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Person-Fit as an Index of
Inattentive Responding: A
Comparison of Methods Using
Polytomous Survey Data

Mark F. Beck1, Anthony D. Albano1 and Wendy M. Smith1

Abstract

Self-report measures are vulnerable to response biases that can degrade the accuracy of con-
clusions drawn from results. In low-stakes measures, inattentive or careless responding can be
especially problematic. A variety of a priori and post hoc methods exist for detecting these
aberrant response patterns. Previous research indicates that nonparametric person-fit statistics
tend to be the most accurate post hoc method for detecting inattentive responding on mea-
sures with dichotomous outcomes. This study investigated the accuracy and impact on model
fit of parametric and nonparametric person-fit statistics in detecting inattentive responding with
polytomous response scales. Receiver operating curve (ROC) analysis was used to determine
the accuracy of each detection metric, and confirmatory factor analysis (CFA) fit indices were
used to examine the impact of using person-fit statistics to identify inattentive respondents.
ROC analysis showed the nonparametric HT statistic offered the most area under the curve
when predicting a proxy for inattentive responding. The CFA fit indices showed the impact of
using the person-fit statistics largely depends on the purpose (and cutoff) for using the person-
fit statistics. Implications for using person-fit statistics to identify inattentive responders are dis-
cussed further.
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Response biases present a major threat to the validity of inferences made from self-report mea-

sures. Examples commonly found in educational and psychological research include social

desirability bias, acquiescence, and inattentive responding (IR). In each case, the measurement

process is systematically influenced by construct irrelevant variance resulting from participants’

perceptions of, and interactions with, the instrument. Response biases can influence results at

both the item and scale levels, introducing measurement error, attenuating relationships, and

increasing Type II errors (M. E. Clark, Gironda, & Young, 2003; Credé, 2010; Meade & Craig,

2012).

One such response bias, IR, is defined as failing to respond to the content of the items

(Meade & Craig, 2012). This content nonresponsivity occurs when any response is made
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independent of the item content. Examples include responding without reading the item stem,

or misinterpreting the item stem and/or response options. Previous studies have investigated IR

and its impact on self-report results from a variety of perspectives (e.g., M. E. Clark et al.,

2003; Maniaci & Rogge, 2014; Meade & Craig, 2012; Oppenheimer, Meyvis, & Davidenko,

2009). The mechanisms behind IR are hypothesized to be lack of participant ability to respond

accurately (e.g., poor eyesight or a language barrier), responding randomly (e.g., selecting

answers unsystematically), or systematic avoidance (deliberately answering items independent

of content; Nichols, Greene, & Schmolck, 1989). IR has also been associated with a lack of

motivation (Finn, 2015). In addition, it is hypothesized that IR is more prevalent in low-stakes,

self-report measures that have little to no impact on the respondent.

Methods for Detecting IR

Methods for identifying IR can be categorized as either a priori or post hoc. As the name sug-

gests, a priori methods are planned, and included, in a survey before the survey is administered.

A priori methods often involve some sort of check to assess whether or not the participant is

paying attention to the content of the items. Conversely, post hoc methods are implemented

after a survey has been administered. Post hoc methods typically involve computing a statistic

designed to identify aberrant response patterns. Several a priori and post hoc methods will be

discussed further.

Instructed Response Items

Instructed response items are one of the most effective a priori ways to identify IR. Instructed

response items are built with an item stem that instructs a participant to respond to an item in a

particular way, or using a specific response option (e.g., For this item, select Response Option

5). If respondents do not endorse the instructed response option, it is assumed they are being

inattentive. Including two instructed response items (each with five response options) was found

to provide a .96 probability of screening out inattentive responders, assuming items are condi-

tionally independent (Meade & Craig, 2012). However, recent research suggests that instructed

response items have low specificity when identifying IR (Niessen, Meijer, & Tendeiro, 2016).

It is possible that aberrant responders who are not completely disengaged from the survey (e.g.,

skimming the item stems and quickly selecting responses without thought) might be able to

avoid identification by instructed response items.

