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Bharath Ananthasubramaniam, Student Member, IEEE, and Upamanyu Madhow, Fellow, IEEE

Abstract—We propose a massively scalable “imaging” architec-
ture for sensor networks, in which sensor nodes act as “pixels”
that electronically reflect (and possibly modulate data on top of)
a beacon transmitted by a collector node. The collector employs
sophisticated radar and image processing techniques to localize
the responding sensor nodes, and (if data modulation is present)
multiuser data demodulation techniques to extract the data sent
by multiple sensors. The sensors do not need to know their own
locations, do not need to communicate with each other, and
can be randomly deployed. In this initial exposition, we develop
basic insight into the localization capabilities of this approach,
ignoring sensor data modulation. This reduces to an idealized
one-bit, on-off keyed, communication model in which the the
sensors are either “active” or “inactive,” with the active sensors
responding to the collector’s beacon without superimposing data
modulation. We consider a moving collector, with the sensor re-
flections creating a synthetic aperture radar (SAR)-like geometry.
However, the collector must employ significant modifications to
SAR signal processing for estimation of the location of the active
sensors: noncoherent techniques similar to those in noncoherent
radar tomography to account for the lack of carrier synchroniza-
tion between sensor and collector nodes, and decision feedback
mechanisms for estimation of the locations of multiple closely
spaced active sensors. Measures for localization performance are
defined, and the effect of system parameters such as bandwidth,
beamwidth and signal-to-noise-ratio (SNR) on performance is
investigated.

Index Terms—Data collection, imaging sensor nets, localization,
sensor network architecture, virtual radar.

I. INTRODUCTION

VERY large-scale sensor networks arise naturally when
low-cost microsensors with small sensing range are used

to provide coverage of a large area. Such networks have a
number of important applications, including border policing,
monitoring for biological or chemical agents over large urban
areas, and even interplanetary exploration. Key to their utility
is the ability to randomly deploy large numbers (hundreds of
thousands) of sensor nodes, and to monitor them from afar
(e.g., deployment, as well as monitoring might be performed
by aircraft or spacecraft). In such settings, the conventional
approach of data collection using multihop wireless networking
among the sensor nodes is often inapplicable. Specifically, if the
collector node is far from the sensor field, then multihop relay
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among the sensor nodes leads to negligible reduction of the dis-
tance to the collector node. Examples of such applications are
data collection from a remote sensor field by aircraft, satellite,
or stationary monitoring facilities. Moreover, as shown by the
pioneering work of Gupta and Kumar [1], as well as many sub-
sequent analyses of the capacity of multihop networks [2]–[5],
multihop networking does not, in general, scale to very large
networks, with the throughput per node scaling down with the
network size under standard assumptions on network traffic. An
equally significant consideration is the overhead of addressing
and routing in large networks. Large-scale random deployment
also implies that the map between sensor node identity and
location is not known a priori to either the sensor nodes or
the collector node(s). However, since a key component of data
collected from a sensor network is the location of interesting
events, localization is a must. Conventional solutions such as
GPS are often inapplicable due to cost (for truly large-scale
deployments, we wish to drive the sensor node cost well below
even the dropping price of a GPS receiver) and availability
(GPS is easy to jam on Earth, and is not available, say, on the
surface of Mars).

In order to simultaneously address the problems of scale and
localization, we turn to an analogy with imaging in order to
obtain an “Imaging Sensor Net” architecture: the sensor nodes
play the role of pixels being “imaged” by a sophisticated data
collector node. The sensors electronically reflect the collector’s
beacon (and possibly add data modulation to it), thus, creating
a virtual radar geometry that can be exploited by the collector
for fine-grained localization. The collector node can now use
radar and image processing algorithms on the received signal
to localize the sensor nodes, and multiuser data demodulation
techniques to demodulate their data, if any. Since there is no
overhead incurred in internetworking the sensor nodes, or in ob-
taining and conveying location information, the amount of data
sent by the sensors can be reduced to a bare minimum (allowing
random deployment of “dumb” sensor nodes without geoloca-
tion capabilities). Thus, link budgets sufficient for communi-
cating over long distances (up to 100 km, which permits data
collection via satellite) can be obtained even with severely en-
ergy-constrained sensor nodes.

Contribution and Main Results: Accurate localization of
the sensors that detect an event, or have data to report, is an es-
sential feature of an imaging sensor net. Accordingly, we focus
on developing fundamental insight into the localization perfor-
mance achievable in an imaging sensor net, using an idealized
model which ignores data modulation. This is a good approx-
imation when low-rate data modulation is imposed on, say, a
spread spectrum beacon being reflected by the sensor, as is the
case with a prototype which is currently under development [6],
[7]. This reduces to a simple one-bit, on-off keyed model for the
sensors’ response. Sensors are either “active” or “inactive,” with
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only the active sensors electronically reflecting the collector’s
RF beacon. We consider a moving collector, with the sensor
reflections creating a geometry as in synthetic aperture radar
(SAR) [8]–[10]. However, two-dimensional (2-D) matched fil-
tering used in standard SAR processing performs poorly be-
cause of the lack of carrier synchronization between the sensor
nodes and the collector [11]. Our main results are as follows.

1) We provide a maximum likelihood (ML) formulation for
localization, considering first an isolated active sensor,
which leads to a noncoherent decision statistic based on a
simple modification of the 2-D matched filter. The model
is similar to that in noncoherent radar tomography [12],
[13]. Our ML algorithm also applies to multiple active
sensors, provided that they are spaced far enough apart
that their 2-D responses at the collector do not overlap.

2) Since ML localization for multiple active sensors that are
closely spaced is computationally intractable, we develop
a suboptimal decision feedback algorithm, in which the
estimated response of each active sensor is subtracted out
once it is detected. A criterion for terminating the algorithm
is provided, based on an analysis of the probabilities of
false alarm and miss.

