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Synopsis The diaboloidal mirror is a reflecting surface that converts a spherical wave to a cylindrical 

wave (or vice-versa). Application of the mirror in a collimated two-crystal monochromator will be the 

main application area and will allow brightness preserving focusing, even with the very small source 

size of a multi-bend achromat (MBA) ultra-high brightness synchrotron source. An exact analytical 

solution for the surface shape of a diaboloidal mirror as a function of the conjugate parameters of the 

mirror placed in a beamline is presented. 

Abstract A new type of optical element that can focus a cylindrical wave to a point focus (or vice-

versa) is analytically described. Such waves are, for example, produced in a beamline where light is 

collimated in one direction, and then doubly focused by a single optic. A classical example in x-ray 

optics is the collimated two-crystal monochromator, with toroidal mirror refocusing. The element here 

replaces the toroid, and in such a system provides completely aberration free, point-to-point imaging of 

rays from the on-axis source point. We present an analytic solution for the mirror shape in its laboratory 

coordinate system with zero slope at the center, and approximate solutions, based on bending an oblique 

circular cone and a bent right circular cylinder, that may facilitate fabrication and metrology. 

Keywords: x-ray optics; diaboloidal mirror; analytical solution; shape approximation. 



2 

1. Introduction

The new generation of multi-bend achromat (MBA) lattice synchrotron sources now offers 

unprecedented x-ray brightness and coherence based on undulators. However, with narrow horizontal 

and vertical electron beam sizes, these sources also have extremely bright bending magnet sources. 

Due to the broadband nature of the light, bending magnet beamlines have application in a wide range 

of experiments from Laue micro-diffraction to protein crystallography. 

The challenge with these sources is to produce an aberration-free image, even when accepting 

significant angular aperture. While in undulator beamlines, we can have a series of orthogonal 

focusing mirrors due to the low angular aperture, accommodating the large angular fan in a bending 

magnet beamline requires the use of mirror elements with both sagittal and tangential focusing.  

A classical example in x-ray optics is the bending-magnet double-crystal monochromator, which uses 

a vertically collimating pre-mirror, a pair of parallel crystals, followed by a toroidal mirror. The 

toroidal mirror focuses from infinity in the vertical direction and from the real, diverging source in the 

horizontal direction, creating a point image. However, this astigmatic focusing scheme results in 

significant low order aberrations, including coma-like terms.  

To minimize these aberrations, a toroidal mirror can be designed with a horizontal demagnification of 

2:1, at which point, it has been shown that the most significant low order aberration vanishes 

(MacDowell et al., 2004). However, the aberrations are not eliminated, and they remain problematic 

for the small source sizes of new and upgraded storage rings. Thus, we need a new type of mirror, the 

“diaboloid,” designed for perfect imaging. 

A diaboloidal mirror (or “diaboloid”) is a reflecting surface that converts a spherical wave to a 

cylindrical wave (Fig. 1), or vice-versa. The first derivation of the diaboloidal surface presented in 

(McKinney et al., 2009) was carried out numerically using a polynomial series solution (up to 6th 

order) of the optical path problem. However, the polynomial approximation gives no insight into the 

underlying shape, and small changes in magnification require significant adjustment of the 

polynomial coefficients. Furthermore, describing the shape with the accuracy required by MBA 

sources requires expansion to even higher polynomial orders, where the mathematics becomes 

unwieldy.  

The derivation of analytical expressions for the shape of a diaboloidal mirror in different coordinate 

systems, including the mirror-canonical and laboratory (mirror-related) coordinate systems (Fig. 2) 

was first described in the recent work (Yashchuk et al., 2020). 

The approach used in (Yashchuk et al., 2020) is based on a representation of a diaboloidal mirror 

surface as a set of the cross-section segments of the ellipsoids of rotation focusing a point-source 
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beam to certain points of the focal line interval (segment). This approach can be thought of as a 

“purely geometrical” rather than classical geometrical optics that would be based on Fermat’s 

principle. Nevertheless, in the course of the geometrical consideration, the condition of the equal 

optical path length for the focused rays arises “automatically.”  

Figure 1 Three schematic views of the ray paths of the diaboloidal mirror illuminated from a point 

source (from the left) or from a one-dimensionally collimated source (from the right). (a) The side 

(vertical cross-section) view shows the parabolic cross-section, allowing a point source to be 

vertically collimated along 𝑦-axis. (b) The top view shows sagittal focusing of diverging light. (c) A 

perspective view showing the point and sagittal line foci at conjugate positions. A mirror aperture-

based (canonical) coordinate system (𝑥, 𝑦, 𝑧) is depicted. 

