
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
An Infant-Cognition Inspired Machine Benchmark for Identifying Agency, Affiliation, Belief, 
and Intention

Permalink
https://escholarship.org/uc/item/5ft9x576

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Li, Wenjie
Yasuda, Shannon C
Dillon, Moira Rose
et al.

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ft9x576
https://escholarship.org/uc/item/5ft9x576#author
https://escholarship.org
http://www.cdlib.org/


An Infant-Cognition Inspired Machine Benchmark for Identifying Agency,
Affiliation, Belief, and Intention

Li Wenjie 1 Shannon C. Yasuda 2 Moira R. Dillon 2 Brenden M. Lake 1,2

{wenjieli, shannon.yasuda, moira.dillon, brenden}@nyu.edu
1 Center for Data Science, New York University

2 Department of Psychology, New York University

Abstract

Human infants have remarkable abilities to reason about the
underlying and invisible causes that drive others’ actions.
These abilities are at the core of human social cognition
throughout life. Artificial Intelligence (AI) systems continue
to fall short in achieving this same commonsense social knowl-
edge. Recent benchmarks focusing on social cognition and
theory of mind have begun to address the gap between human
and machine social intelligence, but they do not fully consider
the social reasoning required to understand scenarios with mul-
tiple interacting agents. Building on such benchmarks, we
present eight new tasks focusing on different early social com-
petencies, as informed by behavioral experiments with infants.
We use a self-supervised Transformer model as a baseline test
of our new tasks, and in addition, we evaluate this model on a
previous social-cognitive benchmark. While our model shows
improved performance on the previous benchmark compared
with other data-driven models, it performs sub-optimally on
our new tasks, revealing the challenge of learning complex so-
cial interactions through visual data alone.

Keywords: Social Cognition; Theory of Mind; Deep Learn-
ing; Artificial Intelligence; Cognitive Development

Introduction
Human communication, collaboration, and learning are
deeply rooted in an ability to understand and interpret the so-
cial world, including identifying other agents and their affili-
ations, beliefs, and intentions (Astington & Pelletier, 1998;
Krych-Appelbaum et al., 2007; Resches & Pereira, 2007).
While human infants display remarkable proficiency in such
understanding (J. K. Hamlin, Wynn, & Bloom, 2007; Pow-
ell & Spelke, 2013; Sommerville & Crane, 2009; Wood-
ward, 1998), deep learning systems often struggle with even
basic social-cognitive tasks (Lake, Ullman, Tenenbaum, &
Gershman, 2017; Marcus & Davis, 2019). Modern deep
learning architectures and training paradigms, particularly
those focused on supervised learning, tend to reduce behav-
ioral data to labels of classification problems, neglecting the
nuances and complexities that factor into human reasoning
(Carreira & Zisserman, 2017). Moreover, although recent
large language models succeed in many language-based tasks
(OpenAI, 2023), their successes are not robust, for example,
to variations of classic social-cognitive tasks (Ullman, 2023).
By starting from infants’ foundational knowledge of the so-
cial world, we can begin to identify the building blocks and
inductive biases essential for the development of flexible so-
cial reasoning, highlighting key elements missing from cur-
rent AI systems aiming to capture human intelligence.

Initial steps have been taken to build human-like AI sys-
tems with core cognitive abilities (Gandhi, Stojnic, Lake, &
Dillon, 2021; Rabinowitz et al., 2018; Shu et al., 2021),

but the focus of this prior work has typically been on sim-
pler social scenarios involving just one agent, omitting the
more complex dynamics of scenarios with multiple interact-
ing agents. For example, the Baby Intuitions Benchmark
(BIB) directly compared the performance of machines and
infants on six tasks assessing an observer’s inferences about
individual agents’ goal-directed actions on objects (Gandhi
et al., 2021; Stojnić, Gandhi, Yasuda, Lake, & Dillon, 2023).
BIB offered both an important starting point for such a re-
search program as well as a framework in which to create
new tasks probing foundational social cognition not covered
in its initial set of tasks.

