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Los Angeles, California 

 
Abstract— A broad range of embedded networked sensor (ENS) 
systems for critical environmental monitoring applications now 
require complex, high peak power dissipating sensor devices, as 
well as on-demand high performance computing and high 
bandwidth communication.  Embedded computing demands for 
these new platforms include support for computationally 
intensive image and signal processing as well as optimization and 
statistical computing. To meet these new requirements while 
maintaining critical support for low energy operation, a new 
multiprocessor node hardware and software architecture, Low 
Power Energy Aware Processing (LEAP), has been developed.  
This architecture integrates fine-grained energy dissipation 
monitoring and sophisticated power control scheduling for all 
subsystems including sensor subsystems.  The LEAP architecture 
enables complex energy-aware algorithm design by providing a 
simple interface to control numerous platform and sensor power 
modes and report detailed energy usage information.  This paper 
also describes experimental results of a new distributed node 
testbed based on LEAP demonstrating that by exploiting high 
energy efficiency components and enabling proper on-demand 
scheduling, the LEAP architecture meets both sensing 
performance and energy dissipation objectives for a broad class 
of applications.  This testbed including the network of distributed 
LEAP nodes and a system producing physical, mobile events 
provides a development environment for LEAP-hosted 
algorithms. New design principles, detailed implementation, and 
in-network programming and remote debugging capabilities of 
this platform are also described.  While this is the first report of 
the LEAP system, it has been deployed for nearly one year with 
50 users developing energy aware systems.  

Keywords-embedded wireless networked sensor, energy-aware 
multprocessor platform, sensor platform hardware and software 
architecture 

I.  INTRODUCTION 
A broad range of embedded networked sensor (ENS) systems for 

important environmental monitoring [1,2] and other applications now 
require advanced capabilities to support high power sensor devices 
such as imaging devices.  Many of these applications also require 
support for on-demand high performance computing and 
communication for complex information processing.  This includes 
image processing, statistical computing, and optimization algorithms 
required for selection of proper sensor sampling [3]. Prior 
development of ENS platforms has resulted in low power systems well 
matched to the requirements for supporting low power sensor devices 
(for example, thermistor transducers for temperature sensing or 
photodiode sensors for light level sensing).  The computing demands 
for such systems were matched to low data rate and low complexity 
sensors [4-8].  However, prior ENS platforms designed to support 
micropower sensor devices are not adapted to system level energy 

minimization for a new, expanded set of ENS requirements in 
environmental monitoring applications, ranging from ecosystem 
monitoring to public health monitoring, and security applications.  
These applications have large sensor and instrument device power 
dissipation (specifically with peak power levels far in excess of the 
ENS node computing and communication power levels).  At the same 
time, computing and communication demands are also advanced in 
order to support the on-demand processing associated with these 
complex sensors.  While performance needs have increased, it is still 
critical to minimize system energy dissipation.  Solutions require both 
hardware and software architectural changes to enable this.   By 
exploiting a new architecture and environmental phenomena 
characteristics, both advanced performance and low energy can be 
achieved. 
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Figure 1.  LEAP ENS architecture showing the Energy Management and 

Accounting Preprocessor (EMAP) and its defined power domains (shown in 
shaded rectangles). Energy routing and data interfaces are indicated. 

To address these diverse applications, a new design approach is 
required. This must include the system’s sampling schedules and 
computational demands required to meet information acquisition 
requirements established by the application.  Subject to the sensor 
selection and sampling constraints, platform system operation must be 
optimized to minimize energy.  This requires a design approach that 
focuses on minimizing energy required for each sensing, computing, 
and communication task.  The approach leads to the new Low Power 
Energy Aware Processing (LEAP) multiprocessor architecture for 
ENS nodes.  LEAP is based on hardware and software system 
partitioning specifically adapted to these new requirements.   

LEAP, shown in Figure 1, includes an essential capability for 
independent energy monitoring and power control for each subsystem.  
The LEAP architecture has been developed to harness the use of 
properly scheduled, energy efficient multiprocessor components 
selected to achieve the lowest per task operating energy. It is 
partitioned such that high efficiency, high power components (used on 
demand) are assigned to a LEAP processor partition while 
continuously vigilant micropower components are assigned to a LEAP 
preprocessor partition. The Energy Management and Accounting 
Preprocessor (EMAP) provides fine-grained monitoring and control of 
energy dissipation in all ENS subsystems.  Additionally it schedules 
operation and power delivery to sensor systems and the LEAP’s host 
processor.  Finally, while EMAP enables the entire LEAP system to 
operate at micropower vigilance, it also provides event detection and 



triggering capability.  This allows event-triggered transition to states 
where sensors and computing systems are available on-demand 
according to schedules that match application sampling requirements. 

The LEAP architecture with the EMAP preprocessor further 
partitions ENS node subsystems into separately managed power 
domains supporting individual components (for example, individual 
sensor devices and processors).  Scheduling operation within power 
domains enables the LEAP system to define a broad range of power 
modes that are then matched to environmental monitoring demands.  
This allows users to develop systems with application specific 
operating modes intended to meet the minimum energy required for 
information acquisition subject to specific sensor system and sampling 
requirements of that application.   