Figure 2 Schematic of the coordinate systems in use: the mirror-canonical coordinate system 

(𝑥, 𝑦, 𝑧) (compare with Fig. 1) and the mirror-related coordinate system (𝑋, 𝑌, 𝑍), where the tangent 

to the 𝑋 = 0 profile at the mirror centre P0 (𝑋 = 0, 𝑌 = 0, 𝑍 = 0) is equal zero. The position of the 

source S is in the focal point of the diaboloid’s generating parabola (the cyan line); F denotes the 

focus point for the central ray (the red lines). The conjugate (beamline optical design) parameters of 

the diaboloidal mirror (the thick blue line) are the object distance (from S to P0), 𝑝, the image distance 

(from P0 to F), 𝑞, and the angle of incidence for the central ray at the centre of the mirror, 𝜃. 
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In (Yashchuk et al., 2020), the diaboloidal mirror shape equation 𝐹(𝑋, 𝑌, 𝑍) = 0, defined in the 

mirror-related (rotated mirror-canonical) coordinate system (Fig. 2) is solved and coded in 

MathematicaTM in the form of a normal analytical surface shape (profile) function 𝑍 = 𝑓(𝑋, 𝑌) that 

describes the dependence of the mirror surface height 𝑍 on the position in the tangential 𝑌 and sagittal 

𝑋 coordinates. In spite of the fact that the exact analytical expression for 𝑍 = 𝑓(𝑋, 𝑌), derived with 

the help of MathematicaTM, is rather cumbersome, it allows numerical calculations of the desired 

diaboloidal three-dimensional surface profiles applicable, in particular, for ray-tracing simulations. 

However, the cumbersome appearance of the exact expression makes analysis difficult, for example, 

extracting allowable shape approximations. 

Here, an exact analytical solution for the surface shape of a diaboloidal mirror as a function of the 

conjugate parameters of the mirror placed in a beamline is presented with a chain of algebraic 

transformations of the shape equation 𝐹(𝑋, 𝑌, 𝑍) = 0 to the profile function 𝑍 = 𝑓(𝑋, 𝑌). The 

resulting expressions are compact and convenient for straightforward coding in any software used for 

data processing and optical ray-tracing simulations. Based on the obtained analytical solution, we also 

derive the surface shapes approximating the diaboloid that can be easier for manufacturing with 

existing optical fabrication technologies. The analytical results of this paper are compared to the 

polynomial approximate solution (of the 8th order) of the optical path problem in (McKinney et al., 

2021) and are used in ray-tracing optical simulations discussed in detail in (Sanchez del Rio et al., 

2021). 

2. Analytical expressions for the diaboloidal mirror shape

2.1. The mirror-canonical coordinate system 

For completeness, we start from reproducing the surface shape equation of a diaboloidal mirror in the 

form  𝐹(𝑥, 𝑦, 𝑧) = 0  presented in (Yashchuk et. al., 2020) but this time the derivations are explicitly 

based on the classical geometrical optics approach.  

Following Fermat’s principle, all path lengths from the object (point) to the image (line) must be of 

equivalent length 𝐾. We can express this as the sum of the distance from the source to the mirror 

surface and the distance from the mirror to the focal line, following a path of constant 𝑧 in the mirror-

canonical coordinate system: 

√𝑥2 + (𝑦 + 𝑠)2 + (𝑧0 − 𝑧)2 + √𝑥2 + (𝑞 − 𝑦)2 = 𝐾. (1) 

The root of the quadratic equation (1) that corresponds to the diaboloidal mirror definition in Figs. 1 

and 2 is 
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𝑧 = 𝑧0 − √(𝐾2 + 𝑞2 − 𝑠2) − 2(𝑠 + 𝑞)𝑦 − 2𝐾√𝑥2 + (𝑞 − 𝑦)2. (2) 

By substituting to Eq. (2) the parameters 𝐾, 𝑠, and 𝑧0 expressed via the conjugate parameters of the

diaboloidal mirror (refer to Fig. 2): 

𝐾 = 𝑝 + 𝑞, (3) 

𝑠 = 𝑝 cos 2𝜃, (4) 

𝑧0 = 𝑝 sin 2𝜃, (5) 

one can get the diaboloid shape equation in the mirror-canonical coordinate system [compare with the 

identical Eq. (16) in (Yashchuk et al., 2020)]: 

𝑧 = 𝑝 sin 2𝜃 − √(𝑝 sin 2𝜃)2 + 2𝑞2 + 2𝑝𝑞 − 2(𝑝 cos 2𝜃 + 𝑞)𝑦 − 2(𝑝 + 𝑞)√𝑥2 + (𝑞 − 𝑦)2. (6) 

With 𝑥 = 0, Eq. (6) transforms to the expected parabolic profile along the tangential centre-line of the 

diaboloidal mirror: 

𝑧 = 𝑝 sin 2𝜃 − 2 sin 𝜃 √𝑝(𝑦 + 𝑝 cos2 𝜃), (7) 

shown in Fig. 2 by the cyan line. 

According to Eq. (6), the horizontal (𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) cross-sections of the diaboloidal mirror have 

elliptical shapes ensuring the mirror’s property of sagittal focusing. This peculiarity of the diaboloidal 

mirror profile is exploited in (Yashchuk et al., 2020) for the “purely geometrical” derivation of the 

diaboloid shape equation identical to Eq. (6). 

