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Abstract—We present a model for capturing musical features
and creating novel sequences of music, called the Convolutional-
Variational Recurrent Neural Network. To generate sequential
data, the model uses an encoder-decoder architecture with latent
probabilistic connections to capture the hidden structure of music.
Using the sequence-to-sequence model, our generative model
can exploit samples from a prior distribution and generate a
longer sequence of music. We compare the performance of our
proposed model with other types of Neural Networks using the
criteria of Information Rate that is implemented by Variable
Markov Oracle, a method that allows statistical characterization
of musical information dynamics and detection of motifs in a
song. Our results suggest that the proposed model has a better
statistical resemblance to the musical structure of the training
data, which improves the creation of new sequences of music in
the style of the originals.

I. INTRODUCTION

Neural networks have enabled automatic music composition
with little human interruption. Many approaches have been
proposed to generate symbolic-domain music, such as Recur-
rent Neural Networks (RNNs) [1], [2], [3] and RNN combined
with Restricted Boltzmann Machine (RNN-RBM) [4]. However,
previous studies on RNN-based music generation lack in: 1)
understanding the higher level semantics of a musical structure,
which is critical to music composition; 2) generating novel
and creative patterns that avoid literal repetitions [5]. Most of
the previous studies for music generation use so called one-
to-many RNNs, where a single musical unit (such as a single
note or one bar of music) is used to predict the next unit in a
recurrent manner.

In addition, recent studies exploiting Convolutional Neural
Networks (CNNs) for the generation of symbolic-domain music
use rich representations that are more adaptive to creating
complex melodies, such as C-RNN-GAN [6], MidiNet [3],
and MuseGAN [7]. In general, the frameworks’ processes
consist of: 1) representing multi-channel MIDI files using
filters learned by CNN layers; 2) setting a discriminator to
learn the distributions of melodies; and 3) processing longer
sequences of data. CNNs have been well-established as choices
for recognition and classification tasks in 2D data such as
images, so they make better candidates for extracting melodies
(horizontal) or chord (vertical) structure in musical time-pitch
space.

The Variational Autoencoder (VAE) has been also explored
as a generative model for creating multimedia structure. In [8],

[9], VAE has been trained for musical creation which can better
capture musical structure and generate complex sequential
results. VAE exploits samples from a prior distribution and
generates a longer sequence. In addition to VAE, Variational
Recurrent Neural Networks have been introduced in [10], [11].
These studies show that Variational Recurrent Neural Networks
can create sequential data by integrating latent random variables
in recurrent ways. To do this, the model utilizes encoded data
in latent space in each step. This suggests that these recurrent
steps can make it possible to generate more diverse styles tasks
while incorporating features from data in a recognizable way.
However, these previous studies do not analyze the outputs
in music generation, and how to maintain a designated theme
across the entire song remains unchallenged.

In this paper, we propose a Convolutional-Variational Re-
current Neural Network which combines the strength of CNN
and VAE together. We show that: 1) CNN feature learning
can improve statistical resemblance to musical structure of
the training data; 2) utilizing encoded data in latent space
can extend the dynamic creation of new sequences of music.
Our model consists of a CNN to learn a better representation
of bar-level of music and a Variational Recurrent Neural
Network for generating novel sequences of music. In this model,
random sampling and data interpolation can generate sequential
data more dynamically while including learned aspects of the
original structure. We model the class of bar-level data points
to enable the recurrent model to infer latent variables.

To validate our model, we adopt Information Rate (IR) as
an independent measure of musical structure [12], in order to
assess the effect of the repetition versus variation structure
constraints and compare our approach with that of RNN models
for music generation [2], [3]. We use IR implementation by
Variable Markov Oracle (VMO) to discover optimal predictive
structure in the audio output of the different models. The IR
analysis using VMO provides an independent evaluation of
the structure of the song as captured by the sequence of audio
Chroma features. Furthermore, we present a detailed motif
analysis of the data and provide a qualitative discussion of
generated musical samples.

The rest of the paper is structured as follows: Section 2 gives
an overview of related models and computational approaches to
music generation. Section 3 describes the components involved
in the Variational Recurrent Neural Network approach. Section
4 describes the IR experimental validation of the sequential
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modeling in the context of Nottingham dataset [13], a collection
of 1200 British and American folk tunes. We discuss the
empirical findings in Section 5 and give future perspectives.

