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1 Introduction

AdS/BCFT [1–3] studies the gravity dual of boundary conformal field theory [4, 5]. The
simplest, bottom-up model proposed for AdS/BCFT is a spacetime terminating at the
End-of-the-World (EOW) brane [2, 3, 6]. This EOW brane is anchored to the BCFT
boundary. This bottom-up model captures some qualitative aspects of stringy models for
AdS/BCFT [7–9], and has served as a useful toy model for black hole evaporation [10–21],
interpreted as doubly-holographic brane-world models [22–25]. On the other hand, this
simplest model of AdS/BCFT is known to have several atypical features in the boundary
operator spectrum amongst all holographic BCFTs, such as fine-tuned boundary operator
spectrum [26] and the absence of interactions between distinct EOW branes. The latter,
which is the main focus of this paper, results in a fixed gap between the lowest eigenvalues
of the BCFT with two distinct boundaries and the BCFT with identical boundaries [27].

In this paper, we modify the conventional AdS/BCFT model by allowing the EOW
branes with different tensions to be connected at defects. Geometries with intersecting
EOW branes were first considered in [28]. In our model, we treat the defect explicitly by
including an additional contribution to the action from the intersection. Clearly, this defect
leads to an interaction between the EOW branes. We find that this interaction leads to
several novel results:
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• The defect modifies the lowest eigenvalue of the conventional AdS/BCFT model. In
fact, the lowest eigenvalue in our refined model continuously interpolates between the
identical boundary BCFT and the aforementioned spectral gap. We also include a bulk
conical defect on the gravity side, which corresponds to a boundary operator [28–32].

• The bulk theory we propose can also be considered as a gravity dual of a BCFT
with corners [28, 33, 34]. In this duality, the corner on the boundary is in direct
correspondence with the defect on the EOW branes.

• The holographic entanglement entropy in our model exhibits three different phases.
This entanglement entropy can be seen as a toy model of a matter state prepared by
cosmological spacetimes [35, 36]. Interestingly, we have a phase that breaks the time
reflection symmetry, so the corresponding entanglement entropy is closely related to
the pseudo entropy [37].

• The defect enables us to construct a wormhole saddle that connects multiple AdS
boundaries, analogous to the replica wormhole with EOW branes considered in [13].
In our model, the wormhole saddle is allowed only when the BCFT is non-unitary,
and this saddle is always subdominant compared to the factorized saddle without any
wormholes.

The organization of this paper is as follows. In section 2, we present our refined
AdS/BCFT model and its connection to BCFT with a corner. In section 3, we study the
spectrum of BCFT on a strip, confirming that it has a richer spectrum in comparison with
the conventional AdS/BCFT model. In section 4, we compute the holographic entanglement
entropy and describe its three phases. In section 5, we construct wormhole geometries using
our model. In section 6, we conclude with discussions and future directions.

2 Gravity dual

In this section, we describe our proposed AdS/BCFT model in which the EOW branes are
connected at a defect. The geometry with such intersecting EOW branes was previously
considered in [28], and we will give an explicit model with action which realizes such
geometry. We use our proposal to find the bulk dual of a BCFT with a corner.

In the original AdS/BCFT proposal [2, 3], the holographic BCFT was dual to an
asymptotically AdS spacetime M with an EOW brane Σ anchored to the BCFT boundary.
This EOW brane might contain matter fields and have a non-trivial gravitational action.
We take the bulk theory to be Einstein gravity

IEH = − 1
16πGN

∫
M

√
g (R− 2Λ)− 1

8πGN

∫
N

√
hK, (2.1)

where N is the AdS boundary.
The simplest EOW brane action is given by the Gibbons-Hawking boundary term plus

the tension term,

IETW = − 1
8πGN

∫
Σ

√
hK + 1

8πGN

∫
Σ

√
hT − 1

8πGN

∫
ΓΣ,N

√
gΓΣ,N

(
π − θ(Σ,N)

)
. (2.2)
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Figure 1. Sketch of our proposed gravity dual of BCFT. N is the AdS boundary where the BCFT
lives. Σa and Σb are the EOW branes, and Γ(a,b) is the defect connecting them.

Here hab is the induced metric and Kab is the extrinsic curvature defined using the outgoing
normal vector. We also need to include the Hayward term for ΓΣ,N , the corner between
AdS boundary N and the EOW brane Σ, with internal angle θ(Σ,N). This action leads to
the equation of motion for the EOW brane

Kab = (K − T )hab. (2.3)

The boundary entropy SB in 2d BCFT is defined in terms of the disk partition function
via ZDisk = eSB [38], which counts the number of degrees of freedom on the boundary. The
tension T of the EOW brane is related to the boundary entropy as

SB = c

6 arctanh(`T ), (2.4)

where ` is the AdS radius [39]. In this simple model, there are no interactions and no
intersections between EOW branes dual to distinct BCFT boundaries whereas for identical
boundaries, the EOW branes can be smoothly connected. This simple interaction leads
to a simple value for the lowest eigenvalue [27] that is highly non-generic, which we will
discuss in section 3.

The new ingredient introduced in this paper is such an interaction in the form of a
defect that glues two distinct EOW branes. Since the dual spacetime terminates at some
finite depth, the spectrum is no longer that simple, and indeed we have a new lowest
eigenvalue as we show later. The simplest action for this defect is given by

Idefect = − 1
8πGN

∫
Γ(a,b)

√
gΓ(a,b)

(
θ0:(a,b) − θ(a,b)

)
. (2.5)

Here Γ(a,b) is the defect which glues two EOW branes Σa and Σb, and θ(a,b) is the internal
angle of M at Γ(a,b), see figure 1. Also, θ0:(a,b) − π can be regarded as the tension of the
defect, The action in (2.5) is called Hayward term [40] when θ0:(a,b) = π, and has been
considered in different AdS/BCFT contexts in [6, 41, 42]. This Hayward term can be
obtained by taking a singular limit of the Gibbons-Hawking-York term where the boundary
has a sharp corner.
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The total action is the sum of these three contributions,

Itotal = IEH + IETW + Idefect. (2.6)

It is worth mentioning that this Itotal has UV divergences coming from the region near the
AdS boundary. To obtain a finite answer, these divergences need to be cured by introducing
a short distance cutoff at the boundary and including appropriate counterterms to cancel
the divergence.

The variation of Itotal is

δItotal =− 1
16πGN

∫
M

√
g

(
Rµν−

1
2Rgµν+Λgµν

)
δgµν

−
∑
i=a,b

1
8πGN

∫
Σi

√
h(Kαβ−Khαβ+Tihαβ)δhαβ− 1

8πGN

∫
N

√
h(Kαβ−Khαβ)δhαβ

− 1
8πGN

∫
Γ(a,b)

(
θ0:(a,b)−θ(a,b)

)
δ
√
gΓ(a,b)−

∑
i=a,b

1
8πGN

∫
Γ(i,N)

(
π−θ(i,N)

)
δ
√
gΓ(i,N) .

