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We present an open-source software package, VAN-DAMME (Versatile Approaches to Numerically Design, 
Accelerate, and Manipulate Magnetic Excitations), for massively-parallelized quantum optimal control (QOC) 
calculations of multi-qubit systems. To enable large QOC calculations, the VAN-DAMME software package utilizes 
symmetry-based techniques with custom GPU-enhanced algorithms. This combined approach allows for the 
simultaneous computation of hundreds of matrix exponential propagators that efficiently leverage the intra-

GPU parallelism found in high-performance GPUs. In addition, to maximize the computational efficiency of the 
VAN-DAMME code, we carried out several extensive tests on data layout, computational complexity, memory 
requirements, and performance. These extensive analyses allowed us to develop computationally efficient 
approaches for evaluating complex-valued matrix exponential propagators based on Padé approximants. To assess 
the computational performance of our GPU-accelerated VAN-DAMME code, we carried out QOC calculations 
of systems containing 10 - 15 qubits, which showed that our GPU implementation is 18.4× faster than the 
corresponding CPU implementation. Our GPU-accelerated enhancements allow efficient calculations of multi-

qubit systems, which can be used for the efficient implementation of QOC applications across multiple domains.

Program summary

Program Title: VAN-DAMME

CPC Library link to program files:: https://doi .org /10 .17632 /zcgw2n5bjf .1
Licensing provisions: GNU General Public License 3
Programming language: C++ and CUDA

Nature of problem: The VAN-DAMME software package utilizes GPU-accelerated routines and new algorithmic 
improvements to compute optimized time-dependent magnetic fields that can drive a system from a known initial 
qubit configuration to a specified target state with a large (≈ 1) transition probability.

Solution method: Quantum control, GPU acceleration, analytic gradients, matrix exponential, and gradient ascent 
optimization.
1. Introduction

The past two decades have witnessed impressive progress toward re-

alizable quantum computing, with several competing prototypes using 
various platforms such as transmons [1,2], fluxoniums [3,4], trapped 

✩ The review of this paper was arranged by Prof. W. Jong.
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URL: http://www.bmwong-group.com (B.M. Wong).

ions [5,6], and Rydberg atoms [7]. One key challenge among all of these 
approaches is the difficult task of efficiently and accurately constructing 
time-dependent external control pulses that can drive these multi-qubit 
systems toward desired quantum states to enable massive calculations. 
The ultimate goal of quantum optimal control (QOC) approaches is to 
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construct these time-dependent external fields, and several frameworks, 
such as GRAPE [8], CRAB [9], and Krotov [10], have been previously 
used to calculate optimal control fields to enable desired gate opera-

tions or state transitions [11–13]. In all of these methods, the size of the 
2𝑛𝑞 ×2𝑛𝑞 Hamiltonian increases exponentially with the number of qubits, 
𝑛𝑞 , which prohibits the QOC calculations of large multi-qubit systems. 
For example, recent benchmarks have shown that 128 classical CPUs 
are required for QOC simulations of 10 qubits [14], whereas 12 qubits 
is the current limit for the GRAPE-based algorithm on a quantum-based 
processor [15]. Because the memory requirements of QOC problems in-

crease exponentially with the number of qubits, recent methods have 
been proposed to address this difficulty [16,17]. For instance, by taking 
advantage of checkpoints and reversibility [17], the memory require-

ments of the standard GRAPE routine have been reduced by a factor of 
2𝑛𝑞 × 2𝑛𝑞 × 𝐶 , with 𝐶 proportional to the number of time steps. To ad-

dress this computationally-intensive problem and further decrease these 
memory requirements, we present a new open-source software package, 
VAN-DAMME (Versatile Approaches to Numerically Design, Accelerate, 
and Manipulate Magnetic Excitations), which uses custom, massively-

parallelized GPU acceleration schemes and symmetry-based techniques 
[14] to allow efficient QOC calculations of multi-qubit systems contain-

ing up to 15 qubits and beyond.

To maximize the computational efficiency of the VAN-DAMME code, 
we present several extensive tests on data layout, computational com-

plexity, memory requirements, and performance. These extensive anal-

yses allowed us to develop computationally efficient approaches for 
evaluating the discretized propagator (i.e., the exponential of a complex-

valued matrix), since this is the most time-consuming operation in the 
QOC algorithm. To accelerate these calculations, we developed cus-

tomized GPU routines and utilized existing routines in the CUDA BLAS 
library [18,19] to evaluate hundreds of matrix exponentials in par-

allel with highly accurate Padé approximants [20–22] and numerical 
scaling techniques (to ensure numeric robustness) [23]. For additional 
computational performance, we also parallelized all of the other com-

putationally intensive matrix operations, such as matrix initialization, 
matrix⋅matrix multiplications, and matrix⋅vector multiplications, on 
GPUs. To assess the computational performance of our GPU-accelerated 
VAN-DAMME code, we carried out QOC calculations of systems contain-

ing 10 - 15 qubits using state-of-the-art A100 GPUs on the Perlmutter

supercomputer at the National Energy Research Scientific Computing 
Center (NERSC) [24]. Our work concludes with a detailed discussion 
of performance analyses and timings of the VAN-DAMME code, which 
show that our GPU-accelerated approaches are 18.4× faster than the 
corresponding CPU implementation.

2. Theory and computational methodology

The time-dependent dynamics of a multi-qubit system is governed 
by the time-dependent Schrödinger equation:

𝑖
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = (

𝐻0 +𝐻𝑐(𝑡)
) |𝜓(𝑡)⟩, (1)

where 𝐻0 is the static Hamiltonian and 𝐻𝑐 (𝑡) is the time-dependent 
control Hamiltonian. The static Hamiltonian of an 𝑛𝑞 -qubit system is 
defined as

𝐻0 = 𝐵𝑧 ⋅
1
2

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑧

+ 𝑐
(1)
cpl

⋅
1
4

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑧

𝜎(𝑖+1)
𝑧

+ 𝑐
(2)
cpl

⋅
1
4

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑧

𝜎(𝑖+2)
𝑧

+…

+ 𝑐
(⌊ 𝑛𝑞

2 ⌋)
cpl

⋅
1
4

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑧

𝜎
(𝑖+⌊ 𝑛𝑞

2 ⌋)
𝑧 , (2)

where the first term reflects the interaction between the qubits and a 
static magnetic field, 𝐵𝑧 , along the 𝑧-direction. The other terms rep-

resent the nearest-neighbor coupling, next-nearest-neighbor coupling, 

etc., and 𝑐(1)
cpl

, 𝑐(2)
cpl

, … , 𝑐
(⌊ 𝑛𝑞

2 ⌋)
cpl

are the coupling coefficients. The control 
2

Hamiltonian,
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𝐻𝑐(𝑡) = 𝐵𝑥(𝑡) ⋅
1
2

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑥

+𝐵𝑦(𝑡) ⋅
1
2

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑦

, (3)

manipulates all the qubits simultaneously with time-dependent control 
pulses, 𝐵𝑥(𝑡) and 𝐵𝑦(𝑡), along the 𝑥- and 𝑦-axes, respectively, throughout 
the control duration [0, 𝑇 ].

To enable a numerical solution of Eq. (3), we discretize the control 
duration into 𝑁 timesteps of duration 𝜏 , where 𝜏 = 𝑇

𝑁
. The amplitude 

of the control pulse along the 𝑥- and 𝑦-axis at 𝑡 = (𝑗 + 1
2 )𝜏 is denoted

by 𝐵𝑥[(𝑗 +
1
2 )𝜏] and 𝐵𝑦[(𝑗 +

1
2 )𝜏], respectively. Given the state, |𝜓𝑗⟩, 

at 𝑡 = 𝑗𝜏 and the control pulses, the state |𝜓𝑗+1⟩ at 𝑡 = (𝑗 + 1)𝜏 can be 
obtained with the exponential propagator, i.e.,

|𝜓𝑗+1⟩ = exp
(
−𝑖𝜏

(
𝐻0 +𝐻𝑐[(𝑗 +

1
2 )𝜏]

)) |𝜓𝑗⟩, (4)

where

𝐻𝑐[(𝑗 +
1
2 )𝜏] = 𝐵𝑥[(𝑗 +

1
2 )𝜏] ⋅

1
2

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑥

+𝐵𝑦[(𝑗 +
1
2 )𝜏] ⋅

1
2

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑦

(5)

is the control Hamiltonian at 𝑡 = (𝑗 + 1
2 )𝜏 . The goal of the VAN-DAMME 

software package is to solve for the time-dependent optimal control 
fields, 𝐵𝑥(𝑡) and 𝐵𝑦(𝑡), that evolve the multi-qubit system toward a de-

sired target state, |𝜓target⟩. Accordingly, we define the loss function as 
the following transition probability:

𝑃 (|𝜓𝑁 ⟩) = |⟨𝜓target|𝜓𝑁 ⟩|2, (6)

where |𝜓𝑁 ⟩ is the final state at the 𝑁 th timestep.