2.2. The mirror-related coordinate system 

In order to express Eq. (6) as a function of the mirror-related coordinates X, Y, Z, we use the fact that 

the coordinate system (𝑋, 𝑌, 𝑍) is rotated around the sagittal axis 𝑋⃗ (or, equivalently, 𝑥⃗) by the angle 

of 𝜃 with respect to the coordinate system (𝑥, 𝑦, 𝑧) and, therefore, 

𝑧 = 𝑍 cos 𝜃 − 𝑌 sin 𝜃, (8) 

𝑦 = 𝑌 cos 𝜃 + 𝑍 sin 𝜃, (9) 

𝑥 = 𝑋.  (10) 

Substitution of relations (8-10) to Eq. (6) leads to the diaboloidal mirror shape equation in the form 

[compare with the identical Eq. (18) in (Yashchuk et al., 2020)]: 

𝐹(𝑋, 𝑌, 𝑍) = −𝑍 cos 𝜃 + 𝑌 sin 𝜃 + 𝑝 sin 2𝜃 
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− (
(𝑝 sin 2𝜃)2 + 2𝑞2 + 2𝑝𝑞 − 2(𝑝 cos 2𝜃 + 𝑞)(𝑌 cos 𝜃 + 𝑍 sin 𝜃)

−2(𝑝 + 𝑞)√𝑥2 + (𝑞 − 𝑌 cos 𝜃 − 𝑍 sin 𝜃)2
)

1

2

= 0. (11) 

Below, we present an explicit solution of Eq. (11) as a chain of algebraic transformations that lead to 

the exact shape of diaboloidal mirror in the form of surface profile function 𝑍 = 𝑓(𝑋, 𝑌). The solution 

is compact and convenient for applications. 

3. Algebraic solution of the diaboloidal mirror shape equation

3.1. The idea of the solution. 

Having a combination of linear polynomials and a term with two square roots, enclosed one into the 

other and applied to second order polynomial functions of the coordinates, Eq. (11) defines a surface 

described with a fourth order polynomial function of coordinates X, Y, and Z. Therefore, upon 

straightforward algebraic manipulation, Eq. (11) can be transformed to an equation in the form of a 

quartic polynomial on the height variable Z [for classification of the polynomials see, for example, 

(Degtyarev & Kharlamov, 2000)]: 

𝐹𝑄(𝑋, 𝑌, 𝑍) = 𝐴(𝑋, 𝑌) 𝑍4 + 𝐵(𝑋, 𝑌) 𝑍3 + 𝐶(𝑋, 𝑌) 𝑍2 + 𝐷(𝑋, 𝑌) 𝑍 + 𝐸(𝑋, 𝑌) = 0,  (12) 

where 𝐵(𝑋, 𝑌), 𝐶(𝑋, 𝑌), 𝐷(𝑋, 𝑌), and 𝐸(𝑋, 𝑌) are polynomial functions of X and Y of the first, 

second, third, and fourth order, respectively. In our case, the function 𝐴(𝑋, 𝑌) is a constant coefficient 

of the fourth-order polynomial on Z and does not depend on X and/or Y. 

Therefore, the first component of the derivation approach explored here is the determination of the 

diaboloid shape equation in the form of Eq. (12). When the diaboloid shape equation (12) is found, we 

apply to it the explicit radical solution of quartic polynomial equation that was first derived in 1540 by 

Lodovico Ferrari and published in 1545. Now, the solution can be found in advanced handbooks and 

textbooks on Algebra [see, for example, (Korn & Korn, 2000), (van der Waerden, 2001), and 

(Stewart, 2015)].   

3.2. Diaboloidal mirror shape equation in the form of quartic polynomial 

The first step of the algebraic manipulations is to equate the major square-root term in Eq. (11) to 

other terms and to square the result. Then, the obtained equation that contains a square-root term is 

regrouped to equate this square-root term to the sum of the remaining terms. The result of this routine 

algebraic process is a comparatively simple equation: 

−2(𝑝 + 𝑞)√𝑋2 + (𝑞 − 𝑌 cos 𝜃 − 𝑍 sin 𝜃)2

= −2𝑝𝑞 − 2𝑞2 + 𝑌2 sin2 𝜃 + 2𝑝𝑌 cos 𝜃 (13) 

+2𝑞𝑌 cos 𝜃 + 𝑍2 cos2 𝜃 − 2𝑝𝑍 sin 𝜃

+2𝑞𝑍 sin 𝜃 − 2𝑌𝑍 sin 𝜃 cos 𝜃.
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By squaring Eq. (13) and performing straightforward algebraic transformation to regroup the terms of 

the resulting equation according to the polynomial orders of the height variable Z, we obtain the 

diaboloidal mirror shape function in the form of quartic polynomial (12) with the coefficients: 

𝐴 = − cos4 𝜃, (14) 

𝐵(𝑌) = 4(𝑝 − 𝑞) cos2 𝜃 sin 𝜃 + 4 cos3 𝜃 sin 𝜃 𝑌, (15) 

𝐶(𝑌) = 4𝑞[(𝑝 + 𝑞) cos2 𝜃 + 4𝑝 sin2 𝜃]

+2 cos 𝜃 [𝑞 − 3𝑝 + (𝑝 − 3𝑞) cos 2𝜃]𝑌 − 6 cos2 𝜃 sin2 𝜃 𝑌2, (16) 

𝐷(𝑌) = −16𝑝𝑞(𝑝 + 𝑞) sin 𝜃 + 4(𝑝 + 𝑞)(2𝑝 − 𝑞) sin 2𝜃 𝑌 

+2[3𝑝 + 𝑞 + (3𝑞 + 𝑝) cos 2𝜃] sin 𝜃 𝑌2 + 4 cos 𝜃 sin3 𝜃 𝑌3, (17) 

𝐸(𝑋, 𝑌) = 4(𝑝 + 𝑞)2𝑋2 + 4𝑞(𝑝 + 𝑞) sin2 𝜃 𝑌2 − 4(𝑝 + 𝑞) cos 𝜃 sin2 𝜃 𝑌3 − sin4 𝜃 𝑌4. (18) 

Note that the zero order coefficient 𝐸(𝑋, 𝑌) is the only coefficient that depends on both spatial 

coordinates X and Y, while the first, second, and third order coefficients depend only on the coordinate 

Y and the fourth order coefficient is a constant. 