(2.7)

In AdS/BCFT, the metric can fluctuate freely on Σi, but not at AdS boundary N , thereforeδh
αβ
N = 0, δhαβΣi

free,
δ√gΓ(i,N) = 0, δ√gΓ(a,b) free.

(2.8)

These boundary conditions at Σi and Γ(a,b) result in the following equations of motion

Kαβ = (K − Ti)hαβ , (2.9)

θ0:(a,b) − θ(a,b) = 0. (2.10)

These two equations determine the shapes of the EOW branes Σi and of the corner Γ(a,b).
On the other hand, the above boundary conditions do not induce equations of motion at
the AdS boundary and Γ(a,N) because of the Dirichlet boundary condition.

2.1 Gravity dual of BCFT with a corner

In this subsection, we examine the gravity dual of BCFT with a corner as a simple example.
This dual is given by a vacuum AdS spacetime with two EOW branes glued at a defect.

Consider the Poincare background for vacuum AdS3

ds2 = `2

z2

(
dx2 + dy2 + dz2

)
(2.11)

with ` being the AdS length. We restrict to the region

D :=
{
u = reiθ ∈ C|r ≥ 0, 0 ≤ θ ≤ γ0

}
(2.12)

on the AdS boundary1 with u := x+iy. Since this region has a corner at the origin, the bulk
geometry is dual to BCFT with a corner. The bulk spacetime we consider is a spacetime

1The region D can be mapped to the upper half plane via a singular conformal transformation, and
standard BCFT techniques can be applied [28]. See also [33].
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Figure 2. Two EOW branes embedded in Poincare AdS. They intersect in the bulk at an internal
angle θ(1,2) and on the boundary at an internal angle γ0. The bulk region is dual to BCFT on the
cornered region N = D.

bounded by two EOW branes anchored to ∂D. The equation of motion for the EOW brane
fixes its shape to be a plane in (x, y, z) coordinates. Figure 2 shows the bulk geometry
with these two intersecting EOW branes. Since the bulk metric is the Poincare metric,
the Fefferman-Graham expansion tells us that the stress tensor 〈Tuu〉 vanishes away from
the boundaries.

Let us first assume that the two EOW branes have equal tensions, so the boundary
entropies for the two boundaries are identical. The dimensionless tension Ta = `Ta of
the EOW brane is related to the internal angle θ(a,N) between the brane and the AdS
boundary as

Ta = − cos θ(a,N). (2.13)
Note that the allowed values of the tension are given by |T| ≤ 1.

The internal angle γ0 at AdS boundary and the internal angle θ(1,2) between EOW
branes are related as

γ0 =


arccos

(
cos θ(1,2)+T2

1−T2

)
2 arcsin |T| < θ(1,2) < π

2π − arccos
(

cos θ(1,2)+T2

1−T2

)
π < θ(1,2) < 2π − 2 arcsin |T|

. (2.14)

Since the configuration of the EOW brane is a plane in the (x, y, z) coordinates, θ(1,2) is
simply the angle of intersection of two planes.

For arbitrary tensions T1 and T2, we have

γ0 =



arccos
(

cosθ(1,2)+T1T2√
(1−T2

1)(1−T2
2)

)
,

arccos
(√

(1−T2
1)(1−T2

2)−T1T2
)
<θ(1,2)<π−arccos

(√
(1−T2

1)(1−T2
2)+T1T2

)
,

2π−arccos
(

cosθ(1,2)+T1T2√
(1−T2

1)(1−T2
2)

)
,

π+arccos
(√

(1−T2
1)(1−T2

2)+T1T2
)
<θ(1,2)< 2π−arccos

(√
(1−T2

1)(1−T2
2)−T1T2

)
.

(2.15)
In the following sections, we will use this geometry to construct the gravity dual of BCFT
on a strip.
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3 BCFT on a strip

In this section, we construct the gravity dual of BCFT on an infinite Euclidean strip by
using our refined model for AdS/BCFT. We suppose that conformal boundary conditions a
and b have been imposed on the two boundaries of this strip.

Let us first review the conventional AdS/BCFT model which does not have any defects
connecting the EOW branes. When the two boundary conditions are identical, the dual
is given by thermal AdS with the EOW branes being connected without any defect (if
the two boundaries are sufficiently close to each other) [2, 3, 27]. In this case, the lowest
eigenvalue was found to be EBCFT

(a,b) = − πc
24∆x where ∆x is the width of the strip. This

spectrum corresponds to the conformal dimension of the boundary condition changing
operator being hbcc

(a,b) = 0.
When the boundary entropies of two boundary conditions are different, the dual

geometry is given by two disconnected EOW branes in the Poincare background. As the
result, the lowest eigenvalue for the BCFT was found to be EBCFT

(a,b) = 0, which corresponds
to hbcc

(a,b) = c
24 . These two results imply that there is no operator with conformal dimension

between hbcc
(a,b) = 0 and hbcc

(a,b) = c
24 in the conventional AdS/BCFT model.

In the following subsections, we generalize this simple spectrum by introducing a defect
that can connect the EOW branes, even if they have different tensions, or equivalently,
different boundary entropies. This will allow us to obtain any value for the lowest operator
dimension between hbcc

(a,b) = 0 and hbcc
(a,b) = c

24 .

3.1 Bulk geometry

We are interested in constructing the gravity dual of an infinite Euclidean strip of width ∆x.
Let us start by considering the thermal AdS3 geometry with two EOW branes connected
through a defect. The metric of the thermal AdS3 without any branes is

ds2 = `2
(

dτ2

z2
0χ

2 + dχ2

h(χ)χ2 + h(χ)
χ2 dφ2

)
. (3.1)

Here h(χ) = (1− χ2), with 0 < χ ≤ 1. We denote the periodicity of the Euclidean time τ
as T−1

BCFT = 2πz0χH which is assumed to be large compared to z0 so that the thermal AdS
saddle is dominant compared to Euclidean black hole. The φ coordinate has period 2π so
that there is no conical defect at χ = 1. Note that z0 sets the length scale for the BCFT.

Let us first embed a single EOW brane without any defects in this geometry. Since the
brane satisfies the equation of motion in (2.9), its profile is

φ(χ) = φ(0)± arctan Tχ√
h(χ)− T2

, (3.2)

in terms of the dimensionless tension T. As explained in appendix A, the bulk coordinate
transformation in (A.2) can be used to show that this configuration is equivalent to EOW
brane with tension T anchored to a line in Poincare AdS. The deepest point that the EOW
brane reaches before turning back towards the AdS boundary is

χ = χ0(T) :=
√

1− T2. (3.3)
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Figure 3. A constant τ slice of thermal AdS with two EOW branes, Σ1 and Σ2, meeting at the
corner Γ(1,2).