3) Key tradeoffs governing localization performance are
investigated analytically. Simulation results are provided,
and compared with analysis when applicable.

Related Work: Preliminary development of the imaging
sensor net paradigm was presented in [11] and [14]. In this
paper, we provide a comprehensive treatment of the localization
capabilities of this approach. The work that is most closely
related to ours is [15], in which sensors are coarsely localized
by a collector using a spot beam. However, our objective is to
obtain an accurate estimate of the sensors’ locations without
stringent requirements on the collector’s beams.

For more conventional multihop architectures, there has
been a great deal of activity in the important problem of local-
ization, broadly classified into two categories. The majority of
schemes fall into the first category of anchor-based localization
[16]–[21], in which a subset of the sensors know their locations,
and the information from their beacons is used by other sensor
nodes to infer their own locations in an iterative fashion. In
the second category of anchor-free localization [22], the nodes
compute their locations iteratively in a consistent coordinate
system. In contrast to the “dumb” nodes in an imaging sensor
net, all of the preceding methods require some form of ranging
(at different degrees of sophistication) in the sensor nodes,
followed by distributed collaborative iterations.

In addition to fundamental research on the capacity of mul-
tihop wireless relay mentioned earlier, there is much research
aimed at optimizing multihop networks in the specific context
of data collection from sensor networks, including routing op-
timization [23]–[26], distributed source coding [27], [28], and
distributed signal processing and estimation [29], [30]. Despite
the limits on scalability derived by Gupta and Kumar [1] and
others, it is conceivable that in certain settings, the redundancy
in the information gathered by the sensor nodes may be such that
the net information to be conveyed to a data collection center
scales up slowly enough to fit within the Gupta-Kumar bounds
[31]. However, as noted earlier, even if the problems of scale

and overhead in multihop networking could be circumvented, it
is inapplicable to a large class of applications served by imaging
sensor nets, namely, those in which the nodes in the sensor field
are more or less at the same distance from the collector node,
and all nodes have comparable energy/power constraints.

The system model is presented in Section II. The optimal
ML single sensor localization algorithm and a decision-di-
rected joint localization of multiple sensor are developed
in Sections III-A and III-B. Noise-limited localization per-
formance, assuming a single active sensor, is considered in
Section IV. This is used to get insight into the effect of ap-
propriately chosen dimensionless parameters on performance
measures. The performance with multiple active sensors is
explored in Section V. Finally, Section VI contains concluding
remarks.

II. SYSTEM MODEL

In this section, we describe the system model corresponding
to an airborne collector (e.g., an aircraft or UAV), in direct
analogy to swath-mode SAR, as shown in Fig. 1(a) and (b).
However, these concepts extend directly to other geometries,
such as terrestrial vehicles moving along the edge of the sensor
field, or stationary collectors with steered beams [32]. The
collector node illuminates a part of the field with a beacon
using a side-looking antenna. Each such illumination is called
a snapshot. As seen in Fig. 1(b), the collector moves along one
edge of the sensor field at a fixed altitude, and the movement of
the collector causes the beacon to sweep the entire field.

Ignoring sensor data modulation, we obtain an idealized
one-bit model of the sensor data. Sensors are either “active”
or “inactive,” and the objective is to localize the active sensors
(i.e., to image the activity in the sensor field). Active sensors
that hear the beacon respond to it by transmitting a wideband
signal, timing their response precisely with respect to a trigger
sequence in the beacon. This creates a SAR-like geometry. The
collector node processes the net received signal over multiple
snapshots using SAR-like [8]–[10] and noncoherent tomog-
raphy based [13] techniques to generate an image of the activity
in the sensor field. The collector node knows its own location
at the time of different snapshots (e.g., an aircraft may know its
own GPS location, and its height relative to the sensor field).
Thus, the collector can estimate the absolute locations of the
active sensors, up to the resolution of this virtual radar system.

A. Received Signal Model

Each active sensor sends back a complex baseband signal,
, modulated on a sinusoidal carrier of frequency . Never-

theless, the techniques in this paper can be easily extended to
settings where each active sensor sends back a different signal
(e.g., waveforms randomly chosen from a near-orthogonal set)
in order to mitigate intersensor interference. The transmitted
passband signal is . Suppose, there are

active sensors, indexed by , on the field, and the collector
takes snapshots, indexed by , of the field. Note that the time
reference for each snapshot is different: at each snapshot, at the
instant the collector’s beacon is transmitted, the time variable is
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Fig. 1. Imaging sensor net with a moving collector. (a) An aircraft collecting data from a sensor field. (b) Top view of the virtual radar system.

reset to zero to simplify subsequent notation. The complex base-
band received signal, , at the collector node at snapshot
is

where is a complex channel gain, is the round-trip prop-
agation time between active sensor and the collector node at
snapshot is the antenna gain function (AGF) of the col-
lector antenna, which is the antenna gain to sensor in snapshot
, and is the noise. Note that will be a vector if the

collector has multiple receive antennas.
The channel gain, , captures the effects of multipath

fading, signal path loss, and lack of synchronization between
the local oscillators (LOs) at the sensors and the collector. We
assume an additive white Gaussian noise (AWGN) channel
with line of sight (LOS) communication. The path loss in the
signal is ignored for two reasons: i) the path loss exponent
can vary significantly (between 2 and 6) depending on factors
such as atmospheric conditions, aperture-medium coupling,
frequency of operation, and ii) incorporating this exponent into
the estimator does not provide significant improvement in per-
formance, as, in practice, estimates of the exponent are coarse.
Since the path loss is ignored, the received signal-to-noise ratio
(SNR) is the same for all sensors. Nevertheless, to account for
path loss, this SNR can be replaced by the minimum SNR,
seen by the farthest sensor, to obtain a conservative estimate
of performance. (Fading and shadowing effects, if any, can be
accommodated by an outage analysis not undertaken here.)