3.3. Brief review of the explicit radical solution of the general quartic polynomial equation 

The general quartic polynomial, usually analysed in the literature [see, for example, (Korn & Korn, 

2000), (van der Waerden, 2001), and (Stewart, 2015)], 

𝑃4(𝑍) = 𝑎̃𝑍4 + 𝑏̃𝑍3 + 𝑐̃𝑍2 + 𝑑̃𝑍1 + 𝑒̃ = 0,  (19)

can be simplified by dividing by 𝑎̃ in order to reduce the number of symbolic coefficients: 

𝑃4(𝑍) = 𝑍4 + 𝑏𝑍3 + 𝑐𝑍2 + 𝑑𝑍1 + 𝑒 = 0.  (20)

The four roots of the quartic polynomial equation (20) are:  

𝑍1 = −
𝑏

4
− 𝑆 +

1

2
√−4𝑆2 − 2𝑘 +

𝑚

𝑆
, (21) 

𝑍2 = −
𝑏

4
− 𝑆 −

1

2
√−4𝑆2 − 2𝑘 +

𝑚

𝑆
, (22) 

𝑍3 = −
𝑏

4
+ 𝑆 +

1

2
√−4𝑆2 − 2𝑘 −

𝑚

𝑆
, (23) 

𝑍4 = −
𝑏

4
+ 𝑆 −

1

2
√−4𝑆2 − 2𝑘 −

𝑚

𝑆
, (24) 

where the coefficients 𝑘 and 𝑚 are 

𝑘 = (8𝑐 − 3𝑏2)/8, (25) 

𝑚 = (𝑏3 − 4𝑏𝑐 + 8𝑑)/8, (26)
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and where S and Q are the coefficients given by the radical expressions: 

𝑆 =
1

2
√

1

3
(𝑄 +

∆0

𝑄
) −

2

3
𝑘, (27) 

𝑄 =
1

√2
3 √∆1 + √∆1

2 − 4∆0
3

3

, (28) 

with 

∆0= 𝑐2 − 3𝑏𝑑 + 12𝑒, (29) 

∆1= 2𝑐3 − 9𝑏𝑐𝑑 + 27𝑏2𝑒 + 27𝑑2 − 72𝑐𝑒. (30) 

The chain of equations (21)-(30) constitutes the explicit solution of the quartic polynomial equation 

(20) expressed by radicals. Here, we call this chain of equations the explicit radical solution.

3.4. Application of the explicit radical solution of the quartic polynomial equation to the 

diaboloidal shape equation 

In this section, we combine the results of Secs. 3.2 and 3.3 in order to establish a closed-loop chain of 

equations useful for calculation of the exact shape of a diaboloidal mirror. This can be done by 

expressing the coefficients 𝑏, 𝑐, 𝑑, and 𝑒 in Eq. (20) via the coefficients 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 of the 

quartic polynomial equation (12) for a diaboloidal mirror shape, derived in Sec. 3.2:  

𝑏 = 𝐵 𝐴⁄ , 𝑐 = 𝐶 𝐴⁄ , 𝑑 = 𝐷 𝐴⁄ , 𝑒 = 𝐸 𝐴⁄ . (31) 

All these coefficients are the polynomial functions of the sagittal 𝑋 and tangential 𝑌 coordinates in the 

mirror-related coordinate system of the diaboloidal mirror. The mirror conjugate parameters 𝑝, 𝑞, and 

𝜃 are the parameters of these functions.  

Next, we sequentially define the coefficients ∆0 and ∆1 with Eqs. (29) and (30), 𝑘 and 𝑚 with

Eqs. (25) and (26), and 𝑆 and 𝑄 with Eqs. (27) and (28). Substitution of these coefficients as functions 

of 𝑏, 𝑐, 𝑑, and 𝑒, given by Eq. (31), into the formulas (21)-(24) for the roots of the quartic polynomial 

equation (20) provides the whole set of four solutions of the quartic polynomial equation for the 

diaboloidal shape. Among these four solutions, only the first one satisfies the conditions of 𝑍 = 0 at 

𝑋 = 𝑌 = 0. This solution provides the desired surface shape function of the diaboloidal mirror, 

defined with Fig. 2, as a dependence of the surface height 𝑍 on the coordinates 𝑋 and 𝑌: 

𝑍(𝑋, 𝑌) = 𝑍1 = −
𝑏

4
− 𝑆 +

1

2
√−4𝑆2 − 2𝑘 +

𝑚

𝑆
. (32) 

As an illustration, Fig. 3 depicts the shape of a diaboloidal mirror defined with the conjugate 

parameters  

𝑝 = 29,300.0 mm, 𝑞 = 19,530.0 mm, and 𝜃 = 0.0045 rad. (33)
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The same parameters are used for the ray-tracing simulations in (Yashchuk et al., 2020), where the 

diaboloid mirror profiles are numerically generated with a code in the MathematicaTM. Based on the 

analytical results presented here, the code has been upgraded to incorporate the explicit radical 

solution for the diaboloidal mirror shape in the mirror-related coordinate system. The code is designed 

to provide the diaboloidal mirror profiles in the format suitable for the Shadow/Oasys (Rebuffi & 

Sanchez del Rio, 2016) ray-tracing simulations described in (Sanchez del Rio et al., 2021). 

