
UC Riverside
UC Riverside Previously Published Works

Title
VAN-DAMME: GPU-accelerated and symmetry-assisted quantum optimal control of
multi-qubit systems

Permalink
https://escholarship.org/uc/item/5fv5x6gq

Authors
Rodríguez-Borbón, José M
Wang, Xian
Diéguez, Adrián P
et al.

Publication Date
2025-02-01

DOI
10.1016/j.cpc.2024.109403

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5fv5x6gq
https://escholarship.org/uc/item/5fv5x6gq#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Computer Physics Communications 307 (2025) 109403

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

VAN-DAMME: GPU-accelerated and symmetry-assisted quantum optimal

control of multi-qubit systems ✩

José M. Rodríguez-Borbón a,1, Xian Wang a,1, Adrián P. Diéguez b, Khaled Z. Ibrahim b,
Bryan M. Wong a,∗

a Department of Chemistry, Department of Physics & Astronomy, and Materials Science & Engineering Program, University of California-Riverside, 900 University
Avenue, Riverside, 92521, CA, USA
b Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, 94720, CA, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Quantum optimal control

GPUs

Time-dependent Schrödinger equation

Parallelization

Gradient ascent optimization

We present an open-source software package, VAN-DAMME (Versatile Approaches to Numerically Design,
Accelerate, and Manipulate Magnetic Excitations), for massively-parallelized quantum optimal control (QOC)
calculations of multi-qubit systems. To enable large QOC calculations, the VAN-DAMME software package utilizes
symmetry-based techniques with custom GPU-enhanced algorithms. This combined approach allows for the
simultaneous computation of hundreds of matrix exponential propagators that efficiently leverage the intra-

GPU parallelism found in high-performance GPUs. In addition, to maximize the computational efficiency of the
VAN-DAMME code, we carried out several extensive tests on data layout, computational complexity, memory
requirements, and performance. These extensive analyses allowed us to develop computationally efficient
approaches for evaluating complex-valued matrix exponential propagators based on Padé approximants. To assess
the computational performance of our GPU-accelerated VAN-DAMME code, we carried out QOC calculations
of systems containing 10 - 15 qubits, which showed that our GPU implementation is 18.4× faster than the
corresponding CPU implementation. Our GPU-accelerated enhancements allow efficient calculations of multi-

qubit systems, which can be used for the efficient implementation of QOC applications across multiple domains.

Program summary

Program Title: VAN-DAMME

CPC Library link to program files:: https://doi .org /10 .17632 /zcgw2n5bjf .1
Licensing provisions: GNU General Public License 3
Programming language: C++ and CUDA

Nature of problem: The VAN-DAMME software package utilizes GPU-accelerated routines and new algorithmic
improvements to compute optimized time-dependent magnetic fields that can drive a system from a known initial
qubit configuration to a specified target state with a large (≈ 1) transition probability.

Solution method: Quantum control, GPU acceleration, analytic gradients, matrix exponential, and gradient ascent
optimization.
1. Introduction

The past two decades have witnessed impressive progress toward re-

alizable quantum computing, with several competing prototypes using
various platforms such as transmons [1,2], fluxoniums [3,4], trapped

✩ The review of this paper was arranged by Prof. W. Jong.

* Corresponding author.

E-mail address: bryan.wong@ucr.edu (B.M. Wong).

URL: http://www.bmwong-group.com (B.M. Wong).

ions [5,6], and Rydberg atoms [7]. One key challenge among all of these
approaches is the difficult task of efficiently and accurately constructing
time-dependent external control pulses that can drive these multi-qubit
systems toward desired quantum states to enable massive calculations.
The ultimate goal of quantum optimal control (QOC) approaches is to
Available online 17 October 2024
0010-4655/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a
nc-nd/4.0/).