The LOs at the sensors and the collector are not synchro-
nized. However, the frequency offset between the oscillators is
assumed to be small enough that the relative phase is constant
over the duration of the transmitted pulse. The relative phases
from one snapshot to another are modeled as independent and
identically distributed (i.i.d.) over . Note that this is a
worst case scenario, where no attempt is made to track the fre-
quency drift and phase offset of the sensor LO. Tracking the fre-
quency and phase offsets of the sensor LO provides improved

performance at the cost of more computation at the collector.
Under the preceding assumptions, the complex gains for this
noncoherent AWGN LOS channel are

where are i.i.d. and uniform over . Absorbing all de-
terministic phases into the random phase factor, the received
signal reduces to

(1)

The round-trip delay , where is the dis-
tance between the collector node and sensor in snapshot , and

is the speed of light. This is identical to conventional radar: the
start transmission field reaches active sensor node at a time

after it is generated by the collector node, and the re-
sponse of sensor reaches the collector node at a time
after it is transmitted by active sensor .

B. Spatial Coordinate Representation

The received signal model in (1) is used to develop localiza-
tion algorithms in Section III. It is sometimes convenient to use
a spatial received signal representation, to view the sensor field
as an ‘image’ or to analyze performance. The y axis of the coor-
dinate system is chosen to be the airborne collector’s flight path.
The locations of the active sensors are , and the
location of the collector at snapshot is , where
the distance between snapshots is . The round-trip delay be-
tween the sensor and the collector in snapshot is
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The AGF and the beamwidth of the antenna
is such that

(2)

for some chosen antenna gain . Generally, can be chosen
to include the first sidelobes or a significant part of the main
lobe. However without any loss of generality in the algorithms
in Section III, we assume an antenna with only a main lobe. In
practice, an antenna is characterized by an angular beamwidth

[defined analogously with in (2)] and varies with dis-
tance from the antenna as . In this paper, we con-
sider two AGFs: (a) an ideal beam which has unity gain within
the beamwidth. Therefore, the AGF when sensor is
active and is illuminated by the beacon in snapshot , and oth-
erwise. (b) A more realistic Gaussian beam approximation of a
parabolic antenna

where is the half-power beamwidth of the antenna
and . The number of times an active sensor

is illuminated by the collector, , is the ratio of the antenna
beamwidth and the distance between snapshots

By the standard far-field approximation employed in SAR,
and assuming a highly directional antenna , the round-
trip delay can be approximated as

(3)

observing that only active sensors illuminated by the beacon,
satisfying , respond. In other words, a sensor’s
distance from the collector node is approximated by the ‘x’ co-
ordinate of the sensor, and sensors at the same range in a given
snapshot lie approximately on a line parallel to the y axis. The
error due to this approximation is

(4)

since .
Each sensor is now associated with a single delay . Hence,

(1) becomes

(5)

By a coordinate transformation that maps the time-coordinate at
each snapshot (recall the time variable is reset at each snapshot)
to the ‘x’ coordinate, and the location of the collector node
to the ‘y’ coordinate, i.e.,

(6)

(5) becomes

(7)

Note also that the snapshot index is incorporated into the vari-
able , i.e., . In practice, the re-
ceived signal is sampled leading to a received signal matrix,
whose rows and columns represent discrete values of ‘x’ and
‘y,’ respectively. This provides an elegant way of mapping the
entire sensor field to a matrix and to visualize the output of the
processing as an image. The received signal representations in

and are equivalent, and either (5) or (7) is used in
Section III.

C. Sample Link Budget

We now provide a sample link budget that shows that it is in-
deed possible to perform virtual radar imaging over significant
distances with severely energy-constrained sensor nodes. As in
our prototype under development [6], [7], we consider the mil-
limeter wave band, where the small wavelengths allow the gen-
eration of highly directional collector beams with antennas of
reasonable size. The sensors transmit a 15–MHz PN sequence
at 75 GHz (4 mm wavelength) with 500 W power using an
isotropic antenna (0 dB gain). The collector receiver has a high
gain (50 dB) parabolic antenna of diameter 0.51 m and noise
figure of 3 dB. The total thermal noise power in the signal band-
width of 15 MHz is dBm. At the nominal range of 3000 m,
the received power at the collector can be calculated by Friis’
transmission equation as

(8)

where is the carrier wavelength, is the range, is the
sensor transmit power, and are the gains of the transmit
and receive antennas. The received power per snapshot is
calculated to be dBm. The total noise power
added at the receiver per snapshot is the product of the
noise and noise figure. Therefore, dBm and SNR

dB.
For typical parameter values in a SAR-like system con-

sidered in this paper, 2 dB SNR suffices to provide good
localization performance. Thus, the link budget above provides
4 dB margin, while only requiring 126-nJ energy expenditure
per active sensor for 60 snapshots transmitting a 63-chip PN
sequence. Sensor nodes that do not have any activity to report
can simply turn off their communication circuits in order to
conserve energy.

D. Running Example for Simulation Model

Our computer simulations are based on the following run-
ning example. The sensor field contains 2500 sensors randomly
deployed on a 500 m 500 m square grid. Active sensors that
detect nearby events are randomly chosen from the deployed
sensors while ensuring that there are no edge effects. The
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aircraft flies parallel to one side of the field at a distance of
1500 m and an altitude of 2500 m. When illuminated, each
active sensor transmits an 11-chip Barker sequence using
a BPSK constellation shaped with a square-root raised cosine
pulse with 50% excess bandwidth. The carrier frequency of the
sensor transmissions is 75 GHz. The side-looking antenna has
a nominal physical beamwidth ( ) of 60 m (parabolic an-
tenna diameter of 0.51 m), and the distance between snapshots

m (hence, ). The antenna has either an ideal
brickwall or Gaussian beam pattern as described in Section II-B.
The nominal root-mean-square (rms) bandwidth of the trans-
mitted signal is Mhz and receiver sampling rate is
160 MS/s. The SNR at the receiver is defined (in Section II-C)
as the ratio of the received power from each sensor to the noise
power added at the collector per snapshot, i.e., , when
the noise is . Due to oversampling of the received
signal, the noise power is appropriately scaled to maintain the
correct SNR in the signal band. The nominal operating SNR
is 2 dB using the threshold calculated in Section V-A. The
normalizing factors for the range and azimuth coordinates to
achieve scale invariance are and m,
respectively. The choice and motivation for these normalizing
factors are discussed in Section IV-A.