Figure 3  (a) Three-dimensional profile of a diaboloidal mirror, specified with the conjugate 

parameters given with Eq. (33). The mirror clear aperture with the tangential length of 200 mm and 

the sagittal width of 20 mm is depicted. (b) and (c) The surface height variations of the profile in plot 

(a) in the cross-sections 𝑋 = 0 and 𝑌 = 0, respectively.

4. Diaboloid shape approximation with a sagittal circular cone bent to a tangential parabola

In this section, we analyse an approximation of the diaboloidal mirror shape with a sagittal circular 

cone bent to a tangential parabola. Such a shape is possibly easier to manufacture and to measure.  

Note that in the simplified bending model discussed here, we ignore the second order effects such as 

the anticlastic bending, which have to be taken into account in the course of the final-element-analysis 

treatment of a particular mirror design. 

4.1. Circular cone best matching the sagittal profile of a diaboloidal mirror 

In order to simplify the derivations, we use Eq. (6) for the diaboloidal mirror surface shape in the 

mirror-canonical coordinate system. First, we find analytical expressions for the cylindrical surface 

with the variation of the radius equal to the distribution of the diaboloid sagittal radius along its 

tangential axis. Then, the found solutions are transferred to the mirror-related coordinate system and 
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the linear trend of the variation is used to define the desired circular cone. Finally, the bending of the 

circular cone is analytically modelled by adding a vertical offset to the circular cone’s surface, 

corresponding to the diaboloid’s generating parabola. 

The dependence of the diaboloid’s sagittal curvature on the tangential position at 𝑥 = 0 is given by 

the second derivative of Eq. (6) [see, for example (Bronshtein et al., 2007). The corresponding 

expression for the radius of curvature valid for the mirror-canonical coordinate system is  

𝑅𝐶(𝑦) = (
𝜕2𝑧(𝑥,𝑦)

𝜕𝑥2 |
𝑥=0

)
−1

=
2𝑝(𝑞−𝑦) sin 𝜃 √𝑦 𝑝⁄ +cos2 𝜃

𝑝+𝑞
. (34) 

In the mirror-related coordinate system rotated by angle 𝜃 with respect to the mirror-canonical system 

(refer to Fig. 2), the vertical cross-sections of the cylindrical surface defined by the variation of the 

radius 𝑅𝐶(𝑦), given with Eq. (34), have elliptical shape. Correspondingly, the sagittal radius at a

certain tangential point along the mirror, calculated in the mirror-related coordinate system, is smaller 

by a factor of cos 𝜃. We should also account the effect of the rotation to the tangential position of the 

mirror surface point in the mirror-based coordinate system, 𝑦 = 𝑌 cos 𝜃. Accounting for these two 

factors in Eq. (34) leads to the following expression for the radius 𝑅𝑀(𝑌) of the cylindrical surface

coincident with the diaboloid sagittal radius at 𝑋 = 0 in the mirror-related coordinate system: 

𝑅𝑀(𝑌) =
2𝑝(𝑞−𝑌 cos 𝜃) sin 𝜃 cos 𝜃 √𝑌 cos 𝜃 𝑝⁄ +cos2 𝜃

𝑝+𝑞
.  (35) 

Figure 4 shows the lateral distribution of the radius of curvature defined with Eq. (35) at two different 

sets of the conjugate parameters. 

Figure 4 Distribution in the tangential direction of the sagittal radius of curvature 𝑅𝑀(𝑌) defined

with Eq. (35) at two different sets of the conjugate parameters: (a) 𝑝 = 29,300.0 mm, 𝑞 = 19,530.0 

mm, and 𝜃 = 0.0045 rad, and (b) 𝑝 = 9,765.0 mm, 𝑞 = 19,530.0 mm, and 𝜃 = 0.0045 rad, 

corresponding to the 2:1 horizontal demagnification condition.  
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In the vicinity of the mirror centre, 𝑌 = 0, the radius varies almost linearly in the case of Fig. 4a, 

corresponding to the conjugate parameters given by Eq. (33), and stays approximately constant, if 

parameter 𝑝 is changed to 𝑝 = 9,765.2 mm at the same values of parameters 𝑞 and 𝜃 (Fig. 4b).  

The second example is at the 2:1 horizontal demagnification condition, that previous work has shown 

to minimize aberrations and minimizes the height difference from the corresponding toroid. Below, 

we exploit the characteristic behaviour of 𝑅𝑀(𝑌) depicted in Fig. 4 to develop the approximations of

the diaboloidal mirror with a bendable circular cone (this section) and a bendable right circular 

cylinder (Sec. 5). 