Response Time

Response time is a commonly used post hoc method for detecting IR on online questionnaires.

It is thought that a quick response time is evidence of IR, because it is unlikely that the partici-

pant had time to read, and fully consider, the item stem. In practice, it has been suggested that

response time could be a useful indicator of IR if a meaningful cutoff, or related statistic, could

be identified (Marianti, Fox, Avetisyan, Veldkamp, & Tijmstra, 2014; Meade & Craig, 2012;

Wise & Kong, 2005). A major challenge with response time is identifying a threshold before

which respondents are considered inattentive. Using empirical methods to determine a thresh-

old, such as classification consistency, resampling, or receiver operating curve (ROC) analysis,

may provide a method of making response time a useful indicator of IR.
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Guttman Errors

Guttman errors can be used as a simple post hoc method for detecting aberrant response pat-

terns (Emons, 2008; Karabatsos, 2003; Meijer, 1994; Meijer, Egberink, Emons, & Sijtsma,

2008). A Guttman error occurs when a respondent answers a difficult item correctly, but an eas-

ier item incorrectly. In practice, Guttman errors are used in one of two ways: (a) a simple count

of Guttman errors or (b) the normed count of Guttman errors. Generally, both methods have

been shown to accurately identify aberrant response patterns in data with dichotomous response

scales (Emons, Sijtsma, & Meijer, 2005; Emons, 2008; Meijer, 1994). In some situations,

Guttman errors were shown to detect IR better than more complex person-fit statistics (Emons

et al., 2005; Karabatsos, 2003; Meijer, 1994; Meijer et al., 2008). However, Guttman errors

have also been shown to have low sensitivity when detecting aberrancy in data with polyto-

mous response scales (Niessen et al., 2016). Note that Guttman errors form the foundation of

many nonparametric person-fit statistics, including the ones reviewed below, U3 and HT.

U3

The U3 person-fit statistic (van der Flier, 1982) provides another post hoc method for identify-

ing IR. Although U3 has shown some promise in research (Karabatsos, 2003; Tendeiro &

Meijer, 2014), a major limitation of U3 is that the equivalence between the theoretical and

empirical sampling distribution is affected by item discrimination. Specifically, when the theo-

retical distribution is used to determine critical values, the Type I error rates are both inflated

(in the tails of the distribution) and deflated (in the middle range of the distribution) when items

have moderate to high levels of discrimination (Emons, Meijer, & Sijtsma, 2002; Tendeiro &

Meijer, 2014). The polytomous generalization of U3 is given by Equations 1 and 2, where

Equation 1 is the summation of the log odds of the JM item steps (where J is the number of

items, and M is the number of response categories) that were passed for item k,

W yð Þ =
XJM

k = 1

yklog
p̂k

1� p̂k

� �
, ð1Þ

where yk is the vector of observed responses for item k, and p̂k is estimated item step difficul-

ties. The summed log odds is then normed as

U3P =
max W jX +ð Þ �W yð Þ

max W jX +ð Þ �min W jX +ð Þ , ð2Þ

where max(W|X+) is the likelihood of the maximum number of item steps passed given person

n’s total score, and min(W|X+) is the likelihood of the minimum number of item steps passed

given person n’s total score.

HT

Proposed by Sijtsma (1986), HT is an application of the item scalability coefficient (Mokken,

1971) to respondents. The HT coefficient quantifies the degree to which data conform to the

Guttman model for one respondent compared against the rest of the respondents in a sample.

Conceptually, HT sums the covariances for person n with the rest of the sample and divides the

maximum possible covariances for person n (i.e., the covariances that would have been

observed with no Guttman errors) with the rest of the sample. HT reflects the concept of this

covariance ratio as
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HT =
Cov xn, r(n)

� �
Covmax xn, r(n)

� � , ð3Þ

where xn is the response vector for person n, and r(n) is the response vector of total scores calcu-

lated from all individuals in the sample excluding person n (this is also referred to as the rest

score; Sijtsma & Molenaar, 2002). It should be noted that Equation 3 is mathematically equiva-

lent to the definitional form of the HT equation (Sijtsma & Molenaar, 2002). HT has been shown

to have high aberrant response detection rates in simulation studies involving data with dichoto-

mous response scales under various conditions (Dimitrov & Smith, 2006; Karabatsos, 2003;

Tendeiro & Meijer, 2014).