III. IMAGING ALGORITHMS FOR SENSOR LOCALIZATION

Although the virtual radar system geometry is analogous to
that of SAR, the standard SAR reconstruction algorithm for
sensor localization is inapplicable due to the lack of coherence
between the local oscillators at the sensors and the collector. In
Section III-A, we present an ML formulation of the problem,
assuming a single active sensor, which leads to a noncoherent
decision statistic. The ML single sensor algorithm is then used
in Section III-B as a building block for a suboptimal decision
feedback algorithm for localizing multiple active sensors.

A. Maximum Likelihood Single Sensor Localization

From (5), the received signal in snapshot due to a single
active sensor at is

(9)

where are i.i.d. uniform random variables,
is the antenna gain to the sensor in snapshot , and
is the propagation delay between the sensor and the collector in
snapshot . The received signal vector is

(10)

where

...

is an AWGN vector, and is the active sensor response in the
absence of noise.

The location estimate is obtained by maximizing the log-like-
lihood function, or equivalently, minimizing the Euclidean dis-

tance between the received signal and transmitted signal vectors
jointly over and ,

(11)

To maximize (11), the s are replaced by their maximum
likelihood estimates, i.e., . The simplified likelihood
function is

(12)

The decision statistic is , and the suffi-
cient statistic is .

In (11), is independent of . However in
reality, is a function of too, due to the broadening of the
beam with distance from the antenna described in Section II-B.
This dependence does not change the form of (11), and (12) can
be modified following the same procedure as

(13)

where and . We infer
from (13) that the filter used for the azimuth correlation must be
varied (lengthened) as a function of the delay , which makes
the processing more computationally intensive but maintains the
simple 2-D filtering structure.

Although a filter matched to produces the sufficient sta-
tistics as in SAR, the optimal processing is nonlinear. The un-
known phases, , cause the optimal processing to be non-
coherent, using only the magnitudes of the range correlation for
the azimuth processing. These magnitudes are processed using a
filter matched to the AGF defined in (2). Thus, a minor modifica-
tion of the standard SAR algorithm produces the ML-estimation
rule for a single active sensor localization. Moreover, if the ac-
tive sensors are sparsely distributed in the sensor field, then there
is no interference between active sensor transmissions. Conse-
quently, the multi-event localization can be performed by re-
peated application of the single sensor algorithm until all the
sensors are detected. A suboptimal algorithm to perform mul-
tiple sensor localization, in the presence of interference, is pre-
sented in Section III-B.

B. Decision-Directed Joint Localization of Multiple Sensors

The received signal from active sensors in snapshot is

(14)
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where is the set of all unknown random phases at the
active sensors. When the active sensors are sparsely distributed
on the sensor field with no intersensor interference, the single
sensor algorithm in Section III-A is optimal for multisensor ML
localization. Two active sensors interfere with each other when
their transmissions are overlapping in the 2-D received signal
space consisting of one temporal and one spatial dimension (see
Section II-A). In the presence of intersensor interference, the
optimal ML joint localization algorithm is computationally in-
tractable. Hence, we now present a suboptimal joint detection
and localization algorithm that trades off optimality for a lower
computational cost.

We adopt a sequential zero-forcing decision-feedback ap-
proach where, when an active sensor is detected, it is localized,
and the influence of its transmission on the received signal is
estimated and subtracted out. This updated received signal is
then used to detect (and localize) the next active sensor. The
number of active sensors, , is not known a priori, hence, this
process is continued until a termination criterion is met.

The sequential detection algorithm is initiated by assuming a
single active sensor in the field. The ML localization algorithm
for a single sensor is used to obtain an estimate of that sensor’s
location as

(15)

where the estimates and uniquely determine the loca-
tion of the sensor. Assuming the estimate is the true loca-
tion, the effect of this active sensor on the received signal is
subtracted out. The response of this active sensor also depends
on the phases, , for which ML estimates were obtained in
(11) as

The updated received signal after detecting the first active sensor
is

In general, we denote the updated received signal after detecting
sensors by , where is the orig-

inal received signal. We continue with the detection process
after the th step as long as the following criterion is met:

(16)

where is a threshold, whose choice is discussed in
Section V-A. If the preceding criterion is satisfied, then
the th sensor is localized as follows:

Violation of the criterion (16) leads to termination of the algo-
rithm. The threshold is chosen (see Section V-A) such that

the probability of missing a true peak and the probability of
false alarms or false peaks under a noise-limited setting meet
user-defined tolerances. The algorithm obtained thus is far from
optimal and suffers from error propagation, but the alternative
of joint ML location estimation is computationally infeasible.

IV. NOISE-LIMITED LOCALIZATION PERFORMANCE

In this section, we focus on noise-limited performance, in
order to understand the dependence of the range and azimuth
localization resolution on parameters such as SNR, antenna
beamwidth, signal bandwidth and antenna beamshape. That is,
we analyze the performance of the optimal ML localization al-
gorithm (derived in Section III-A) for a single sensor, ignoring
intersensor interference.