Next we consider two EOW branes Σ1 and Σ2, with dimensionless tensions T1 and T2,
respectively. We assume that these tensions satisfy |T2| ≤ |T1|, without loss of generality.
The branes are anchored to the AdS boundary at Γ1,N = {χ = 0, φ = π − α} and
Γ2,N = {χ = 0, φ = π + α} respectively, with some α ∈ (0, π). As mentioned earlier, M
denotes the bulk region between these branes. Its boundary ∂M consists of the two EOW
branes Σ1 and Σ2, along with a region on the AdS boundary, N = {χ = 0, π−α ≤ φ ≤ π+α}.
From the perspective of the AdS boundary, the angular size of N is ∆φ = 2α. The width
of the strip is ∆x = 2αz0.

We want to calculate the angle θ(1,2) at which the two EOW branes intersect in the
bulk. Depending on the value of α, the bulk geometries are qualitatively different, so we
need to treat the various cases separately.

As an illustration, let us consider the case where T1,T2 > 0 and α is small, in particular,
0 ≤ α ≤ π

4 + 1
2 arctan T2

√
1−T2

1√
T2

1−T
2
2
. We will state the results for the other cases momentarily.

A constant τ slice of the bulk geometry, in this case, is shown in figure 3. The profiles of
the EOW branes in the intersection region are

φ1(χ) = −α+ arctan T1χ√
h(χ)− T2

1
, φ2(χ) = α− arctan T2χ√

h(χ)− T2
2
. (3.4)

To obtain the intersection point χ∗, we set φ1(χ∗) = φ2(χ∗) to get an equation for χ∗

arctan T1χ∗√
h(χ∗)− T2

1
+ arctan T2χ∗√

h(χ∗)− T2
2

= 2α. (3.5)

This χ∗ increases monotonically with α. The upper bound on α for this case is attained
when χ∗ equals the maximum value χ0(T1) =

√
1− T2

1 ,2 and the explicit value is α =
π
4 + 1

2 arctan T2
√

1−T2
1√

T2
1−T

2
2

as stated above. The angle of intersection between the two EOW
branes is

θ(1,2) = arccos
√

(h (χ∗)− T2
1) (h (χ∗)− T2

1)− T1T2

h (χ∗)
. (3.6)

2This maximal value corresponds to the deepest point on Σ1 because we have assumed that |T1| > |T2|,
which implies that χ0(T1) < χ0(T2).
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Now we state the result for general α. Assuming that the tensions satisfy the condition
|T2| ≤ |T1|, the equation to obtain the intersection point is

∣∣∣arctan T1χ∗√
h(χ∗)−T2

1
+arctan T2χ∗√

h(χ∗)−T2
2

∣∣∣= 2α, 0<α< π
4 + sgn(T1)

2 arctan T2
√

1−T2
1√

T2
1−T

2
2
,∣∣∣arctan T1χ∗√

h(χ∗)−T2
1
−arctan T2χ∗√

h(χ∗)−T2
2

∣∣∣=π−2α, π
4 + sgn(T1)

2 arctan T2
√

1−T2
1√

T2
1−T

2
2
<α< π

2 ,∣∣∣arctan T1χ∗√
h(χ∗)−T2

1
−arctan T2χ∗√

h(χ∗)−T2
2

∣∣∣= 2α−π, π
2 <α<

3π
4 −

sgn(T1)
2 arctan T2

√
1−T2

1√
T2

1−T
2
2
,∣∣∣arctan T1χ∗√

h(χ∗)−T2
1

+arctan T2χ∗√
h(χ∗)−T2

2

∣∣∣= 2π−2α, 3π
4 −

sgn(T1)
2 arctan T2

√
1−T2

1√
T2

1−T
2
2
<α<π,

(3.7)
and the angle of intersection is

θ(1,2) =



arccos
(√

(h(χ∗)−T2
1)(h(χ∗)−T2

2)−T1T2
h(χ∗)

)
, 0<α< π

4 + sgn(T1)
2 arctan T2

√
1−T2

1√
T2

1−T
2
2
,

arccos
(
−
√

(h(χ∗)−T2
1)(h(χ∗)−T2

2)+T1T2
h(χ∗)

)
, π

4 + sgn(T1)
2 arctan T2

√
1−T2

1√
T2

1−T
2
2
<α< π

2 ,

2π−arccos
(
−
√

(h(χ∗)−T2
1)(h(χ∗)−T2

2)+T1T2
h(χ∗)

)
, π

2 <α<
3π
4 −

sgn(T1)
2 arctan T2

√
1−T2

1√
T2

1−T
2
2
,

2π−arccos
(√

(h(χ∗)−T2
1)(h(χ∗)−T2

2)−T1T2
h(χ∗)

)
, 3π

4 −
sgn(T1)

2 arctan T2
√

1−T2
1√

T2
1−T

2
2
<α<π.

(3.8)
Here, sgn(x) := x

|x| is the sign function. Note that these results are valid even when one or
both tensions are negative.

The equation of motion (2.10) fixes the angle of intersection to be θ(1,2) = θ0. This
determines the value of α, and hence, the geometry in terms of θ0 and the tensions of EOW
branes. Indeed, substituting θ(1,2) = θ0 in (3.8), we get

χ∗ =
√

1− T2
1 + T2

2 + 2T1T2 cos θ0

sin2 θ0
. (3.9)

Also, the value of α that corresponds to this θ0 is

α0 =



1
2 arccos

(
cosθ0+T1T2√
(1−T2

1)(1−T2
2)

)
,

arccos
(√

(1−T2
1)(1−T2

2)−T1T2
)
<θ0<π−arccos

(√
(1−T2

1)(1−T2
2)+T1T2

)
,

π− 1
2 arccos

(
cosθ0+T1T2√
(1−T2

1)(1−T2
2)

)
,

π+arccos
(√

(1−T2
1)(1−T2

2)+T1T2
)
<θ0< 2π−arccos

(√
(1−T2

1)(1−T2
2)−T1T2

)
.

(3.10)
Note that (3.9) and (3.10) are symmetric in T1 and T2, therefore the formula applies even
when |T1| < |T2|. Moreover, this result for α0 is identical to (2.15) if we identify γ0 with
2α0. In fact, the two bulk geometries can be identified by a bulk coordinate transformation
which maps the infinite strip N to the cornered region D, as explained in appendix A.

Figure 4 shows α0 as we vary θ0 for various values of the tensions based on (3.10).
When the two tensions are equal T1 = T2, then θ0 is a continuous function of α0. In this
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(a) Equal tension T1 = T2. (b) Fixed T2. (c) Fixed T1.

Figure 4. Plot of α0 as a function of θ0 for various values of tensions.

case, (3.9) and (3.10) simplify to

χ∗ =
√

1− T2

sin2(θ0/2)
, (3.11)

and

α0 =


1
2 arccos

(
cos θ0+T2

1−T2

)
, 2 arcsin |T| < θ0 ≤ π,

π − 1
2 arccos

(
cos θ0+T2

1−T2

)
, π ≤ θ0 < 2π − 2 arcsin |T|.