II. BACKGROUNDS

A. Music Generation with Variational Latent Model

Our architecture is inspired by the Variational Autoencoder
(VAE) as a stochastic generative model [14], [15]. In general,
the model consists of a decoding network with parameters θ
that estimates the posterior distribution pθ(x|z), where x is
the sample being estimated and z is an unobserved continuous
random variable. The prior probability pθ(z) in this case is
assumed to be generated from a Gaussian random variable with
zero mean and unit variance. In this form, the true posterior
distribution pθ(z|x) = pθ(x|z)pθ(z)/pθ(x) is intractable, so
an encoding network q with parameters φ is used to estimate
the posterior as qφ(z|x). The encoding network is trained to
estimate a multivariate Gaussian with a diagonal covariance.

log qφ(z|x) = logN (z;µ,σ2I) (1)

Noise can then be sampled using Gaussian distribution with the
mean and standard deviation learned by the encoding network.

z = µ+ σ � ε, ε = N (0, I) (2)

Thus, the parameters of the encoding network φ can be
estimated with gradient descent using the re-parameterization
trick [14] and the total loss of the network is calculated as

L(x; θ, φ) ' 1

2

∑
j

(1+log(σ2
j )−µ2

j−σ2
j )+

1

L

∑
l

log pθ(x|z(l))

(3)
where the first term on the right-hand side is an approximation
to the KL divergence between qφ(z|x) and pθ(z).

Intuitively speaking, the variational approach adds a proba-
bilistic element to latent model that allows not only generation
of new variations through random sampling from a noise
source, but it is also trying to distill more informative latent
representation by making the z’s as independent as possible. In
this view, the KL component in Equation 3 can be considered
as a probabilistic regularization that seeks the simplest or least
assuming latent representation. Taking this analogy one step
further, one could say that a listener infers latent variables
from the musical signal she/he hears, which in turn leads
her/him to imagine the next musical event by predicting musical
continuation in the latent space and then "decoding" it into an
actual musical sensation.

Technically speaking, during training, the model is presented
with samples of the input which are encoded by q to produce
the mean and standard deviation for the noise source. A noise
sample is then generated and passed through the decoding net-
work which calculates the posterior probability p to determine
the sample generated by the network. The network is trained
to reproduce the input sample from the noise source, so the
second term on the right-hand side of Equation 3 can be either
mean squared error in the case of a continuous random variable

or cross entropy for discrete random variables. At test time,
random samples are generated by the noise source, which is
used by the decoder network to produce novel outputs.

B. Music Information Dynamics and Information Rate

We analyze our music generation output with IR value from
VMO, in order to assess the predictability of a time series
sequential data, and understand consistency in a song (e.g.,
motives, themes, etc) [16]. VMO allows to measure music
information dynamics and higher IR value presents structural
note transition in a generated music than the one with lower IR
value. In Equation 4, x1,x2, ...,xn denotes time series x with
N observations, and H(x) denotes the entropy of x. As a result,
IR denotes corresponding information between the current and
previous observations, which enables the understanding of
variation and repetition in a song segment.

IR(xn−1
1 ,xn) = H(xn)−H(xn|xn−1

1 ) (4)

For quantitative evaluation, VMO has also been explored
by other deep learning research focusing on music generation
[17], [18].

C. Search for Optimal Threshold

Evaluation of IR requires knowledge of the marginal and
conditional distributions of the samples xn and xn−1

1 . This
function is not known and the whole purpose of modeling the
data with our variational latent model is to try to approximate
such probabilities. So how can IR be used without an explicit
knowledge of the distribution?

The idea behind Music Information Dynamics analysis
is estimating mutual information between present and past
in musical data in a non-parametric way. This is done by
computing similarity between features extracted from an
audio signal that was synthesized from MIDI, using human
engineered features and distance measures known from musical
audio processing. VMO uses a string matching algorithm, called
Factor Oracle (FO), to search for repeated segments (suffixes)
at every time instance in the signal.

A crucial step in VMO is finding a threshold θ to establish
similarity between features. For each threshold value, a
string compression algorithm is used to compute the mutual
information between present and the past, measured in terms of
the difference in the coding length of individual frames versus
block encoding using repeated suffixes. So the optimal IR in
VMO is found by searching over all possible threshold values
and selecting a threshold that gives an overall best compression
ratio.