The LEAP hardware architecture is combined with a software 
architecture providing developer access to system energy monitoring 
and management along with subsystem operation scheduling.  
Experimental results verify that this enables convenient developer 
access and promotes development of energy aware systems.  It also 
provides an advance for in-network programmability and remote 
debugging of all the components.   

The design approach, high energy efficiency component selection 
methods, operation scheduling, and development of the LEAP 
platform are described in Sections II- V.  Also, detailed experimental 
verification of LEAP operational capability is described in Section VI 
with a testbed system that supports complex sensors operating on-
demand and displaying power demand varying by four orders of 
magnitude during event detection operations.  This new experimental 
testbed combines distributed LEAP nodes along with physical 
environmental event generation systems presenting the distributed 
system with accurately scheduled events for performance evaluation. 
It has specifically demonstrated that LEAP on-demand scheduling of 
high energy efficiency components enables algorithms that self-adapt 
to event behavior and may adjust operational schedules to minimize 
energy dissipation for a specific detection objective.  These 
experimental results and experience with many recent users of the 
platform also demonstrate the convenient development path for 
supporting LEAP applications.  As will be described, while this is the 
first report of the LEAP system, it has been in use for nearly one year 
with 50 users successfully developing diverse energy aware systems 
on the distributed testbed.  Prototype LEAP based systems have also 
been deployed for ecosystem monitoring. Open source release of 
LEAP hardware and software is available [9]. 

II. LIMITATIONS OF CURRENT PLATFORMS 
Currently, in order to approach energy dissipation levels consistent 

with long term deployment, wireless sensors based on microcontroller 
architectures are often employed as described in [4-8]. However, as 
will be discussed, while still applicable for certain applications, these 
microcontroller-based systems (operating alone) do not satisfactorily 
support computationally demanding applications such as multiple 
object recognition and tracking via imaging. Nor are these platforms 
matched to high peak power dissipation sensors that must be 
scheduled for on-demand use. 

Early ENS node platforms were designed to support low power 
dissipation sensors.  These included, for example, geophone seismic 
sensors, or in the case of microclimate sensing, temperature, humidity 
and light sensors, and for security applications, microphones and 
magnetometers.  It is important to note that these sensor elements 
share the common characteristics of not requiring substantial energy to 
support their operation.  Specifically, this energy dissipation is less 
than that of the node platform itself. Indeed for some sensors, for 
example the photodiode, no energy source is required, and only proper 
preamplification and analog-to-digital data conversion energy 
dissipation is required for sensor support.  These sensor systems also 

share the additional characteristic of producing a simple (scalar) 
output that may be sampled at low rate imposing limited computing 
demand that small microcontrollers can support. 

However, emerging applications in environmental monitoring, 
science and public health, and security now require capable sensors, 
such as imaging to detect and identify events, and high performance 
chemical sensors to detect contamination in atmospheric and aquatic 
systems.  These share the characteristics of high peak operating power, 
well in excess of that of the platform itself, but may not be operating 
during the entire application schedule. These new sensors also place 
demands on the ENS platform computation required to extract event 
information and to schedule adaptive sampling. Thus, it is now 
important to provide a platform that supports yet higher capability 
sensing and computation, while maintaining low average energy 
operation.  

III. DESIGN REQUIREMENTS AND DESIGN APPROACH 
The LEAP ENS platform design is developed to meet a set of 

design requirements derived directly from the current generation of 
environmental monitoring applications.  These include requirements 
for computational resources, communication subsystems including 
wired and wireless interfaces, sensor interfaces, sensor energy 
dissipation measurement and control, local data storage, remote 
software debugging capability, and remote reprogrammability.  Each 
of these design topics will be discussed further in the following 
sections. 

A. Design Requirements 
The LEAP design approach exploits the characteristics of 

environmental phenomena that permit sampling to occur at low rates 
or in an event-triggered fashion for a broad set of applications.  For 
example, environmental imaging systems may only be required to 
operate infrequently (according to events detected using other sensing 
modalities or schedules).  Many atmospheric and aquatic phenomena 
display slow rate of change and may be critically sampled at low rate 
or again according to events.  This also implies that ENS sensor, 
processor, and other components may also be employed on-demand 
and only infrequently used. Thus, a new ENS platform intended to 
support the complete set of environmental monitoring applications 
must differ from previous ENS systems by introducing methods for 
proper scheduling of sensing, computing, and communication tasks.   

B. Design Approach: Computing Platform 
Many deployments demonstrate that ENS systems supporting 

environmental monitoring may operate in multiple modes while 
serving specific applications.  For many applications a vigilant state is 
required to permit continuous phenomena monitoring.  In this state 
minimum energy dissipation is critical since system may spend the 
majority of its time here.  However, in these periods, signal processing 
and communication occurs at low duty cycle since the lack of events 
requires only infrequent coordination activities. Conversely, there are 
periods of high activity when background information indicates that an 
event of interest may be occurring.  In this high vigilance state, 
computational requirements can be extensive and often with real-time 
constraints to support high performance sensor interfaces.  Real-time 
demands may require large computing resources to meet all deadlines.   
In this phase energy efficiency of processor computation will be more 
important than short term average power since a task operation is 
bounded in time and the energy required to complete the task 
ultimately determines the contribution to platform energy usage. The 
desired effect is to minimize total energy used during these brief task 
activity periods rather than to minimize peak power. As will be seen, 
this results in architecture and component selection differing from that 
of prior work.  