A. Scale-Invariant System Dimensions

The description of system dimensions and characterization
of system performance in terms of scale-invariant quantities en-
ables prediction of the performance of another system with dif-
ferent physical dimensions, but the same relative dimensions. To
this end, we introduce two normalizing parameters or so-called
“units” for the range and azimuth directions, respectively. For
the range, the reciprocal of the nominal rms signal bandwidth

, expressed as a distance where is the
speed of light, is used as the normalizing parameter. For the az-
imuth , the distance between successive snapshots, is
used. The normalized distances along the and coordinates
are and . The choice of and
are based on the resolution analysis in Sections IV-B and IV-C.
The simulation results in Section IV-D are presented in terms of
these dimensionless quantities.

B. Range Resolution

The analysis of the range resolution using the Cramer-Rao
lower bound (CRLB) is only valid when the signal from an ac-
tive sensor is acquired and the peak is within a half chip length
of the actual location. The localization error depends on the dis-
tance between the true and estimated locations of the active sen-
sors, and is therefore ill-defined, if the active sensor is not de-
tected, or if there is a false detection. We present in this section
a lower bound on the range resolution of the single sensor ML
algorithm for an ideal brickwall AGF, under the assumption of
sufficiently high SNR such that, the sensor is detected and its
transmission acquired within one half-chip interval.

The received signal in (7) from a single active sensor is

where is AWGN, is the random phase, is the AGF,
and is the transmitted signal. We formulate
range estimation as a two parameter estimation problem, where
the range coordinate and unknown random phase are
the parameters estimated. Since the sensor has been detected,

is, or the snapshots with a signal component are known.
We use a notation where we drop the independent variables and
write the received signal as
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Fig. 2. Random variables and errors in azimuth processing.

and

The CRLB for the two parameter estimation, under the condi-
tion that both and are real, is

Defining the rms bandwidth of the signal , and noting that

where is the power spectral density of , and is the
speed of light. Observing that for the ideal AGF,
which is the number of times the active sensor is illuminated by
the beacon, and that is the transmit SNR per snapshot
when , the CRLB for the error variance of the
range estimate is

SNR
(17)

The right-hand side (RHS) of (17) has the dimension of
since the other factors are dimensionless. This mo-

tivates the choice of and in
Section IV-A. The error variance of the dimensionless variable

is

SNR
(18)

The use of delay estimation to determine the sensor range in
the virtual radar system is evident from the dependence of the
performance on the rms signal bandwidth and transmit SNR in
(18). The additional factor accounts for the SNR improve-
ment achieved by averaging out noise in the delay estimates
from multiple snapshots, and . SNR can be regarded as the
effective range estimation SNR.

The CRLB provides insight into the tradeoffs between var-
ious system parameters by exposing performance trends as a
function of these parameters. Since time-delay estimation is
asymptotically efficient [33], the CRLB is achievable only at
high SNR. However, we do not expect to attain the CRLB even
at high SNR, since the CRLB does not account for the far-field

approximation error (4): this is perhaps the most important
effect at high SNR. Further, the localization error whose size is
measured by the CRLB is not well defined in the event of false
alarms and misses, which become more likely at lower SNR.

C. Azimuth Resolution

We next evaluate an upper bound on the azimuth resolution
for the ideal brickwall AGF (the performance improves for more
realistic Gaussian shaped beams, as shown in the numerical re-
sults later in this section). The azimuth estimate is quantized
into bins whose size equals the distance between snapshots,
so that there is an irreducible quantization error taking values in

. In addition, there are errors that can result from
the choice of the wrong bin. In this analysis, we focus on char-
acterizing the latter. For convenience, we label the correct bin
as bin 0, as shown in Fig. 2. We also assume that the range un-
certainty has been resolved exactly, and that the active sensor
has been detected (otherwise the localization error cannot be
defined).

We define the snapshot statistic for snapshot as

(19)

where is the true round-trip delay and is the received
signal corresponding to snapshot . Since an active sensor influ-
ences snapshots, we see from Fig. 2 that con-
tains contributions from the desired signal (plus noise) for

, and contains contributions from noise only for .
The azimuth estimate is given by

where

(20)

is the accumulation of the snapshot statistics over a beamwidth
centered around a hypothesized bin (For simplicity, we make
a slight change in notation, assuming that the normalized
beamwidth, or the number of snapshots affected by a sensor, is

, where is even. The mean squared error thus derived
is actually an upper bound for the case when the normalized
beamwidth is .) Since bin 0 is the correct bin, the azimuth
error if bin is chosen is . The mean squared azimuth
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localization error due to choosing the wrong bin can therefore
be written as

We have

(21)

where

choose bin

is the probability that bin has the maximum accumulated
statistic. Since the probability of attaining a maximum for an
accumulated statistic containing noise-only snapshot statistics
is very small, we limit the summation in (22) for
(for has contributions from noise alone). Thus,
we wish to evaluate

(22)

by symmetry. For , we can bound by using pairwise
comparison with the accumulated statistic corresponding to the
correct bin 0 as follows:

(23)

Note that is a sum of snapshot statis-
tics containing contributions from noise alone, while

is a sum of snapshot statistics containing
signal as well as noise contributions. Under our model, the re-
ceived signal in the th snapshot is of the form

signal present: sensor falls in beam

In what follows, we label snapshot statistics corresponding to
this “signal-present” scenario as .

noise only: sensor does not fall in beam

We label snapshot statistics corresponding to this “noise-only”
scenario as . Note that the WGN processes are inde-
pendent for different , so that the snapshot statistics (condi-
tioned on the sensor location) are independent random variables.
Under these assumptions, it is easy to see from (19) that are
i.i.d. Rician random variables for “signal-present” snapshots,
while are i.i.d. Rayleigh random variables for “noise-only”
snapshots.

