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ABSTRACT

A systematic investigation is presented for explicit approximations to
the Mean Spherical Approximation (MSA) for ionic systems with ions of
different size. Solution of the exact MSA for this case requires an implicit
solution for the screening parameter; this complication makes it particularly
undesirable for use in iterative equation-of-state calculations. This work
compares with the exact MSA solution an approximation based on a linear
mixing rule for a single effective ion size and a low-ion-density approxima-
tion due to Copeman and Stein. This comparison is for the electrostatic con-
tributions to the Helmholtz energy, the pressure, and the chemical potentials;
these are the quantities of primary interest in phase-equilibrium calculations
using an equation of state. Over a wide range of reduced temperatures,
reduced densities, and ion diameter ratios, the simple linear rule produces
good results. However, for diameter ratios differing greatly from unity,
better results are obtained at low ion densities from the method of Copeman
and Stein. Comparison with published Monte Carlo data suggests that, when
the MSA is used for the primitive model applied to aqueous electrolyte solu-
tions, little error is introduced by the use of these approximations.

This work was supported by the Director, Office of Energy Research, Office of Basic Energy
Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No.
DE-ACO03-76SF00098.
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1. Introduction

The simplest descriptions of ion-ion interactions in electrolyte solutions arise
from the so-called primitive model, where the ions are modeled as charged hard

spheres in a medium of uniform dielectric constant. The Mean Spherical Approxi-

mation (MSA) has been applied to the primitive model of electrolytes!™ and has

been used by several authors to correlate activity coefficients in aqueous electrolyte

solutions®~10, The MSA is popular, in part, because its solution, even for unequal-
sized ions, is analytical. The MSA yields fair results for activity coefficients up to
moderate ion concentrations, particularly if the ionic diameters are adjusted to fit the

data.

However, in some vapor-liquid equilibrium (VLE) calculations, liquid-phase
activity coefficients are not what one desires. Instead, it is often preferable to use a
single equation of state (EOS) to compute chemical potential's (or fugacity
coefficients) and pressures from the composition and density derivatives of the
molar Helmholtz energy in both fluid phases. This method is particularly advanta-
geous for mixed-solvent systems and for calculations at high pressures when the

liquid phase contains supercritical components.

EOS calculations for vapor-liquid equilibria are iterative, requiring evaluation
of chemical potentials and pressures at many different densities and compositions.

For efficiency and reliability of these calculations, it is advantageous to use analyti-

cal (rather than numerical) derivatives of the Helmholtz energy!l. Unfortunately,
the MSA solution for. systems with ions of different sizes, while analytical, is too
unwieldy for efficient VLE calculations. It involves an implicit solution of a com-
plicated equation for the screening factor; this implicit solution in particular compli-
cates differentiation of the resulting expressions with respect to density and compo-

sition.
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It is therefore desirable to find explicit approximations to the MSA which are
mathematically simple yet come close to reproducing the results of the full MSA.
For VLE calculations, we particularly want accurate composition derivatives (i.e.
chemical potentials) and density derivatives (i.e. osmotic pressures) of the

Helmbholtz energy. In this work, we evaluate in a systematic manner the accuracy

1213 and a new method

of fwo approximations: that proposed by Copeman and Stein
based on replacing the real mixture with a hypothetical mixture where the ions are

of a single effective size.

Lee!® has investigated the possibility of ignoring the P, term (see equation
(2.1) below) in the full MSA. While Lee’s suggestion simplifies the equations con-
siderably, it nevertheless requires an iterative solution for the screening factor;

therefore, we did not investigate it further.

2. Explicit Approximations

For a mixture with ions of arbitrary sizes and charges, solution of the MSA

yields the following equations:

x2 Y pi(1+0,1)72(z; - nolP,12A)

412 = : 2.1

Zpiziz

l .