(3.12)

If we also set θ0 = π, then we get α0 = π
2 . The dual bulk geometry has a smooth EOW

brane geometry without any defect, which is the same as the conventional AdS/BCFT
model. Conversely, we find that θ0 = π is possible only if T1 = T2.

When T1 6= T2, the curve for θ0 has a discontinuity at α0 = π/2. While all other values
for α0 are valid, α0 = π/2 is disallowed. This is because as we send θ0 to its corresponding
value, the defect approaches the boundary and one of the EOW branes disappears. For
α0 = π/2, we only have one EOW brane and no defect, so this value needs to be excluded.

Conical defect in the bulk. So far, the geometries we have considered have a defect
only on the EOW brane. We can construct more general geometries by including a bulk
conical defect as well. First, we consider the metric (3.1), and embed the EOW branes
whose profiles are given by (3.2) with internal angle θ(1,2). A bulk conical defect located at
χ = 1 with a deficit angle of ∆φ can be introduced by identifying φ = φ0 and φ = φ0 + ∆φ
in the geometry (3.1). Here, φ0 is chosen such that the region given by φ ∈ [φ0, φ0 + ∆φ0]
is contained within the spacetime M which is bounded by EOW branes. This is possible if
and only if

T1, T2 > 0, 2α0 ≥ ∆φ. (3.13)

The first condition T1, T2 > 0 is required for χ = 1 to be contained in the geometry, and
the second condition prevents self-intersection of the EOW branes [28]. For more recent
analysis, see [29–32, 43].

3.2 Euclidean action

In this subsection, we compute the Euclidean action for the bulk geometry dual to the strip.
This action is directly related to the lowest eigenvalue of the BCFT as we shall see in the
next subsection.

– 9 –



J
H
E
P
1
1
(
2
0
2
2
)
1
2
3

First, consider the case with no conical defect in the bulk. After an explicit computation,
we find that the total action given by (2.6) is

Itotal = `χH
2GN

[
−α0
ε2

+ 1
2ε

2∑
a=1

(
Ta√

1− T2
a

− arccosTa
)]

, (3.14)

where we have introduced the short-distance cutoff ε at the AdS boundary to regulate the
UV divergences.

To cancel these divergences, we need to include boundary counterterms. These coun-
terterms must be covariant and local, and are chosen to cancel the divergences. In our case,

Ict = 1
8πGN`

∫
N

√
h∂M +

∑
a

arccosTa
8πGN

∫
Γ(a,N)

√
gΓ(a,N)

= `χH
2GN

[
α0

( 1
ε2
− 1

2

)
− 1

2ε

2∑
a=1

Ta√
1− T2

a

]
+ `χH

4GN ε

2∑
a=1

arccosTa.
(3.15)

On including these counterterms, we obtain the Euclidean action

IE = − `χH4GN
α0 = − c

6πξα
2
0. (3.16)

Here we have defined the aspect ratio ξ := ∆x · TBCFT in order to have scale-invariant
expressions. We have also used that the width of the strip is ∆x = 2α0z0 and the central
charge is c = 3`

2GN
.

As an example, let us consider the case T1 = T2 and α0 = π
2 , for which the EOW branes

do not have a defect. Then the action is given by

Icon
E = − πc

24ξ ,

where the superscript denotes that this is the answer in the connected phase of the
conventional AdS/BCFT model.

Let us generalize the above result to geometries with bulk conical defects, assuming
T1, T2 > 0. The action can be obtained by subtracting off the contribution corresponding
to the bulk portion that gets removed due to the conical defect. The result is

IE = − `χH4GN

(
α0 −

∆φ
2

)
= − c

6πξ

(
α0 −

∆φ
2

)2
. (3.17)

Here we have used that the width of the strip is ∆x = (2α0 −∆φ)z0.

3.3 BCFT spectrum

In this subsection, we examine the spectrum of the BCFT on a strip of width ∆x. This
BCFT is dual to the bulk geometry that is bounded by two EOW branes that are connected
at a defect and it also has a conical defect in the bulk. For this purpose, we consider the
partition function ZBCFT

a,b (T−1
BCFT,∆x), where T−1

BCFT is the periodicity in τ direction which
we will take to be infinitely large. In this limit, we have

ZBCFT
a,b (T−1

BCFT,∆x) −−−−−−−−−→
∆x·TBCFT→0

e−E
BCFT
a,b ·T−1

BCFT , (3.18)
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where EBCFT
a,b is the lowest eigenvalue of the BCFT Hamiltonian HBCFT

a,b . In general, the
corrections to the above equation are exponentially suppressed. Using this lowest eigenvalue,
we can define the spectral gap as

∆EBCFT
a,b := EBCFT

a,b − 1
2E

BCFT
a,a − 1

2E
BCFT
b,b . (3.19)

Suppose the EOW branes have dimensionless tensions T1 and T2. Since Z ≈ e−IE and
using (3.17), the lowest eigenvalue is

EBCFT
a,b = − c

6π∆x

(
α0 −

∆φ
2

)2
. (3.20)

The condition for the boundary changing operator to be the identity operator is

α0 −
∆φ
2 = π

2 ,

so the corresponding lowest eigenvalue is

EBCFT
a,b = − πc

24∆x. (3.21)

This situation includes the conventional model where the EOW branes are connected and
have identical tensions, and there is no bulk conical defect. In particular, when the two
boundary conditions are identical, we have EBCFT

a,a = − πc
24∆x .

The lowest eigenvalue of any unitary BCFT must be higher than this value. Therefore,
if we demand that the BCFT is unitary, the following condition needs to be satisfied

0 ≤ α0 −
∆φ
2 ≤ π

2 . (3.22)

Therefore, for a fixed α0, the spectrum obtained for an arbitrary ∆φ subject to (3.22) satisfies

− α2
0c

6π∆x ≤ E
BCFT
a,b ≤ 0. (3.23)

We note that (3.23) generalizes the lowest eigenvalue dictated by the conventional AdS/BCFT
model. In the conventional AdS/BCFT, neither intersections nor interactions between dis-
tinct EOW branes are allowed, so such EOW branes are disconnected. As the consequence,
the lowest eigenvalue is given by

EBCFT
a,b = 0. (3.24)

The gravity dual that we have constructed using the defect on EOW branes generalizes
this lowest eigenvalue to go below (3.24), for any choice of the two boundary entropies.
Note that when two boundary conditions are identical, the lowest eigenvalue is given by the
identity operator, so the dual geometry corresponds to θ0 = π with ∆φ = 0 and α0 = π/2.

Finally, we note that α0 = π/2 is allowed only if T1 = T2, so there is no longer a defect
on the EOW branes. This implies that we can attain the lowest eigenvalue (3.21) only when
the boundary entropy of the two EOW branes are identical. In this case, the bulk conical
defect can reproduce the spectrum

− πc

24∆x ≤ E
BCFT
a,b ≤ 0. (3.25)
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For T1 6= T2, the corresponding α0 can be made arbitrarily close to π/2 by tuning θ0, but
equality cannot be achieved.