1 J. M. R.-B. and X. W. contributed equally to this work.

https://doi.org/10.1016/j.cpc.2024.109403

Received 6 August 2024; Received in revised form 11 October 2024; Accepted 14 O
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ctober 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://doi.org/10.17632/zcgw2n5bjf.1
mailto:bryan.wong@ucr.edu
http://www.bmwong-group.com
https://doi.org/10.1016/j.cpc.2024.109403
https://doi.org/10.1016/j.cpc.2024.109403
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109403&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

construct these time-dependent external fields, and several frameworks,
such as GRAPE [8], CRAB [9], and Krotov [10], have been previously
used to calculate optimal control fields to enable desired gate opera-

tions or state transitions [11–13]. In all of these methods, the size of the
2𝑛𝑞 ×2𝑛𝑞 Hamiltonian increases exponentially with the number of qubits,
𝑛𝑞 , which prohibits the QOC calculations of large multi-qubit systems.
For example, recent benchmarks have shown that 128 classical CPUs
are required for QOC simulations of 10 qubits [14], whereas 12 qubits
is the current limit for the GRAPE-based algorithm on a quantum-based
processor [15]. Because the memory requirements of QOC problems in-

crease exponentially with the number of qubits, recent methods have
been proposed to address this difficulty [16,17]. For instance, by taking
advantage of checkpoints and reversibility [17], the memory require-

ments of the standard GRAPE routine have been reduced by a factor of
2𝑛𝑞 × 2𝑛𝑞 × 𝐶 , with 𝐶 proportional to the number of time steps. To ad-

dress this computationally-intensive problem and further decrease these
memory requirements, we present a new open-source software package,
VAN-DAMME (Versatile Approaches to Numerically Design, Accelerate,
and Manipulate Magnetic Excitations), which uses custom, massively-

parallelized GPU acceleration schemes and symmetry-based techniques
[14] to allow efficient QOC calculations of multi-qubit systems contain-

ing up to 15 qubits and beyond.

To maximize the computational efficiency of the VAN-DAMME code,
we present several extensive tests on data layout, computational com-

plexity, memory requirements, and performance. These extensive anal-

yses allowed us to develop computationally efficient approaches for
evaluating the discretized propagator (i.e., the exponential of a complex-

valued matrix), since this is the most time-consuming operation in the
QOC algorithm. To accelerate these calculations, we developed cus-

tomized GPU routines and utilized existing routines in the CUDA BLAS
library [18,19] to evaluate hundreds of matrix exponentials in par-

allel with highly accurate Padé approximants [20–22] and numerical
scaling techniques (to ensure numeric robustness) [23]. For additional
computational performance, we also parallelized all of the other com-

putationally intensive matrix operations, such as matrix initialization,
matrix⋅matrix multiplications, and matrix⋅vector multiplications, on
GPUs. To assess the computational performance of our GPU-accelerated
VAN-DAMME code, we carried out QOC calculations of systems contain-

ing 10 - 15 qubits using state-of-the-art A100 GPUs on the Perlmutter

supercomputer at the National Energy Research Scientific Computing
Center (NERSC) [24]. Our work concludes with a detailed discussion
of performance analyses and timings of the VAN-DAMME code, which
show that our GPU-accelerated approaches are 18.4× faster than the
corresponding CPU implementation.

2. Theory and computational methodology

The time-dependent dynamics of a multi-qubit system is governed
by the time-dependent Schrödinger equation:

𝑖
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = (

𝐻0 +𝐻𝑐(𝑡)
) |𝜓(𝑡)⟩, (1)

where 𝐻0 is the static Hamiltonian and 𝐻𝑐 (𝑡) is the time-dependent
control Hamiltonian. The static Hamiltonian of an 𝑛𝑞 -qubit system is
defined as

𝐻0 = 𝐵𝑧 ⋅
1
2

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑧

+ 𝑐
(1)
cpl

⋅
1
4

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑧

𝜎(𝑖+1)
𝑧

+ 𝑐
(2)
cpl

⋅
1
4

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑧

𝜎(𝑖+2)
𝑧

+…

+ 𝑐
(⌊ 𝑛𝑞

2 ⌋)
cpl

⋅
1
4

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑧

𝜎
(𝑖+⌊ 𝑛𝑞

2 ⌋)
𝑧 , (2)

where the first term reflects the interaction between the qubits and a
static magnetic field, 𝐵𝑧 , along the 𝑧-direction. The other terms rep-

resent the nearest-neighbor coupling, next-nearest-neighbor coupling,

etc., and 𝑐(1)
cpl

, 𝑐(2)
cpl

, … , 𝑐
(⌊ 𝑛𝑞

2 ⌋)
cpl

are the coupling coefficients. The control
2

Hamiltonian,
Computer Physics Communications 307 (2025) 109403

𝐻𝑐(𝑡) = 𝐵𝑥(𝑡) ⋅
1
2

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑥

+𝐵𝑦(𝑡) ⋅
1
2

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑦

, (3)

manipulates all the qubits simultaneously with time-dependent control
pulses, 𝐵𝑥(𝑡) and 𝐵𝑦(𝑡), along the 𝑥- and 𝑦-axes, respectively, throughout
the control duration [0, 𝑇].