Standardized Log Likelihood

The standardized log likelihood (lz; Drasgow, Levine, & Williams, 1985) is a parametric

person-fit statistic requiring estimates of both item and ability parameters. The lz statistic is the

standardized log likelihood function:

lz =
l0 � E l0ð Þ
V l0ð Þ1=2

, ð4Þ

where l0 is the polytomous log likelihood estimate, and E(l0) and V(l0) are the mean and var-

iance of the log likelihood function, respectively. The lz statistic has been shown to approximate

the standard normal distribution on long tests (i.e., 80 items or more; Drasgow et al., 1985).

However, this approximate normality has been shown to degrade when estimated values of

ability (û) are used, as is typically the case as true values of ability (u) are generally unknown

(Magis, Raiche, & Beland, 2012; Seo & Weiss, 2013). This often leads to an underdetection of

person-misfit. It should be noted that a corrected form of the lz statistic (lz*) addressing this

issue has been proposed, but it has only recently been generalized for use with polytomous data

(Sinharay, 2016; Snijders, 2001). The lz statistic has been shown to have some ability to detect

aberrancy depending on test characteristics (Armstrong, Stoumbos, Kung, & Shi, 2007; Reise

& Due, 1991). Despite these issues, use of the lz statistic is common. Evidence suggests that lz
is unable to detect aberrant response patterns as well as some nonparametric person-fit statistics

on dichotomous response scales (Dimitrov & Smith, 2006; Karabatsos, 2003). In addition, lz
has been shown to have low sensitivity when detecting aberrancy in data with polytomous

response scales (Niessen et al., 2016).

Which Method Is Best?

Karabatsos (2003) compared 36 different person-fit statistics on how well they detected aber-

rant responding. These 36 person-fit statistics included HT, U3, number of Guttman errors

(normed and raw), and lz. A simulation was conducted with three crossed conditions: five types

of aberrant responding, four percentages of aberrant responders, and three test lengths. Data

were simulated to be on a dichotomous response scale using the Rasch model. These 36

person-fit statistics were evaluated using ROC analysis, which compares the sensitivity (the

ability of an index to identify actual aberrant responding), and specificity (the ability of an

index to classify normal responding as such), of a predictor variable on some dichotomous out-

come. Results indicated that HT provided the highest area under the curve (AUC; a measure of

accuracy) when detecting all types of aberrant responding. U3 had the highest AUC for detect-

ing respondents who were endorsing items at random. The number of Guttman errors and lz
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were also found have acceptable AUC in detecting aberrant response patterns, but did not have

AUC greater than HT or U3. In addition, results indicated that there was essentially no differ-

ence in aberrancy detection between statistics based on the percentage of aberrant responders.

However, as the percentage of aberrant responders increased, detection became more difficult

overall. For test length, HT and the log likelihood function (not the standardized log likelihood)

had the best detection rates across short, medium, and long tests. Overall, HT was determined

to be the most accurate person-fit statistic across all conditions. U3 was also relatively accurate

compared with the other 34 person-fit statistics. Some studies have found similar results under

different conditions and with different types of aberrancy (Dimitrov & Smith, 2006; St-Onge,

Valois, Abdous, & Germain, 2011; Tendeiro & Meijer, 2014). However, M. Clark et al. (2014)

found that the Ico scalability index (a person-fit statistic based on factor analytic procedures;

Ferrando, 2009) was able to more accurately detect cheating than HT and lz under certain condi-

tions. Although, there were other conditions where all indices had poor detection rates.