The VAN-DAMME software package evaluates the analytic gradi-

ents of 𝑃 (|𝜓𝑁 ⟩) with respect to 𝐵𝑥 and 𝐵𝑦 at each timestep, i.e., 
d𝑃 (|𝜓𝑁 ⟩)

d𝐵𝑥

|||(𝑗+ 1
2 )𝜏

and d𝑃 (|𝜓𝑁 ⟩)
d𝐵𝑦

|||(𝑗+ 1
2 )𝜏

. The gradients at the last timestep, 

i.e., d𝑃 (|𝜓𝑁 ⟩)
d𝐵𝑥

|||(𝑁− 1
2 )𝜏

and d𝑃 (|𝜓𝑁 ⟩)
d𝐵𝑦

|||(𝑁− 1
2 )𝜏

, are evaluated first. Next, 

similar to the backpropagation method in neural networks, the VAN-

DAMME software package recursively evaluates the gradients at the 
previous timestep using the gradients that have already been evaluated 
[8,11]. The control pulses are updated iteratively with the expressions

𝐵(𝑙+1)
𝑥

[(𝑗 + 1
2 )𝜏] = 𝐵(𝑙)

𝑥
[(𝑗 + 1

2 )𝜏] + 𝛾
d𝑃 (|𝜓𝑁 ⟩)

d𝐵
(𝑙)
𝑥

|||||(𝑗+ 1
2 )𝜏

,

𝐵(𝑙+1)
𝑦

[(𝑗 + 1
2 )𝜏] = 𝐵(𝑙)

𝑦
[(𝑗 + 1

2 )𝜏] + 𝛾
d𝑃 (|𝜓𝑁 ⟩)

d𝐵
(𝑙)
𝑦

|||||(𝑗+ 1
2 )𝜏

,

(7)

where 𝑙 is the iteration, and 𝛾 is the update rate evaluated with a golden 
section search algorithm.

Algorithm 1 summarizes our gradient-based approach. In each iter-

ation of this routine, the propagation of the multi-qubit state in line 
7 requires the computation of several thousand complex-valued ma-

trices (i.e., A[𝑗] = −𝑖𝜏(𝐻0 + 𝐻𝑐[(𝑗 + 1
2 )𝜏]) for 𝑗 = 0, … , 𝑁 − 1), the 

computation of several thousand matrix exponentials (i.e., 𝑒A[𝑗] for 
𝑗 = 0, … , 𝑁 − 1), and the multiplication of these matrix exponentials 
by a vector as shown in Eq. (4). In Eq. (4), because the matrices 𝐻0 and 
𝐻𝑐 can be computed in advance (i.e., for each iteration, the 𝐵𝑥 and 𝐵𝑦

vectors, as well as the 𝐻𝑥 and 𝐻𝑦 matrices are given), hundreds of ma-

trix exponentials can be calculated simultaneously. The execution of line 
8 involves the computation of a complex dot product and the computa-

tion of a norm. The implementation of line 10 requires the computation 
of a large number of complex-valued matrix exponentials, matrix⋅matrix 
multiplications, and matrix⋅vector multiplications. The implementation 
of line 11 is similar to the implementation of line 7. Finally, the imple-

mentation of line 12 requires the addition of vectors. Note that billions 
of arithmetic operations are needed for each iteration in this routine. In 

addition, multiple iterations are required to achieve convergence.
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The complex-valued matrix operations in Algorithm 1 are time-

consuming. For example, as shown on line 7, a different matrix ex-

ponential is computed in each time step. Matrix exponentials are also 
evaluated on line 12. Since these matrix exponentials share the same 
problem size and memory requirements, there is a compelling case for 
offloading these computations to GPUs and executing them in batches. 
Consequently, the VAN-DAMME code leverages the high-performance 
numerical capabilities of GPUs to handle the majority of these calcu-

lations [25]. This approach encompasses all matrix-related operations, 
including matrix initializations, matrix exponentials, matrix⋅matrix and 
matrix⋅vector multiplications, as well as various linear algebra tasks, re-

sulting in enhanced efficiency and reduced computational burden.

Algorithm 1: Quantum control algorithm in the VAN-DAMME 
software package.

Input: Control duration 𝑇 , time step 𝜏 , initial magnetic control pulses 
𝐵𝑥[(𝑗 +

1
2
)𝜏] and 𝐵𝑦[(𝑗 +

1
2
)𝜏] for 𝑗 = 0, … , 𝑁 − 1, static 

Hamiltonian 𝐻0, control Hamiltonians 𝐻𝑥 =
1
2
∑𝑛𝑞

𝑖=1 𝜎(𝑖)
𝑥

and 
𝐻𝑦 =

1
2
∑𝑛𝑞

𝑖=1 𝜎(𝑖)
𝑦

, initial state |𝜓init⟩, desired target state |𝜓target⟩, 
threshold probability 𝛿, and maximum number of iterations 
𝑀𝑎𝑥.

Output: Final propagated wavefunction, |𝜓𝑁 ⟩, and optimized magnetic 
pulses 𝐵𝑥[(𝑗 +

1
2
)𝜏] and 𝐵𝑦[(𝑗 +

1
2
)𝜏] for 𝑗 = 0, … , 𝑁 − 1.

1 /* Working with zero-based indexing */

2 Transform the Hamiltonians 𝐻0, 𝐻𝑥, and 𝐻𝑦 with the 
symmetry-assisted approach as described in Sec. 3

3 Initialize 𝐵𝑥[(𝑗 +
1
2
)𝜏] and 𝐵𝑦[(𝑗 +

1
2
)𝜏] for 𝑗 = 0, … , 𝑁 − 1

4 𝑃 = 0; 𝑙 = 0; |𝜓0⟩ = |𝜓init⟩
5 while 𝑙 < Max and 𝑃 < 𝛿 do

6 for 𝑗 = 0 to 𝑁 − 1 do

7 Calculate |𝜓𝑗+1⟩ using Eq. (4)

end

8 Update 𝑃 using Eq. (6)

9 for 𝑗 =𝑁 − 1 to 0 do

10 Calculate d𝑃 (|𝜓𝑁 ⟩)
d𝐵𝑥

|||(𝑗+ 1
2 )𝜏

and d𝑃 (|𝜓𝑁 ⟩)
d𝐵𝑦

|||(𝑗+ 1
2 )𝜏

using 
backpropagation

end

11 Calculate update rate, 𝛾 , using golden section search

12 Update vectors 𝐵𝑥[(𝑗 +
1
2
)𝜏] and 𝐵𝑦[(𝑗 +

1
2
)𝜏] using Eq. (7)

13 𝑙 = 𝑙 + 1
end

14 return |𝜓𝑁 ⟩, 𝐵𝑥[(𝑗 +
1
2
)𝜏], and 𝐵𝑦[(𝑗 +

1
2
)𝜏] for 𝑗 = 0, … , 𝑁 − 1

3. Symmetry-assisted Hamiltonian reduction

While the VAN-DAMME software package can execute QOC calcu-

lations of arbitrary qubit configurations, a significant computational 
speedup for QOC calculations of multi-qubit systems with permutation 
(𝑆) or dihedral (𝐷) group symmetry [14] can be obtained, which we 
focus on in this section. In these situations, the Hilbert space (ℂ2𝑛𝑞 )
is decomposed into orthogonal subspaces. The evolution of the quan-

tum state is restricted in each subspace as long as the symmetry of the 
multi-qubit system is preserved. The VAN-DAMME code can take ad-

vantage of the symmetry of the multi-qubit system to block diagonalize 
the Hamiltonians such that the evolution of the multi-qubit system can 
be calculated with each block separately. In particular, when the initial 
and target states lie in only one subspace, quantum control calculations 
are needed for only one block instead of the entire Hamiltonian.