Building on this framework established in BIB (Gandhi et
al., 2021), we introduce eight new tasks focusing on differ-
ent early social competencies, including infants’ reasoning
about other agents’ goals, affiliations, beliefs, and intentions.
These tasks are structurally complex, for example, challeng-
ing AI systems to track multiple agents’ mental states and
to differentiate among various passive, goal-directed, and so-
cially driven behaviors. Due to this complexity, the new tasks
are expected to pose a significant challenge for current AI
systems. Along with our evaluation tasks, we also designed
twelve background-training tasks to give machines an oppor-
tunity to learn the environment and related, but not overlap-
ping, cognitive representations to those tested in the evalu-
ation tasks. As a baseline, we evaluated our new tasks us-
ing a state-of-the-art Transformer model (Arnab et al., 2021;
Vaswani et al., 2017) trained on next-frame prediction, em-
ploying a self-supervised paradigm without relying on syn-
thetic labels or negative examples. Although we found that
our model performed better than previously tested baselines
on BIB’s tasks, it made sub-optimal predictions on our new
tasks, exposing weaknesses in its abilities to understand the
complex causal relations captured by our tasks.

Tasks
Eight new evaluation tasks and twelve new background train-
ing tasks, each with thousands of episodes, challenge AI sys-
tems to identify agency, affiliations, and the beliefs and in-
tentions of interacting agents. A task is a video containing
a 2D grid world with simple shapes, whose actions repre-
sent the social interactions among animate agents (Heider &
Simmel, 1944). This design eliminates the vision challenges
of naturalistic scenes, probing a machine’s ability to learn
higher-level cognitive representations from lower-level visual
information (Gordon, 2016; Springer, Meier, & Berry, 1996).
Moreover, an optional JSON file documents each frame’s en-
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vironment and object properties (e.g., coordinates), allowing
researchers to vary the amount of oracle information.

Like BIB, our new tasks rely on a violation-of-expectation
(VOE) paradigm, commonly used to test infants. For infants,
the VOE paradigm uses their looking times to different out-
comes to measure their implicit predictions: Infants tend to
look longer at outcomes they find surprising (Spelke, 1985).
To adopt this paradigm for the current tasks, we made pairs of
videos, which start with the same eight familiarization events
drawn from the same statistical distribution but end in either
an expected or unexpected test event, given the context set up
by the familiarization. A model is tasked to determine which
of the two videos contains the more expected test event.

We include two tasks focused on social affiliations between
agents (Approach), two tasks focused on the attribution of
goals to agents, not objects (Object Goal), two tasks focused
on the attribution of beliefs to agents (False Belief & True
Belief), and two tasks focused on agents’ helping and hinder-
ing behaviors (Helping & Hindering). Each task consists of
1000 episodes. Below we provide further detail about each
task, explaining their structure and criterion for success.

Approach: Social & Instrumental
Do models predict that an agent will imitate the actions of
another agent it had affiliated with?

Developmental Background. Infants predict that mem-
bers of the same social group will exhibit similar actions and
that individual agents will approach other agents whose ac-
tions they imitate (Powell & Spelke, 2013, 2018). Unpub-
lished research outlined in Spelke (2022), moreover, suggests
that infants 7.5- to 13.5-months-old are surprised by group-
inconsistent actions when those actions are non-causal, but
they have no expectation when the actions include contacting
an object and changing its color.

Familiarization Events. An agent approaches one of two
target agents to establish a social affiliation (Figure 1a & b).

Test Events. As shown in Figure 1a & b, the test environ-
ment contains a new goal object. In Approach: Social, the
agents never interact with the goal object. In the beginning
of the event, the two target agents each sequentially move in
unique patterns. The main agent then moves the same way
either as the target agent it had previously approached (ex-
pected) or as the target agent it had previously not approached
(unexpected).

To deter machines from solving the task with trivial heuris-
tics such as pattern matching, we also compare Approach:
Social with Approach: Instrumental, where agents are strate-
gically placed so that the movement of the main agent could
also be interpreted as an efficient and goal-directed action to-
wards the new object, making it ambiguous whether its ac-
tion is imitative and socially motivated. It is therefore less
expected in Approach: Instrumental versus Approach: So-
cial that the main agent’s movement should be similar to the
movement of the target agent it had approached. To keep
the task formats consistent, we nevertheless treat the less ex-
pected outcome as an unexpected outcome.

Object Goal: Agent & Object
Do models recognize and attribute goals only to an agent that
displays self-propelled, efficient motion, but not to an object
that is moved by an external force?

Developmental Background. Infants recognize that
agents, but not objects, exhibit self-propelled motion
(Cicchino & Rakison, 2008), have object-based goals
(Woodward, 1998), and move rationally and efficiently to-
ward their goals (Csibra, Gergely, Bıró, Koos, & Brockbank,
1999). For example, Woodward (1998) found that 5-month-
old infants expected a hand, but not a mechanical claw, to
reach consistently for a goal object, not to a goal location.