The LEAP design approach for computing platform selection 
begins with benchmark characterization of task energy efficiency for 
those operations required by a typical ENS platform. Three example 
benchmarks are described here.  The first benchmark, the cyclic 
redundancy check (CRC), tests efficiency for executing ubiquitous 
error detection and correction algorithm tasks.  The second benchmark 
tests the typical ENS requirements for digital filtering of sensor data 
streams using a finite impulse response (FIR) filter.  The third 
benchmark tests energy efficiency for Fast Fourier Transform (FFT) 
data transformations on sampled data including images. 

TABLE I.  COMPARISON OF MICROPROCESSOR COMPONENTS 

Benchmark Array 
Size

Data 
Size Platform Execution Time 

(micro sec)
Energy 

(mJ)
Relative 

Efficiency
Stargate 24.8 0.013 28.4
MICA2 5150 0.367 1
Stargate 325 0.167 70.7
MICA2 16,800 11.800 1
Stargate 94.5 0.046 20.4
MICA2 14,500 0.934 1

FIR 256 32-bit

FFT 128 16-bit

CRC-32 1024 8-bit

 
Candidate LEAP components were characterized by direct 

operational measurements on each processor using identical C code 
algorithms.  Supply current was monitored by a digital sampling 
oscilloscope across a precision sense resistor.  Benchmark execution 
times were indicated with minimal latency by toggling a processor I/O 
pin at the benchmark start and completion.  Two platforms are 
compared in this experiment, an Intel Stargate platform [10] based on 
the Intel PXA 255 processor and the Crossbow MICA2 platform [11] 
based on Atmel ATmega128L microcontroller. 

Results of platform comparison summarized in Table I show that 
the selection of the high performance processor option results in 
dramatically reduced energy usage associated with an individual 
computing task.  Thus, this heavily favors the LEAP design approach 
where such a processor is used on demand for execution of specific 
tasks and is otherwise operating in a low power or disabled (no 
applied power) state.  Addressing the diversity of computing 
constraints, LEAP chooses a heterogeneous multiprocessor solution as 
has been suggested in [12-13].  By utilizing multiple processors, 
LEAP selects a solution adapted to varying sensing needs. 

C. Design Approach: Communication Interfaces 
Experience in ENS platform deployments for environmental 

monitoring demonstrates selection of wireless interfaces should 
benefit not only energy efficient internode communication, but also 
integration with existing deployed wireless infrastructure.  Analogous 
to the diverse computational requirements described above, the 
wireless communications subsystem requires both a low-power, low-
bandwidth, network paging system to remain active for extended 
intervals as well as a high bit rate data transport system for increased 
vigilance periods.  In order to maintain communications compatibility 
with existing sensor platforms as well as to integrate with common 
wireless infrastructure, we chose a dual radio approach.  Similar to the 
processing subsystem, the wireless communications subsystem must 
have the capability for both low power operation and for highly energy 
efficient bulk data transfer.   

Energy efficiency analysis of widely used wireless devices was 
performed based on supplier measurements and our measurements of 
system energy dissipation for a range of broadband and narrow band 
devices.  Results comparing the energy to transmit and receive data 
per bit using 802.11g and 802.15.4 standard devices demonstrate that 
with equal link margins, the 802.11g interface is approximately 9 
times more energy efficient than its 802.15.4 alternative.  However, 
the idle power in receive mode of the 802.11g solution is 
approximately 14 times greater than the 802.15.4 solution.  Thus 
LEAP adopts a dual radio solution for both low power and high 

efficiency with the EMAP preprocessor including the Chipcon 
CC2420 802.15.4 radio compatible with numerous other existing low 
power platforms [8] along with standard 802.11 interfaces hosted by 
the high efficiency processor. 

TABLE II.  COMPARISON OF WIRELESS INTERFACE COMPONENTS 
 

802.11g 802.15.4
Chipset Atheros 5006XS CC2420

Output Power 16dbm 0dbm
Rx Sensitivity -78dbm@36Mbps -90dbm@250Kbps

Tx Power (Max Output) 1320mW 57.42mW
Rx Power 924mW 65.01mW

Total Power 2.24W 122.43mW
Effective Throughput 20Mbps 125Kbps

Efficiency (nJ/bit) 112 979  

D. Design Approach: Sensing System Support and  Interfaces 
As environmental sensing becomes increasingly ubiquitous, ENS 

platforms must adapt to incorporate their wide ranging set of interfaces 
as well as per sensor energy monitoring and control.  These have been 
provided on the PXA processor platform along with sensor interfaces 
ranging from analog (for simple low power devices) to RS-232, I2C, 
and SPI serial, and then finally to high speed interfaces including USB 
and Ethernet.  Again for energy efficiency and high performance, high 
bandwidth sensors benefit from direct access to the host processor’s 
memory subsystem.  To enable these sensors, the LEAP system 
provides direct access to the PXA processor external memory bus and 
provides direct sensor to memory DMA to offload processing 
overhead.  This is the most efficient means of data transfer as it 
eliminates any bus protocol controller or extraneous data copies. 