1 OjPj%j
= — —_— 2.1
e [§'1+ajr @12
(1 pjc 3

- J
Q=1+ ZAZ l+ajl" (2.1b)
=1-—= Zp o} (2.1c)
where k2= WZ P;jzj (rc is the reciprocal Debye screening length), e is the elec-

tronic charge, k is Boltzmann’s constant, D is the static dielectric constant of the
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medium, T is the absolute tempefature, z; is the valence and o; is the diameter of
spécies i, p; is N;/V, the number density of species i, and the sums extend over all
ionic species. I is the MSA screening parameter (I’ — x/2 at infinite dilution or
when all o; = 0) which is used in the computation of the excess thermodynamic

properties (relative to a mixture of hard spheres) due to ion-ion interactions:

2
E® . & PiZj n 2
— == + .
Vv D r;l+oi1‘ ZAQP" (2.2)
AT E® TXuT
v =V + i (2.3)
2
r 1 [P
ex _ _ _ |1 2.4
¢ 3n)p; 8).p; [ A ] @4
i i
2
2 2 2 4re
o = x*1 Yy p;zt = (2.4a)
F DkT
d(AZ/V) A
ue = == (2.5)
i api

where E is the internal energy, A is the Helmholtz energy, ¢ is the osmotic

coefficient, and u; is the chemical potential (on a per-particle basis) of species i.

Hgye and Blum!” present an analytical expression for uf* which, when the ion sizes
are unequal, produces results which disagree with the derivative (2.5) (taken numer-
ically) by an amount proportional to z;. Since the chemical potential of an ion con-
tains such an arbitrary constant (which depends on the choice of the zero of poten-
tial and which cancels out for an electrically-neutral combination of ions), their

expression is equally correct. In this work, however, we use Equation (2.5) to be
consistent with our other expressions for ™.

Approximation I: Single Effective Ion Diameter

If all ions have the same diameter o, the above equations become much

simpler:
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r= 51; [(1 +20K)% - 1] 2.6)
ex 3
EV __I¥a+oDir @1
(3
ex 3
AV - 21; :T [1 + -;-or] (2.8)
r3
ex - _ Q.
13
w* o’ T 2.10
kT = 4n l1+ol :

The simpler form of Equations (2.6) to (2.10) immediately suggests that it
might be worthwhile to assign one effective ion size (o,,;) to the mixture. A rea-

sonable definition for o,,;, might be

POmix = 3., PiO; (2.11)
i

where p = Zp,- and the sum again extends over all ionic species.
i

We also investigated the mixing rule

po-’i‘.x = 2 pio'i3 (2.12)
i
but found it to be inferior to Equation (2.11) in all cases considered.
Subsequently we refer to Equation (2.11) as Approximation I. While Equations

(2.6) to (2.9) may be used directly with Equation (2.11), the composition depen-

dence of o, changes the expression for u/™

e 3 | (1+0,Nz?
so__I® mixl)Z, “Lo-0y O @a13)

o " ZPJ ij i
j

Approximation II: Low-ion-Density Approximation

12,13

Copeman and Stein suggested an explicit approximation, based on an
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extension of the Debye-Hiickel radial distribution function (and which therefore
should be most accurate at the low ion densities at which Debye-Hiickel theory is
valid), which allows ions of different sizes. We refer to their suggestion as Approx-

imation II. The resulting equations are:

arz = o’y p;M? (2.14)
i
nSm ﬂB'S1’3
M; =z +0; | = +B; + 6;,-A (2.142)
4x (2.14b)
T 21+ a(S,)%) '
Smn = JPrZR0F (2.14c)
k
5 __ &g b
SRR @13
A  E* TXr
V -V T3 (2.3)
6% = — r +_1_Q£ - o? > piz} -ry pizlo; 2.16)
3np =m dp 4 (< 140, ¥ (1+0;)? ’
of T  na? B;S15 S12 BA (8513 A
= .o:M: +—" —+—1 | (2.16a
9 20  B8Ap zi:p‘ T 3n 2 14a(Sy)% (6w 2160
20T ]
kT b/ ap, 4r 1+0',I' j (1+GJD2- '
2
ar _a?},,2 | ®o; n 0B;
‘a-pT = “S'F M" +2§p}0’1M1 :P" {ZiA+'6-O'is1_2] +5;)T (2.173)

dB;