Sinharay (2017) also called into question Karabatosos’s method, suggesting that the effective-

ness of nonparametric person-fit statistics degrades when ROC are calculated for each simu-

lated dataset (rather than aggregated as Karabatsos had done). Taken together, these conflicting

findings suggest that determining the ‘‘best’’ person-fit statistic for identifying aberrancy

requires further investigation.

The studies just discussed show that person-fit statistics can be useful for identifying aberrant

response patterns in simulated data with dichotomous response scales. However, empirical eva-

luations with polytomous data are limited. The current study extends previous research by com-

paring a few of the most promising parametric and nonparametric person-fit to determine the

practical impact of applying these statistics in real-world, polytomous datasets. Specifically, this

study examined the effectiveness of five aberrant response indices (HT, U3, normed Guttman

errors, lz, and response time) in terms of two related research questions:

Research Question 1: Can the detection indices accurately flag IR, as approximated by

instructed response items?

Research Question 2: After deleting IR using the detection indices, how much improve-

ment in model fit can be obtained?

It should be noted that the instructed response item can only approximate true IR among partici-

pants. Some true IR went undetected and some false IR was flagged. However, in practice, the

instructed response item is often the optimal a priori detection method. Thus, this study sought

to provide practical guidance on the viability of person-fit statistics for detecting IR in real-

world scenarios where instructed response items are not available.

Based on previous research, it is unclear whether the nonparametric person-fit statistics will

outperform the parametric person-fit statistic in polytomous data (Dimitrov & Smith, 2006;

Karabatsos, 2003; Sinharay, 2017). It is also unclear whether or not the person-fit statistics can

provide an acceptable alternative to identifying IR in the absence of instructed response items.

Thus, this study involves exploration via multiple stages of analysis. Overall, it was expected

that the person-fit statistics would provide an acceptable alternative for identifying IR when

instructed response data are not available. In addition, it was expected that HT and U3 would

outperform lz and the normed number of Guttman errors in their detection of IR. Finally, it was

expected that HT would outperform the U3. Response time was also investigated using an

empirically derived cutoff to determine its accuracy in detecting IR.
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Method

Data

Data were obtained from two baseline administrations of the Collegiate Active Learning

Calculus Survey (CALCS), administered to undergraduate students across three universities.

The purpose CALCS is to assess student attitudes, beliefs, and behaviors about mathematics in

an attempt to improve teaching and learning in undergraduate courses. The 34 self-report items

are designed to fit into four distinct factors: math usefulness (10 items), nonproductive beliefs

about mathematics (seven items), flexible orientation toward math (seven items), and active

learning (10 items). Two administrations of the survey were completed in January and August

2016, at the beginning of the spring and fall semesters. The survey was administered online,

with students having the opportunity to receive extra credit and be included in a drawing for a

gift card. Thus, the survey was low-stakes, and there was no direct incentive for students to

respond attentively. Sample sizes for each administration were 1,368 and 3,831, respectively.

These sample sizes represent the number of students who answered all items, after removing

any duplicate responses by students, and removing any respondents that did not answer all of

the items.

Analyses

Detection of approximate IR was compared for HT, U3, lz, normed Guttman errors, and

response time. It should be noted that response time was measured as the duration that a respon-

dent took to complete the entire survey, and did not provide any item-level information. A sin-

gle instructed response item built into the CALCS served as an approximation for IR, and thus

constituted the criterion for evaluating the accuracy of each detection method. The instructed

response item, which appeared approximately two thirds of the way through the survey,

instructed participants to choose Choice 4 on the 5-point rating scale. Responding at random

across the entire survey, a participant has a .20 probability of selecting the correct response

category, assuming the items were conditionally independent. The accuracy of each index was

then evaluated using a ROC analysis, which also provided the basis for determining various

empirical cutoffs. Three cutoffs were examined for each index: (a) a cutoff that minimized false

positives to 1%, (b) a cutoff that minimized false negatives to 20%, and (c) a cutoff that maxi-

mized the AUC determined by the ROC.