E. Design Approach: Storage 
Environmental monitoring deployments also demonstrate that 

platform local storage is a critical design requirement to support 
unattended and unserviced long term ENS node operation.  Indeed, 
through addition of storage, high energy cost communication episodes 
may be scheduled to occur at times optimal for data transport.  The 
LEAP design is directed to enable application developers to optimally 
select data allocation strategy to various memory types and to directly 
measure resulting energy and performance.    

F. Design Approach: Energy Monitoring and Management 
Development and deployment of ENS systems has demonstrated 

that the optimal choice of sensor system, processor, wireless interface, 
and memory technology is not only application dependent, but may 
also exhibit temporal dependence for a given application.  For 
example, as in the experimental example to be discussed below, a 
target tracking system may display large resource demand for initial 
target acquisition, but, may otherwise operate with reduced resource 
demand when updating target bearing.  The optimization problem is 
observed to be further compounded for multi-user, multi-application 
systems operating with different application objectives. 

A primary challenge for fundamental ENS algorithm and 
application development is the allocation of shared resources 
including computing, storage, and communication, as well as critical 
energy and sensor systems.  Advances in balancing users demands has 
been developed in operating systems design [14-16].  However, a 
critical hindrance to this development and application to ENS systems 
has been the lack of hardware support for system resource monitoring 
and management.  Clearly, fine-grained device level monitoring and 
control must be included in the ENS design approach as has been 
considered for conventional embedded systems [17-18].  However, in 
the past, the lack of real time data has forced reliance only on off-line 
profile data to estimate an algorithm’s performance.  



The LEAP design approach provides this capability in the EMAP 
processor by partitioning devices into many power domains with the 
capability to monitor, enable or disable power to each domain, as well 
as to respond to trigger events or conditions that restore or remove 
power in each domain. The energy accounting information collected 
by the EMAP is periodically transferred to the host processor and a 
power management schedule provided by the host processor may be 
delivered to the EMAP for each power domain.   

G. Design Approach: Remote Access and Debugging 
Experience in ENS system deployment demonstrates that rapid 

development of algorithms and implementations in deployed systems 
becomes increasingly important.  Additionally, multi-user systems 
require periodic retasking.  The ENS platform design then must 
include transport and verification of software updates and application 
of new executable code images during unattended, remote, and 
uninterrupted platform operation.  In addition, remote debugging of 
each component of the multiprocessor system is required.  As will be 
described, LEAP includes remote reprogrammability of each storage 
element and debugging of the host processor and EMAP.  

IV. LEAP HARDWARE ARCHITECTURE 
The LEAP platform architecture is partitioned into a general purpose 
computing module with its associated memory systems and 
interfaces, and a preprocessor module dedicated to low power 
sensing, energy accounting, and power domain scheduling.  These 
hardware modules will be discussed in the following section. 

A. Slauson Processor Module 
The Slauson processor module (SPM) shown in Figure 2, is based 

on the Sensoria Slauson platform [19].  The SPM contains a PXA255 
400Mhz processor and is populated with an SDRAM bank and an 
Intel K3 Strataflash flash bank of up to 128MB and 64MB, 
respectively.  The core processor and memory subsystem may be 
suspended with either 1, 2, or all 4 of the mobile SDRAM’s memory 
banks preserved during the suspend state for reduced leakage current 
while in self refresh. 
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Figure 2.  Processor Platform Block Diagram (left) and Image (right) 

In addition to the processor and memory components, the SPM 
has dual PCMCIA interfaces configurable for either 3.3V or 5V 
devices.  Each of the PCMCIA slots may be independently isolated 
and powered down.  Local non-volatile data storage may be expanded 
with the addition of a memory device into the SPM’s SD Card socket.  
Communications are provided by an on-board SMC9196 10baseT 
Ethernet controller (a 10baseT chipset was selected instead of the 
more common 10/100 chipset due to the increased idle power needed 
by the 10/100 chipset operating at higher clock rate).  This Ethernet 
controller may be suspended by software or hardware controls.  Table 
III describes the SPM operating states and current requirements. 

The SPM includes an extensive set of interfaces via a 180 pin 
inter-board header including serial buses such as two RS232 ports, two 

SPI ports, I2C, and AC97 audio sampling ports.  Additionally, the full 
parallel memory bus is available with a total of 192MB of memory 
space.  Full memory-to-memory DMA transfers are possible via either 
the PXA’s internal DMA or an external DMA controller. Power is 
distributed via the inter-board connector as will be described.  Time 
synchronization options include an on board real time clock as well as 
accessible inputs for external GPS synchronization.  Various SPM 
power states are shown in Table III. 

B. EMAP Module 
EMAP preprocessor, shown in Figure 3, developed by these 

authors for ENS applications is mated to the SPM via the inter-board 
connector. The EMAP utilizes a Texas Instruments MSP430F1611 
microcontroller.  This version of the MSP430 processor was chosen 
for its large on chip RAM space (10KB) and its set of hardware 
peripherals.   