D. Links between Variational Latent Model and IR

A motivation for using IR as a method to estimate the
efficiency of dynamic latent models can be found through
the relation between the variational inference loss function
and IR using formulation of free energy. The loss function in
Equation 3, known also as Evidence Lower Bound (ELBO),
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Fig. 1: Convolutional-Variational Recurrent Neural Network architecture

can be shown to represent so called free energy of the system.

L ' Eq[log p(x, z)− log q(z|x)] = −F (5)

Let us further assume that the samples x depend only on the
most recent z. In such case, the first term averaged by q over
all possible z values approximately corresponds to negative
of marginal entropy of the data x, −H(xn). The second term
captures the entropy of z that contains the residual information
in the measurements, similar to information that is captured by
the entropy rate of x as H(xn|xn−1

1 ) for asymptotically large
n. Under such assumptions −F is similar to the IR expression
given in Equation 4. Accordingly, finding the minimum of L is
equivalent to maximizing F , which in case of our time signal
assumptions1 approximately equals to IR.

III. METHODS

A. Feature Learning with CNN

We adopt a CNN in order to learn a better representation of
polyphonic music by treating the input as a 2D binary feature
map. This is predicated on the notion that the arrangement
of notes in a musical piece yields salient spatial relationships
when visualized in a form such as a piano-roll and thus are
conducive to being modeled by a CNN. In this, the input MIDI
is first preprocessed into a piano-roll, with the beat resolution
set to 8th notes. This gives us a feature map representation
x(t) ∈ {0, 1}n×r×1 at time step t, where n is a number of
time steps in a frame and r is the note range. The piano-roll
is then processed by a CNN with two convolutional layers
separated by max-pooling layers and a final flattening layer.
The output of this network is the latent feature m

(t)
l ∈ Rk at

time step t (See Panel A in Figure 1).

B. Encoder & Decoder Network

The models presented in Figure 1 can generate a track of
music bar by bar, with a possibly polyphonic structure among
several bars. We adopt a recurrent architecture for our VAE,
which includes an RNN encoder and RNN decoder (See Panel
B and C). The encoder RNN takes the latent feature m

(t)
l at

1It is worth noting that we are assuming here that the entropy of the latent
states is equal to entropy rate of the data.

each time step and produces a final hidden state h
(T )
q ∈ Re

for a sequence of T MIDI frames.

h(T )
q = fRNN(m

(1)
l , ...,m

(T )
l ) (6)

The hidden state is then subject to two linear transformations
to determine the mean and standard deviation of the noise
distribution given in Equation 1.

µ = Wµh
(T )
q + bµ

σ = Wσh
(T )
q + bσ

(7)

Where Wµ,Wσ ∈ Rz×e and bµ,bσ ∈ Rz . Noise is
then generated as in Equation 2. Since we are modeling
sequential data, the decoder network is trained to predict
pθ(x

(t)|x(1:t−1), z). In this, the RNN takes in the generated
noise z at the first time step. At each subsequent time step,
the latent feature m

(t)
l for an input sample x(t) is linearly

transformed into the same dimensionality as the noise source
and then passed into the RNN.

m(t)
z = Wzm

(t)
l + bz (8)

Where Wz ∈ Rz×k and bz ∈ Rz . The RNN produces a hidden
state h

(t)
p at each time step, which is passed through a logistic

layer estimating pθ(x(t)|x(1:t−1), z).

h(t)
p = fRNN(z,m

(1)
z , ...,m(t)

z ) (9)

x̃(t) = σ(Wph
(t)
p + bp) (10)

Where σ(·) is the logistic sigmoid function, h(t)
p ∈ Rd, and

Wp ∈ Rnr×d. This effectively yields a binary feature map of
the same dimensionality as the input which is used to predict a
piano-roll based on the input at the previous time steps and the
noise. Finally, we use the Gated Recurrent Unit (GRU) [19]
for both the encoder and decoder RNN, which is defined by
the following equations for fRNN(x

(1), ...,x(t)) at time step t.

s(t) = σg(Wsx
(t) +Ush

(t−1) + bs)

r(t) = σg(Wrx
(t) +Urh

(t−1) + br)

h(t) = s(t)�h(t−1)+(1−s(t))�σh(Whx
(t)+Uh(r

(t)�h(t−1))+br)



Here, σg(·) denotes the logistic sigmoid function and σh(·)
denotes hyperbolic tangent. In our implementation, we use
256 hidden units for the encoder and 512 hidden units for the
decoder. With GRU, the model can create sequential output
combined with decoded noise and previous output utilized
for next input. As shown in Figure 1, the model sequentially
generates bars one after another based on VAE structure, which
takes inputs of mean and variance, then proceeding to next
step which processes a random noise z and output received by
the previous GRU.