Familiarization Events. Each video contains a constantly
rotating spinner, an ambiguous element that acts as either a
goal-directed agent or passive object, and two static target ob-
jects (Figure 1c & d). In Object Goal: Agent (Figure 1c), the
shape, positioned a short distance away from the spinner, ini-
tiates its own movement. In Object Goal: Object (Figure 1d),
the shape begins moving only after contact with the spinner.
In both scenarios, the shape moves until it contacts one of the
target objects. The shape collides with the same target ob-
ject on the same side of the grid world across trials. A gray
square under the spinner ensures visual consistency between
familiarization and test events.

Test Events. As shown in Figure 1c & d, the objects’ loca-
tions are switched relative to their locations during familiar-
ization. A gray square occludes the shape’s starting position
and potential contact with the spinner to make the cause of its
movement ambiguous. At the start of each event, the shape
emerges from behind the square and goes directly to one of
the two objects. In the agent condition, the shape either ap-
proaches the previously contacted object at a new location
(expected), or a new object at the previously visited location
(unexpected). Similar to the Approach task, the evaluation
compares the model’s performance across the two conditions,
Object Goal: Agent versus Object Goal: Object. Since ob-
jects cannot have preferences, here it is expected in Object
Goal: Agent and (relatively) unexpected in Object Goal: Ob-
ject that the shape approaches the previously contacted ob-
ject at a new location. Conversely, it is unexpected in Object
Goal: Agent and (relatively) expected in Object Goal: Object
that the shape approaches the new object at the previously
visited location.

False Belief & True Belief
Do models predict that an agent will act based on what it has
been present to observe?

Developmental Background. Older infants and younger
toddlers predict that agents will act on objects based on where
they last saw those objects (Onishi & Baillargeon, 2005; Scott
& Baillargeon, 2017), and they prefer agents who intend
to help based on what they last saw (Woo, Liu, Gweon, &
Spelke, 2021; Kiley Hamlin, Ullman, Tenenbaum, Goodman,
& Baker, 2013).

Familiarization Events. In the first kind of event, an agent
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Figure 1: Schematic Overview of the Evaluation Tasks. Eight familiarization events are presented first to set up an expectation about
the underlying agency, affiliations, beliefs, or intentions driving the behavior of each moving shape. At test, either of two test events are
presented, one consistent and one inconsistent with the expectation set up by the familiarization events. Here, red arrows indicate the shapes’
movements, and numbers indicate the order of these movements. For clarity, this figure only partially represents the familiarization events for
(e) through (h).

Figure 2: Schematic of the False Belief and True Belief tasks. Arrows indicate the direction of movements, and numbers indicate the
order of these movements. In the first trial (a), a clover-shaped agent approaches an observable heart-shaped goal object. In subsequent
familiarization events (b), the agent searches for its goal in the same room, even when grey occluders obstruct its view. At test, (c) in the False
Belief task, when the clover-shaped agent is absent, a circular agent moves the goal to the other room (2,3) before leaving. The clover-shaped
agent enters (4) and either goes to the original room, failing to find the goal object (red arrow, 5: expected), or to the room where the object
had been moved (blue arrow, 5’: unexpected). (d) In the True Belief task, the clover-shaped agent enters (1) before the circular agent enters
(2), witnessing the object change location (3,4). Here, the clover-shaped agent would be expected to search in the new room for its goal (red
arrow, 5).

moves toward a visible goal object located in one of two
rooms (Figure 2). In the following events, the goal object is
always placed in the same room, but depending on the place-
ment of the two grey occluders, the agent may or may not be
able to see the object’s location (Figure 2a & b). The agent
always moves to the same room to find the object, establish-
ing that the agent looks for the object where it had last seen
it.

Test Events. The goal object is initially located in the same
room, but a second agent switches its location to the other
room. In the True Belief task, the first agent sees the object
change location. In the False Belief task, the first agent is
not present during the switch, and so does not see the object
change location. The first agent later searches in the origi-
nal location (expected for False Belief, unexpected for True
Belief) or the new location (unexpected for False Belief, ex-
pected for True Belief).

Helping & Hindering

Do models infer that a goal-directed agent prefers an agent
who helps it reach its goal, and not one that hinders it?