TABLE III.  LEAP SPM CURRENT REQUIREMENTS FOR SEVERAL 
OPERATING MODES  

SPM Power State Supply Current 
at 5V

Suspend 5mA
Operating System Idle Task 41mA
Operating System Idle with SD Card Based Filesystem 50mA
Operating System Idle with Ethernet without traffic 48mA
iperf execution with Ethernet at maximum throughput 140mA
Execution at 100 percent computing load 165mA  

The EMAP allows the LEAP system to be subdivided into 5 
power domains.  Each domain is independently powered and isolated.  
Power is supplied to each domain through a low-resistance current 
sensing resistor.  Detection of current is by differential high common 
mode rejection ratio current sense amplifiers followed by antialiasing 
filters. Five of the MSP430 internal 12-bit ADC inputs sample the 
currents in each domain and current values are integrated to obtain 
charge values.  For each power domain, the EMAP exploits the power 
off state to perform sense amplifier offset correction for the respective 
domain. 
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Figure 3.  EMAP Preprocessor Block Diagram (left) and image (right)  

1) EMAP Module - Energy Measurement, Management, 
and Sensor Interfaces 

The EMAP’s power domains may be allocated according to 
platform requirements.  For the results described here these are 
allocated to 1) EMAP module, 2) Slauson processor module, 3) up to 
three external sensor systems (including in the experimental results 
here, the imager).  EMAP power supply rails, either 3.3 or 5V, are 
jumper selectable.  The EMAP may power down unused voltage rails 
to eliminate the quiescent current draw of the voltage regulator. Up to 
2A current is available for high power sensors. 

The SPM may request the most recent charge accumulation values 
from the EMAP.  The EMAP will respond with each domain’s voltage 
rail selection, sense amplifier offset value, and sense amplifier gain 



constants in addition to the accumulated sum values.  The host 
processor then may accurately compute integrated charge and energy 
for each of the power domains. 

In addition to detailed energy monitoring, the EMAP provides a 
power management scheduling capability.  Each of the power domains 
is electrically isolated from one another when powered off.  This is 
critical since current leakage paths (for example via current conveyed 
by input protection diodes) to ground may appear when nonisolated 
systems are operated in a suspend condition.  Current inrush limiters 
also protect the LEAP system from individual domain current inrush 
and resulting supply voltage droop when enabling domains.   

Two low voltage analog sensor inputs are provided with 12bit 
ADC inputs operating at sampling rates up to 10 kHz, and with a 3.0V 
precision voltage reference.  These ADC inputs may be connected to a 
variety of low bandwidth sensors for simple event detection.     

2) EMAP Module – Processor Communication 
The MSP’s dual USART controllers may be configured to support 

I2C, SPI, or UART serial protocols.  I2C is chosen for inter-board 
communications since it provides a multi-master capability with 
implicit bus arbitration. This permits convenient expansion of the 
LEAP platform to include multiple EMAP modules and multiple high-
performance processors.   The LEAP system is implemented with the 
SPM and EMAP processors operating as I2C peers.  Either device 
may initiate transactions with the other or with any other device.  The 
second MSP USART controller is configured as an SPI master for 
access to the CC2420 radio. An MMCX external antenna connector is 
included. 

3) EMAP Module - Low Power Operation 
For purposes of energy and performance control, the MSP’s CPU 

frequency may be controlled from 100KHz to 8MHz or fixed under 
software control by an external crystal. Further, the EMAP hardware 
and software has been designed to provide various power modes.  The 
MSP enters the LPM3 power state when running the operating 
system’s idle thread. Further, a suspend (LPM4) state may be entered 
through software.  The MSP processor and all EMAP peripherals are 
disabled.  The system wakes only due to a sensor signal transition.  
These states are shown in Table IV. 

TABLE IV.  LEAP EMAP CURRENT REQUIREMENTS FOR SEVERAL 
OPERATING MODES 

EMAP Power State Supply Current 
at 5V

Suspend (LPM4) 385µA
Current sensing task and idle task (LPM3) 419µA
Previous with all power domains enabled 862µA
Previous with 1.8V RF power enabled 950µA
Previous with all power domains and supplies enabled 7.6mA  

4) EMAP Module - Remote Debugging 
To facilitate remote software upgrade and source level debugging, 

the MSP processor’s JTAG interface has been provided to the SPM’s 
PXA processor through the inter-board connector.  This allows the 
SPM to assume control of the MSP processor’s execution, to program 
internal flash, and to perform any action on the MSP’s I/O pins.  The 
host processor acts as the proxy agent for a remote user’s debugging 
system.  Debugging commands that are issued by a remote user’s 
debugger are routed to the host processor and converted to JTAG 
command sequences.  The software requirements for remote 
debugging will be discussed in a later section. 

V. LEAP SOFTWARE ARCHITECTURE 
A. SPM PXA Processor 

In order to support the increasing demand to host complex 
applications, such as the EmStar runtime environment [20] and R 

statistical computing package [3], the LEAP software framework is 
comprised of multiple tiers to ensure dependable operation.  It is 
designed to allow recovery from many common faults.  The tiers are 
described below in the order at which they appear at boot time. 

The first LEAP software tier is the system bootloader, Redboot (a 
configuration of the eCos real time operating system) [22].  This 
provides methods for flash memory manipulation, support for remote 
file retrieval, and loading and execution of other operating systems.  
The LEAP bootloader itself may be updated with RTOS library 
elements or completely replaced over remote links.  Boot commands 
are stored in flash-based configuration script and boot the Linux 
operating system, the next tier. The Slauson PXA processor supports 
the Linux 2.6 version kernel, the second tier, compiled with module 
support for device drivers, network protocols, and power management.   