C. Training Details

We train the network on training MIDI files, segmenting the
MIDI input into batches of 8 bars, half a bar to a time step, and
8th note as the note resolution, resulting in 16 time steps. In
each epoch, we train on the entire song with non-overlapping
batches. We use dropout as a regularizer on the output of the
CNN and the output of the decoder RNN. For optimization,
we use the Adam optimizer with a learning rate of 0.001. In
addition, we clip the gradients of the weight matrices so the
L2 norms are less than 10. The loss of our network is that of
Equation 3, with the log loss in the second term being cross
entropy loss between the input samples and the output of the
decoder. The model generally converges around 200 epochs.
By enabling loss function calculation automatically, we observe
and measure the model by the cost function. During training,
our model is to focus the posterior of probability by training
network to process the mean and variance of this posterior. In
the aspects of variational inference, as the learning is repeated,
the difference is minimized (Equation 3).

IV. EXPERIMENTS

To evaluate the structural quality of the musical result, we
compare our model with the MelodyRNN model [2]. The
MelodyRNN model is designed in several different ways (basic
RNN, lookback RNN, attention RNN, and polyphony RNN),
and we chose attention RNN and polyphony RNN model,
which allow the model to capture longer dependencies, and
result in melodies that involve arching themes [20]. Specifically,
polyphony RNN aims at polyphonic music generation, so it is
an appropriate baseline to compare with our model. For our
experiments, our training data comes from the Nottingham
Dataset, a collection of 1200 folk songs [13]. Each training
song is segmented into frames (piano-roll), and for the
preprocessing of our dataset, we implement our method based
on the music21,librosa, and pretty_midi packages
for feature extraction on MIDI file [21], [22], [23]. We use an
input of 128 binary visible units and aligned on the 8th note
beat level. With these data, we train each model of MelodyRNN
and our proposed network to create MIDI sequences. Both our
proposed model and MelodyRNN model converge around 200
epochs. Our implementation is now available on github2.

2https://github.com/skokoh/c_vrnn_mmsp_2018

Melodies Total IR
(8 bars)

Total IR
(16 bars)

Total IR
(32 bars)

Nottingham Original [13] 4974.61 7412.91 18567.01
Proposed 3463.81 6047.28 16044.91

PolyphonyRNN [2] 3023.44 6027.04 15425.27
AttentionRNN [2] 3381.71 5712.87 14192.60

MidiNet [3] 3117.68 - -
Time(s) 15.3 29.2 67

TABLE I: Total IR Results (Averaged scores)

A. Model comparison

After training, we compare generated samples from each of 3
models (proposed, polyphony RNN, attention RNN) for each of
3 settings in generated sample duration of 8 bars, 16 bars, and
32 bars. We use IR from VMO [16] as a basis of comparison
and each generated MIDI sample was synthesized to audio
signal. For comparison, we extracted 30 unique generated songs
from each setting (See Table I), thus 273 individual sample
songs are tested for evaluation3. In the case of MidiNet, only
3 different testing samples are available within 8 bar length of
audio sample. We want to see the variation in Total IR value
which could be affected by the length of song in structural
analysis. We report an averaged value of IR in Table I.