Since the azimuth error scales with , a convenient normal-
ization factor along the y direction is . Defining the
normalized azimuth coordinate , we infer from the
preceding that (ignoring the bin quantization error)

(24)

where , defined in (23), is rewritten below to emphasize the
dependence on the presence or absence of a signal

It remains to compute . Computer simulations are a
straightforward means of estimating , since the values
of being considered are not very large. For moder-
ately large , an accurate alternative to computer simula-
tions is the central limit theorem (CLT): since
are independent random variables, the random variable

can be approximated as a Gaussian random variable with the
same mean and variance. Define as the mean and vari-
ance of , respectively, and as the mean and variance
of , respectively. (The dependence of these parameters on
SNR has been suppressed from the notation.) Then

and

CLT approximation

In our computations, we use computer simulations for esti-
mating for , and the CLT approximation for .
An alternative approach is to employ a Chernoff bound for ,
but we find it to be less accurate than the method employed.

Since decay with SNR, so does the variance . How-
ever, also decays exponentially with , as evident from the
CLT approximation, as well as from a Chernoff bound analysis.
Thus, the first few terms dominate in the summation on the RHS
of (24). Since the beamwidth of the antenna only affects the
number of terms being summed, the azimuth localization error
variance is expected to be insensitive to the beamwidth.

D. Tradeoffs Between Parameters

In this section, ML localization performance in studied with
emphasis on tradeoffs between SNR, signal bandwidth, antenna
beamwidth, and antenna beamshape. A single active sensor is
localized using the algorithm in Section III-A using the normal-
ized rms error (obtained from scale-invariant quantities) as the
performance metric. However, the absolute rms errors are also
shown on an alternate y axis in the plots. Due to the proportional
relationship between antenna beamwidth and (the number of
times the sensor is illuminated), the two terms are used inter-
changeably, while the results are presented in terms of . The
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Fig. 3. RMS estimation error in the range estimate versus SNR for different
values of beamwidth: The rms error in scale-invariant units and in meters are
shown on the 2 y axes.

Fig. 4. RMS estimation error in the azimuth estimate versus SNR for different
values of beamwidth: The rms error in scale-invariant units and in meters are
shown on the two y axes.

nominal values defined in Section II-D were used for any pa-
rameter not explicitly mentioned in the simulation results.

1) Effect of SNR: In Figs. 3 and 4, the simulated rms esti-
mation error in the range and azimuth coordinates are plotted
against SNR. The CRLB for the estimate and union bound
(UB) for the y estimate are also plotted for comparison. The
bounds predict the trends in the error variance accurately, con-
firming the insights gained from the analysis in Sections IV-B
and IV-C. The rms estimation error in both the range and
azimuth coordinates decrease with SNR, and the analysis
accurately predicts the expected performance improvement
with SNR. Since delay estimation is asymptotically efficient,
the rms error is expected to achieve the CRLB at high SNR.
However, we observe a gap to the CRLB in the simulations,
which can be attributed to two main factors. First, the validity
of the approximation error (4) becomes progressively worse as
the beamwidth is increased. In the far-field approximation (3),
the effect of the range on the azimuth coordinate of the sensor
is neglected. At the nominal range m and beamwidth

Fig. 5. RMS estimation error in the range estimate versus normalized rms
bandwidth for different values of beamwidth: The rms error in scale-invariant
units and in meters are shown on the two y axes.

Fig. 6. RMS estimation error in the azimuth estimate versus normalized rms
bandwidth for different values of beamwidth: The rms error in scale-invariant
units and in meters are shown on the two y axes.

m, the worst case error due to the approximation
is m, using (4) and recalling that the range
estimate is the speed of light times half the round trip time.
Second, our localization algorithm finds the range bin closest
to the true sensor range at high SNR, which leads to residual
quantization error. While this quantization error can be essen-
tially eliminated by interpolation, we do not attempt to do this
here. Instead, we note that the quantization and approximation
errors do account for the gap to the CRLB for our system. For
the system parameters in Section II-D, the quantization interval
is m, and leads to a quantization error variance
of m . According to Fig. 3, at 5 dB SNR,
the observed mean squared error is 0.0808 m and CRLB is
0.0455 m . The gap to the CRLB is 0.0353 m which is well
approximated by the sum of the quantization and approximation
errors as m .

2) Effect of Signal Bandwidth: In Figs. 5 and 6, the rms es-
timation error in the range and azimuth coordinates is plotted
versus the normalized rms bandwidth of the transmitted signal
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Fig. 7. RMS estimation error in the range estimate versus beamwidth for dif-
ferent values of SNR: The rms error in scale-invariant units and in meters are
shown on the two y axes.

Fig. 8. RMS estimation error in the azimuth estimate versus beamwidth for
different values of SNR: The rms error in scale-invariant units and in meters are
shown on the two y axes.

for different values of at SNR dB. The normalized band-
width is the ratio of the true bandwidth and nominal bandwidth
as defined in Section IV-B. The range estimate is inversely pro-
portional to the rms bandwidth of the transmitted signal. This is
reflected in Fig. 5, which shows the rms error decreasing with
the bandwidth and closely matches the CRLB in trend. On the
other hand, the azimuth estimate is independent of the signal
bandwidth and determined solely by the SNR. The agreement
in trend between the estimation error in the y coordinate and
analytic results in Fig. 6 also validates this analysis.

3) Effect of Antenna Beamwidth: According to the CRLB,
the effective SNR for range estimation increases with due to
noise averaging over multiple snapshots, thereby improving per-
formance. On the other hand for azimuth estimation, the error
variances are dependent strongly on the SNR and weakly on

. The azimuth resolution is expected to be fairly insensitive
to changes in antenna beamwidth. Figs. 7 and 8, show the rms
estimation in the range and azimuth coordinates versus for
different values of SNR along with the analytical bounds, veri-
fying that the dependence on the beamwidth is as expected.

Fig. 9. RMS estimation error in the range estimate versus SNR for different
values of beamwidth for rectangular and Gaussian beams: The rms error in
scale-invariant units and in meters are shown on the two y axes.