The third tier to appear at boot time is a compressed, read-only 
cramfs filesystem [23] containing the Busybox [24] utility set.  At 
boot time, this tier validates the integrity of the read-write filesystem 
composed of a JFFS2 image. 

Upon validation of the JFFS2 image, the cramfs image transfers 
control to the fourth software tier starting the init program located on 
the JFFS2 filesystem.  The JFFS2 image contains the standard Linux 
directory structure and boot scripts and a larger set of filesystem 
utilities and libraries linked against the glibc library.  

This tier also includes the SPM to EMAP communication system.  
Applications operating over Linux on the SPM access EMAP utility 
functions that enable interaction with the EMAP via I2C 
communication.  A utility, msp-client, provides a convenient interface 
with both an interactive model for development and testing, as well as 
a command sequence model. EMAP control provided by msp-client 
includes access to sensor data, energy and charge data, and power 
control for all domains.   Sensor data access provides the ability to 
measure instantaneous, average, peak, minimum, and other signal 
attributes. 

The msp-client command set also includes a powerful control 
interface to set, query, and modify power management schedules on a 
per power domain basis. These schedules may become arbitrarily 
complex by setting future start times, repeat period, power domain, 
and power management action. Each power management command 
issued by msp-client to the EMAP is assigned a unique key permitting 
additional msp-client access to observe and manipulate schedules. It is 
important to note that not only may sensor resources be scheduled for 
power, but the SPM may be powered down (or placed in suspend) to 
conserve energy and then to be re-enabled at a future time according to 
a scheduled action.  

Finally, msp-client also includes many functions that permit 
control of system response to trigger events that may be set and 
manipulated.  These are based on sensor input signals and may trigger 
an EMAP action to enable the SPM or another power domain. 

B. EMAP MSP Microcontroller 
Many operating systems are available for the SPM’s PXA 

processor and the EMAP’s MSP microcontroller. The EMAP’s 
experimental results reported here are obtained using a traditional 
priority driven, preemptive RTOS known as uC/OS [24].  This 
operating system was chosen to meet development requirements 
including supporting source level debugging, such as through the 
GNU debugger, gdb.  

The EMAP software architecture includes a set of uC/OS objects 
designed for compatibility with the small MSP memory footprint.  The 
workload for our design was partitioned into the following software 
tasks: host processor communication using I2C messages, power 



management scheduling, sensor interface monitoring and threshold 
triggering, and CC2420 radio communications.  

Figure 4 shows the EMAP software components. First, the interface to 
the MSP microcontroller is supported by I2C and SPI drivers noted 
above. The I2C device driver layer performs both blocking and 
nonblocking operations to the I2C hardware.  Atomic hardware access 
is maintained by use of a guard semaphore.  Tasks requesting blocking 
reads or writes may set optional timeout values to prevent deadlock 
occurrences.  The I2C device driver utilizes the MSP’s DMA 
hardware to transfer data blocks to and from the I2C hardware 
controller unit.  Upon completion of the requested transfer, the DMA’s 
ISR is run which signals the I2C device driver of the completed event 
by posting to the driver’s transaction complete semaphore.  This will 
unblock the device driver and allow the waiting task’s read or write 
request to complete.   

Using the MSP’s DMA substantially reduces the interrupt 
overhead incurred versus doing single byte transfers through 
programmed I/O operations. Similarly, blocking tasks with a 
semaphore when waiting for DMA hardware to complete allows other 
tasks to run during the blocked period or for the CPU to shutdown to 
reduce power. 

The I2C messaging task is responsible for receiving and 
composing messages to and from the host processor.  It communicates 
with the msp-client application mentioned in the previous section.  
This task utilizes the I2C device driver layer to provide master and 
slave read and writes through MSP’s I2C hardware controller.   
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Figure 4.  EMAP software architecture showing uC/OS objects operating 
over the MSP hardware devices in the shaded rectangle. 

All commands received from the msp-client application are parsed 
within the I2C messaging task and any reply messages are composed, 
and returned.  The I2C messaging task will handle messages that do 
not require specialized actions without waking other threads including 
read back of system settings or of charge accumulation values. 

The power management task is responsible for processing and 
scheduling all power management commands issued by the msp-client 
application.  When a new msp-client message arrives it is processed 
by the I2C messaging task.  If that command is a power management 
command, it is added to the power management task’s list of actions 
and the task is signaled to run.  The power management task then 
chronologically sorts all new and existing power management actions 
in the scheduled actions list.  By chronologically sorting the list, it can 
be parsed quickly for expired actions.  The power management task 
then suspends itself until the time of the first scheduled action or until 
a new power management command arrives.  If no new command 
message arrives, the action’s delay timer expires.  The power 
management task then examines the scheduled action list looking for 
runnable actions.  An action is runnable when it is on the scheduled 
actions list and it is in the past.  The power management task removes 
each runnable action from the actions list.  The action, which can be to 
enable or disable power, or to trigger a wakeup, is performed on the 

specified power domain.  If the action is not periodic, the action object 
is recycled to the free actions list.  If the action is marked as periodic, 
then the period interval is added to the actions scheduled run time and 
the action is reinserted into the actions list. 