In order to define the circular cone approximating the diaboloidal mirror, let us expand 𝑅𝑀(𝑌) in a

MacLaurin series of the normalized tangential variable 𝑡 = 𝑌/𝑝. In most practical applications, the 

variable 𝑡 is much smaller than one, 𝑡 ≪ 1. The first four terms of the series are: 

𝑅𝑀(𝑡) ≈ 𝑅𝑀0 (1 −
2𝑝 cos2 𝜃−𝑞

2𝑞 cos 𝜃
𝑡 −

4𝑝 cos2 𝜃+𝑞

8𝑞 cos2 𝜃
𝑡2 +

2𝑝 cos2 𝜃+𝑞

16𝑞 cos3 𝜃
𝑡3), (36) 

where 

𝑅𝑀0 =
2𝑝𝑞 cos2 𝜃 sin 𝜃

𝑝+𝑞
(37) 

is the diaboloid sagittal radius at the mirror centre, 𝑋 = 𝑌 = 0. With the condition of 𝑡 ≪ 1, the 

variation of 𝑅𝑀 is mostly determined by the linear term in the expansion (36), Fig. 5.

Figure 5 (a) Variation of the sagittal radius 𝛿𝑅𝑀(𝑌) = 𝑅𝑀(𝑌) − 𝑅𝑀0 along the tangential direction

of a 200-mm long diaboloidal mirror defined by the conjugate parameters given by Eq. (33). (b) The 
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contribution to the variation in plot (a) of the polynomial terms in Eq. (36) of higher than the first 

order, 𝛿𝑅2,3,…(𝑌).

Figure 5a shows the variation of the sagittal radius 𝛿𝑅𝑀(𝑌) = 𝑅𝑀(𝑌) − 𝑅𝑀0 of a 200˗mm long

diaboloidal mirror defined with the conjugate parameters given by Eq. (33). In this case, at 𝑌 = 0, 

𝑅𝑀0 = 105.467 mm and the total variation is about ± 0.35 mm (peak-to-valley, PV). Note that the

contribution to the variation 𝛿𝑅2,3,…(𝑌) of the polynomial terms in Eq. (36) of higher than the first

order, depicted in Fig. 5b, is smaller by almost three orders of magnitude than that of the linear term. 

Figure 6 illustrates the accuracy of the circular cone approximation in Fig. 5 in the sagittal height 

domain. At 𝑌 = 0 cross-section, the total variation of the sagittal height is about 0.5 mm (PV). The 

height error of the circular cone approximation, defined as a difference between the exact and 

approximation height traces, is less than 0.7 µm reaching the maximum at the sagittal edges of the 

mirror clear aperture at 𝑋 = ±10 mm. Note that the sagittal height error, depicted in Fig. 6b, scales as 

𝑋4. This immediately follows from the approximation of the sagittal share of the diaboloid (that is

described with a function that is even with respect to the reversal of 𝑋, and odd orders are missing due 

to symmetry) with the circle. 

Figure 6 (a) Variation of the surface height in the sagittal direction at 𝑌 = 0 of the exact profile (the 

black line) and the conical approximation with the radius 𝑅𝑀0, given by Eq. (37) (the blue line) of the

diaboloidal mirror defined by the conjugate parameters in Eq. (33). For clarity, the approximation 

trace is vertically shifted by 0.1 mm. (b) The height error of the conical approximation depicted as a 
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difference between the exact and approximation height traces in plot (a). The difference is less than 

1 µm across the range. 

In the circular cone approximation considered here, the tangential shape of the mirror is formed by 

mechanical bending of a pre-shaped circular cone substrate. Therefore, the approximation assumes 

that the substrate has no inherent height variation along the tangential direction at 𝑋 = 0. Without loss 

of generality, we assume 𝐻(𝑋, 𝑌) = 0 at 𝑋 = 0, where 𝐻(𝑋, 𝑌) is the height of the substrate in the 

laboratory coordinate system. In order to satisfy this condition, each sagittal cross-section of the 

surface of the circular cone substrate, described with a canonical circle equation, has to be shifted in 

the vertical direction by the cylinder radius in the cross-section:  

𝑋2 + [𝐻(𝑋, 𝑌) + 𝑅𝑀(𝑌)]2 = 𝑅𝑀
2 (𝑌). (38) 

By substituting into Eq. (38) the linear approximation 𝑅1(𝑌) of the sagittal radius of the diaboloidal

mirror, given with the first two terms of Eq. (36),  

𝑅1(𝑌) =
2𝑝𝑞 cos2 𝜃 sin 𝜃

𝑝+𝑞
−

(2𝑝 cos2 𝜃−𝑞) cos 𝜃sin 𝜃

𝑝+𝑞
𝑌, (39) 

and transforming the circle equation (38) to the surface height function, one can describe the surface 

height profile of the substrate as an oblique circular cone: 

𝐻1(𝑋, 𝑌) = 𝑅1(𝑌) − √𝑅1
2(𝑌) − 𝑋2, (40) 

where the index ‘1’ denotes that the oblique-circular-cone approximation accounts for only the linear 

polynomial in the MacLaurin series, Eq. (36). The signs in Eq. (40) correspond to the mirror 

arrangement depicted in Figs. 1 and 2 and treated throughout this paper. 