To summarize, a key advantage of our model is that it has a rich spectrum even if two
boundary entropies are distinct, as opposed to the conventional AdS/BCFT model which
has fixed lowest eigenvalue (3.24).

CFT stress tensor for thermal AdS. The above results for the lowest eigenvalue can
also be derived by analyzing the metric near the AdS boundary, without knowing the details
of the bulk geometry. Rewriting the thermal AdS3 metric in Fefferman-Graham coordinate,
we have

ds2
FG = `2

r2

(
dr2 + 1 + 2r2 + r4

2z2
0

dτ2 + 1− 2r2 + r4

2 dφ2
)
, (3.26)

with χ = 2r
1+r2 . Then the dual CFT stress tensor is given by [44]

〈Tττ 〉 = −〈Txx〉 = `

16πGN
1
z2

0
= c

6π

(
α0 − ∆φ

2

)2

(∆x)2 . (3.27)

The lowest eigenvalue can be obtained by integrating the CFT stress tensor on the width of
the strip,

EBCFT
a,b = −

∫ ∆x/2

−∆x/2
dx 〈Tττ 〉 = − c

6π∆x

(
α0 −

∆φ
2

)2
, (3.28)

which matches our previous result.

Relation between bulk mass and the spectrum. In Euclidean global AdS3, a massive
particle at the center is described by the metric

ds2 =
(
r2

`2
+ 1− µ

)−1

dr2 + `2
(
r2

`2
+ 1− µ

)
dτ2 + r2dθ2. (3.29)

Here the mass parameter µ is related to the mass m through

µ = 8GNm (3.30)

Also, θ is periodic with period 2π.
When µ < 1, the massive particle corresponds to a conical defect with deficit angle

∆θ = 2π
√

1− µ. When µ > 1, this geometry is a Euclidean BTZ black hole. The relation
between µ and the lowest energy eigenvalue can be obtained from (3.20). In particular,
when the EOW brane has no defect i.e., α0 = π/2,

2
√

1− µ− 1 =

√
1−

24hbcc
(a,b)
c

, (3.31)

where hbcc
(a,b) is the chiral conformal dimension of the boundary condition changing operator.

This relation perfectly matches the corresponding relation found in [29].
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3.4 Spectral gap in Liouville theory

In this section, we show that Liouville theory with ZZ boundaries [45] gives a spectral gap
∆EBCFT

a,b which is similar to that of our gravity dual. We emphasize that this match is only
a formal analogy because ZZ boundaries in Liouville theory have very different properties
compared to the usual conformal boundaries of unitary BCFTs.

For comparison, the spectral gap for our gravity model without bulk conical defects is

∆EBCFT
a,b = πc

24∆x

(
1− α2

0
(π/2)2

)
∈
[
0, πc

24∆x

]
. (3.32)

The central charge for the Liouville theory is c = 1 + 6Q2 where Q = b + b−1. The
semiclassical limit c→∞ can be obtained by taking b→ 0. The degenerate representations
appear at conformal dimensions

∆(m,n) := Q2

4 −
(m/b+ nb)2

4 (3.33)

and the corresponding degenerate characters are

χm,n(τ) = q−(m/b+nb)2/4 − q−(m/b−nb)2/4

η(τ) , q := e2πiτ , (3.34)

where n, m are positive integers. ∆(m,n) are negative except for ∆(1,1) = 0. Therefore
there is no direct connection between Liouville ZZ boundary states and our holographic
construction. Nevertheless, when we restrict our attention to the spectral gap ∆EBCFT

a,b , we
can find an interesting formal match.

The inner product between two ZZ boundary states |B(m,n)〉 is given by [45]

〈B(m,n)|e−βH/2|B(m′,n′)〉 =
min(m,m′)−1∑

k=0

min(n,n′)−1∑
l=0

χm+m′−2k−1,n+n′−2l−1

( i
βTBCFT

)
.

(3.35)
When we take the limit βTBCFT → 0, the term with k = l = 0 dominates, so

〈B(m,n)|e−∆xH |B(m′,n′)〉√
〈B(m,n)|e−∆xH |B(m,n)〉〈B(m′,n′)|e−∆xH |B(m′,n′)〉

−−−−−−−−−→
∆x·TBCFT→0

e
−∆EBCFT

(m,n),(m′,n′)·T
−1
BCF T ,

(3.36)
where

∆EBCFT
(m,n),(m′,n′) := π

4∆x

(
(n− n′)b+ m−m′

b

)2
. (3.37)

We consider b� 1, which corresponds to the large c limit. Assuming that m = m′ and
|n− n′| ≤ 1/b2 + 1, the spectral gap ranges between

0 ≤ ∆EBCFT
(m,n),(m,n′) ≤

π(c− 1)
24∆x ≈ πc

24∆x. (3.38)

This result matches the spectral gap in our AdS/BCFT model. However, we should
reemphasize that match between Liouville theory with ZZ boundaries and our model is
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only formal which is clear from ∆(m,n) being negative. Moreover, there is another peculiar
feature about ZZ boundaries that distinguishes them from usual BCFT boundaries. Namely,
we have

EBCFT
(m,n),(m,n) = π

4∆x

(
(2n− 1)b+ 2m− 1

b

)2
, (3.39)

which is distinct from (3.21) although this amplitude is between identical states. This
mismatch also disallows us from interpreting the Liouville theory with ZZ boundaries as
the usual BCFT.

4 Entanglement entropy and entanglement island

In this section, we study the holographic entanglement entropy in our model. We use the
Ryu-Takayanagi (RT) prescription to compute this entanglement entropy. We restrict to
the case with no bulk conical defect.

We start by considering a normalized boundary state for a conformal boundary condition
Ba prepared on a circle with circumference T−1

BCFT,

|Ba(∆x/2)〉 = e−
1
2HCFT∆x|Ba〉√

〈Ba|e−HCFT∆x|Ba〉
. (4.1)

This state is often used to model an initial state for a global quantum quench [46, 47].
In the following, we consider the entanglement entropy of a superposition state

|Ψ〉 :=
∑
a

ca|Ba(∆x/2)〉, (4.2)

where the ca’s are complex coefficients. We restrict to the case where the boundary entropy
SBa is equal to a fixed value SB (or it is in a narrow window around SB) for the boundary
conditions Ba appearing in |Ψ〉. Let NSB

be the number of such boundary states.
We assume that the inner products 〈Ba(∆x/2)|Bb(∆x/2)〉 have holographic duals

with a defect connecting the EOW branes. For simplicity, we assume that θ(a,a) = π

and θ(a,b) = θ0 when Ba 6= Bb. Under these assumptions, the geometries with θ(a,b) = θ0
dominate the gravitational computation for 〈Ba(∆x/2)|Bb(∆x/2)〉 if

NSB∑
a=1
|ca|2 �


NSB∑
a,b=1
a 6=b

c∗acb

 exp
[
− c

6π∆x

(
π2

4 − α
2
0

)]
. (4.3)

If all the ca’s are approximately equal, then this condition can be satisfied only if NSB
�

exp
[

c
6π∆x

(
π2

4 − α
2
0

)]
. Since the gravity dual for 〈Ψ|Ψ〉 is given by the geometry with

θ(a,b) = θ0 in this case, the RT surfaces in this geometry compute the entanglement entropy
of the state |Ψ〉.