We empirically analyze our model in several settings against
MelodyRNN model. We share key observations:
• Table I shows average IRs for original Nottingham MIDI

datasets and for generated samples from several models, where
higher IRs report more distinct self-similarity structures. The
IR of the original dataset is higher than that of the generated
music. Self-similarity in audio refers to the multi-scalar feature
in a set of relationships, and it commonly indicates musical
coherence and consistency [24].
• In Table I, polyphony RNN and attention RNN models

present lower IR than our proposed model does. Results in each
setting show that the convolutional recurrent latent variable
sampling approach increases the IR of the produced musical
material over other neural network approaches, indicating a
higher degree of structure. Accordingly, the results manifest
our proposed model can generate higher level of musically
consistency structure.
• In Figure 2, the visualizations of the IR values versus

different θ on one song are represented. From top to bottom,
we share the results of the sample songs from each setting,
training dataset, our proposed model, polyphony RNN, and
attention RNN model. The results show the relation between
IR and threshold value and implies different musical structures
are generated by different θ values. In terms of the results
graphs, the attention RNN recopies longer segments, but they
are interrupted, which is dropped down in figure, while our
proposed model relies on shorter previous patterns, but the
transitions are smoother thus the blocks are longer.
• In Figure 3, the results for finding repeated patterns in

one of the audio samples generated from each setting are

33 audio samples (8 bars length only) are generated by MidiNet Model, which
are uploaded on https://github.com/RichardYang40148/MidiNet/tree/master/v1/

https://github.com/RichardYang40148/MidiNet/tree/master/v1/


Fig. 2: Total IR vs. Threshold θ value (VMO)

displayed from top to bottom. The y-axis indicates the pattern
index of repeated motifs of a signal sampled at discrete times
shown along the x-axis. The lines represent repeated motifs,
which are longer and fewer in the RNN case. In the graph
from Nottingham Original, we can recognize that the original
has many more shorter musical pattern indexes appearing at
multiple frame numbers. The overall distribution of repeated
themes seems to be captured better in the outputs of our
proposed approach, suggesting that it captures some structural
aspects of patterns distribution of the data as well.

B. Application

In this section, we share our generated melodies in terms of
following the research question: can we build a model capable
of learning long-term structure and capable of including the
method to generate polyphonic music pieces?

Considering an application level, we explore video game
music generation and emulate a specific song from music
samples for creating a new sequence of music (See Figure 4).
By doing this, we use 10 different MIDI files derived from
a corpus of Video Game music4 and we generate 10 unique
MIDI outputs based on each training sample. The MIDI files
are mainly composed of 4-5 different instruments with multi-
tracks. From this approach, our model copies the theme from
previous music sample and mimics the style of music with a
new sequence.

In Figure 4, the results indicate that our proposed model
can generate music beyond monophonic melodies for various
types of music, depending on the input data. The result of the
attention RNN differs in our model and in the complexity of
the results, since attention RNN model covers simple melody

4https://www.vgmusic.com

Fig. 3: Pattern Findings with VMO

generation/progression and repetitive patterns appearing in the
generation results. Our generated melodies shows that we
can create long-term structure of music and can compose
complex sequence of music while including the original theme.
Moreover, our proposed model can process training samples
from a prior distribution and generate the sequence more
dynamically. Our sample results for video game music are
also posted on soundcloud5.

V. DISCUSSION

In this study, we show initial proof that our proposed
model applied to MIDI sequence representations can capture
the structure of the song and create polyphonic music. The
motivations behind combining CNN, RNN and VAE were to
explore significant problems in music generation which are
related to representation issues that are handled via CNN,
repetitive patterns in generated output that are known in RNN
and ability to generate variations from progression of melody
sequence. In our study, we used IR as a critera to evaluate the
generated output and compare it to other models.

From the quantitative evaluation, the results show that the
latent variable sampling approach substantially increases the
IR of the generated musical material over other neural network
approaches, implying a higher degree of semantic structure. At
the application stage of our method, we introduce the model
to emulate a specific song from a video game and generate
background music similar in style to those examples. Some
musical applications need to work with fewer samples in order
to generate a specific musical result and our Convolutional-
Variational Recurrent Neural Network would be flexible about
the size of dataset.

5https://soundcloud.com/user-431911640/sets

https://www.vgmusic.com


Fig. 4: Examples from the Video Game music sample and
generated results from attention RNN and proposed method.
From top to bottom: original sonic_starlight_zone.mid, attention
RNN result, proposed method result.

In addition to VAE utilized in this paper, other generative
models have been actively challenged in different ways for
music generation purpose. Given the recent enthusiasm in deep
learning with music, we also practice introducing combined
neural network models and data representations that effectively
process the melodic polyphonic harmonic structure in music.
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