4.2. Analytical model of bending an oblique circular cone 

In order to analytically model the shape of the bent oblique circular cone (BOCC) 𝑍BOCC(𝑋, 𝑌), the

plane parabolic shape 𝑃𝑀(𝑋, 𝑌), corresponding to the generating parabola of the diaboloidal mirror in

the mirror-related coordinate system,  

𝑃𝑀(𝑋, 𝑌) = 𝑌 tan 𝜃 − 2 sec 𝜃 tan 𝜃 √𝑌𝑝 cos 𝜃 + 𝑝2 + 2𝑝 sec 𝜃 tan 𝜃, (41) 

is added to the oblique-circular-cone surface 𝐻1(𝑋, 𝑌), given by Eqs. (39) and (40):

𝑍BOCC(𝑋, 𝑌) = 𝐻1(𝑋, 𝑌) + 𝑃𝑀(𝑋, 𝑌).  (42)

Equation (41) is obtained from Eq. (7), derived for the mirror-canonical coordinate system, by 

accounting for the system rotation with respect to the mirror-related coordinate system with Eqs. (8) 

and (9).  
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Numerical treatment of the validity of the bent-oblique-circular-cone approximation (42) of the exact 

surface profile of a diaboloidal mirror is out of the scope of the present work. The corresponding ray-

tracing simulations are discussed in detail in (Sanchez del Rio et al., 2021). 

5. Approximation of a diaboloidal mirror shape with a bent right circular cylinder

According to Eq. (36), if the mirror conjugate parameters obey the condition 

𝑞 = 2𝑝 cos2 𝜃,    (43)

then the linear term in the MacLaurin series of the radius of the diaboloidal mirror curvature in the 

sagittal direction at 𝑋 = 0 vanishes. This opens a possibility for design and fabrication of an 

approximation of a diaboloidal mirror with a bent right-circular-cylinder (BRCC) substrate. Condition 

(43) is the diaboloidal mirror equivalent to the condition of a “2:1 demagnification” that was first

applied to the design of three protein crystallography beamlines at the Advanced Light Source 

(MacDowell et al., 2004). It allows the optimization of the beamline performance of focusing toroidal 

mirrors by correcting the optical aberration (astigmatic coma) of the beamlines. 

As an illustration, Fig. 7 depicts the shape of a diaboloidal mirror defined with the conjugate 

parameters  

𝑝 = 9,765.2 mm, 𝑞 = 19,530.0 mm, and 𝜃 = 0.0045 rad, (44) 

where, compared to the conjugate parameters in Eq. (33), only parameter 𝑝 is changed to satisfy the 

condition (43).  



15 

Figure 7 (a) Variation of the radius of the sagittal curvature 𝛿𝑅𝑀(𝑌) along the tangential direction

(𝑋 = 0) of a 200-mm long diaboloidal mirror defined by the conjugate parameters given by Eq. (44). 

(b) The sagittal height error (at 𝑌 = 0) of the right-circular-cylinder approximation calculated as a

difference between the exact-diaboloid trace and the approximation height trace with the radius 

𝑅𝑀0 = 58.5894 mm.

In this case shown in Fig. 4b, the sagittal radius at 𝑌 = 0 is 𝑅𝑀0 = 58.5894 mm and the total

variation of the radius 𝛿𝑅𝑀(𝑌) along the tangential direction (𝑋 = 0) of the 200-mm long diaboloidal

mirror is only 2.3 µm with the second-order polynomial term dominating (Fig. 7a). The deviation of 

the sagittal height of the BRCC approximation from the exact diaboloid profile is of the same level; at 

𝑌 = 0, it reaches the maximum of about 2.1 µm at the sagittal edges of the clear aperture at 𝑋 =

±10 mm (Fig. 7b). 

Similar to the BOCC approximation (Fig. 6b), the height error in the BRCC approximation is mainly 

described with the fourth-order polynomial term on the sagittal coordinate 𝑋. Therefore, at a sagittal 

clear aperture squeezed by a factor of 5 to ± 2 mm, the PV height error is only about 4 nm.  

So far, we have analysed the approximation errors in the height domain. However, geometrical optics 

analysis and corresponding fabrication specification of x-ray optics are usually performed in the 

surface slope domain. In the content of the diaboloidal mirror approximation, the sagittal slope error is 

expected to be relatively large because of the much shorter sagittal size of a grazing incidence mirror 

approximating a diaboloid.  

In the case of the BRCC approximation under consideration here, the sagittal slope error in the mirror 

central cross-section (𝑌 = 0) can be obtained by numerical differentiation of the height error trace 

shown in Fig. 7. The sagittal slope error trace obtained this way is presented in Fig. 8. At the sagittal 

edges of the mirror clear aperture (𝑋 = ±10 mm), the error reaches almost 900 µrad – Fig. 8a. The 

error is relatively small only in the close vicinity of the mirror sagittal centre – Fig. 8b. 

Besides the significant shrinking of the sagittal size of the clear aperture, depicted in Fig. 8b, the 

sagittal slope error can be additionally decreased by slightly adjusting the radius of the cylindrical 

surface. The adjustment of the radius 𝑅𝑀0 by only +10 µm, from 58.5894 mm to 58.5994 mm,

decreases the PV slope error from ±7.5 µrad (Fig. 8b) to less than ±2 µrad (Fig. 9a) at the same size of 

the clear aperture of ±2 mm. For completeness, Fig. 9b shows the corresponding sagittal height error 

that is about 2 nm (PV).  

