UC Irvine

SSOE Research Symposium Dean's Awards

Title

NeoMold: A 3D-printed Customizable Ear Mold for Congenital Ear Differences in Neonates

Permalink

https://escholarship.org/uc/item/5fs7b1cr

Authors

Ly, Christine Duong, Kathy Nguyen, Christine <u>et al.</u>

Publication Date

2024-03-15

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Biomedical Engineering

NeoMold: A 3D-Printed Customizable Ear Mold for Congenital Ear Differences in Neonates Christine Ly¹, Kathy Duong¹, Christine Nguyen¹, Frida Sandoval¹ Mentors: Christine King, PhD¹, Miles Pfaff, MD MHS^{1,2}, Douglas Olson, DMD MS², Sharath Sundararaj, PhD³ ¹ University of California, Irvine, ² Children's Hospital of Orange County, Irvine, California, ³ AbbVie, Irvine, California

Project Goal

Problem

Approximately 1 in 6000 newborns are born with congenital ear deformities, with Hispanic, Native American, and Asian-Pacific Islander communities being disproportionately affected [1]. The most common types of deformities include prominent ear, Stahl's ear, and lidding (Fig. 1) [2]. Children with outer ear deformities are at a higher risk of experiencing psychosocial distress [3].

Current solutions to correct ear deformities have many limitations, as summarized in Table 1. To properly correct outer ear deformities non-surgically, diagnosis and treatment within 2-6 weeks of birth is crucial. This limited time window is difficult to meet for the underserved communities most affected. Ear molding devices are also often marked up and are not customizable to each patient. Surgical correction is considered an aesthetic plastic surgery, which is often expensive and paid out of pocket.

Figure 1. Prominent ear, Stahl's ear, and lidding deformity (left to right) [4]

Current Solutions	Strengths	Limitations
Reconstructive surgery	viable beyond 2-6 weeks, standard treatment [5]	expensive, invasive, surgical complications [5]
EarWell	highly effective	aggressive, bulky,
(non-surgical	(>90%), early	dislodgement,
molding)	initiation [5]	poorly tolerated [4]
EarBuddies	accessible to public,	skin irritation,
(non-surgical	easy management	unmonitored, low
molding)	[6]	effectiveness [6]

 Table 1. Current solutions for correcting congenital outer ear
deformities and their associated strengths and limitations

Goals

- Create a customizable ear mold to non-surgically correct outer ear deformities in neonates within the first 2-6 weeks of birth
- 2. Optimize the ear mold to reduce costs and manufacturing time and maximize comfort

Impact

With a 3D-printable ear mold customized to each individual newborn, lower manufacturing time and cost and improved ease of use for non-physicians will increase timely, economic, and geographic accessibility to non-surgical ear deformity correction.

Device Verification and Validation

User Need	Design Requirement	Applicable Standard(s)	Design Verification	Design Validation	
Short application time	Application Time < 10	ISO 14971, ISO 13485,	Measure time to apply ear mold on	Physician application	
	minutes	IEC 62366	ear model		
Easy application	Average rating of 3 or higher	ISO 14971, ISO 13485,	Collect ratings after subject applies	Physician application & usability testing	
	for ease of use	IEC 62366	ear mold to ear model		
Cuffs do not dislodge	*Glue joint strength \geq	ISO 14971, ASTM F04.15,	Free body diagrams	Simulation testing	
from back splint	EarWell adhesive strength	ISO 13485	Instron testing until failure	Simulation testing	
Cause little to no skin	Use biocompatible material	ISO 14971, ISO 10993,	Pressure measurements and mapping	Simulation testing	
irritation & ulcerations		ASTM F04.15, ISO 13485	Literature review	Physician application	
Quick manufacturing	< 1 week turnaround	ISO 14971, IEC 62366,	Measure time to design and	Measure time to design, manufacture, and ship	
		ISO 16142, ISO 13485	manufacture	ear mold to physician	

* Testing in progress

1. Attach back splint around ear 2. Fold cuffs to shape helical rim

CHOC

Figure 4. Right view of first prototype on adult silicone ear model.

References [1] Congenital deformities of the outer ear," Yale Medicine, https://www.yalemedicine.org/conditions/congenital-deformities-of-the-outer-ear#:~:text=Options%20range%2 0from%20noninvasive%20ear,some%20cases%2C%20help%20restore%20hearing (accessed Feb. 19, 2023). [2] C. H. Curtis, "Bright futures," Phoenix Children's Hospital, https://phoenixchildrens.org/blog/2021/04/ear-deformities-newborns-and-ear-molding (accessed Feb. 19, 2023). [3] J. E. Woo et al., "Effectiveness of ear splint therapy for ear deformities," Annals of Rehabilitation Medicine, vol. 41, no. 1, p. 138, 2017. doi:10.5535/arm.2017.41.1.138 [4] "Earwell® - Becon medical," EarWell® Infant Ear Correction System, https://www.earwells.com/ (accessed Feb. 19, 2023). [5] M. M. W. Feijen, C. van Cruchten, P. E. Payne, and R. R. van der Hulst, "Non-surgical correction of congenital ear anomalies: A review of the literature," Plastic and Reconstructive Surgery - Global Open, vol. 8, no. 11, 2020. doi:10.1097/gox.000000000003250 [6] EarBuddiesTM, "How does early ear correction work?," EarBuddies, https://www.earbuddies.com/pages/how-it-works (accessed Feb. 19, 2023).