As representative examples to demonstrate the capabilities of the 
VAN-DAMME software package, we consider two typical entangled 
states, the 𝑊 state [26] and the GHZ (Greenberger–Horne–Zeilinger) 
state [27] given by

|𝑊 ⟩ = 1 |100…0⟩+ |010…0⟩+⋯+ |00…10⟩+ |00…01⟩ (8)
3

√
𝑛𝑞

( )
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and

|GHZ⟩ = 1√
2

(|0⟩⊗𝑛𝑞 + |1⟩⊗𝑛𝑞
)

(9)

in configurations containing up to 15 qubits. These two states are rep-

resentatives of the two non-biseparable classes of three-qubit states and 
cannot be transformed into each other by local operations. These specific 
states were proposed to prove Bell’s theorem and were later introduced 
in various applications, including robust quantum memory storage [28], 
quantum key distribution [29], and achieving the Heisenberg limit to 
estimate error reduction in quantum metrology [30–32]. We define the 
initial state as “all spin-up,” i.e., |0⟩⊗𝑛𝑞 . Both the initial and target states 
lie in the first subspace under either 𝑆 or 𝐷 symmetry; therefore, we 
only use the first block of the transformed Hamiltonian. Table 1 shows 
a comparison of the dimensions between the complete Hilbert space 
(ℂ2𝑛𝑞 ) and the first subspace 𝐷

1 under 𝐷 symmetry, which equals the 
size of the complete Hamiltonian and the first block, respectively. Thus, 
working with one block greatly reduces the computational complexity of 
our algorithm. For example, in the case of 15 qubits, the VAN-DAMME 
code executes quantum control calculations on reduced matrices of size 
1,224 × 1,224 rather than the full 32,768 × 32,768 matrices; i.e., the 
complexity is ( 2

𝑛𝑞

𝑛𝑞
) instead of (2𝑛𝑞 ).

It is worth noting that a desired transition may not be allowed even 
if the initial and target states lie in the same subspace since the selection 
rules of allowed transitions in each subspace are determined by the sys-

tem’s symmetry and coupling features. When there is no coupling, i.e., 

𝑐
(1)
cpl

, 𝑐(2)
cpl

, … , 𝑐
(⌊ 𝑛𝑞

2 ⌋)
cpl

= 0 in Eq. (2), the multi-qubit system has 𝑆 sym-

metry. The resonance frequency that excites all allowed transitions is 
degenerate under 𝑆 symmetry, which forbids transitions to the 𝑊 or 
GHZ state. The degeneracy of these resonance frequencies can be fully 
broken by enabling all the coupling terms in Eq. (2). As such, the sym-

metry of the multi-qubit system is reduced to 𝐷, and each transition 
allowed by the selection rule can be excited by pulses with a different 
resonance frequency. Our previous studies have shown that breaking 
the degeneracy of the resonance frequencies allows the multi-qubit sys-

tem to be more easily controllable [14]. In principle, when full coupling 
is enabled, any transition can be realized as long as the initial and target 
states are in the same symmetry-protected subspace.

In addition to preparing the 𝑊 and GHZ states in fully coupled 
multi-qubit systems, we benchmark the controllability with arbitrary 
transitions confined in the same subspace. Our tests on multiple transi-

tions between randomly designated states indicate that the algorithms 
in the VAN-DAMME code can always converge if the initial and the tar-

get states are in the same subspace. This convergence arises because 
the full coupling between qubits brings enhanced controllability to the 
system, as discussed above. We have built the API of the VAN-DAMME 
application so that users can define their own initial and target states.

To enable faster convergence, the VAN-DAMME code uses the am-

plified gradient modification scheme originally proposed from the TRA-

VOLTA package [13]. Within this approach, the amplification coeffi-

cient is defined as

𝛽 = 𝛽 ⋅
|⟨𝜓⟂|𝜓target⟩|
|⟨𝜓⟂|𝜓𝑁 ⟩| if |⟨𝜓⟂|𝜓𝑁 ⟩| < 0.01 ⋅ |⟨𝜓⟂|𝜓target⟩| ,

= 1 if |⟨𝜓⟂|𝜓𝑁 ⟩| ≥ 0.01 ⋅ |⟨𝜓⟂|𝜓target⟩| ,

(10)

where |𝜓⟂⟩ is the normalized difference of the target state and its pro-

jection on the initial state:

|𝜓⟂⟩ = |𝜓target⟩− |𝜓0⟩⟨𝜓0|𝜓target⟩√
1 − |⟨𝜓0|𝜓target⟩|2

, (11)

and 𝛽 is an empirical coefficient that is assigned the following values 

for different transition tasks.
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Table 1

Comparison of dimensions of spaces for 𝑛𝑞 = 10 − 15. The dimension of (ℂ2𝑛𝑞 ) and 𝐷

1 is 
2𝑛𝑞 and ( 2

𝑛𝑞

𝑛𝑞

), respectively.

Number of qubits, 𝑛𝑞 Complete Hilbert space (ℂ2𝑛𝑞 ) First subspace 𝐷

1 under 𝐷 symmetry

10 1,024 78

11 2,048 126

12 4,096 224

13 8,192 380

14 16,384 687

15 32,768 1,224
𝛽 =
√
10−3 if 𝜓target = |𝑊 ⟩ ,

=
√
10−9 if 𝜓target = |GHZ⟩ ,

=
√
10−3 ⋅ 1000𝑛𝑞−3 if 𝜓target = |1⟩⊗𝑛𝑞 .

(12)

When 𝑃 is small, the gradients in Eq. (7) are multiplied by the am-

plification coefficient to prevent an extremely large update rate, 𝛾 , in a 
golden section search algorithm. Our previous study has shown that this 
heuristic effectively reduces the cost of the search method [13], and, as 
a result, the number of iterations for achieving convergence.

When the initial and target states are |0⟩⊗𝑛𝑞 and |GHZ⟩, respectively, 
these two states are not orthogonal to each other. As a result, 𝑃 (|0⟩⊗𝑛𝑞 )
is not at a local minimum of the loss function. In this situation, the opti-

mization problem becomes non-convex, which cannot be solved with the 
gradient ascent approach. To resolve this difficulty, the VAN-DAMME 
code uses the optimal control pulses for preparing |1⟩⊗𝑛𝑞 as an initial 
guess for preparing the GHZ state. Regardless of whether the target state 
is |GHZ⟩ or |1⟩⊗𝑛𝑞 , the expression, |𝜓⟂⟩ = |1⟩⊗𝑛𝑞 , always holds, which 
implies that the optimal pulses for transitions to these two states must 
have the same resonance frequencies. As such, when the control pulses 
are initialized with the optimal pulses that prepare |1⟩⊗𝑛𝑞 , only the am-

plitudes need to be updated to evolve the multi-qubit system toward 
the GHZ state. Our extensive tests with the VAN-DAMME code show 
that these approaches enable facile convergence.

4. The computation of matrix exponentials

As shown in Algorithm 1, the computation of the exponential of a 
matrix,

𝑒A𝑡 =
∞∑

𝑘=0

(A𝑡)𝑘

𝑘!
, (13)

is paramount in the acceleration of the quantum control of multi-qubit 
systems. Multiple methods [20–22] have been proposed for implement-

ing Eq. (13), while few of these routines lead to accurate results. The 
Scale and Square method based on Padé approximants is accurate when 
properly implemented, which we briefly review below.

4.1. Padé approximants

The Padé approximate [22] to matrix 𝑒A is defined as

𝑅𝑝𝑞(A) = [𝐷𝑝𝑞(A)]−1𝑁𝑝𝑞(A), (14)

where

𝑁𝑝𝑞(A) =
𝑝∑

𝑘=0

(𝑝+ 𝑞 − 𝑘)!𝑝!
(𝑝+ 𝑞)!𝑘!(𝑝− 𝑘)!

A𝑘, (15)

and

𝐷𝑝𝑞(A) =
𝑞∑

𝑘=0

(𝑝+ 𝑞 − 𝑘)!𝑞!
(𝑝+ 𝑞)!𝑘!(𝑞 − 𝑘)!

(−A)𝑘. (16)

In Eq. (14), the non-singularity of 𝐷𝑝𝑞(A) is guaranteed if 𝑝 and 𝑞 are 
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large or if the eigenvalues of A are negative. Moreover, from Eqs. (15)
and (16), it should be noted that 𝑁𝑞𝑞(A) = 𝐷𝑞𝑞(−A). Moler et al. [20,21]

have shown that Padé approximants are accurate when the norm of A
is small. In addition, they have shown that diagonal approximants 𝑝 = 𝑞

are preferred over off-diagonal approximants 𝑝 ≠ 𝑞.