The change in model fit obtained by using these metrics to remove inattentive responders

was also examined. The indices were used to split each CALCS administration into seven data-

sets. The first dataset included all respondents who completed the questionnaire and had some

variance in their responses, the second dataset removed all respondents who did not select the

correct instructed response option, and the remaining datasets excluded flagged respondents

based on the five detection indices. For each of these datasets, a confirmatory factor analysis

(CFA) was conducted and fit indices were compared across datasets within a given administra-

tion. Each CFA was conducted using the maximum likelihood estimator, and modeled a four-

factor solution with no residual covariances. Effective IR detection methods were expected to

result in improved model fit when compared with model fit using data containing all respon-

dents. Ideally, effective IR detection by the detection indices would also yield fit statistics that

were comparable with the dataset which used the instructed response item to exclude respon-

dent. All analyses were conducted in R (R Core Team, 2017) using the mokken (van der Ark,

2012), PerFit (Tendeiro, Meijer, & Niessen, 2016), pROC (Robin et al., 2011), and lavaan

(Rosseel, 2011) packages.
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Estimation of lz

As noted above, lz is parametric person-fit statistic, which means that it requires item and abil-

ity estimates. For the purposes of this study, item parameters were estimated using the Graded

Response Model, as it provided the best fit to these data. In addition, the ability estimates were

obtained using the Expected A Posteriori method. It should also be noted that the instructed

response item was not included as part of the measurement model of the CALCS at any step of

the analyses.

Determination of Cutoffs Using ROC

ROC analysis is a useful tool for determining empirical cutoffs, as it allows you to determine

cutoffs for a variety of situations (e.g., limiting Type I or Type II errors). ROC analysis involves

the creation of a ROC, which plots the sensitivity against the specificity, or sometimes the false

positive rate (1 – specificity). Each point on the ROC is a sensitivity/specificity pair that corre-

sponds to a particular threshold. These thresholds can be used to determine the cutoffs derived

from ROC. To pick a cutoff, a threshold is identified that corresponds to a chosen level of either

specificity or sensitivity. For example, to maintain a Type I error rate of 0.05 (a = .05), one

would find the threshold that corresponds to a .95 sensitivity rate. Another useful way to deter-

mine cutoffs is to use the threshold that maximizes AUC, essentially the highest sensitivity/spe-

cificity pair. Many of the programs capable of conducting a ROC analysis contain options

to automatically provide this threshold. Conceptually, maximizing the AUC is as simple as find-

ing the point on the ROC that is furthest from the identity line (some ROC can be viewed in

Figure 1).

Results

ROC Analyses

ROC plots are presented in Figure 1. In both administrations, HT has the highest AUC estimates

(.66 in both administrations). The next highest AUC estimates were lz (.59 and .61) and response

time (.61 and .57). The lowest AUC estimates were obtained from normed Guttman errors (.51

and .52) and U3 (.51 in both administration). AUC estimates can be roughly interpreted using

an academic grading scale: AUC = 0.5 to 0.6 indicates an ineffective test, 0.6 to 0.7 is a poor

test, 0.7 to 0.8 is considered a fair test, 0.8 to 0.9 is considered a good test, and 0.9 to 1.0 is con-

sidered an excellent test; AUC less than 0.5 indicates random chance is a more accurate predic-

tor of the outcome than a particular criterion. According to this interpretation, it should be noted

that none of the identification indices were classified better than poor predictors of the instructed

response item. In addition to examining the AUC, the ROC was used to determine three empiri-

cal cutoffs for all the IR indices using the process described in the previous section.

CFAs

CFA fit indices were used to demonstrate the change in model fit obtained from using these

person-fit indices to remove respondents. CFA model fit indices, along with sample size, are

reported in Tables 1 to 3. It should also be noted that the intended measurement model for

CALCS does not fit the full dataset particularly well, with fit statistic falling beyond recom-

mended values. Results still allow for a relative comparison among the aberrant response
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indices. However, the poorly fitting models suggest that the measurement model, or the instru-

ment itself, may need to be revised.