Fig. 10. RMS estimation error in the azimuth estimate versus SNR for dif-
ferent values of beamwidth for rectangular and Gaussian beams: The rms error
in scale-invariant units and in meters are shown on the two y axes.

4) Effect of Antenna Beam Shape: In Figs. 9 and 10, the
performance of a more realistic, smooth Gaussian beam, de-
fined in Section II-B, is compared against the idealized rectan-
gular beam to gain insight into the effect of antenna beamshape.
The Gaussian beams approximate the beamshape of parabolic
antennae in the far-field fairly well. The beamwidth of the
rectangular and Gaussian beams are maintained equal, and the
beamshapes are normalized so that the received power at the
collector from each sensor is in order to isolate the effect
of the beamshape. The Gaussian beam performs significantly
better, and its better performance along the azimuth direction
can be explained by the following two observations. First, the
Gaussian beam has better autocorrelation properties (sharper
autocorrelation peak) than the rectangular beam. Second, with
the rectangular beam when the y coordinate of a sensor lies be-
tween snapshots and , the received signal at the col-
lector is exactly the same in the absence of noise, and this ambi-
guity causes performance degradation. On the contrary, with the
Gaussian beam since the received power at various snapshots is
a function of the sensor location, each location has a distinct
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received signal in the absence of noise, which leads to better
performance. The improvement in the range estimate is mainly
due to the improvement in the azimuth estimate. Although the
algorithm is designed assuming that the range and azimuth es-
timate are decoupled [due to (3)], in reality they are not. This
result also justifies the study of the performance of the rectan-
gular beamshape as a worst case scenario and an upperbound on
performance in a practical setup.

V. PERFORMANCE WITH INTERSENSOR INTERFERENCE

We now evaluate the performance of the decision-directed lo-
calization algorithm in Section III-B. We first establish a ter-
mination criterion for the algorithm based on our analysis of
noise-limited performance. The performance of the decision-di-
rected algorithm and the optimal joint ML localization are com-
pared for a small two-sensor example (the joint ML algorithm
is too computationally complex for a larger number of sensors).
There is a moderate penalty due to the loss of optimality, but this
appears to be unavoidable, given the complexity of the jointly
optimal algorithm. Finally, we evaluate the performance of the
decision-directed algorithm for a dense sensor deployment.

For dense deployments, intersensor interference can cause
significant degradation in detection performance. On the other
hand, sensors that are close enough to interfere with each other
may have correlated observations, and it may suffice to localize
a subset of active sensors within such a cluster. This motivates
us to define the concept of detection radius : if the localiza-
tion algorithm detects a sensor at a given location , then it is
deemed to have been successful in localizing any active sensor
within a radius of . In practice, one might set based on
the anticipated spatial correlation in the sensor readings. Thus,
a miss occurs if the decision statistics for all locations within ra-
dius of an active sensor are below a threshold. A false alarm
occurs at a specific location if its decision statistic exceeds the
threshold, and it is not within of an active sensor. In our nu-
merical results, the sensors are deployed using a uniform distri-
bution to achieve a density of 1 m and is measured in me-
ters. In Section V-A, where we determine the threshold based on
a noise-limited analysis, we choose a small value of .
In Section V-C, where we investigate interference-limited per-
formance for dense deployment, we consider the effect of in-
creasing on the probability of miss, in order to understand
how correlations between sensor observations can ease the task
of localization.

A. Termination Criterion for Decision-Directed Algorithm

We now describe a method to choose a threshold to termi-
nate the sequential detection algorithm in Section III-B, when it
is used to localize an unknown number of sensors. Under the
detection algorithm, we repeatedly search for maxima in the
decision statistic (16) until the magnitude of the maximum is
below a threshold. It is difficult to analyze the effect of uncan-
celled interference on the performance of the decision-directed
algorithm, hence we set the threshold based on noise-limited
performance (i.e., it suffices to consider a single active sensor
when determining the threshold). Letting denote the prob-
ability of miss, and denote the probability of a false alarm,

the tradeoff between and is characterized by the re-
ceiver operating characteristic (ROC), which plots versus

along a curve parameterized by the threshold. We use this
curve to read off the threshold corresponding to desired levels
of miss and false alarm probabilities.

Receiver Operating Characteristic (ROC): We use the no-
tation defined in Section IV-C, and compare the accumulated
statistics versus a threshold . Suppose that there is an active
sensor at bin 0, and suppose that bins are within radius

of bin 0. A miss occurs if for all . We obtain
an upper bound on the probability of miss as follows:

Recall that (for a normalized beamwidth

of ), where are i.i.d Rician random variables, each
with mean and variance . Thus, for moderately large
can be approximated as a Gaussian random variable with the
mean and variance . Replacing by

for notational convenience, we obtain the following approx-
imation for :

CLT approximation (25)

We now compute an approximation to , assuming that ac-
tive sensors have been detected and cancelled. In this case, the
accumulated decision statistic at a location which is not
within of an active sensor is a sum of decision statistics due
to “noise-only” snapshots: . Under a cen-
tral limit theorem approximation, and replacing by for
notational convenience as before, we obtain that

(26)

The parameters and , which determine the ROC,
depend on the operating SNR alone, apart from an arbitrary
scale factor (if both signal and noise are scaled by a factor , then
all of the preceding parameters, as well as the threshold , scale
by , but the SNR and ROC remains unchanged). Fig. 11 shows
the ROC for several values of SNR. The ROC is parametrized by
the threshold : increasing the threshold increases and de-
creases , and vice-versa when decreasing the threshold. The
operating point, in terms of SNR and threshold, is determined
by user-defined tolerances for miss and false alarm. While is
the probability of false alarm at a given location, what is expe-
rienced by the user is the false alarm rate (FAR), defined as the
probability that there is a false alarm at some location which is
not within of an active sensor. If there are candidate
locations in our discrete grid, a union bound on the FAR is given
by