4.2. Scaling and squaring

Because Padé approximants are very accurate when the norm of A is 
small, scaling and squaring methods have been proposed [22]. In this ap-

proach, the elements of the A matrix are first scaled down by a factor 𝑚
so that 𝑅𝑝𝑞(A∕𝑚) is a good approximation to 𝑒A∕𝑚. Then, the 𝑅𝑝𝑞(A∕𝑚)
matrix is raised to the 𝑚th power such that 𝑒A = (𝑅𝑝𝑞(A∕𝑚))𝑚. The scal-

ing and power-raising methods exploit the property of the exponential 
function:

𝑒A = (𝑒A∕𝑚)𝑚. (17)

Furthermore, to speed up the computations in Eq. (17), 𝑚 is usually set 
to 𝑚 = 2𝑗 with 𝑗 ≥ 0. If the 𝑒A∕2𝑗

matrix is computed via 𝑅𝑞𝑞(A∕2𝑗 ) as 
described in Eq. (14), the parameters 𝑞 and 𝑗 have to be determined. 
The work of Moler et al. [20,21] shows that if ||A|| ≤ 2𝑗−1,

[𝑅𝑞𝑞(A∕2𝑗 )]2𝑗 = 𝑒A+E, (18)

where

||E||
||A|| ≤ 𝜖(𝑞, 𝑗). (19)

Eq. (19) can be used to determine the values of 𝑞 and 𝑗. That is, given a 
tolerance error, 𝜖, and the norm, ||A||, multiple values of 𝑞 and 𝑗 can be 
tabulated using an error function as described in Ref. [22]. Moreover, it 
is sensible to pick the resulting pair (𝑞, 𝑗) that minimizes the amount of 
work in the calculation of (𝑅𝑞𝑞(A∕𝑚))𝑚.

Furthermore, Higham [23] showed that it is advantageous to set 𝑞 =
13 and choose 𝑗 such that ||A||max∕2𝑗 ≤ 𝜃 where 𝜃 is a pre-calculated 
constant (||A||max is the element of A with the maximum magnitude). By 
doing so, the relative error introduced by the scaling and power-raising 
method is bounded by 1.1 ×10−16, a factor proportional to the round-off 
error in IEEE double-precision arithmetic. Setting lower values for 𝑞 (or 
relaxing the constraints for 𝜃) decreases the computational complexity 
of the calculations at the expense of lower accuracy. Since accuracy is 
paramount in our work, we set 𝑞 = 13 and compute 𝜃 as mentioned 
previously, at the expense of this additional computational cost.

4.3. CPU routine

The first step in the computation of 𝑒A is the computation of the 
𝑁𝑞𝑞(A) and 𝐷𝑞𝑞(A) matrices. Efficient ways to compute these matrices 
have been proposed [22,23], which we briefly describe below. The ma-

trix, 𝑁𝑝𝑞 , can be computed with the expression

𝑁𝑝𝑞(A) = 𝑏0I+ 𝑏1A + 𝑏2A
2 + 𝑏3A

3 + 𝑏4A
4 +⋯+ 𝑏12A

12 + 𝑏13A
13. (20)

Defining

V = 𝑏0I+ 𝑏2A
2 + 𝑏4A

4 + 𝑏6A
6 + 𝑏8A

8 + 𝑏10A
10 + 𝑏12A

12

(21)

= 𝑏0I+ 𝑏2A

2 + 𝑏4A
4 + 𝑏6A

6 + A6(𝑏8A2 + 𝑏10A
4 + 𝑏12A

6)
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and

U = 𝑏1A + 𝑏3A
3 + 𝑏5A

5 + 𝑏7A
7 + 𝑏9A

9 + 𝑏11A
11 + 𝑏13A

13

= A(𝑏1I+ 𝑏3A
2 + 𝑏5A

4 + 𝑏7A
6) + A7(𝑏9A2 + 𝑏11A

4 + 𝑏13A
6)

= A[(𝑏1I+ 𝑏3A
2 + 𝑏5A

4 + 𝑏7A
6) + A6(𝑏9A2 + 𝑏11A

4 + 𝑏13A
6)]

(22)

gives

𝑁𝑞𝑞(A) = V + U. (23)

Since 𝑁𝑞𝑞(A) = 𝐷𝑞𝑞(−A), it follows that 𝐷𝑞𝑞(A) = V − U. The ele-

ments 𝑏𝑖, 𝑖 = 0, … , 13, are the coefficients shown in Eq. (15). Finally, 
once 𝑁𝑞𝑞(A) and 𝐷𝑞𝑞(A) are calculated, Eq. (14) has to be solved. Algo-

rithm 2 shows the steps for the computation of 𝑒A using Padé Approxi-

mants with scaling of the input matrix.

Algorithm 2: Computer implementation of the matrix exponen-

tial 𝑒A using Padé Approximants.

Input: Parameter 𝜃 and 𝑛 × 𝑛 matrix A.

Output: 𝑛 × 𝑛 matrix 𝑒A .

1 Determine 𝑠 (a minimal integer number) such that ||A||max∕2𝑠 ≤ 𝜃

2 Compute A = A∕2𝑠

3 Compute A2 = A A

4 Compute A4 = A2 A2

5 Compute A6 = A4 A2

6 Compute V = 𝑏0I+ 𝑏2A
2 + 𝑏4A

4 + 𝑏6A
6 +A6(𝑏8A2 + 𝑏10A

4 + 𝑏12A
6) (see

Eq. (21))

7 Compute U = A[𝑏1I+ 𝑏3A
2 + 𝑏5A

4 + 𝑏7A
6 +A6(𝑏9A2 + 𝑏11A

4 + 𝑏13A
6)]

(see Eq. (22))

8 Compute 𝑁𝑞𝑞(A) = V+ U

9 Compute 𝐷𝑞𝑞(A) = V −U

10 Solve the linear system of equations 𝐷𝑞𝑞(A)𝑅𝑞𝑞(A) =𝑁𝑞𝑞(A) for 𝑅𝑞𝑞(A)
(see Eq. (14))

11 return 𝑒A = (𝑅𝑞𝑞(A))2
𝑠

In line 1 of this algorithm, ||A||max = max𝑖,𝑗 |𝑎[𝑖, 𝑗]| for 𝑖 = 0, … , 𝑛 −1
and 𝑗 = 0, … , 𝑛 − 1. Otherwise, this algorithm is a straightforward im-

plementation of the equations just described. The algorithm is fast and 
accurate for calculating only one matrix exponential, 𝑒A . In our work, 
we require 𝑢 exponential matrices (i.e., 𝑒A[𝑖] for 𝑖 = 0, … , 𝑢 − 1) to be 
computed simultaneously. While a parallel version of Algorithm 2 can 
be implemented on CPUs without major effort, the VAN-DAMME soft-

ware package uses custom algorithms that harness the computational 
power of GPUs [25,33], which we describe below.

4.4. GPU routine

As described in Section 2, our approach computes multiple matrix 
exponentials in parallel. Because the A[𝑖] matrices for 𝑖 = 0, … , 𝑢 − 1, 
are small (i.e., 1,224 × 1,224 or smaller), it is advantageous to com-

pute multiple exponentials 𝑒A[𝑖] simultaneously since computing a single 
matrix exponential does not generate enough work for one GPU or a 
multi-core CPU. The computation of multiple small matrix exponentials 
in parallel provides enough work to saturate the GPU computational re-

sources. The computational field where hundreds or thousands of small 
problems are solved efficiently in parallel is known as Batched Com-

putations [34–36,13]. In this field, the number of problems solved in 
parallel is called the batch size. Examples of batched computations in-

clude the simultaneous multiplication of hundreds of small matrices, the 
simultaneous factorization of hundreds of small matrices via the QR de-

composition, and the simultaneous factorization of hundreds of small 
banded matrices via the LU decomposition. For multi-core platforms, 
multiple approaches have been used to solve small problems simultane-

ously. For instance, if there are 𝑛 cores and 𝑚 problems, each core solves 
5

an individual problem and continues until all tasks have been solved (the 
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one-core-one-problem approach). In other methods, multiple cores col-

laborate to solve an individual problem (the multiple-core-one-problem 
approach).