The effect of the adjustment, depicted in Fig. 9a, can be thought of as minimization of the slope 

variation in Fig. 8a by optimization of the cylindrical radius. A similar optimization is possible in the 

height domain if the figure of merit is the minimum of the height error. 
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Figure 8 (a) The sagittal slope error (at 𝑌 = 0) of the right-circular-cylinder approximation to a 

diaboloidal mirror specified with the conjugate parameters (44). (b) The same as (a), but with the 

sagittal size of the mirror clear aperture reduced from ±10 mm to ± 2 mm.  

Figure 9 (a) The sagittal slope and (b) height errors (at 𝑌 = 0) of the right-circular-cylinder 

approximation to a diaboloidal mirror the same as in Fig. 8, but with the radius of the cylindrical 

surface 𝑅𝑀0 adjusted by +10 µm, from 58.5894 mm to 58.5994 mm.
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Note that controlling in the course of fabrication, the sagittal radius of curvature of a right-circular-

cylinder substrate with the accuracy on the level of 1 µm is a challenging problem. A more practical 

approach is the corresponding adjustment of the conjugate parameters of the mirror based on high-

accuracy post-fabrication metrology [compare with Eq. (39)]. 

The result depicted in Fig. 9 validates the possibility of high accuracy right-circular-cylinder 

approximation (over a limited aperture) of a diaboloidal mirror designed for applications in a “2:1-

magnification” arrangement. Obviously, a similar optimization of the radius 𝑅1(𝑌), given with

Eq. (39), is applicable to the BOCC approximation of diaboloidal mirrors specified with the conjugate 

parameters disobeyed to condition (43). A fine adjustment of the tangential parabolic shape upon 

bending can provide an additional possibility for the accurate compensation of the mirror astigmatic 

error.  

Today’s applications of the prospective exact diaboloidal mirrors and their possible approximations 

with bent right circular cylinders require mirrors with significantly improved surface quality and 

shape accuracy. In this respect, the BRCC approximation seems to be very attractive. First, the desired 

extraordinarily accurate right-circular-cylinder substrate can be fabricated with classical polishing 

technologies developed for manufacturing of x-ray sagittal cylinder mirrors and substrates for 

bendable toroidal mirrors. Second, the optical metrology instrumentation needed for surface 

characterization of the bendable toroidal mirrors have been developed at vendors’ facilities for 

substrate fabrication and at optical metrology labs at x-ray light source facilities for tuning and 

characterization of bendable toroidal mirrors.  

6. Summary

We have presented an ab initio chain of analytical expressions that describe the exact surface height 

topography of a diaboloidal mirror as a function of the conjugate parameters of the mirror’s beamline 

application, distances from the mirror centre to the source and focus and the grazing incidence angle.  

The developed analytical description of the exact surface topography of a diaboloidal mirror has 

allowed us to approximate the diaboloidal shape with a sagittal oblique circular cone tangentially bent 

to match the diaboloid’s generating parabola.  

The established approximations and the described way for their further improvement via fine 

optimization of the sagittal radius potentially open a new avenue for development of bendable mirrors 

as a practical alternative to the exactly shaped diaboloidal mirrors for different beamline applications 

[for more discussion, see (Sanchez del Rio et al., 2021)]. The found approximations provide a simple, 

calculational, and hence, relatively low-budget approach to design and fabrication of bendable 

diaboloidal mirrors.  
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The most attractive approximation is a bent right-circular-cylinder diaboloidal mirror valid under 

special “2:1 demagnification” condition, applied to the diaboloidal mirror conjugate parameters. In 

this case, the mirror sagittal cylinder substrate can be fabricated with conventional polishing 

techniques, used for fabrication of substrates for bendable toroidal mirrors. Moreover, the mid-spatial 

frequency surface-height deviation of a right-circular-cylinder substrate from the desired diaboloidal 

shape in the sagittal direction can possibly be corrected with application of one of the differential 

deposition/differential erosion techniques [see, for example, (Kilaru et al., 2011), (Windt and Conley, 

2015), (Yokomae et al., 2018), (Morawe et al., 2019), and references therein]. We are in the process 

of testing an additively corrected sagittal cylinder, using sputter deposition of platinum.  

We should also mention that the recent advances in fabrication and metrology for three-dimensional 

aspherical optics [see, for example, (Yamauchi et al., 2002), (Wyant, J. C. (2013), (Nistea et al., 

2019), and references therein] make diaboloidal mirrors feasible now. 

The derived analytical expressions can be straightforwardly coded into software used for data 

processing and analysis, as well as for optical ray-tracing simulations. In our case, for numerical 

calculations of the desired diaboloid’s three-dimensional surface profile we use a MathematicaTM code 

described in (Yashchuk et al., 2020). The code, recently upgraded to incorporate the results of the 

present paper, is capable of the generation of diaboloidal mirror surface data applicable, in particular, 

for Shadow/Oasys (Rebuffi & Sanchez del Rio, 2016) ray-tracing simulations discussed in (Sanchez 

del Rio et al., 2021). The Shadow simulations have confirmed the correctness of the derived 

analytical equations and their realisation in the MathematicaTM and Oasys codes.  
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