(27)

Example choice of threshold: Consider user-defined toler-
ances for the probability of miss and the false alarm rate as fol-
lows: and FAR . The sensor field is dis-
cretized into candidate locations for running
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Fig. 11. Receiver Operational Characteristic: p versus p for different
values of SNR under the noise-limited setting.

the localization algorithm, so that the requirement on FAR trans-
lates to . From the ROC, the
operating point must lie within the area enclosed by the dotted
lines, and this provides the minimum operating SNR dB.
To achieve the desired , at this operating SNR of
2 dB (since energy is at a premium, the lowest possible SNR is
chosen), a threshold is chosen using (25). This threshold and
operating SNR are used to study performance of the suboptimal
scheme in Section V-C.

While we have used upper bounds on and FAR in the
preceding formulation, this is still not sufficient to offset the
effect of intersensor interference for a dense deployment. Thus,
in practice, it would be necessary to add a link margin to the
operating SNR determined by the ROC above.

B. Suboptimal Algorithm Versus Optimal ML Localization

The suboptimal detection procedure in Section III.B for mul-
tiple sensor localization was adopted due to the computational
complexity of the optimal ML algorithm. In Fig. 12, the per-
formance of this suboptimal algorithm is compared against the
optimal algorithm for the simple instance of two active sensors
in the field (when the optimal algorithm is still computationally
tractable). The rms estimation error in the azimuth coordinate
is plotted against SNR for the two algorithms. When there is no
overlap between the received signals corresponding to the two
sensors in either the range or azimuth directions, then there is
no intersensor interference. In this case, the suboptimal and op-
timal algorithms are identical and have the same performance.
Furthermore in our examples, the bandwidth of the transmitted
signal is large enough to provide adequate resolution in the
range (or ) direction. Hence, to study the effect of intersensor
interference, we focus on the scenarios where the two sensors
have the same coordinate and are closely enough spaced in
the y direction to cause interference.

The simulations were performed on the system described
in Section II-D with all parameters at their nominal values. In
Fig. 12, the rms azimuth estimation error in scale invariant units
is plotted versus SNR for the two algorithms. As expected, the

Fig. 12. RMS estimation error in the azimuth coordinate versus SNR for the
suboptimal and optimal ML algorithms with two active sensors.

Fig. 13. Detection and localization performance of suboptimal algorithm for
10 active sensors: The plot shows the 500 m� 500 m sensor field with true and
estimated sensor locations.

optimal ML algorithm performs much better and the disparity
increases with SNR. However, at SNR dB the performance
loss is about 1 unit, which is acceptable, considering that the
computational complexity of the optimal algorithm is many
orders of magnitude larger. As with a single sensor, the perfor-
mance for both algorithms improves with SNR. In Figs. 13 and
14, two instances of multiple sensor detection and localization
using the suboptimal algorithm are presented at SNR dB
such that and (false alarm rate
of ).

C. Simulation Results for Dense Sensor Deployment

In this section, we investigate the algorithm performance in
dense deployments, such as the scenario with 50 active sensors
depicted in Fig. 14. In such scenarios, we find through our simu-
lations that a significant subset of active sensors are not detected,
either due to destructive interference between the responses of
nearby sensors (this is found to be the dominant effect in our
simulations), or due to imperfect cancellation of the responses
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Fig. 14. Detection and localization performance of suboptimal algorithm for
50 active sensors: The plot shows the 500 m� 500 m sensor field with true and
estimated sensor locations.

TABLE I
PROBABILITY OF MISS DECREASES SIGNIFICANTLY

WITH DETECTION RADIUS R

of the detected sensors. As aforementioned, it may be accept-
able to detect a subset of the active sensors in a cluster if their
observations are spatially correlated. We, therefore, explore the
influence of the detection radius on the probability of miss,
as shown in the simulation results presented in Table I. While
we are interested in miss probabilities of the order of 1%–10%,
the threshold is chosen based on a noise-limited analysis for

in order to provision for the additional intersensor
interference. From Table I, we see that spatial correlation can
significantly simplify localization, noting the significant reduc-
tion in as we increase . For m, the observed

increases with the number of sensors due to increase in
the interference. However, for m, the decreases
marginally with the number of sensors, since m is large
enough that some undetected non-interfering sensors randomly
fall within of a detected sensor, thus increasing our count
of the number of “detected” sensors. For instance, two sensors
located about 3 m apart in the range direction do not interfere
with each other. However, if one sensor went undetected due
to noise alone, for m, this sensor would be denoted as
being detected, reducing the observed .

VI. CONCLUSION

We have shown, using an idealized model, that accurate lo-
calization is possible in large-scale imaging sensor nets with
“dumb,” severely energy-constrained, sensor nodes. However, a
far more detailed design is required for translating the promise
of these ideas into practice. This is the subject of our current
efforts in design and implementation of a prototype imaging

sensor net [6], [7], in which the sensors electronically reflect
a spread spectrum beacon emitted by the collector, while super-
imposing a frequency shift (to avoid backscatter) and low-rate
data modulation on it. Since the modulation imposed by the sen-
sors on the beacon is slow compared to the chip rate, localiza-
tion algorithms can be developed ignoring data modulation, as
in the simple model employed in this paper. The localization
algorithms must also be modified to allow for the stationary
collector nodes to be employed in the prototype, but this is a
straightforward extension [32] of the techniques in the present
paper. The major open issues related to implementation corre-
spond to hardware development and baseband processing.

Open theoretical issues include performance scaling with
sensor density, modeling and tracking of events, and Bayesian
approaches to localization. Methods for compressing and rep-
resenting data for efficient recovery via an imaging sensor net
are also important topics for future investigation.
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