The algorithm used in the VAN-DAMME software package for com-

puting the exponentials of multiple matrices simultaneously on GPUs 
or multi-core CPUs is presented in Algorithm 3. In line 2, the A[𝑖] ma-

trices for 𝑖 = 0, ⋯ , 𝑢 − 1 are computed. As shown in Algorithm 1, for 
each iteration, the H0 and H𝑐 matrices are computed first, and next, the 
A[𝑖] matrices are obtained via matrix additions. In lines 3 and 4, if the 
magnitude of the maximum element of matrix A[𝑖] is larger than 𝜃, the 
elements of this matrix are scaled by a factor 2𝑠𝑖 such that ||A[𝑖]||max∕2𝑠𝑖

≤ 𝜃. In lines 5, 6, and 7, the A2[𝑖], A4[𝑖], and A6[𝑖] matrices are com-

puted. The V[𝑖] matrices are computed in multiple steps. First, in line 8, 
the T[𝑖] matrices are computed in two steps: the matrix addition step, 
𝑏8A

2[𝑖] + 𝑏10A
4[𝑖] + 𝑏12A

6[𝑖], and next, the matrix product step. Second, 
in line 9, the V[𝑖] matrices are computed via matrix additions. Similar 
steps are used in the computation of the U[𝑖] matrices as shown in lines 
10 and 11. The linear systems described in line 14 are solved in multiple 
steps. In the first step, the 𝐷𝑞𝑞(A[𝑖]) matrix is decomposed via the LU de-

composition [37,22]. Specifically, the P[𝑖], L[𝑖], and U∗[𝑖] matrices satis-

fying P[𝑖]𝐷𝑞𝑞(A[𝑖]) = L[𝑖]U∗[𝑖] are computed, where P[𝑖], L[𝑖], and U∗[𝑖]
are the permutation, lower triangular, and upper-triangular matrices, 
respectively. In the next step, the inverse of the 𝐷𝑞𝑞 (A[𝑖]) matrices is cal-

culated, i.e., (𝐷𝑞𝑞(A[𝐼]))−1 = (P[𝑖]−1L[𝑖]U∗[𝑖])−1 = U∗[𝑖]−1L[𝑖]−1P[𝑖]. 
Finally, given (𝐷𝑞𝑞(A[𝐼]))−1, finding 𝑁𝑞𝑞(A[𝑖]) is immediate. In line 15, 
the R𝑞𝑞(A[𝑖]) matrices are scaled up as described in Eq. (17).

Algorithm 3: Computation of matrix exponentials, 𝑒A[𝑖], for 𝑖 =
0, … , 𝑢 − 1, using Padé Approximants.

Input: Batch size 𝑢, parameter 𝜃, time step 𝜏 , and 𝑛 × 𝑛 matrices H0
and H𝑐 .

Output: 𝑛 × 𝑛 matrices 𝑒A[𝑖] , for 𝑖 = 0, … , 𝑢 − 1.

1 /* All of the steps below are executed in batches */

2 Compute A[𝑖] for 𝑖 = 0, … , 𝑢 − 1 (see Eq. (4))

3 Compute 𝑠𝑖 such that ||A[𝑖]||max∕2𝑠𝑖 ≤ 𝜃 for 𝑖 = 0, … , 𝑢 − 1
4 Compute A[𝑖] = A[𝑖]∕2𝑠𝑖 for 𝑖 = 0, … , 𝑢 − 1
5 Compute A2[𝑖] = A[𝑖]A[𝑖] for 𝑖 = 0, … , 𝑢 − 1
6 Compute A4[𝑖] = A2[𝑖]A2[𝑖] for 𝑖 = 0, … , 𝑢 − 1
7 Compute A6[𝑖] = A4[𝑖]A2[𝑖] for 𝑖 = 0, … , 𝑢 − 1
8 Compute T[𝑖] = A6[𝑖] 

(
𝑏8A

2[𝑖] + 𝑏10A
4[𝑖] + 𝑏12A

6[𝑖]
)

for 𝑖 = 0, … , 𝑢 − 1
9 Compute V[𝑖] = 𝑏0I+ 𝑏2A

2[𝑖] + 𝑏4A
4[𝑖] + 𝑏6A

6[𝑖] + T[𝑖] for 
𝑖 = 0, … , 𝑢 − 1

10 Compute T[𝑖] = A6[𝑖] 
(
𝑏9A

2[𝑖] + 𝑏11A
4[𝑖] + 𝑏13A

6[𝑖]
)

for 𝑖 = 0, … , 𝑢 − 1
11 Compute U[𝑖] = A[𝑖] 

(
𝑏1I+ 𝑏3A

2[𝑖] + 𝑏5A
4[𝑖] + 𝑏7A

6[𝑖] + T[𝑖]
)

for 
𝑖 = 0, … , 𝑢 − 1

12 Compute 𝑁𝑞𝑞(A[𝑖]) = V[𝑖] +U[𝑖] for 𝑖 = 0, … , 𝑢 − 1
13 Compute 𝐷𝑞𝑞(A[𝑖]) = V[𝑖] −U[𝑖] for 𝑖 = 0, … , 𝑢 − 1
14 Solve 𝐷𝑞𝑞(A[𝑖])𝑅𝑞𝑞(A[𝑖]) =𝑁𝑞𝑞(A[𝑖]) for 𝑅𝑞𝑞(A[𝑖]) for 𝑖 = 0, … , 𝑢 − 1
15 return 𝑒A[𝑖] =

[
𝑅𝑞𝑞(A[𝑖])

]2𝑠𝑖

for 𝑖 = 0, … , 𝑢 − 1

4.5. Implementation of Algorithm 3

In the following sections, we describe the technical implementation 
of Algorithm 3.

4.5.1. Data layout

There are many possibilities for choosing the data layout. For ex-

ample, the multiple A[𝑖] matrices for 𝑖 = 0, … , 𝑢 − 1, can be stored in 
contiguous or non-contiguous pools of GPU main memory. Because our 
routine has to allocate memory for multiple matrices, with each ma-

trix having multiple instances (i.e., the A matrix needs memory for 𝑢
instances: see Algorithm 3), all the A[𝑖] matrices for 𝑖 = 0, … , 𝑢 − 1 are 
stored in contiguous memory in the VAN-DAMME software package. 

When the matrices are stored in contiguous pools of memory, only one 
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Fig. 1. Schematic of pool of memory of size 𝑢 × 𝑛2 × sizeof(datatype) used in the VAN-DAMME software package.
memory allocation call is required. This approach saves time and mini-

mizes the fragmentation of the memory. Next, we store the A[𝑖] matrices 
for 𝑖 = 0, … , 𝑢 −1 back to back. That is, given a pool of memory with size 
𝑢 ×𝑛2 × sizeof(datatype), matrix A[0] is stored first, A[1] next, and so on, 
with the A[𝑢 −1] matrix stored last. Moreover, to make use of the CUDA 
API, each A[𝑖] matrix, as well as the other matrices in Algorithm 3, is 
represented in column-major order. Fig. 1 depicts our approach.

4.5.2. Implementation details

We next analyze the technical implementation of our quantum con-

trol algorithms in the VAN-DAMME software package. Fortunately, the 
latest CUDA BLAS library [19] supports many of the batch compu-

tations required in the implementation of this routine. These com-

putations include (a) batched multiplication of matrices (i.e., C[𝑖] =
𝛼A[𝑖]B[𝑖] + 𝛽C[𝑖] for 𝑖 = 0, … , 𝑢 − 1), (b) batched LU decomposition of 
matrices (i.e., L[𝑖]U∗[𝑖] = P[𝑖]A[𝑖] for 𝑖 = 0, … , 𝑢 − 1), and (c) batched 
inversion of matrices in the previous LU decomposition (i.e., A−1[𝑖] =
[P[𝑖]−1L[𝑖]U∗[𝑖]]−1 for 𝑖 = 0, … , 𝑢 − 1). Once computations (a), (b), and 
(c) are executed, the implementation of line 14 in Algorithm 3 is imme-

diate: the LU decomposition of 𝐷𝑞𝑞(A[𝑖]) is executed, and (𝐷𝑞𝑞(A[𝑖]))−1

is computed followed by 𝑅𝑞𝑞(A[𝑖]) = (𝐷𝑞𝑞(A[𝑖]))−1𝑁𝑞𝑞(A[𝑖]).
Interestingly, CUDA BLAS neither implements the batched scaling 

operation nor the batched addition of matrices unless the batched data 
is stored contiguously in memory. Although these operations can be im-

plemented on the CPU, we did a custom implementation of them on 
the GPU to minimize the data movement between the CPU and GPU 
(and vice-versa), which takes advantage of the thousands of cores on 
the target GPU. The implementation of line 3 requires finding the largest 
element of each A[𝑖], and, next, the computation of 𝑠𝑖. Given 𝑠𝑖, the el-

ements of A[𝑖] must be scaled down as shown in line 4.