The sampling and triggering task is responsible for setting the 
periodic sample rates for the on chip ADC channels connected to the 
two external sensor inputs and to set the wakeup trigger threshold 
values.  Sensor sampling and threshold settings commands issued by 
msp-client are first parsed by the I2C messaging task.  Relevant 
messages to the sampling and triggering task will wake this thread to 
process the message contents.  The sampling and triggering task 
checks the validity of sensor sampling commands such as assuring that 
the selected sensor sample rate is compatible with the charge 
accumulation sampling rate.  This task is also responsible for resetting 
triggered wakeup actions and setting sensor threshold values and 
detection edges.  Should this task be run by the ADC interrupt handler 
due to a threshold excursion event, it will perform all wakeup actions 
on power domains that are registered for wakeup event handling.  

 The last EMAP task is for communication through the CC2420 
low-power radio.  The CC2420 communications thread utilizes the 
SPI driver for reads and writes to the CC2420’s data port.  Like the 
I2C driver the SPI driver uses DMA for data transfer.  Unlike I2C, the 
SPI bus operates in full duplex.  To support this, two DMA channels 
are necessary.  One DMA channel reads incoming data from the SPI 
receive buffer while the second directs outbound data into the transmit 
buffer.  The CC2420 communications task leverages a CC2420 utility 
library that abstracts the CC2420 into basic access functions such as 
power mode settings and to transmit or receive packets. 

VI. EXPERIMENTAL RESULTS 
Experience with development of applications in energy aware 

environmental monitoring using LEAP demonstrate that a broad range 
of algorithms may be classified into reactive, proactive, and hybrid 
methods.  Reactive algorithms respond to external events captured by 
sensor data (and then trigger operation of high peak power and high 
performance LEAP subsystems) while proactive methods attempt to 
estimate an event arrival in advance such that the system is able to 
perform some action without the latency associated with response to 
trigger events.  Hybrid algorithms combine the reactive and proactive 
approaches in any combination.  Further, it is important to note that 
multiple LEAP nodes contribute to detection and tracking of 
phenomena, vastly expanding the capability for achieving both low 
operating energy and high detection and tracking performance. 

Algorithm selection depends largely on the phenomenon of 
interest as well as sensor platform capabilities.  Reactive algorithms 
may be well suited to applications where the sensors and sensor 
platforms are highly agile in time and energy usage or where the 
sensed phenomena are poorly understood.  Alternatively, proactive 
approaches may suit less agile sensors and sensor platforms or where 
the sensed phenomena are well understood and may be predictable 
with sufficient certainty over short time periods.  These defining 
characteristics may even evolve over time as a system learns 
environment characteristics.  The LEAP system may support each 
algorithmic class with resource management implemented to permit 
the lowest operating power consistent with sensing requirements. 

A. LEAP Testbed 
An experimental system is required to enable detailed 

characterization of each algorithm with respect to energy and 
distributed sensing performance. This has been accomplished by 
deploying many LEAP based nodes in a distributed network, each 
supporting multiple sensor inputs for environmental event detection.  
In addition, a new testbed has been developed that provides accurately 
reproducible physical events that may be detected both by the 



micropower, constantly vigilant sensors as well as by the on-demand 
use of high performance imaging devices supported by each LEAP 
based node. The testbed includes six distributed nodes each supporting 
1) an SMC2532 802.11b wireless interface, 2) a SNC-RC30N high 
performance embedded networked cameras capable of zoom, pan, and 
tilt operating in a sensor power domain, and  3)  a photodiode sampled 
by the EMAP ADC.  The photodiode measures only light intensity and 
does not enable localization or color identification.    

B. Event Generator 
An essential testbed component is a physical event generator 

producing a moving target signal that may be detected using imaging 
sensors as well as using a limited capability but micropower sensor 
contained in the EMAP power domain.  This allows us to exercise the 
sensor device and sensor power domain.  The LEAP testbed, shown in 
Figure 5, relies on a physical event generator consisting of two 
horizontal linear arrays of 32 individually controlled lamps distributed 
over an 8 m length.  Both red and green lamps are attached to the rigid 
assembly at fixed intervals and power for each lamp is sequenced by 
an independent relay control, itself supported by an event generator 
server platform.  The event generator system is remotely accessible 
with capability to repeatedly perform diverse experiments thereby 
extracting both instantaneous discrete and statistical characteristics of 
system performance. 
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Figure 5.  The Event Generator and distributed LEAP nodes are shown at 

upper left with a typical  LEAP node shown at upper right.  Power and energy 
dissipation (dashed line) for one typical node in the network is shown in the 

bottom panel (all nodes display similar behavior for this algorithm).   

The event generator server platform manages a series of lamp 
sequence test vectors yielding dynamic events. For example, 
sequencing of lamp state, such that only one lamp is illuminated at any 
time, causes an apparent motion of the illumination providing a target 
that must be detected and tracked. Test vectors for a typical 
experiment produce event patterns that are classified into contexts 
mirroring many forms of environment phenomena.  For example, 
events were classified into slow, medium, and fast motion 
corresponding to velocities and events appeared at slow, medium, and 
fast issues rates. An environmental context in this instance may consist 
of many events with a specific choice of velocity and issue rates and 

may itself remain fixed for a period, prior to a change in context and a 
resulting new velocity, new issue rate, or both.  A distribution of 
random events and context classifications may be introduced as well. 
An example testbed configuration is shown in Figure 5.   