T T

+ 6 A2 (( ap] Sl.3+zi°-i33j] A+ '6"0"3815‘1'3)
j ]
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The equations for the excess osmotic coefficient and chemical potentials are newly

(2.17b)

derived in this work and may not be in the most concise form possible. Equation

(2.3) replaces the approximate Helmholtz energy function given previously!>,

3. Comparison of Approximations
To ascertain the accuracy of Approximations I and II, we examine results for

excess Helmholtz energy A ¥, excess osmotic coefficient ¢ **, and excess chemical

potentials uf*; these are the quantities especially relevant for EOS calculations.

To make a systematic comparison, we restrict attention to a system containing
only one cationic species (with diameter o, and charge +izl) and one anionic
species (with diameter o_ and charge -Izl). This system can be completely charac-

terized by a dimensionless reciprocal temperature, dimensionless density, and diam-

eter ratio:
* |z |2€2
= 3.1
. DkTc _ @.1
N -3 ‘
p* = p5 (3.2)
(o]
r= — (3.3)
(o]

where 6 =¥(0, +0L).

To interpret the results, we define a dimensionless screening factor, internal
energy, Helmholtz energy, and chemical potential (the osmotic coefficient is already

dimensionless):

I' =Tc (3.4)
E&X

tex__
E™= NkT

(3.5)



-8 -

Aex

A% NkT (3.6)
pe
u = —k—‘T— | (3.7)

Using these reduced variables, dimensionless equations may be obtained which are
analogous to Equations (2.1) to (2.5) for the full MSA; to Equations (2.6) to (2.9)
and (2.13) for Approximation I; and to Equations (2.14) to (2.17) for Approximation

II. These equations are given in the Appendix.

We note that these properties are not all independent. In the primitive model,

we have the following thermodynamic identity:

A~ - o= o (38)
For our test case in dimensionless form, this becomes
AT AT - 9 (3.9)
Equation (3.9) was used to verify the internal consistency of our calculations.

Our systematic analysis of Approximations I and II consists of determining, for
fixed values of r (0.25, 0.50, and 0.75), the region in the (p*, ﬁ*) plane wherein
each approximation is accurate to within 1%, 2%, 5%, 10%, and 25% of the full
MSA result for A ¢, ¢, u:"‘, and p'¢*. These were made into contour plots for
the physically-interesting portion of the (p', B') plane: p' up to 1 and B' from 1
to 100. (Comparison with the MSA is, however, less meaningful at high [3* and
low p* because the MSA is a poor approximation in this region, as discussed in
Section 4.) The aqueous electrolyte regime is characterized by ﬁ* near 2 (for 1-1
electrolytes) and p' up to approximately 0.2. A typical molten salt would have [3*

near 50 and p* near 0.7. As a specific example, a one-molar solution of sodium

chloride in water at 25°C would have (using Pauling crystal diameters for the ions)
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p* =0.0253, B* = 2.59, and r = 0.525. Molten sodium chloride at its melting tem-

perature (1074 K) has p* = 0.672, B* = 56.5.

Figures 1-4 show combined contour plots for the two approximations for an ion

size ratio of 0.5. The solid contours show the error in Approximation I, the dashed

contours are for Approximation II, and the shading indicates the region where the

result from Approxifnation II comes closer to reproducing the result from the full

MSA. For clarity, the 2% contour is omitted from Figure 3; this graph (for the

chemical potential of the small _ioh) is complicated because, for both approxima-

tions, the error changes sign, producing two contours for each magnitude of the

€ITor.