Fig. 2 shows the steps involved in the scaling of matrix A[𝑖] (the rows 
of each matrix are depicted vertically). In part (𝑎), ceil(𝑛∕32) blocks 
are created with each GPU block having 32 threads. In this design, the 
first thread of the first block is responsible for finding the maximum 
element of the first row of A[𝑖]. The second thread of the first block 
finds the largest element of the second row of A[𝑖], and so on. In short, 
the threads in the first GPU block find the largest elements in each of the 
first 32 rows of A[𝑖]. The threads in the second block compute the largest 
elements in each row of the next 32 rows. The other blocks compute the 
largest elements for the remaining rows of A[𝑖]. At the end, the largest 
elements in each row are written in the GPU main memory array r[𝑖].

In part (𝑏.1), a GPU block with 32 threads is created. The threads 
in this block read the first 32 elements of array r[𝑖] and write these 
elements into the shared memory array m[𝑖] of size 32. Next, this block 
reads another 32 elements into registers. If the value in register one is 
larger than the first element in array m[𝑖], the register is written into the 
first element of m[𝑖] and likewise for the remaining 31 registers. This 
process of reading and comparing continues until all the elements of r[𝑖]
have been processed. At the end of this step, the array m[𝑖] contains the 
largest element of A[𝑖].

In part (𝑏.2), the largest element (i.e., ||A||max) of m[𝑖] is found. 
6

This computation is done via a parallel reduction in shared memory. 
First, a GPU block with 32 threads is created. Next, the first thread of 
this block compares the first and second elements, and the maximum 
of those elements is written into the first position of m[𝑖]. The second 
thread compares the third and fourth elements of m[𝑖], and the largest 
element is written into the third position of m[𝑖]. Likewise, the third 
thread compares the fifth and sixth elements of m[𝑖], and the largest el-

ement is written into the fifth position of m[𝑖]. A similar process is used 
for the remaining 13 threads in the block (the remaining 16 GPU threads 
do not execute any work). At the end of this process, the threads in the 
block synchronize their work. The amount of work to find the largest 
element has been divided by two. Next, the step above repeats, but this 
time, only considers the first, third, fifth, seventh, . . . , and thirty-first el-

ements of m[𝑖]. This time, thread one compares elements one and three, 
thread two compares elements five and seven, and thread two com-

pares elements nine and eleventh, and so on for the first eight threads 
in the block. The comparisons and synchronization continue until the 
largest element (denoted as 𝑠𝑖) of m[𝑖] appears in the first position of 
m[𝑖]. In the scientific computing literature, this type of computation is 
known as Parallel Reduction via interleaved addressing [38]. Finally, 
given ||A||max, the scaling factor 𝑠𝑖 is computed.

Finally, in part (𝑐), the division of the elements of A[𝑖] by 2𝑠𝑖 is ex-

ecuted by another routine, which divides the elements of matrix A[𝑖]
into square blocks, reads the elements in the block, divides them by 2𝑠𝑖 , 
and finally, writes the normalized elements back to the GPU main mem-

ory. The element 𝑠𝑖 is saved for later calculations. For multiple matrices 
(i.e., A[𝑖] with 𝑖 = 0, … , 𝑢 − 1), 𝑢 routines are executed in parallel via 
a GPU kernel that uses the (𝑥, 𝑦) dimensions to address the elements 
of the A[𝑖] matrix and the 𝑧 dimension to address individual matrices 
𝑧 = 0, … , 𝑢 − 1.

As mentioned above, the cuBLAS library does not implement batched 
matrix additions. As a result, we implemented the operation C[𝑖] =
𝛼A[𝑖] + 𝛽C[𝑖] for 𝑖 = 0, 1, … , 𝑢 − 1. Our implementation is straightfor-

ward: the C[𝑖] and A[𝑖] matrices are split into 32 × 32 blocks (observing 
boundaries), and a GPU routine is called that adds these blocks. This 
routine reads two sub-blocks (one sub-block in A[𝑖] and another in 
C[𝑖]), scales the blocks using the 𝛼 and 𝛽 parameters, respectively, and 
then, adds the scaled sub-blocks. Finally, the routine writes the result-

ing sub-blocks into the GPU main memory. As before, this GPU kernel 
uses the (𝑥, 𝑦) dimensions to address the elements of the A[𝑖] matrix 
and the 𝑧 dimension to address individual matrices. To increase perfor-

mance, the batched matrix addition, C[𝑖] = 𝛼1A[𝑖] + 𝛼2B[𝑖] + 𝛽C[𝑖] for 
𝑖 = 0, 1, … , 𝑢 − 1, is implemented in the same fashion.

4.5.3. Computational complexity

We now analyze the computational complexity of Algorithm 3. First, 
all operations are complex-valued, so our analysis is in the context of 
complex operations. For instance, multiplying two complex numbers re-

quires four multiplications and two additions for a total of six arithmetic 
operations. To make our analysis simple, we count this multiplication 
as one complex operation. Table 2 summarizes our findings.

The implementation of line 2 requires 𝑢 ×(2𝑛2) complex multipli-
cations and 𝑢 ×(𝑛2) complex additions. The implementation of line 3
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Fig. 2. GPU kernel for the normalization of the input 𝑛 × 𝑛 A[𝑖] matrix in the VAN-DAMME software package. In part (𝑎), the maximum value for each row is found, 
and this value is written into the GPU main memory array, r[𝑖]. In parts (𝑏.1) and (𝑏.2), a reduction in GPU shared memory finds the largest element ||A||max in r[𝑖]. 
In part (𝑐), the value 𝑠𝑖 is used to compute ||A[𝑖]||∕2𝑠𝑖 .

Table 2

Computational complexity (with double-precision complex numbers).

Line(s) Complexity Description

2 𝑢 ×(3𝑛2) Matrix additions

3 𝑢 ×(𝑛2) + 𝑢𝐶 Comparisons

4 𝑢 ×(𝑛2) Divisions

5,6,7 𝑢 ×(2𝑛3) Matrix multiplications

8 𝑢 ×(2𝑛3 + 3𝑛2 + 2𝑛2) Matrix additions and multiplications

9 𝑢 ×(5𝑛2 + 4𝑛2) Matrix additions

10, 11 Similar to lines 8 and 9 Matrix additions and multiplications

12,13 𝑢 ×(𝑛2) Matrix additions

14 𝑢 ×(2𝑛2∕3 + 2𝑛2 + 2𝑛3 + 2𝑛3) Solving a linear system via LU decomposition

15 (𝑠0 + 𝑠1 +⋯+ 𝑠𝑢−1)(2𝑛3) Matrix multiplications
requires about 𝑢 ×(𝑛2) operations and a constant number of operations. 
Specifically, for each A[𝑖] matrix, the elements with the maximum norm 
have to be found first for each row, requiring 𝑛(𝑛 − 1) complex compar-

isons; next, 𝑠𝑖 has to be computed. Finding the array m[𝑖] requires 𝑛 −32
comparisons, and the parallel reduction via interleaved addressing re-

quires 31 comparisons. The implementation of line 4 requires 𝑢 ×(𝑛2)
complex divisions in the worst case scenario. The number of arithmetic 
operations required to execute lines 5, 6, and 7 is proportional to that 
of matrix multiplication: 𝑢 ×(2𝑛3). The computation of line 8 requires 
one matrix multiplication and two matrix additions. The execution of 
the additions takes 3𝑛2 complex multiplications and 2𝑛2 complex ad-

ditions. A similar analysis applies for lines 9, 10, and 11. Line 14 is 
very expensive to implement. First, executing the 𝐿𝑈 decomposition of 
a square matrix requires 2𝑛2∕3 complex operations [37]. Next, finding 
the inverses of L via forward substitution, or U∗ via backward substitu-

tion, requires 𝑛2 complex operations. In addition, given the inverses of 
L and U, finding the inverse of 𝐷𝑞𝑞(A[𝑖]) requires 2𝑛3 complex opera-

tions as the post-multiplication by the matrix P[𝑖] can be implemented 
via column exchanges. Solving for 𝑁𝑞𝑞(A[𝑖]) requires 2𝑛3 additional op-

erations. Finally, the implementation of line 15 requires multiple matrix 
multiplications. Thus, the computation of the matrices 𝑒A[𝑖] is expensive, 
which can be accelerated with GPUs, as demonstrated in our results in 
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Section 5.2.
4.5.4. Memory requirements

In this section, we analyze the memory requirements of the quan-

tum control algorithms in the VAN-DAMME software package. For a 
batch size of 𝑢 and each 𝑛 × 𝑛 A[𝑖] matrix (for 𝑖 = 0, … , 𝑢 − 1) used in 
the quantum control algorithm, representing the set of A[𝑖] matrices re-

quires 𝑢 × 𝑛2 × sizeof(datatype) bytes. In our case, the matrices A[𝑖] are 
complex, and as a result, 16 bytes per element are required (i.e., com-

plex double-precision floating point numbers). Table 3 summarizes the 
memory requirements of Algorithm 3 as a function of the number of 
qubits when the size of the batch is set to 𝑢 = 128.

