I+α2A)u0 in the sense of V ′. Inverting I+α2A gives u(0) = u0.
Furthermore, we may send t1 → t0 in (5.11b), and use the density of C∞(T2)
in L2(T2), as well as the boundedness of θ in L∞([0, T ], L2(T2)), to show that
θ ∈ Cw([0, T ], L

2(T2)). Next, since we have u, d
dtu ∈ L∞([0, T ], V ) →֒ L2([0, T ], V ),

it follows that u ∈ C([0, T ], V ) by the Sobolev Embedding Theorem. Thus, we have
shown a weak solution exists in the sense of Definition 5.1. Finally, one may show
that if θ0 ∈ L∞(T2), then θ ∈ L∞([0, T ], L∞), by following Step 4 of the proof of
Theorem 3.5 line-by-line. �

Theorem 5.4 (Uniqueness for the 2D Voigt model). Let T > 0 be arbitrary.
Suppose u0 ∈ D(A) and θ0 ∈ L2(T2). Then there exists a unique solution to (1.5)
in the sense of Definition 5.1. Furthermore, it holds that u ∈ L∞([0, T ],D(A)).

Proof. Here, we only sketch the proof, since the ideas a similar to those given
above. The existence of solutions to (1.5) has already been established in The-
orem 5.3. Thanks to the hypothesis u0 ∈ D(A), it is straight-forward to show
that u ∈ C([0, T ],D(A)) using, e.g., the methods of [34] and similarly that dθ

dt ∈
L2([0, T ], H−1). One can the prove the uniqueness of solutions by following the
proof of Theorem 3.7 almost line by line. Only some slight modifications to the
handling of the terms involving ‖u‖, and in using the parameter α2 rather than ν
is needed. �

Theorem 5.5 (Convergence as α → 0). Given initial data (u0, θ0) ∈ (H3(T2) ∩
V ) × H3(T2), and (uα

0 , θ
α
0 ) ∈ (H3(T2) ∩ V ) × H3(T2), let (u, θ) and (uα, θα) be

the corresponding solutions to the problems P 0
0,0 and Pα

0,0, respectively. Choose an
arbitrary T ∈ (0, Tmax), where Tmax is the maximal time for which a solution to
the problem P 0

0,0 exists and is unique. Suppose that uα
0 → u0 in V and θα0 → θ0 in

L2(T2). Then uα → u in L2([0, T ], V ) and θα → θ in L2([0, T ], L2(T2)).

Proof. Here, for simplicity, we only work formally, but note that the results can
be made rigorous by using the techniques discussed above. Under the hypotheses
on the initial conditions, it was proven in [15] that there exists a time T > 0
and a unique (u, θ) ∈ C([0, T ], H3(T2) ∩ V ) × C([0, T ], H3(T2) ∩ V ) solving the
problem P 0

0,0, (in particular, it holds that Tmax > 0). Thanks to Theorem (5.3), we
know that there also exists a unique solution to the problem Pα

0,0, namely (uα, θα) ∈
C([0, T ], V )×C([0, T ], L2(T2)). Subtracting the corresponding equations from these
problems (that is, (1.1) with ν = κ = 0 and (1.5)) yields

−α2 d

dt
△uα +

d

dt
(u− uα) = −B(u− uα,u)−B(uα,u− uα) + Pσ((θ

α − θ)e2),

(5.12a)

d

dt
(θα − θ) = −((u− uα) · ∇)θ − (uα · ∇)(θ − θα).(5.12b)
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Let us take the inner product of (5.12a) with uα − u and of (5.12b) with θα − θ,
and add the results. After integrating by parts and rearranging the terms, we find

1

2

d

dt

(
α2‖u− uα‖2 + |u− uα|2 + |θ − θα|2

)
(5.13)

= −(B(u− uα,u),uα − u) + ((θα − θ)e2,u
α − u)

− (((u− uα) · ∇)θ, θα − θ)− α2 (△ut,u− uα)

≤ ‖∇u‖L∞ |u− uα|2 + |θα − θ||uα − u|
‖∇θ‖L∞|u− uα||θα − θ| − α2 (△ut,u− uα)