1)

2)

3)

4)

5)

The following conclusions can be drawn from Figures 1-4:

Approximation II is generally better than Approximation I at low densities for

all properties éxcept u:“, where it is better at high 8 * and only slightly worse
ét low B *,

As the density increases, Approximation I gets worse slowly, but the error in
Approximation II increases drastically. The latter is to be expected, as
Approximation II is based on a Debye-Hiickel radial distribution function.

Both approximations get worse at high B‘; the errors (at constant p*) tend to

go through a minimum at 8 * somewhere between 2 and 10. Fortunately, this

region of minimum error lies roughly in the aqueous electrolyte regime.

Though both approximations give very good results for the excess Helmholtz
energy in the aqueous electrolyte regime, the errors in the derivative properties

(osmotic coefficient and chemical potentials) in this region tend to be two or
three times as high as those in A tex,

Neither approximation performs well in the molten-salt region; Approximation
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II is particularly unsuitable at these conditions.
A remaining factor to consider is the influence of the ion size ratio. Figures 5
and 6 are contour plots for ¢ ** at ratios of 0.25 and 0.75, respectively. In conjunc-

tion with Figure 2, these show the effect of the size ratio on the errors in ¢ . The
effect on the contour plots for the other properties is similar; the rest of the plots at

r = 0.25 and r = 0.75 are shown in Figures 7-12.

As expected, the size ratio has a large influence on the accuracy of Approxima-
tion I, which becomes exact when r = 1. Approximation II also gets worse as the

size ratio deviates from unity, but the effect is not as severe.

Finall‘y, we note that Blum!® has recently presented an examination of the
choice of the effective ion size o,,; to be used in soiving for the screening factor
via Equation (2.6). His I' = 0 limit approaches our Approximation I as p — 0
when all Iz;| are equal. An interesting point raised by Blum’s work is the influence
of the ionic charges on the optimum o,,,. His results suggest to us that, for sys-
tems with ions of differing charge, a simple improvement to Approximation I might

be given by

G =Y pioiz}/ Zp‘-z,? (3.10)
1]

]
Because our test system requires the charges on the two species to be equal and

opposite (otherwise a fourth dimensionless group would be required), our results do
not address the effect of unequal charges on the accuracy of explicit approximations
to the MSA. This question is probably worthy of further study. We point out, how-
ever, that Approximation I is equivalent to the full MSA for equal-sized jons

regardless of their charges.

4. Comparison with Monte Carlo Results

A limited amount of computer-simulation data is available for the primitive
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model for unequal-sized ions. We compare our calculations to Monte Carlo data of

Abramo, et al.!? for 1-1 aqueous electrolytes and to Monte Carlo data of Rogde!®
for 2-2 aqueous electrolytes. Both studies report internal energies and osmotic
coefficients; we found no published data for Helmholtz energies or chemical poten-

tials for systems with unequal ion sizes.

Table I (for Abramo’s data) and Table II (for Rogde’s data) present the Monte
Carlo results for excess internal energies and excess osmotic coefficients along with
the corresponding values calculated from the full MSA and from the two explicit

approximations. The reported Monte Carlo values for the osmotic coefficient
included the hard-sphere contribution; ¢ ** was obtained by subtracting out PV/NkT
for the hard-sphere mixture as given by the equation of Mansoori, et al.!’.

We see from Tables I and II that even the full MSA does not always yield

highly accurate results for the primitive model; this is especially true at higher B*
(2-2 aqueous electrolytes). Thc differences between the thermodynamic properties
calculated from the explicit approximations and those calculated from the MSA are
often smaller in magnitude than the deviation of the MSA from the Monte Carlo
results. As expected, this result is especially valid for those regions where the
explicit approximations work well, i.e. for Approximation I with r near unity and

for Approximation II at low densities.
Monte Carlo studies in the restricted primitive model (equal ion sizes) also
show that the MSA is a poor approximation to the primitive model at high B" and

low p* because behavior at these conditions is dominated by ion pairing and clus-