One can also understand this RT surface in terms of the pseudo entropy [37]. The pseudo
entropy is given by the von Neumann entropy SP (A) = −Tr[XA logXA] of a normalized
transition matrix XA. In our case, this transition matrix is

XA :=
TrA

[
|Ba(∆x/2)〉〈Bb(∆x/2)|

]
TrAAc

[
|Ba(∆x/2)〉〈Bb(∆x/2)|

] . (4.4)
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(a) Case 1: Thermal phase. (b) Case 2: Boundary phase. (c) Case 3: Defect phase.

Figure 5. Three phases of the RT surfaces for the boundary subregion A.

4.1 Three phases of the RT surface

In this subsection, we will use the RT surface prescription to compute the entanglement
entropy for a subregion [46, 47] of the state |Ψ〉 or the pseudo entropy for XA. We assume
the tensions of the EOW branes are equal, T1 = T2 = T , and T is the corresponding
dimensionless tension. Also, the internal angle at the defect is θ0. We assume the bulk
conical defect is absent for simplicity.

Recall that our BCFT is defined on the strip

N =
{

(τ, x = z0φ) | 0 ≤ τ ≤ T−1
BCFT, π − α0 ≤ φ ≤ π + α0

}
, (4.5)

so the width of the strip is ∆x = 2z0α0. On this strip, we consider the subregion

A = {(τ, x = z0(π − σ)) | 0 ≤ τ ≤ |A|}, (4.6)

with a particular value of σ ∈ [0, α0). Since τ is periodic with periodicity T−1
BCFT and |Ψ〉 is

a pure state, it is sufficient to consider the case |A| < T−1
BCFT/2. There are three different

phases of the RT surface as shown in figure 5.

Case 1: Thermal phase. In this case, the RT surface is a single connected surface. This
surface is shown in figure 5a and we label it as γ1. This phase is realized when the subregion
A is sufficiently small. We will see that the entanglement entropy is extensive in this case.

The bulk geometry has reflection symmetry about the φ = π − σ plane, so the γ1 lies
on this plane. This surface is given by the geodesic√

1− χ2 =
√

1− χ2
0 cosh τ − τ0

z0
(4.7)

with the parameters being

τ0 = |A|2 , χ0 = tanh |A|2z0
. (4.8)

– 15 –



J
H
E
P
1
1
(
2
0
2
2
)
1
2
3

Note that (τ, χ, φ) = (τ0, χ0, π−σ) is the deepest point on this geodesic. If the maximum
depth χ0 is sufficiently large, γ1 will be cut by the EOW branes in the negative tension case.
Therefore, the thermal phase with T < 0 exists only if T ≥ − tan(α0−σ) sech(|A|/2z0)√

tan(α0−σ)2+tanh2(|A|/2z0)
.

The holographic entanglement entropy is

S(A) = A(γ1)
4GN

= c

3 log 2
ε

+ c

3 log sinh(|A|/2z0). (4.9)

Since this result is independent of σ, analytically continuing it to real time does not give
rise to any time dependence. For large |A|, this entropy demonstrates the volume law

S(A) ≈ c

3 log 2
ε

+ c|A|
6z0
− c

3 log 2, (4.10)

at an inverse effective temperature,

β|Ψ〉 = 2πz0 = π

2α0
(2∆x). (4.11)

There is a prefactor π
2α0

here, which lowers the effective temperature for the same ∆x for a
given α0 ≤ π/2 as compared to the conventional case for which α0 = π/2.

Case 2: Boundary phase. In this phase, the RT surface has two disconnected pieces
that end on the EOW branes. This surface is shown in figure 5b and we label it as γ2. This
phase is preferred over the thermal phase for sufficiently large |A|. We will see that the
entanglement entropy is intensive in this case.

Each piece of γ2 lies on a constant τ surface because of the τ reflection symmetry.
These pieces are given by the geodesic√

1− χ2 cos(φ− π + σ + φ0) = cosφ0. (4.12)

Here we have determined the parameter φ0 = α0−σ by requiring that the geodesic intersects
the EOW brane orthogonally. The endpoints of γ2, lying on the EOW brane Σ1, are given
by χep =

√
1− T2 sin(α0 − σ).

If α0 ≤ π/2, or equivalently, θ0 ≤ π, this geodesic exists for all values of σ. If
α0 ≥ π/2, the critical value corresponds to the endpoint lying on the defect. This is given
by χep = χ∗ =

√
1− T2 csc2( θ02 ), so the condition for the existence of this geodesic is

α0 − σ ≤ arccos T
∣∣cot( θ0

2 )
∣∣

√
1− T2

. (4.13)

In particular, this surface exists for σ = 0 if and only if α0 ≤ π/2.
The holographic entanglement entropy is

SA = A(γ2)
4GN

= c

3 log 2
ε

+ c

3 log sin(α0 − σ) + 2SB. (4.14)

Here SB is the boundary entropy

SB = c

6 arctanh T, (4.15)
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which can also be obtained using the disk partition function [3]. Note that there is an
extremal but not minimal surface γ′2 ending on the other EOW brane Σ2, i.e., the EOW
brane anchored at φ = π + α0. For this surface, we have

A(γ′2)
4GN

= c

3 log 2
ε

+ c

3 log sin(α0 + σ) + 2SB. (4.16)

The surface γ′2 exists when α0 + σ ≤ arccos T|cot( θ0
2 )|√

1−T2 .
When we analytically continue this Euclidean entanglement entropy to real time, it

is important to consider both A(γ2) and A(γ′2), as well as cases where the two pieces
of the RT surface ends on distinct EOW branes. To evaluate the entanglement entropy
of the state e−iHCFTt|Ψ〉, we analytically continue A(γ2)

4GN
and A(γ′2)

4GN
by taking σ → −i tz0 .

After this substitution, these two extremal areas are complex conjugates of the other,
A(γ2) = A(γ′2). The total areas in the other two cases are purely real and are equal to
Re [A(γ2)] = Re [A(γ′2)]. Therefore, the real time entanglement entropy is given by this
real piece,

SA = Re
[
A(γ2)
4GN

]
= c

3 log 2
ε

+ c

6 log cosh(2t/z0)− cos(2α0)
2 + 2SB −

c

3 log 2. (4.17)

At late times t� z0, this entanglement entropy is

SA ≈
c

3 log 2
ε

+ ct

3z0
+ 2SB. (4.18)

Hence, at late times satisfying
t >
|A|
2 −

6z0SB
c

, (4.19)

the thermal phase will be favored over the boundary phase.