≤ K(|u− uα|2 + |θα − θ|2)− α2 (△ut,u− uα) ,

where we have used Young’s inequality and the fact that ‖∇u‖L∞ , ‖∇θ‖L∞ < ∞.
It remains to estimate the integral on the left-hand side of the equality. Using the
fact that (u, θ) satisfies (1.1c), we have

− α2 (△ut,u− uα)(5.14)

= −α2 (△[−u · ∇u−∇p+ θe2],u− uα)

= α2 (△u · ∇u+ 2(∇u · ∇)∇u+ u · ∇△u−△θe2,u− uα)

≤ Cα2|△u|‖∇u‖L∞ |u− uα|+ ‖u‖L∞ |∇△u||u− uα|+ |△θ||u− uα|
≤ Cα2‖u‖H2‖u‖H3 |u− uα|+ C‖u‖H2‖u‖H3 |u− uα|+ C‖θ‖H2 |u− uα|
≤ α2K|u− uα|.

For the second equality, we used (2.18). Combining (5.13) with (5.14) and using
Grönwall’s inequality yields

α2‖u(t)− uα(t)‖2 + |u(t)− uα(t)|2 + |θ(t)− θα(t)|2

≤ C
(
α2‖u0 − uα

0 ‖2 + |u0 − uα
0 |2 + |θ0 − θα0 |2

)
eK(α2+α)t.(5.15)

Thus, if uα
0 → u0 in V and θα0 → θ0 in L2(T2), as α → 0, (in particular, if

uα
0 = u0 and θα0 = θ0 for all α > 0), then uα → u in L∞([0, T ], V ) and θα → θ in
L∞([0, T ], L2), as α→ 0. �

Theorem 5.6 (Blow-up criterion). With the same notation and assumptions of
Theorem 5.5, suppose that for some T∗ <∞, we have

sup
t∈[0,T∗)

lim sup
α→0

α2‖uα(t)‖2 > 0.(5.16)

Then the solutions to P 0
0,0 become singular in the time interval [0, T∗).

Proof. To get a contradiction, suppose that (u, θ) stays bounded in H3 ∩ V (T2)×
H3(T2) but that (5.16). Taking the inner product of the momentum equation with
uα and integrating, we find

α2‖uα(t)‖2 + |uα(t)|2 = α2‖u0‖2 + |u0|2 + 2

∫ t

0

(θα(s)e2,u
α(s)) ds.

Taking the lim sup as α → 0+ then by virtue of Theorem 5.3 and Theorem 5.5 we
have

lim sup
α→0+

α2‖uα(t)‖2 + |u(t)|2 = |u0|2 + 2

∫ t

0

(θ(s)e2,u(s)) ds.(5.17)
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However, given the hypotheses on the initial data, and the well-posedness results
of [15], it is straight-forward to prove the following energy equality:

|u(t)|2 = |u0|2 + 2

∫ t

0

(θ(s),u(s)) ds,

so that (5.17) contradicts (5.16). �

6. The 3D Boussinesq-Voigt Equations

We now briefly outline an extension of the previous results to the case of the
three dimensional Boussinesq-Voigt equations. The details are very similar to the
2D case, so we only prove formal a priori estimates. In order to control the higher-
order derivatives, we add a diffusion term to the transport equation. This approach
is similar to that used in [12, 13, 33, 34] to prove global well-posedness for two
Voigt-regularizations of the 3D MHD equations. We consider the following system,
written in functional form, which we refer to as Pα

0,κ.

(I + α2A)
du

dt
+B(u,u) = Pσ(θe3),(6.1a)

dθ

dt
+ B(u, θ) = κ△θ,(6.1b)

u(0) = u0, θ(0) = θ0.(6.1c)

Remark 6.1. Note that one could also control the higher-order derivatives by adding
the Voigt-term −β2△ d

dtθ, β > 0 to the left-hand side of (6.1b) to allow for case
when κ = 0. Although the resulting regularized system is well-posed, for the
sake of brevity, we do not pursue this type of additional Voigt-regularization here.
However, a similar idea has been investigated in the context of the MHD equations
in [34] (cf. [33]), and also in [13].