20,21

tering Corrections to the MSA have been considered for the equal-sized

case?*?3; these could be used in conjunction with Equation (2.11) to improve

Approximation I at conditions where the MSA is inadequate.
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5. Conclusions

We have investigated two explicit approximations to the MSA for thermo-
dynamic properties in the primitive model of ionic systems. For conditions typical
of aqueous electrolytes, Approximation I is satisfactory, particularly if the ion-size
ratio is not less than 0.5. At low concentrations, Approximation II is better, but it
quickly becomes unsuitable at high concentrations. Based on comparison with a
limited amount of Monte Carlo data, these approximations, for primitive-model con-
ditions characteristic of most aqueous electrolyte solutions, introduce only errors
which are no larger than those introduced by the MSA itself. Such approximation is
therefore justified for practical calculations where analytical differentiation is desir-

able or where computational efficiency is important.
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APPENDIX

Dimensionless Equations for the Screening Factor, Internal Energy, Helmholtz Energy,

Osmotic Coefficient, and Single-Ion Chemical Potentials

It is convenient to define the following dimensionless parameters in addition to those defined

in Section 3:

N
~

fo= == (A1)
§'=%= ril (A.2)
x'=x3=@nB°p")* (A3)
a'=alzl/g%=x")p™ (A4
pi = pi&° (A.5)
Pr=d%P, 1z (A.6)

B; = GB;/1z1 (A7)
M'=Milz] (A.8)

Smin = SmaB ™1 1zI™ (A.9)
I, = a"g—g (A.10)

For the model described in Section 3, the screening factor and the electrostatic contributions
to the internal energy, Helmholtz energy, osmotic coefficient, and ionic chemical potentials are

given as follows: .

Full MSA

- K‘z - T EP: : . 7:§3P:

rz-= 5 A+&0H211- 5a +(1+& T2 -1- 2 (A.11)
. * &, 3
pr=L - A1l
2Q [1+_§+r‘ 1+§_r‘] ( ?)
. 3 3 B

o=1+2 & & (A.11b)

+
4A |1+&" 1+&xt
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Approximation II
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.y r‘ . . ) ‘ . -
0% =422 X I T, P ‘5*_ —2 . (A.23)
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Table I. Comparison of Approximations I and II and Full MSA to Monte Carlo Data for Excess
Internal Energy and for Excess Osmotic Coefficient for 1-1 Aqueous Electrolytes.

L

* * -E = -9~
[ B r
MC MSA 1 II MC MSA I I
.12800 1.888 0.8 690+£002 6793 6771 7075 | .142+014 .1459 .1448 .1408
08990 2.124 0.6 7342003 7305 .7196 .7597 | .157£010 .1641 .1586 .1575
06023 2428 04 J89+002 .7999 7686 .8312 | .184+007 .1913 .1751 .1808
02921 3.090 0.1 893+002 .9703 .8584 9955 | 215+.006 .2674 2066 .2473
.06506 1.838 0.8 581+002 5724 5710 5872 | .136+.007 .1336 .1328 .1318
04569 2.124 0.6 613+002 .6093 .6023 .6237 | .146+.005 .1477 .1438 .1449
.03061 2.428 04 657+002 .6572 .6378 .6712 | .166£.003 .1677 .1567 .1625
.02765 1.888 0.8 4551002 4469 4461 4526 | 1132003 .1141 .1136 .1136
01942 2,124 0.6 A75£001 4698 4661 4748 | .121+£002 .1236 .1213 .1224
01301 2428 04 S507+.002 4981 .4882 .5020 | .132+003 .1362 .1300 .1334
.00651 1.888 0.8 283+001 2721 2719 .2728 | 079+001 .0777 .0776 .0776
00457 2124 0.6 295+.001 2808 .2797 2812 | 084+001 .0817 .0810 .0813
00306 2428 04 307+.001 2908 .2882 .2907 | .088+.001 .0866 .0847 .0855
02532 2.588 0.525 | 677004 .6646 .6550 .6763 | .166£.004 .1686 .1631 .1658
01013 2.588 0.525 | S511+.003 4932 4886 .4964 | .135£.002 .1350 .1321 .1337
00253 2.588 0.525 | 316+002 .2934 2922 .2936 | 091+£001 .0873 .0864 .0868
01686 2963 0.275 | .725+.003 .7209 .6912 .7314 | .183+£.003 .1941 .1766 .1875
00674 2963 0275 | S546£002 .5230 .5093 5246 | .143+002 .1493 .1406 .1458
00169 2963 0.275 | 332+£.002 .3035 .2999 .3028 | .094+.001 .0924 .0899 .0911