Developmental Background. Infants prefer agents who
help others achieve their goals (Fawcett & Liszkowski, 2012;
J. Hamlin, 2015; J. K. Hamlin & Wynn, 2011; Premack &

Figure 3: Schematic of the Helping and Hindering tasks. Arrows
indicate the direction of movements, and numbers indicate the order
of these movements. In the depicted scenario, a pentagonal agent
moves toward a spoon-shaped goal (a). In the Helping task (b),
a clover-shaped agent removes the obstacle to help the pentagonal
agent reach its goal object. In the Hindering task (c), a star-shaped
agent places an obstacle between the pentagonal agent and the ob-
ject to hinder the agent. In both tasks (e), the pentagonal agent is
expected to approach the clover-shaped agent (red arrow), and is un-
expected to approach the star-shaped agent (blue arrow).

Premack, 1997). For example, J. K. Hamlin (2013) found that
10-month-old infants were more likely to reach for a puppet
who removed a door blocking another puppet’s preferred ob-
ject instead of reaching for a puppet who also removed a door,
but one blocking the puppet’s non-preferred object.

Familiarization Events. In the first kind of event (Fig-
ure 3a), two agents observe another agent approach a goal
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object. In the second kind of event, a barrier is placed in
the environment. In the Helping task (Figure 3b), a helping
agent removes the barrier blocking the goal-directed agent
from reaching its goal while the other agent does nothing.
In the Hindering task (Figure 3c), a hindering agent moves
the barrier to prevent the goal-directed agent from reaching
its goal while the other agent does nothing.

Test Events. At test, the goal and barriers are removed.
The three agents are in the same room, placed apart from
each other. In the Helping task, it is expected that the goal-
directed agent approaches the helper and unexpected that it
approaches the stationary agent. In the Hindering task, it is
expected that the goal-directed agent approaches the station-
ary agent and unexpected that it approaches the hinderer.

Background Training Tasks
Infants bring knowledge to experimental studies in the lab,
unlike deep learning systems that start with limited induc-
tive biases. We provide twelve background training tasks for
data-driven learning algorithms to obtain background knowl-
edge about social cognition, simple physics, and the format
of our tasks. For example, machines could learn that agents
have object-based preferences (Figure 4b), that objects move
upon contact with a rotating spinner and stop after colliding
with a wall, and the causal relations between the familiariza-
tion events and the test event. Importantly, the background
tasks are designed to differ in low-level ways from the evalu-
ation tasks (e.g., an agent never navigates to one of two pos-
sible goal objects in the background training tasks like they
do in the evaluation tasks), requiring models to form abstract
and integrated representations from the background training
to succeed at the evaluation. Detailed descriptions and illus-
trations of the complete background training set are on the
project website.

Figure 4: Selected Background Training Tasks. Models are
trained on twelve background tasks that introduce the environment’s
dynamics as well as individual components of agents’ and objects’
behaviors that can be combined to solve the evaluation tasks.

Notably, and similar to infants’ everyday experiences, the
training set consists of expected examples only. While it is
challenging to match the complexity of infants’ real-world
experiences, we believe this training set offers a reasonable

foundation for meaningful comparison. We encourage the use
of additional data to enhance machines’ performance.

Baseline Model
We propose a baseline model (Figure 5) that aims at predict-
ing the subsequent frame in a test trial, given the preceding
frames and one randomly selected familiarization trial as con-
text. We choose a Transformer architecture for its strength
in processing sequential data (Vaswani et al., 2017; Dosovit-
skiy et al., 2020; Arnab et al., 2021). The core challenge for
the model is to learn to represent temporal-spatial continu-
ities, causal relationships, and key concepts in social reason-
ing from the background training set.

Figure 5: Model Architecture and Training Procedure. The
Transformer model predicts the test frame at time t, given the frames
from a familiarization event and test frames from time 0 to t −1.

The baseline model is trained with all the background train-
ing tasks from both the current work and BIB. Each task video
is segmented into nine events–eight familiarization events fol-
lowed by one test event. Frames are sampled from each event
with a stride of 25 frames, with an upper limit of 20 frames
for a single event 1. The training objective of the model is
to minimize the mean square error (MSE) loss between the
predicted frames and target frames on a pixel-wise basis. A
three-layer 2D CNN transforms each video frame into a se-
ries of patch embeddings, which are augmented with sinu-
soidal temporal-spatial positional encodings to preserve their
sequential relations within the video. The embeddings of a
familiarization event are encoded with self-attention to estab-
lish the task context. Prediction always starts from the second
frame of a test event. To predict the tth frame, the Trans-
former decoder first applies self-attention on all preceding
test frames up to the (t − 1)th frame, and then incorporates
the encoded context into the decoder using cross-attention.
Finally, a two-layer 2D deconvolutional network transforms
the decoder output into RGB format.