Definition 6.2. Let u0 ∈ V ∩ H3(T3), θ0 ∈ L2(T3). For a given T > 0, we say
that (u, θ) is a solution to the problem Pα

0,κ (in three-dimensions) on the interval

[0, T ] if it satisfies (6.1a) in the sense of L2([0, T ], V ) and (6.1b) in the sense of
L2([0, T ], H−1). Furthermore, u ∈ C([0, T ], V ∩ H3), du

dt ∈ L∞([0, T ],D(A)) ∩
L2([0, T ], V ∩H3), θ ∈ L2([0, T ], H1) ∩ Cw([0, T ], L

2) and dθ
dt ∈ L2([0, T ], H−1).

Theorem 6.3. Let u0 ∈ V ∩ H3(T3), θ0 ∈ L2(T3), and let T > 0 be arbitrary.
Then there exists a solution to (6.1) in the sense of Definition 6.2. Furthermore, if
θ0 ∈ Lp(T3) for some p ∈ [2,∞], then θ ∈ L∞([0, T ], Lp). In the case θ0 ∈ L∞(T3),
the solution is unique.

Proof. As mentioned above, we only establish formal a priori estimates here. Sup-
pose for a moment that θ0 ∈ Lp(T3). Formally taking the inner product of (6.1b)
with |θ|p−2θ, p ∈ [2,∞), we find as above that

1

p

d

dt
‖θ‖pLp + κ(p− 1)

∫

T3

|∇θ|2|θ|p−2 dx = 0.(6.2)

Dropping the term involving κ, integrating in time, and sending p → ∞, we find
for all p ∈ [2,∞],

‖θ(t)‖Lp ≤ ‖θ0‖Lp .
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On the other hand, setting p = 2 in (6.2) and integrating in time, we find

|θ(t)|2 + 2κ

∫ t

0

‖θ(s)‖2 ds ≤ |θ0|2.

Next, following similar steps as in the derivation of (5.5) and (5.6), we find for
t ∈ [0, T ],

|u(t)|2 + α2‖u(t)‖2 ≤ |u0|2 + α2‖u0‖2 + T 2|θ0|2 := (Kα,1)
2.

By formally taking the inner product of (5.2a) with Au, we find

1

2

d

dt
(‖u‖2 + α2|Au|2) = −(B(u,u), Au) + (θe3, Au)

≤ C‖u‖|Au|2 + |θ||Au| ≤ CKα,1α
−1|Au|2 + |θ0||Au|

≤ C(1 +Kα,1α
−1)|Au|2 + |θ0|2.

Using Grönwall’s inequality, we obtain a constant Kα,2 = (‖u0‖2 + α2|Au0|2 +
2Kα,1

T )ec0T , where c0 := Cα−2 +Kα,1α
−3, such that ‖u(t)‖2 + α2|Au(t)|2 ≤ Kα,2

for a.e. t ∈ [0, T ]. Next, we formally take the inner product of (5.2a) with A2u

(recalling that, in the periodic case, −△ = A), to find

1

2

d

dt
(|Au|2 + α2‖Au‖2) = −

3∑

j=1

(uj∂ju,△2u) + (θe3,△2u)

= −
3∑

j=1

(△uj · ∂ju,△u)− 2

3∑

i,j=1

(∂iu
j · ∂i∂ju,△u)−

3∑

j=1

(uj∂j△u,△u)

− ((θe3,△u))

≤ C|Au|2‖Au‖+ ‖θ‖‖Au‖ ≤ C
(
(Kα,2)

4 + ‖Au‖2 + ‖θ‖2
)
.(6.3)

These a priori estimates can be used to form a rigorous argument as follows.
In the case p = 2, existence can be proven by using, e.g., the Galerkin method
as in the proof of theorem (5.3), substituting the a priori estimates established in
this section as necessary. Passage to the limit, estimates on the time derivatives,
and the continuity properties of Definition 6.2 can be established using similar
ideas to those used in the proofs of some of the previous theorems. For the case
θ0 ∈ Lp(T3), with p ∈ (2,∞), we begin by smoothing θ0 (e.g., by convolving it with
a mollifier) to get smooth functions θǫ0 for each ǫ > 0, which converge to θ0 as ǫ→ 0
in several relevant norms. Clearly θǫ0 ∈ L2(T3). Thus, thanks to the existence of
solutions for the p = 2 case, there exists a solution (uǫ, θǫ) to (6.1) with initial data
(u0, θ