First, removing participants who did not respond to the instructed response item correctly

always offered significant improvement in model fit (where DCFI < –.01 is used to determine

significant improvement between the raw dataset, and the flagged-respondents removed

Table 1. Model Fit Comparisons for Identification Indices When Minimizing False Positives.

Adm. CFI RMSEA [90% CI] SRMR n

1
Raw 0.742 0.065 [0.063, 0.068] 0.064 1,236
Inst. Res. 0.770 0.062 [0.059, 0.064] 0.057 1,111
HT 0.748 0.063 [0.061, 0.065] 0.061 1,217
zGutt 0.754 0.061 [0.059, 0.063] 0.058 1,218
lz 0.772 0.060 [0.059, 0.063] 0.057 1,218
U3 0.755 0.061 [0.059, 0.063] 0.058 1,218
Resp. time 0.751 0.062 [0.062, 0.066] 0.062 1,214

2
Raw 0.730 0.066 [0.065, 0.067] 0.063 3,505
Inst. Res. 0.749 0.064 [0.062, 0.065] 0.058 3,176
HT 0.736 0.064 [0.063, 0.065] 0.060 3,465
zGutt 0.739 0.064 [0.062, 0.065] 0.059 3,461
lz 0.752 0.063 [0.062, 0.064] 0.058 3,460
U3 0.738 0.064 [0.062, 0.065] 0.059 3,460
Resp. time 0.739 0.065 [0.064, 0.066] 0.061 3,447

Note. Adm. = administration; CFI = comparative fit index; RMSEA = root mean square error approximation; CI =

confidence interval; SRMR = standardized root mean squared residual; Inst. Res. = instructed response; zGutt =

normed Guttman errors; Resp. Time = response time.

Table 2. Model Fit Comparisons for Identification Indices When Minimizing False Negatives.

Adm. CFI RMSEA [90% CI] SRMR n

1
Raw 0.742 0.065 [0.063, 0.068] 0.064 1,236
Inst. Res. 0.770 0.062 [0.059, 0.064] 0.057 1,111
HT 0.769 0.050 [0.045, 0.054] 0.057 431
zGutt 0.654 0.055 [0.049, 0.061] 0.073 242
lz 0.825 0.053 [0.049, 0.058] 0.059 371
U3 0.637 0.057 [0.050, 0.063] 0.074 228
Resp. time 0.762 0.065 [0.060, 0.070] 0.067 325

2
Raw 0.730 0.066 [0.065, 0.067] 0.063 3,505
Inst. Res. 0.749 0.064 [0.062, 0.065] 0.058 3,176
HT 0.759 0.050 [0.047, 0.053] 0.052 777
zGutt 0.710 0.050 [0.047, 0.043] 0.056 757
lz 0.866 0.047 [0.045, 0.049] 0.044 1,155
U3 0.698 0.049 [0.046, 0.053] 0.057 734
Resp. time 0.713 0.067 [0.064, 0.071] 0.061 619

Note. Adm. = administration; CFI = comparative fit index; RMSEA = root mean square error approximation; CI =

confidence interval; SRMR = standardized root mean squared residual; Inst. Res. = instructed response; zGutt =

normed Guttman errors; Resp. Time = response time.
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datasets; Cheung & Rensvold, 2002). HT offered significant improvements in model fit with

cutoffs that minimized false positives and false negatives. Interestingly, HT did not significantly

improve model fit when using a cutoff that maximized AUC. Normed Guttman errors also sig-

nificantly improved model fit with cutoffs that minimized false negatives and false positives.

However, normed Guttman errors did not significantly improve model fit with a cutoff maxi-

mizing the AUC. The lz index offered the most improvement in model fit when using cutoffs

that maximized AUC and minimized false negatives. In addition, lz provided an improvement

in model fit using all cutoffs in all administrations. The U3 index only offered significant

improvement in model fit when using cutoffs minimizing false positives. Response time signifi-

cantly improved model fit when using a cutoff that maximized AUC. Comparing the indices, lz
improved model fit with all three cutoffs and in all administrations. The HT index and normed

Guttman errors both improved model fit with cutoffs minimizing false positives and negative.