C. Algorithm Design and Implementation 
In addition to enabling fundamental investigations of energy 

aware algorithms in a precise, reproducible fashion, the LEAP systems 
and testbed have supported both an undergraduate and graduate 
course.  Student course projects have ranged from energy aware 
detection and tracking of moving objects to energy aware fault 
detection and recovery systems that all adapt to environmental context 
to reduce energy.  All algorithms are distributed and involve software 
systems operating only on the LEAP nodes.  Course project 
management has been enabled also by a unique testbed system that 
manages LEAP node software distributions automatically on each 
node, for each user, according to a usage schedule that is accessible to 
all users.  Demonstration of robust operation results from having 
supported both research and over 50 student users. 

A current topic of investigation is the development of novel 
algorithms that are now enabled to manage energy, schedule resource 
usage, and seek to optimize sensing performance.  The experimental 
results from testbed characterization of an example algorithm are 
shown in Figure 5.  This algorithm was developed to solve the 
problem of event detection and identification with the requirement that 
a distributed set of nodes must detect and identify an object (the 
moving lamp signal) and determine its color (red or green) and detect 
its precise location using the imager, and finally compute velocity.  
This all must be accomplished while minimizing energy usage by 
limiting the time of operation of the SPM and camera image sensor.  
Camera power usage is large at seven watts peak, thus strongly 
encouraging the algorithm designer to apply LEAP EMAP capabilities 
to minimize its operation time. This encourages the development of 
hybrid algorithms that operate both in a reactive mode for discovery of 
instantaneous environmental context and a proactive mode for 
operation at minimum resource usage. Algorithm designs are 
constrained to those that uniformly distribute energy usage demands to 
all nodes.  Finally, algorithm designers seek to minimize the 
probability of false positive or false negative detection error. 

The algorithm for which results are shown in Figure 5, reactively 
seeks to determine the rate at which events occur and the velocity 
associated with events, then proactively schedules the operation of 
distributed nodes to minimize their energy usage. Supporting 
applications, hosted on the SPM were developed using the EMAP 
msp-client.  Energy in each power domain was logged..   

Figure 5 displays data from the period immediately after a test 
initiates at t = 0.  Within 500 seconds the system has classified the 
environment behavior and has settled into a self-determined operation 
cycle where at approximately each 200 seconds this LEAP node is 
triggered from a sleep state for event characterization – no 
misdetections occur during this period. A second node also must 
operate to ensure localization in the event of imaging obstacles that 
may obscure the target.  It is important to note that energy is used only 
episodically during servicing of the event. The large energy power 
excursions seen in the figure are due to imager operation.  Then note 
that at t = 2400 seconds a change appears in the environment and a 
new context appears with a reduced event issue rate.  Initially unaware 
of this change, the LEAP system detects this new context and expends 
energy in sensing and communication until the distributed LEAP 
nodes discover the new event context and again settle into a properly 
proactive optimized cycle of operation for t > 3000 s.  This algorithm 
is a demonstration of capability and represents one member of a broad 
class of new investigations that may now be pursued. 



VII. CONCLUSIONS AND FUTURE WORK 
The new LEAP ENS platform including a heterogeneous 

multiprocessor architecture has been developed based on a design 
approach addressing the challenge of supporting complex and 
powerful sensor systems, embedded computing platforms, and high 
performance communication interfaces. To achieve desired 
performance goals while simultaneously meeting energy dissipation 
requirements, this design approach focuses on exploiting high energy 
efficiency components that are scheduled for operation on-demand 
operation.  The LEAP system relies on the EMAP module for 
maintaining low power, constantly vigilant operation while providing 
event detection and fine-grained energy accounting. 

The LEAP system is now in active use for development of a wide 
range of ENS applications in many environment monitoring 
applications.  The feasibility of operation at low duty cycle with 
multiple power domain scheduling has been demonstrated and 
experimentally verified, as discussed here.  Many users have 
developed complex and robust algorithm implementations based on 
the SPM tool set including the EMAP msp-client interface. 

Future work enabled by the LEAP architecture includes the 
development of many additional platforms now purposefully designed 
for energy monitoring tasks.  Other systems will provide new 
operating system instrumentation providing high resolution, per-task 
and per user monitoring of energy usage.  Also, since boot times for 
sensor systems and the Linux OS can be many seconds, the energy 
expended in dynamic power management transition may dominate the 
overall energy expenditure and thus reduce the effectiveness of 
dynamic power management in the limit of rapidly arriving events.  
Thus, future LEAP development includes new systems including 
methods that automatically preserve minimal operational state when 
entering low power modes to reduce the live memory footprint during 
dormancy periods.  This further includes systems that detect and 
preserve active data before entering a suspended state while discarding 
unused or recoverable information.  Data would further be preserved 
to the most energy efficient storage medium based upon its estimated 
volatility and lifetime such as previously proposed [25-26].  During 
resume operations, data will be restored to its previous state according 
to a lazy algorithm such that immediate execution of a foreground 
operation will be possible without incurring the delay of complete 
memory restoration and further reduce transition energies. 

The LEAP system reported here is being deployed in critical 
environmental monitoring systems for both static and actuated sensor 
networks as well as in research testbeds.  These energy aware 
capabilities now may be added to existing sensor networking run time 
systems such as EmStar [19] and included into the new Tenet 
microserver and mote architectures [27].  
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