ǫ
0) such that θǫ ∈ L∞([0, T ], L2) and uǫ ∈ C([0, T ], V ∩ H3). One may then

show that θǫ ∈ L∞([0, T ], H2), e.g., by using the Galerkin method and deriving
straight-forward a priori estimates on higher derivatives. Since in three dimensions
L∞([0, T ], H2) is an algebra, it follows that |θǫ|p−2θǫ ∈ L∞([0, T ], H2), so that the
above a priori estimates can be established rigorously for (uǫ, θǫ). Furthermore,
the bounds can be made to be independent of ǫ. Standard arguments show that
one can extract subsequences of (uǫ, θǫ) which converge in several relevant norms as
ǫ→ 0 to a solution (u, θ) of (6.1) corresponding to initial data (u0, θ0). Taking the
limit as ǫ → 0, one may show that θ ∈ L∞([0, T ], Lp). Finally, in the case p = ∞,
one may employ, e.g., the Hopf-Stampacchia technique used in Step 4 of the proof
of Theorem 3.5.



BOUSSINESQ EQUATIONS 35

With the above a priori estimates formally established, we now show the unique-
ness of solutions to (6.1) under the additional hypothesis that θ0 ∈ L∞(T3). Letting
(u1, θ1) and (u2, θ2) be two solutions to (6.1) with initial data (u0, θ0). Let us write

ũ := u1−u2 and θ̃ = θ1−θ2. As in the proof of Theorem 3.7 we also write ξ̃ = △−1θ
and ξi = △−1θi, i = 1, 2, subject to the side condition

∫
T3 ξi dx = 0 for i = 1, 2.

Following nearly identical steps to the derivation of (3.13), we find,

1

2

d

dt
(|ũ|2 + α2‖ũ‖2) ≤ Cα,κKα,1(|ũ|2 + α2‖ũ‖2 + ‖ξ̃‖2).(6.4)

Similarly, following nearly identical steps to the derivation of (3.12b), we find,

1

2

d

dt
‖ξ̃‖2 + κ|△ξ̃|2 =

(
ũ△ξ1,∇ξ̃

)
+

3∑

j=1

(
∂ju2,∇ξ̃∂j ξ̃

)

≤ |ũ|‖θ1‖L∞‖ξ̃‖+ ‖u2‖H3‖ξ̃‖2 ≤ Kα,4(|ũ|2 + ‖ξ̃‖2),(6.5)

where Kα,4 := max {2‖θ0‖L∞ ,Kα,3} <∞. Uniqueness now follows by adding (6.4)
and (6.5) and using Grönwall’s inequality. �

7. Appendix

We prove the inequality (2.17). The proof is based on the proof of the Brezis-
Gallouet inequality [7] and follows almost line-by-line the proof given in [10]. For
w ∈ D(A), let us write

w =
∑

k∈Z2\(0,0)
akwk

where wk are the (normalized) eigenfunctions of A (see Section 2) and ak :=

(w,wk). Choose M = (e1/ǫ
1/4 − 1)1/2 for a given ǫ > 0, sufficiently small so

that M > 1. We have

‖w‖L∞ ≤
∑

k∈Z2\(0,0)
|ak| =

∑

0<|k|≤M

|ak|+
∑

|k|>M

|ak|

=
∑

0<|k|≤M

(1 + |k|2)1/2
(1 + |k|2)1/2 |ak|+

∑

|k|>M

(1 + |k|2)
(1 + |k|2) |ak|

≤




∑

0<|k|≤M

(1 + |k|2)|ak|2



1/2


∑

0<|k|≤M

1

(1 + |k|2)




1/2

+



∑

|k|>M

(1 + |k|2)2|ak|2



1/2

∑

|k|>M

1

(1 + |k|2)2




1/2

≤ C‖w‖
(∫

|x|≤M

dx

(1 + x2)

)1/2

+ C|Aw|
(∫

|x|>M

dx

(1 + |x|2)2

)1/2

= C‖w‖π log(1 +M2) + C|Aw| π

1 +M2

= C
(
‖w‖ǫ−1/4 + |Aw|e−1/ǫ1/4

)
.
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