Finally, U3 and response time improved model fit with just one cutoff. Table 4 contains the

cutoff values used for each index based on the ROC analysis.

Discussion

This study examined the accuracy of several methods for detecting approximate IR, and

explored the impact on model fit of using these detection indices in practice. Specifically, it

investigated the HT, U3, lz, normed Guttman errors, and response time indices. An instructed

response item was used as a proxy for IR, to determine the accuracy of these indices when

detecting IR. ROC analysis and CFA were conducted to clarify the accuracy and impact of

using these indices as an alternative to instructed response items.

Using instructed response items to flag participants always improved model fit. However, the

goal of the study was to determine the ability of the post hoc detection metrics to replicate the

participants flagged by the instructed response item. The AUC estimates suggest that HT is more

accurate than the other indices when detecting approximate IR. This is in line with previous

research (Dimitrov & Smith, 2006; Karabatsos, 2003). However, CFA fit indices revealed

Table 3. Model Fit Comparisons for Identification Indices When Maximizing AUC.

Adm. CFI RMSEA [90% CI] SRMR n

1
Raw 0.742 0.065 [0.063, 0.068] 0.064 1,236
Inst. Res. 0.770 0.062 [0.059, 0.064] 0.057 1,111
HT 0.702 0.062 [0.059, 0.065] 0.063 1,217
zGutt 0.642 0.057 [0.052, 0.062] 0.071 1,218
lz 0.800 0.057 [0.053, 0.061] 0.061 1,218
U3 0.618 0.059 [0.055, 0.062] 0.071 1,218
Resp. time 0.768 0.062 [0.059, 0.064] 0.058 1,214

2
Raw 0.730 0.066 [0.065, 0.067] 0.063 3,505
Inst. Res. 0.749 0.064 [0.062, 0.065] 0.058 3,176
HT 0.702 0.062 [0.060, 0.063] 0.060 2,836
zGutt 0.743 0.046 [0.042, 0.049] 0.055 563
lz 0.830 0.053 [0.051, 0.055] 0.048 1,670
U3 0.687 0.058 [0.057, 0.060] 0.059 2,325
Resp. time 0.752 0.063 [0.062, 0.064] 0.058 3,030

Note. AUC = area under the curve; Adm. = administration; CFI = comparative fit index; RMSEA = root mean square

error approximation; CI = confidence interval; SRMR = standardized root mean squared residual; Inst. Res. =

instructed response; zGutt = normed Guttman errors; Resp. Time = response time.
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interesting findings. Namely, that being able to more accurately predict the criterion (in this

case, the instructed response item) does not necessarily always result in better model fit. In fact,

it depends heavily on the type of cutoff used to flag respondents. This is supported by CFA

model fit indices which show that HT, while having the highest AUC, does not improve model

fit in all situations, and improves model fit less than normed Guttman errors when minimizing

false positives. The lz index was the only index to improve model fit with all cutoffs. However,

it is also important to note that lz and the maximum likelihood estimation use the likelihood

function. In this way, the improve in model fit offered by lz is confounded with the estimation

method. Because of this issue, AUC is the only result that gives useful information in determin-

ing whether lz is a viable alternative to instructed response. As lz had AUC around .60, it can be

considered a poor predictor of instructed response items (the same as HT). Interestingly,

response time does appear that it can be a useful index for identifying IR using an empirical cut-

off. In fact, response time may be more useful for removing respondents than lz; it was compar-

ably accurate to lz, but is not confounded with estimation method.

Recommendations and Conclusions

A priori methods for identifying IR are always recommended. Including instructed response

items in a measure does take some planning, but it is a relatively simple procedure. There is lit-

tle reason not to include these items on a measure, particularly if the measure is low stakes and

the sample is vulnerable to IR. However, if a situation arises where a priori methods cannot be

utilized, the question becomes: Are there any indices that can be used to remove aberrant

responders? The answer to this question is a cautious yes, at least as far as IR is concerned.