Case 3: Defect phase. In this phase, the RT surface has two disconnected pieces that
end on the defect. This surface is shown in figure 5c and we label it as γ3. As in the
boundary phase, the entropy is intensive. This phase is always subdominant compared
to the boundary entropy phase if the latter exists. Therefore, this phase is realized only
when the subregion is sufficiently large and the boundary entropy phase is absent. For this
reason, when α0 ≤ π/2, this phase is irrelevant.

As earlier, each piece of γ3 lies on a constant τ surface. These pieces are given by
the geodesic √

1− χ2 cos(φ− π + σ + φ0) = cosφ0. (4.20)

Here we have determined the parameter φ0 = arctan sin(θ0/2)+T cosσ
T sinσ by requiring that the

geodesic passes through the defect.
If T > 0 this geodesic is guaranteed to exist. However, when T < 0 this geodesic

exists only if σ ≤ 2 arctan
(

tan
(
θ0
4
)√ sin(θ0/2)+T

sin(θ0/2)−T

)
. This implies that this phase always exists

around σ = 0.
The holographic entanglement entropy is

SA = A(γ3)
4GN

= c

3 log 2
ε

+ c

3 log sin(θ0/2) + T cosσ
sin(θ0/2) + T

+ 2SD. (4.21)
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Here we have defined
SD := c

12 log sin(θ0/2) + T

sin(θ0/2)− T
, (4.22)

and we call it the defect entropy. This defect entropy can be considered as a generalization
of the boundary entropy SB and it reduces to SB if we make the defect disappear by
setting θ0 = π.

As mentioned earlier, the boundary phase is favored over this phase, A(γ2) < A(γ3),
if both phases exist. This is because γ2 is minimal amongst all surfaces that end on the
EOW brane.

The real time entanglement entropy is given by analytically continuing σ → −i tz0 , so

SA = c

3 log 2
ε

+ c

3 log
(
T cosh(t/z0) + sin(θ0/2)

T + sin(θ0/2)

)
+ 2SD. (4.23)

Note that this result is manifestly real unlike case 2. At late times t� z0, this entanglement
entropy is

SA ≈
c

3 log 2
ε

+ ct

3z0
+ 2SD −

c

3 log 2 (T + sin(θ0/2))
T

. (4.24)

It is also worth mentioning that the γ3 is minimal but not extremal because of the
singular nature of the defect. One can imagine a scenario when there is a matter theory
on the EOW brane which smoothly interpolates between the two different tensions of the
EOW branes, and the defect is realized as the sharp limit. In this case, the RT surface is
extremal and the distinction between cases 2 and 3 disappears.

4.2 Interpretation as entanglement island

In this subsection, we explain and interpret the results in the previous section in terms of the
island formula. We interpret the state |Ψ〉 as a field theoretic wavefunction being prepared
by a matter field that lives on the EOW brane. In other words, the EOW brane is now
the spacetime on which a quantum state |Ψ〉 is prepared [35, 36]. We are interested in the
entanglement entropy of a subregion A of the state |Ψ〉. We assume that the matter theory
is a holographic BCFT to simplify the analysis [48]. When the effective temperature of |Ψ〉
is sufficiently low, the EOW branes in the bulk are disconnected. When the temperature is
sufficiently high, the EOW branes are connected via a defect, creating a closed universe
that terminates at this defect.

The three phases of the RT surface in the previous section can be interpreted as the
phases of the entanglement entropy of A [36]. When the subregion is sufficiently small, the
entanglement entropy is given by the thermal answer from matter theory. This corresponds
to case 1. When the subregion is large enough so that the naive thermal entropy is much
larger than the boundary entropy, then an entanglement island is formed on the EOW
brane (case 2) or on the defect (case 3).

In case 2, the two pieces of the RT surface can end on the same EOW brane or on
different EOW branes. However, the “island” in the latter case cuts through the defect
on the EOW brane, so the corresponding entropy increases by the boundary entropy of
the defect coming from the matter field on the EOW branes. Consequently, it can be
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argued that this configuration is subdominant when we are looking for the island. As the
result, the island lies only on one of the two EOW branes. The bulk matter wavefunction
on such an island is a transition matrix, so the matter part of the generalized entropy is
given by the pseudo entropy. It is expected that there is a generalization of entanglement
wedge reconstruction to such cases, although there are no quantum information theoretic
foundations for this claim yet.

In case 3, the RT surface ends on the defect. This can be interpreted as an island lying
exclusively on the defect. Therefore, a portion of the defect is included in the entanglement
wedge of the subregion A.

5 Three-dimensional wormhole saddles

In this section, we construct a connected bulk geometry with multiple AdS boundaries using
our model of EOW branes and defects. This geometry is similar to the replica wormhole in
2d gravity with EOW branes [13]. However, we will be interested in defects with θ0 > π, so
these defects have negative energy.

One way to add such negative energy in the bulk is by adding non-local interaction
between different boundaries [49], which can originate from integrating out “fast” degrees
of freedom. Such non-local interaction between boundaries can make a non-traversable
Einstein-Rosen bridge traversable, so that different boundaries can communicate with each
other [49, 50]. We interpret our model in this section as a realization of such non-local
interaction between BCFTs, and the non-unitarity of the BCFTs with θ0 > π comes from
such non-local interactions obtained by integrating out these fast degrees of freedom.

Let us consider two BCFTs that live on two different strips with widths ∆x1 and ∆x2
respectively. They have the same periodicity T−1

BCFT in τ direction, so the aspect ratios are
ξ1 = ∆x1 · TBCFT and ξ2 = ∆x2 · TBCFT. Figure 6a shows a constant τ slice for this setup.

We assume that the tensions satisfy T1 = T3 and T2 = T4 and that the angle of
intersection between the Σ1, Σ3 EOW branes and the Σ2, Σ4 EOW branes is θ0 > π. This
assumption is required to get connected geometries. it implies that α0 >

π
2 and that the

BCFTs are non-unitary.
The factorized geometry is shown in figure 6b. The Euclidean action for this geometry

is the sum of the two corresponding actions

I f
E = − c

6π
α2

0
ξ1
− c

6π
α2

0
ξ2
, (5.1)

where α0 is given by (3.10). The connected wormhole geometry is shown in figure 6c. It is
obtained by stitching together two geometries, each with a boundary angle 2α0. The total
boundary angle for this wormhole geometry is 2αw = (4α0 − 2π), where we have subtracted
a 2π to account for the connection. The Euclidean action for the wormhole geometry is

Iw
E = − c

6πξw
α2

w = − c

6π
(2α0 − π)2

ξ1 + ξ2
, (5.2)

where ξw = ξ1 + ξ2 is the total aspect ratio for the wormhole.
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(a) Boundary Setup. (b) Factorized Geometry. (c) Wormhole Geometry.