After 100 epochs of training, the model yields a loss of
5.5 × 10−4 on the validation set, underscoring the model’s
predictive accuracy. For comparison, the baseline MSE be-
tween two successive frames was 2.6×10−3 on average. Vi-

1We evenly sample 20 frames for rare events with more than 500
frames.
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Figure 6: Example Prediction on a Held-out task. A clover-
shaped agent navigates to the bottle-shaped goal object. Left: previ-
ous frame, Middle: current frame (target), Right: model prediction.

sualizations of model predictions on a held-out task (Fig-
ure 6) reveal that the predictions preserve the low-level shapes
and colors of the elements in the environment (although with
some blurring), as well as some higher-level properties such
as efficient goal-directed action.

Alternative Models
We also compared our model with the other models previ-
ously tested on BIB. These models employ different architec-
tures and training approaches and, in some cases, include ora-
cle information and hand-selected priors (Table 1). BC-MLP
and BC-RNN are behavioral cloning models trained to predict
future coordinates of the main agent (Gandhi et al., 2021).
Video-RNN, like our model, processes and constructs pixel
images of task frames. The VT model uses Transformer-like
attention mechanisms to predict both frames and agent coor-
dinates (Hein & Diepold, 2022). Finally, HBToM predicts the
coordinates of the agent by leveraging a hierarchical Bayesian
approach to construct relevant cognitive functions in a prob-
abilistic model (Zhi-Xuan et al., 2022). The prediction accu-
racy of these models on BIB is shown in Table 2. Future work
might evaluate these models on our new tasks since these pre-
vious models either make predictions based on the positions
of a single, rather than multiple, agents (BC-MLP, HBToM,
and VT), or require task-specific knowledge (HBToM).

Evaluation
Models’ predictions are successful when they identify the one
video from the pair that conforms to social commonsense tar-
geted in each task. For our baseline model, this means its pre-
diction error on the expected video is lower than that of the
unexpected video. The performance of the baseline model on
our new tasks is presented in Table 3 along with its perfor-
mance on BIB in Table 2. We discuss some of the predictions
of the baseline model in detail below to illustrate its capabili-
ties and limitations.

Goal Preference (BIB). VT and the baseline model sub-
stantially outperform MLP- and RNN-based models in BIB’s
preference and inaccessible goal tasks. As shown in Table 2,
VT scores 82.1% and 89.8%, and our Transformer model
scores 73.7% and 78.8%. These results highlight the strength
of the attention mechanism in VT and our Transformer model
in capturing element-wise relations.

Instrumental Action (BIB). The current baseline model
makes accurate predictions (97.9%) in the No Barrier task,

slightly above chance predictions (57.3%) in the Inconse-
quential Barrier task, and below chance predictions (21.4%)
in the Blocking Barrier task. The model often fails to capture
the sequential and causal relations in the events. For example,
in the Blocking Barrier task (Figure 7), the model predicts
that the green wall will fade before the agent even reaches
the lock. This is likely because the model associates fading
with the number of frames that have elapsed in the video in-
stead of learning the causal relation between the key and the
wall. This heuristic fails during the evaluation because the
agent has to travel farther (taking more frames) to the key.
Helping & Hindering. The current baseline model achieves

Figure 7: Example Predictions on Evaluation Tasks. (a) In an
Instrumental Action: Blocking Barrier task, the baseline model pre-
dicts that the orange agent will approach the red key (left). Later, the
model predicts that the green wall will fade when the agent picks
up the key (middle) and when it approaches the lock with the key
(right). (b) In a Hindering task, the model correctly predicts that the
agent will approach the stationary agent (right), but fails to generate
the agent at the correct location near the target agent (center).

an accuracy of 60.7% and 58.3%. A closer examination of
the predicted frames suggests that the model might have been
capable of identifying the target agent but fails to predict the
approach trajectory. In the Hindering task (Figure 7b), a blue
pentagonal agent is seen below a stationary agent (orange cir-
cle) and a hindering agent. The model correctly predicts that
the pentagonal agent will approach the orange circular agent,
but the two agents overlap at the orange agent’s upper-right
corner (right), instead of the lower-right corner, which would
be on the path to the orange agent (center). This discrepancy
can likely be traced back to the model’s over-reliance on the
statistics of the background training, where the main agent
always starts from the top part of the grid in tasks showing
hindering behaviors.

True & False Belief. The current baseline model achieves
an accuracy of 97.5% and 2.4%, indicating that it expects
the agent to approach the goal behind the wall, regardless
of its belief about the relocation. Such predictions could be
attributed to either genuine ignorance or false belief or to a
failure to understand the role of the occluder in creating an
environment with only partial visibility.
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Table 1: Oracle information used by different models.