In the absence of, or in addition to, a priori methods, several post hoc methods can be recom-

mended. HT and response time (with an empirically derived cutoff) both were relatively

Table 4. Cutoff Values for the Five Aberrant Response Indices Across Administrations.

Minimizing false positives 1 2

HT –0.07 –0.03
zGutt 0.39 0.37
lz –6.21 –5.63
U3 0.38 0.36
RT 202.50 230.50

Minimizing false negatives 1 2

HT 0.33 0.39
zGutt 0.07 0.07
lz 1.23 1.12
U3 0.06 0.06
RT 544.50 883.50

Maximizing AUC 1 2

HT 0.22 0.21
zGutt 0.08 0.06
lz 1.00 0.60
U3 0.09 0.13
RT 289.50 342.50

Note. Response times cutoffs are reported in seconds to complete the entire questionnaire. zGutt = normed Guttman

errors; RT = response time; AUC = area under the curve.
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accurate predictors of the instructed response item, and offered significant improvements in

model fit with certain cutoffs. However, the indices’ improvement to model fit varied widely

based on the type of cutoff used; if these identification indices are used to flag respondents,

great care should be taken when choosing cutoff values. In addition, it should also be stated that

no one metric should be used to make the overall decision about whether or not to keep or

remove an individual from a dataset. Used in conjunction with other metrics of aberrant

response, these person-fit statistics could provide additional information about particular partici-

pants’ response patterns. It is difficult to recommend the use of normed Guttman errors, lz, or

U3. While normed Guttman errors and U3 improved model fit when minimizing false positive,

they were not accurate predictors of the instructed response item. It is possible that the improve-

ment in model fit when minimizing false positives is due to them detecting a different type of

aberrancy. Finally, while using lz always improved model fit and was comparable to response

time in its ability to predict the instructed response, it is unfortunately confounded with maxi-

mum likelihood estimation. It might be useful for detecting IR when other estimation methods

are used, but further would be needed to recommend it for such a use.

Limitations

The main limitation of this study was the reliance on the instructed response item as a proxy for

the criterion or True IR. Instructed response can be expected to identify IR to some extent, but

not in every case. It is possible (especially if IR is viewed through a motivation lens) that some

participants are partial inattentive respondents, that is, respondents who skim the item stem but

still respond independent of the item content. If these types of respondents do exist, it is possible

that they will avoid being detected by the instructed response item. Furthermore, the indices

were only evaluated in terms of one type of response bias, IR. Based on these results, it is

unclear if the statistics are identifying other types of aberrant response patterns, or if they are

being overly sensitive and removing attentive responders with slightly deviant response patterns.

It is possible that the indices are identifying individuals engaging in IR but were not identified

by the instructed response item. It is also possible that the indices are identifying individuals

engaging in other aberrant response patterns. Another limitation is the use of the multidimen-

sional CALCS measure to assess these person-fit statistics. It is likely that using a unidimen-

sional or identifying IR participants within factors (instead of across factors) would provide

different results.

Future Directions

Some areas of future research were identified based on the results of this study. Whereas this

study compared person-fit statistics in terms of their ability to detect IR in real items with poly-

tomous response scales, it is still unclear how these indices would perform on real items with

dichotomous response scales. It may be that these person-fit statistics do not work as well with

polytomous items, but are still useful for identifying IR on dichotomous measures. In addition,

other person-fit statistics and indices for identifying response biases should be investigated in

items with polytomous response scales, as these scales are common in low-stakes measures.

This study only investigated the effectiveness of aberrant response indices to identify one type

of aberrant response pattern, IR. Future research should also investigate the effectiveness of

these indices (and others) in identifying other types of response biases, such as cheating, social

desirability responding, and acquiescence. Based on how widely the performance of the identi-

fication metrics varied based on the cutoff used, a future study could extend these results by
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determining cutoffs based on other empirical techniques (i.e., bootstrapping). In addition to sim-

ply identifying IR, steps should also be taken to investigate ways in which IR can be prevented.
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