Figure 6. Constant τ slices showing two BCFTs along with the disconnected and connected dual
geometries. The factorized geometry is the leading contribution to the product of partition functions
whereas the wormhole geometry is subleading. The latter arises from non-unitarity of the BCFTs
with θ0 > π.

The factorized geometry strictly dominates over the wormhole geometry, since

I f
E = −cα

2
0

6π

( 1
ξ1

+ 1
ξ2

)
≤ −cα

2
0

6π
4

ξ1 + ξ2
< −c(2α

2
0 − π)2

6π
1

ξ1 + ξ2
= Iw

E . (5.3)

Here we have used the arithmetic mean-harmonic mean inequality to establish the first
inequality.

More generally, if we have n disconnected boundary regions with aspect ratios ξi =
∆xi · TBCFT, then the Euclidean actions for the factorized geometry is

I f
E = − c

6π

n∑
i=1

α2
0
ξi
, (5.4)

and for the fully connected wormhole geometry is

Iw
E = − c

6π
(nα0 − (n− 1)π)2∑n

i=1 ξi
. (5.5)

This fully connected geometry exists only for α0 ≥ (n−1)π
n . From these results, we can

conclude that any wormhole geometry is subdominant compared to the corresponding
factorized geometry, even though we have considered a non-unitary BCFT. Recall that
without non-unitarity, it is not even possible to construct a connected saddle. Interestingly,
in order to increase the number of boundary components, we need larger a α0, which means
that we need to make the BCFT “more” non-unitary.

6 Discussion

In this paper, we have developed a generalization of the conventional AdS/BCFT model
by including defects that connect EOW branes with different tensions. This construction
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enables us to study a BCFT whose lowest eigenvalue can be tuned arbitrarily close to
that of the identity operator. This construction is particularly useful when the boundary
entropies of the two boundaries are distinct, i.e. when the conventional model has a restricted
lowest eigenvalue.

We conclude with some remarks and possible future directions. The construction in our
model is based on 3d gravity, and we expect that the generalization to higher dimensions
should be straightforward. Although we have calculated the real time entropy in section 4,
we did not study the corresponding real time geometry. It would be interesting to develop
this analytic continuation. It would also be interesting to generalize our defect on the EOW
branes to a smooth configuration. We can imagine a model in which the tension of the
EOW brane is position dependent, and in particular, it interpolates smoothly between the
two BCFT boundaries. Closely related models were studied in [51, 52]. We would like to
understand the interpretation of the boundary entropy in this configuration, for which a
specific example is given by the defect entropy in (4.21).

The connection between unitarity and connected geometries in section 5 remains
mysterious and interesting. We should emphasize that although the connected saddle exists
in the non-unitary case, this saddle is always subleading compared to the disconnected saddle.
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A Extention of boundary conformal transformation to bulk

In this appendix, we examine the bulk coordinate transformation from the Poincare patch
to another coordinate patch. This transformation is dual to the boundary conformal
transformation from a plane to a 2d patch. In particular, we find the map between vacuum
AdS and thermal AdS.

The Poincare AdS3 metric is

ds2 = `2

z2

(
−2dv+dv− + dz2

)
. (A.1)

Here we have used the light cone coordinate v± := 1√
2(t ± r) for the Minkowski space

ds2 = −2dv+dv− = −dt2 + dr2 at the boundary of AdS.
Suppose we have a conformal transformation v± = f±(u±) that acts on the boundary.

We can extend this to a bulk coordinate transformation via [53]
v± = f±(u±) + 2ζ2f ′±(u±)2f ′′∓(u∓)

8f ′+(u+)f ′−(u−)−ζ2f ′′+(u+)f ′′−(u−) ,

z = 8ζ(f ′+(u+)f ′−(u−))3/2

8f ′+(u+)f ′−(u−)−ζ2f ′′+(u+)f ′′−(u−) .
(A.2)
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where ζ is the new radial coordinate. This bulk transformation maps the Poincare AdS3
metric to

ds2 = `2
(

dζ2

ζ2 + L+du2
+ + L−du2

− −
(

2
ζ2 + ζ2

2 L+L−

)
du+du−

)
. (A.3)

Here L± are related to the Schwarzian of the conformal transformation and are given by

L± := −1
2 {f±(u±), u±} = 3f ′′2± − 2f ′±f ′′′±

4f ′2±
. (A.4)

Hence, the CFT stress tensor in the transformed coordinates is

Tu±u± = c

12πL±, Tu+u− = 0. (A.5)

The analytical continuation of v± to imaginary time is

v± = t± r√
2
→ −iτ ± r√

2
. (A.6)

Similarly, for ds2 = −2dx+dx− = −dt2x + z2
0dφ2, we have

u± = tu ± z0φ√
2

→ −iτu ± z0φ√
2

. (A.7)

In these complexified coordinates, the conformal transformation can be rewritten as
v = r + iτ = g(u), v̄ = r − iτ = ḡ(ū) with u := z0φ+ iτu, ū := z0φ− iτu. The metric is

ds2 = `2
(

dζ2

ζ2 + Ldu2 + L̄dū2 +
( 1
ζ2 + ζ2LL̄

)
dudū

)
, (A.8)

where we have defined L := 1
2{g(u), u} = −1

4{f−(u−), u−} and L̄ := −1
2{ḡ(ū), ū} =

−1
4{f+(u+), u+}.

Mapping a plane to a cylinder. We consider a conformal transformation from a
cylinder to a plane,

v = z0e
− i

z0
u
, v̄ = z0e

i
z0
ū
. (A.9)

Here we have defined the coordinates on the cylinder as

u := z0φ+ iτ = −
√

2u−, ū := z0φ− iτ =
√

2u+, (A.10)

and the coordinates on the plane as

v := x− iy = −
√

2v−, v̄ := x+ iy =
√

2v+. (A.11)

This conformal transformation can be also be expressed as v± = ± z0√
2e

i
√

2
z0
u± .
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Applying (A.2) to this conformal transformation, we obtain the bulk transforma-
tion between the Poincare metric, ds2 = `2

s2 (dx2 + dy2 + dz2), and thermal AdS, ds2 =
`2
(

dτ2

z2
0χ

2 + dχ2

h(χ)χ2 + h(χ)dφ2

χ2

)
, to be

v± = ± z0√
2

√
h(χ)ei

√
2u±/z0 ,

z = z0e
i(u++u−)/(

√
2z0)χ.

(A.12)

where we have related χ = 4z0ζ
ζ2+4z2

0
. This can also be expressed as


x = z0e

τ/z0
√
h(χ) cosφ,

y = z0e
τ/z0

√
h(χ) sinφ,

z = z0e
τ/z0χ,

(A.13)

For this transformation,
L± = − 1

2z2
0
, (A.14)

so the stress tensor is given by

Tττ = −Tφφ
z2

0
= c

24πz2
0
. (A.15)
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