Table 3 does not include the 𝐷𝑞𝑞(A[𝑖]), 𝑁𝑞𝑞(A[𝑖]), and 𝑅𝑞𝑞(A[𝑖]) ma-

trices because once the U[𝑖] and V[𝑖] matrices are computed, the A2[𝑖], 
A4[𝑖], A6[𝑖] and T[𝑖] matrices are deallocated, and as a result, additional 
memory is available. As can be seen in Table 3, both the size of the 
input matrices and the batch size cannot be increased simultaneously 
since the physical memory available on the platform is limited. In ad-

dition, Algorithm 1 requires extra memory due to the implementation 
of the backpropagation routine. For each iteration, the backpropaga-

tion method requires memory proportional to 𝑁 × 𝑛 × sizeof(datatype)

bytes. As previously mentioned, this implementation requires 16 bytes 
per element. Thus, the combined memory requirements of the matrix 

exponentials and the backpropagation routine account for over 95% of 
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Table 3

Memory utilization for 10 - 15 qubits with a Batch size 𝑢 = 128.

Number of qubits 𝑛 A[𝑢], A2[𝑢], A4[𝑢], and A6[𝑢] T[𝑢] U[𝑢] V[𝑢] Total memory

10 78 47.6 MB 11.9 MB 11.9 MB 11.9 MB 83.3 MB

11 126 124.0 MB 31.0 MB 31.0 MB 31.0 MB 217.0 MB

12 224 392.0 MB 98.0 MB 98.0 MB 98.0 MB 686.0 MB

13 380 1128.0 MB 282.0 MB 282.0 MB 282.0 MB 1974.0 MB

14 687 3591.2 MB 897.8 MB 897.8 MB 897.8 MB 6284.6 MB

15 1224 11704.4 MB 2926.1 MB 2926.1 MB 2926.1 MB 20482.7 MB
the overall memory needs of Algorithm 1, enabling the simulation of 
QOC problems involving 15 qubits or more.

5. Computational results and performance

5.1. Optimal controls for preparing the 𝑊 and GHZ states

To demonstrate the capabilities of the VAN-DAMME software pack-

age, we calculate optimal control pulses that evolve a multi-qubit system 
with full coupling from |0⟩⊗𝑛𝑞 to the 𝑊 or GHZ state. Figs. 3(a) and (b) 
compare the optimal control pulses between a 6- and 15-qubit system 
for preparing the 𝑊 state. Note that the initial state |0⟩⊗𝑛𝑞 is next to the 
𝑊 state in the transition cascade of a fully coupled multi-qubit system 
[14]; i.e., the direct transition from |0⟩⊗𝑛𝑞 to the 𝑊 state is allowed by 
the selection rule. As a result, this transition can be realized by control 
pulses of only one resonance frequency. The shapes of 𝐵𝑥 and 𝐵𝑦 are 
nearly identical and differ only by a 𝜋

2 phase shift; i.e., the transition 
is enabled by a circularly polarized magnetic control pulse. Figs. 3(c) 
and (d) compare the power spectra, i.e., the Fourier transform of the 
optimal control pulses, between the 6- and 15-qubit system. It is worth 
noting that the resonance frequency for the 15-qubit system is smaller 
than that for 6-qubits. In general, a redshift in the resonance frequency 
emerges as the number of qubits, 𝑛𝑞 , increases due to the introduction 
of more coupling terms. Since the optimal control pulses are simple si-
nusoids, the probability 𝑃 converges to ≈ 1.0 in a few iterations for both 
cases, as shown in Figs. 3(e) and (f).

Compared with the optimal control pulses that enable transitions 
from |0⟩⊗𝑛𝑞 to the 𝑊 state, the optimal pulses for preparing the GHZ 
state are significantly more complicated, as shown in Figs. 4(a) and (b). 
In the power spectrum shown in Fig. 4(c), 14 resonance frequencies 
emerge for the 6-qubit system. In contrast, Fig. 4(d) indicates several 
hundreds of resonance frequencies are required to evolve a 13-qubit sys-

tem toward the GHZ state since the initial |0⟩⊗𝑛𝑞 state and |𝜓⟂⟩ = |1⟩⊗𝑛𝑞

are at the two ends of the transition cascade [14]. As such, any transition 
allowed by the selection rule may be required to realize the transition 
from |0⟩⊗𝑛𝑞 to the GHZ state, and these transitions are enabled by hun-

dreds of different resonance frequencies. Such complex optimal pulses 
pose difficulties for convergence, as shown in Figs. 4(e) and (f). Inter-

estingly, if the pulses are initialized with white noise, the VAN-DAMME 
code is unable to converge to prepare the GHZ state. Therefore, we ini-

tialized the pulses with the optimal pulses used to prepare |1⟩⊗𝑛𝑞 . This 
initial guess contains all the required frequency components and initial-

izes 𝑃 = 0.5 in the first iteration rather than zero. The VAN-DAMME 
code subsequently updates the amplitude for each resonance frequency 
and achieves convergence in 8 and 150 iterations for the 6 and 13-qubit 
systems, respectively.

In addition, we also calculated the optimal control pulses that pre-

pare the 𝑊 and GHZ states for fully coupled multi-qubit systems con-

taining up to 15 and 13 qubits, respectively. The quantum control cal-

culations for the 13-qubit GHZ state preparation was carried out on 
only the GPU since it was computationally prohibitive to calculate on 
the CPU (< 3 days on the GPU vs. ≈ 80 days on the CPU). The opti-

mal pulses, power spectra, amplitude of the control pulses/gradients in 
each iteration, and the convergence of 𝑃 vs. iteration are the same for 
the CPU and the CPU+GPU approaches, which demonstrate that our 
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approach was accurately implemented in the VAN-DAMME software 
package. We compare the computational performance between the CPU 
and CPU+GPU approaches in Section 5.2.

5.2. Computational performance on GPUs

To demonstrate the computational performance of our GPU paral-

lelization scheme in the VAN-DAMME code, we report the execution 
times of Algorithm 1 on one compute node of the Perlmutter supercom-

puter [24] at NERSC, which is equipped with one EPYC-7763 processor 
(a 64-core CPU) and 256 GB of RAM. In addition, each node houses 
four NVIDIA A100 GPUs, each having 40 GB of RAM. In our calcula-

tions, we set the number of CPU threads to eight (one thread per core) 
and use one GPU. Our testbed CPU [39] has a peak performance of 
3.58 Teraflops per second and a maximum bandwidth of 204.8 GB/sec 
while the testbed GPU [40] has a peak performance of 9.7 Teraflops per 
second (FLOPS) and a maximum bandwidth of 2.0 terabytes per sec-

ond (TB/s). To assess the computational performance of Algorithm 1

on different hardware architectures, we compare the execution times 
for two implementations: (1) a CPU baseline implementation that uti-

lizes threaded numerical routines in the Cray BLAS LibSci library [41], 
and (2) our hybrid CPU+GPU implementation that utilizes the kernels 
as described in Section 4.4. The most time-consuming operation in Al-

gorithm 1 is the calculation of matrix exponentials, which we further 
analyze below.

Fig. 5 shows the execution times for a single iteration of Algorithm 1

when applied to 10 - 15 qubits. To obtain the execution times of our 
baseline implementation (i.e., using CPUs only), we use one node on 
the Perlmutter supercomputer at NERSC. Because the complexity of the 
routine is dominated by the computation of matrix exponentials, we see 
proportional changes in the execution times: larger arguments in the 
matrix exponentials result in longer simulations. In our baseline CPU 
code, we observe that as the number of qubits increases, the execu-

tion time per iteration increases. On average, the increase in execution 
times is 3.6 for each additional qubit that is added. The minimum in-

crease in execution times occurs when the number of qubits increases 
from 10 to 11 (a 2.5× increase). The maximum increase occurs when 
the number of qubits increases from 14 to 15 (a 4.9× increase). This 
is in agreement with our expectations: these time increases correspond 
to changes in the size of the matrix exponentials, as shown in Table 3, 
and as a result, rises in the computational complexity, as shown in Ta-

ble 2.