Table II. Comparison of Approximations I and II and Full MSA to Monte Carlo Data for Excess
Internal Energy and for Excess Osmotic Coefficient for 2-2 Aqueous Electrolytes.
. B . r -E fa -0
i MC MSA I 1I MC MSA I II

13011 7573 0.8 | 3.744£011 3.640 3.624 3948 | 67+03 636 .630 .519
09138 8519 0.6 | 4.089+012 3991 3906 4327 | 71£03 737 705 .612
06122 9.736 0.4 | 4.588+£018 4.504 4242 4.896 | .77£02  .901 798 756
06506 7.573 0.8 | 3.359+£010 3.188 3.176 3.384 { 63+02 619 615 .569
04569 8519 0.6 | 3.718+£012 3460 3.401 3.666 | 66+02 .706 .681 .654
03061 9736 04 | 4.235+017 3.841 3.664 4070 | 6707 838 .762 .780
02602 7573 0.8 | 2923+012 2592 2.583 2.685 | 4605 571 568  .557
01828 8519 0.6 | 3.280+013 2775 2.741 2.868 [ 5404 635 .620 .622
01224 9736 0.4 | 3.831+018 3.016 2920 3.113 | S5+08 .727 .681 .71l
00651 7.573 0.8 | 2.331x012 1760 1757 1.781 | 43+03 451 450 450
00457 8519 0.6 | 2.723+014 1846 1.834 1.866 | 46+05 486 480 484
00306 9.736 0.4 | 3.322+020 1951 1920 1969 | S0+08 .530 .514 .527
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Figure 1: Contour Plot for Deviation from Full MSA Results for A ® at r = 0.50.
Solid Lines for Approximation I; Dashed Lines for Approximation II.

Shading Indicates Region where Error from Approximation II is
Smaller.
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Figure 2: Contour Plot for Deviation from Full MSA Results for ¢ at r = 0.50.

Lines and Shading as in Figure 1.
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Figure 3: Contour Plot for Deviation from Full MSA Results for . at r = 0.50.

Lines and Shading as in Figure 1.
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Figure 4: Contour Plot for Deviation from Full MSA Results for u % at r = 0.50.
Lines and Shading as in Figure 1.
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Contour Plot for Deviation from Full MSA Results for ¢ % at r = 0.25.

Lines and Shading as in Figure 1.
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Contour Plot for Deviation from Full MSA Results for ¢ at r = 0.75.
Lines and Shading as in Figure 1.
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Ficure 7: Contour Plot for Deviation from Full MSA Results for A *ex atr = 0.25.

Lines and Shading as in Figure 1.
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Contour Plot for Deviation from Full MSA Results for pi atr =025
Lines and Shading as in Figure 1.
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Contour Plot for Deviation from Full MSA Results for ure atr = 0.25.
Lines and Shading as in Figure 1.
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Figure 10: Contour Plot for Deviation from Full MSA Results for A " atr = 0.75.
Lines and Shading as in Figure 1.
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Contour Plot for Deviation from Full MSA Results for u.

Figure 11:

Lines and Shading as in Figure 1.
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Contour Plot for Deviation from Full MSA Results for u-= atr = 0.75.

Lines and Shading as in Figure 1.
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