Deep Learning Models Bayesian Principled Model
Privileged Information BC-MLP BC-RNN Video-RNN VT Transformer (Ours) HBToM
Environment meta-data

(element type, coordinates, etc.) x x x x

Built-in inductive biases x x

Table 2: Comparisons of model prediction accuracy (%) on BIB.

Deep Learning Models Bayesian Principled Model
Task Name BC-MLP BC-RNN Video-RNN VT Transformer (Ours) HBToM

Preference 26.3 48.3 47.6 82.1 73.7 99.7
Multi-Agent 48.7 48.3 50.3 49.1 50.2 99.2
Inaccessible Goal 73.3 80.7 71.8 78.9 78.9 99.7
Efficiency: Path Control 94.0 92.8 99.2 96.0 96.0 94.9
Efficiency: Time Control 99.1 99.1 99.9 99.0 99.9 97.2
Efficiency: Irrational Agent 73.3 55.7 50.1 29.5 80.4 96.6
Instrumental: No Barrier 98.8 98.8 99.7 98.7 97.9 98.8
Instrumental: Inconseq Barrier 55.2 78.2 77.0 96.9 57.3 97.0
Instrumental: Blocking Barrier 47.2 56.6 62.5 82.1 21.4 99.7

Table 3: Baseline prediction accuracy (%) on the new social cog-
nition tasks.

Task Name Baseline
Approach: Social 38.6
Approach: Instrumental 50.2
Goal Attribution: Agent 40.8
Goal Attribution: Object 53.5
True Belief 97.5
False Belief 2.4
Helping 60.7
Hindering 58.3

Discussion
Machine benchmarks focusing on human social cognition
create valuable opportunities to develop AI systems with
human-like and human-compatible competencies. By com-
paring the predictions of AI and infants, we can align the
goals of AI systems with the foundational cognitive build-
ing blocks of human cognition. Our present work builds on
previous work, in particular on the Baby Intuitions Bench-
mark (Gandhi et al., 2021; Stojnić et al., 2023), by intro-
ducing eight new evaluation tasks that explore various social-
cognitive abilities present from human infancy, including rea-
soning about agency, affiliations, belief, and intention. We
also generated twelve background training tasks to provide
machines an opportunity to learn the environmental dynamics
and individual components of agents’ and objects’ behaviors
that could be combined to solve the evaluation tasks.

We updated the lower-bound for data-driven machine so-
cial reasoning with a Transformer baseline, which is trained
with a self-supervised learning paradigm. Its non-task-
specific architecture and training procedure provide an adapt-
able pipeline for future datasets structured around the VOE
paradigm. Despite showing promise on BIB’s tasks without

oracle guidance (Table 1), its performance on our new tasks
highlights the necessity for more powerful AI systems capa-
ble of reasoning about complex environments and the social
relationships among agents.

What can we learn from existing computational models
of social cognition, and how do we create AI systems that
can identify agency, affiliation, belief, and intention like in-
fants do? Our results point to two complementary strategies:
creating more realistic training data and integrating cogni-
tive inductive biases into model architectures. The disparity
between the artificial and passive learning environments we
provided cannot fully capture the data distribution in the rich,
multi-modal, and interactive experiences that support infant
learning. Efforts to bridge this gap have included capturing
infants’ sensory experiences through head-mounted cameras
(Vong, Wang, Orhan, & Lake, 2024; Sullivan, Mei, Perfors,
Wojcik, & Frank, 2021), eye-tracking (Mendez, Yu, & Smith,
n.d.; Candy et al., 2023) and simulating interaction with the
environment via embodied agents (Wykowska, Chaminade,
& Cheng, 2016). Our evaluation tasks are poised to serve as
a critical testing ground for models trained on these datasets.

On the other hand, structured Bayesian models aim to cap-
ture the innate knowledge and biases that infants possess to
facilitate efficient generalization. Existing models, such as
BIPaCK (Shu et al., 2021) and HBToM (Zhi-Xuan et al.,
2022), perform well on synthetic benchmarks built with simi-
lar priors as the models. However, they may generalize poorly
to real scenarios whose distributions are not fully captured by
the priors selected by the modelers. With the long-term goal
of developing machines that have infant-like social reason-
ing, we hope that our current work stimulates future investi-
gations that generate new modeling strategies as well as new
approaches that combine the strengths of existing strategies.
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