To obtain the execution times of our hybrid implementation (i.e., 
8 cores + 1 GPU), we used the same hybrid node on the Perlmutter su-

percomputer. In our implementation, all matrix operations are executed 
on the GPU. These operations include the computation of matrix expo-

nentials, as shown in Algorithm 3, as well as other matrix operations 
required in Algorithm 1. As shown in Fig. 5, the observed results are in 
agreement with the expected behavior. On average, the increase in ex-

ecution times is 3.9. The minimum increase in execution times occurs 
when the number of qubits increases from 10 to 11 (a 1.3× increase); 
the maximum increase occurs when the number of qubits increases from 
14 to 15 (a 7.3× increase). As shown previously, these increases corre-

spond to changes in the size of the matrices and, as a result, changes in 
the computational complexity.

To further understand the execution times of our CPU+GPU hybrid 

algorithm, Table 4 shows the percentage of execution times per kernel 
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Fig. 3. Comparison of quantum optimal control calculations executed with the VAN-DAMME code for (a, c, e) 6-qubit and (b, d, f) 15-qubit systems with full coupling 
for preparing the 𝑊 state. (a, b) Optimal control pulses; (c, d) Power spectra; (e, f) Convergence of transition probability vs. iteration.
for 10, 12, and 14 qubits for one iteration in Algorithm 1. As shown 
in this table, the LU factorization takes more than 50% of the execu-

tion time for all the cases. Moreover, two steps in the computation of 
the matrix exponentials, the LU factorization and the inversion of ma-

trices (previous LU decomposition), take more than 65% of the overall 
execution time for all the cases. The overall computation of matrix expo-

nentials requires additional matrix additions and matrix multiplications 
(see Table 3), and as a result, the computation of exponentials takes 80%
or more of the overall execution time for all the cases. In short, the LU 
decomposition of matrices is the most time-consuming operation. Be-

cause the two fundamental operations in the LU decomposition are the 
swapping and subtraction of rows, and because all the rows of the target 
matrix cannot be stored in shared memory simultaneously, the perfor-

mance of this kernel is limited by the GPU memory bandwidth, i.e., the 
LU decomposition is a memory-bound kernel. The second-most time-

consuming kernel is the multiplication of matrices, whose performance 
is limited by the number of floating point operations the GPU executes 
per clock cycle, i.e., the multiplication of matrices is a compute-bound 
kernel.

A comparison of execution times indicates that our hybrid CPU+GPU 
implementation in the VAN-DAMME software package is 18.4 times 
faster (based on a geometric average) than the baseline CPU routines. 
The minimum gains are for the case of 10 qubits, which is 10.0 times 
faster. The maximum gains are for the simulation of 13 qubits, which is 
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31.2 times faster. The observed gains in performance are due to multiple 
Table 4

Percentage of total execution time for each Kernel in the VAN-DAMME code.

Kernel 10 qubits 12 qubits 14 qubits

cuBLAS LU Factorization 54.9 51.0 55.4

cuBLAS Matrix Multiplication 22.7 22.8 23.5

cuBLAS LU Inversion 16.9 16.3 18.2

Inhouse Matrix Addition 3.8 6.0 2.2

Inhouse Matrix A[𝑖] Calculation 0.7 1.2 0.4

Inhouse Matrix Max Operation 0.2 0.4 0.1

Other Kernels 0.8 2.3 0.2

factors. First, in Algorithm 1, the computation of the matrix exponentials 
is the most time-consuming operation, and to achieve the best perfor-

mance, our routine uses Padé approximants, which are known to be fast 
and accurate. To make the computation robust, we numerically scaled 
down/up the input and output of the matrix exponentials. Moreover, to 
exploit the parallelism present in our algorithm, the VAN-DAMME code 
computed hundreds of matrix exponentials simultaneously, as shown 
in Routine 3. In addition, each line of code in Routine 3 has been 
parallelized, and high-performance kernels have been implemented or 
borrowed from existing libraries. In our algorithm, shown in Table 4, 
the LU decomposition of matrices and the multiplication of matrices are 
the most critical arithmetic operations. To achieve competitive perfor-

mance, the VAN-DAMME code uses the batched routines in the cuBLAS 

library. From the CUDA documentation, the batched LU decomposi-
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Fig. 4. Comparison of quantum optimal control calculations executed with the VAN-DAMME code for (a, c, e) 6-qubit and (b, d, f) 13-qubit systems with full coupling 
10

for preparing the GHZ state. (a, b) Optimal control pulses; (c, d) Power spectra; (e, f) Convergence of transition probability vs. iteration.
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Fig. 5. Execution times (log scale) of the VAN-DAMME code on CPUs and GPUs for quantum control calculations on 10 - 15 qubits. The number in parenthesis is the 

ratio of the execution time on CPUs to that on GPUs.

tion of matrices has been tailored to decompose small-sized matrices 
and take advantage of both the GPU memory bandwidth and the GPU 
floating-point throughput. Other batched operations in the cuBLAS li-
brary, including the batched matrix inversions (previous LU decompo-

sition) and batched matrix multiplications, have been tailored to work 
on small-sized matrices, which are used in the VAN-DAMME software 
package. Also, our kernels, including those for matrix initializations and 
additions, have been designed to work in batches as shown in Fig. 2. As 
shown in Table 4, our kernels only use about 8.0% of the overall exe-

cution time. In contrast, the CPU library routines are not optimized for 
batched operations and, therefore, do not perform well for the quantum 
control calculations in this work.

Fig. 5 shows that as the size of the matrices increases, the compara-

tive gains in performance of our hybrid CPU+GPU approach decrease. 
Table 4 shows that the most time-consuming task for all qubit configu-

rations is the LU decomposition. As described above, the LU decompo-

sition is a memory-bound kernel. For large matrices, the cost of moving 
data between the GPU main memory and the GPU shared memory, or the 
GPU registers, affects the overall performance. A similar reasoning ap-

plies to LU inversions, which is the third most time-consuming task. De-

spite this behavior, our projections indicate that our hybrid CPU+GPU 
implementation in the VAN-DAMME software package should be about 
8.0 times faster for 16 qubits.

6. Conclusions

In conclusion, we have developed and provided the open-source 
VAN-DAMME software package for accelerating QOC calculations of 
multi-qubit systems with advanced GPU parallelization approaches. To 
enable additional computation performance, the VAN-DAMME code 
also leverages symmetry-based techniques that can decompose the 
multi-qubit Hilbert space to block diagonalize the Hamiltonians used 
in the QOC calculations. This reduction uses the first block of the trans-

formed Hamiltonians in QOC calculations and limits the state transition 
to a symmetry-protected subspace to suppress quantum errors. To un-

derstand the computational bottlenecks in the VAN-DAMME code, we 
carried out several extensive tests on data layout, computational com-

plexity, memory requirements, and performance. These extensive anal-

yses allowed us to develop computationally efficient approaches to com-

pute matrix exponentials on GPUs since this is the most time-consuming 
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operation in the QOC algorithm. To enable these performance gains, the 
VAN-DAMME software package uses a custom GPU routine that com-

putes the exponentials of hundreds of small matrices simultaneously 
using Padé approximants. To ensure the numerical robustness of our 
calculations, we leveraged various properties of the matrix exponential, 
including scaling down the argument of the matrix exponential and sub-

sequent scaling up of the resulting matrices after the matrix exponential 
is computed.

All of the operations in the VAN-DAMME code are executed in 
batches to maximize computational efficiency, which include scaling 
of the arguments in the matrix exponentials, computation of Padé fac-

tors, computation of matrix⋅matrix and matrix⋅vector products, addi-

tion of matrices, and other matrix and vector operations. To validate 
the accuracy of our implementation, we applied the GPU-accelerated 
VAN-DAMME code to a variety of multi-qubit QOC calculations on con-

ventional CPUs and benchmarked its performance on state-of-the-art 
A100 GPUs. These computational timing tests demonstrated that the 
GPU-accelerated VAN-DAMME code generates the same results (i.e., op-

timal pulses, power spectra, gradients, and convergence properties) as 
the benchmark calculations on CPUs but with a speedup that is 18.4×
faster. Our GPU-accelerated approach allows efficient calculations of 
multi-qubit systems containing up to 15 qubits and beyond, and the 
custom parallelization techniques in the VAN-DAMME code can be used 
for the efficient implementation of QOC applications across multiple do-

mains.
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