To enable a numerical solution of Eq. (3), we discretize the control
duration into 𝑁 timesteps of duration 𝜏 , where 𝜏 = 𝑇

𝑁
. The amplitude

of the control pulse along the 𝑥- and 𝑦-axis at 𝑡 = (𝑗 + 1
2)𝜏 is denoted

by 𝐵𝑥[(𝑗 +
1
2)𝜏] and 𝐵𝑦[(𝑗 +

1
2)𝜏], respectively. Given the state, |𝜓𝑗⟩,

at 𝑡 = 𝑗𝜏 and the control pulses, the state |𝜓𝑗+1⟩ at 𝑡 = (𝑗 + 1)𝜏 can be
obtained with the exponential propagator, i.e.,

|𝜓𝑗+1⟩ = exp
(
−𝑖𝜏

(
𝐻0 +𝐻𝑐[(𝑗 +

1
2)𝜏]

)) |𝜓𝑗⟩, (4)

where

𝐻𝑐[(𝑗 +
1
2)𝜏] = 𝐵𝑥[(𝑗 +

1
2)𝜏] ⋅

1
2

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑥

+𝐵𝑦[(𝑗 +
1
2)𝜏] ⋅

1
2

𝑛𝑞∑
𝑖=1

𝜎(𝑖)
𝑦

(5)

is the control Hamiltonian at 𝑡 = (𝑗 + 1
2)𝜏 . The goal of the VAN-DAMME

software package is to solve for the time-dependent optimal control
fields, 𝐵𝑥(𝑡) and 𝐵𝑦(𝑡), that evolve the multi-qubit system toward a de-

sired target state, |𝜓target⟩. Accordingly, we define the loss function as
the following transition probability:

𝑃 (|𝜓𝑁 ⟩) = |⟨𝜓target|𝜓𝑁 ⟩|2, (6)

where |𝜓𝑁 ⟩ is the final state at the 𝑁 th timestep.

The VAN-DAMME software package evaluates the analytic gradi-

ents of 𝑃 (|𝜓𝑁 ⟩) with respect to 𝐵𝑥 and 𝐵𝑦 at each timestep, i.e.,
d𝑃 (|𝜓𝑁 ⟩)

d𝐵𝑥

|||(𝑗+ 1
2)𝜏

and d𝑃 (|𝜓𝑁 ⟩)
d𝐵𝑦

|||(𝑗+ 1
2)𝜏

. The gradients at the last timestep,

i.e., d𝑃 (|𝜓𝑁 ⟩)
d𝐵𝑥

|||(𝑁− 1
2)𝜏

and d𝑃 (|𝜓𝑁 ⟩)
d𝐵𝑦

|||(𝑁− 1
2)𝜏

, are evaluated first. Next,

similar to the backpropagation method in neural networks, the VAN-

DAMME software package recursively evaluates the gradients at the
previous timestep using the gradients that have already been evaluated
[8,11]. The control pulses are updated iteratively with the expressions

𝐵(𝑙+1)
𝑥

[(𝑗 + 1
2)𝜏] = 𝐵(𝑙)

𝑥
[(𝑗 + 1

2)𝜏] + 𝛾
d𝑃 (|𝜓𝑁 ⟩)

d𝐵
(𝑙)
𝑥

|||||(𝑗+ 1
2)𝜏

,

𝐵(𝑙+1)
𝑦

[(𝑗 + 1
2)𝜏] = 𝐵(𝑙)

𝑦
[(𝑗 + 1

2)𝜏] + 𝛾
d𝑃 (|𝜓𝑁 ⟩)

d𝐵
(𝑙)
𝑦

|||||(𝑗+ 1
2)𝜏

,

(7)

where 𝑙 is the iteration, and 𝛾 is the update rate evaluated with a golden
section search algorithm.

Algorithm 1 summarizes our gradient-based approach. In each iter-

ation of this routine, the propagation of the multi-qubit state in line
7 requires the computation of several thousand complex-valued ma-

trices (i.e., A[𝑗] = −𝑖𝜏(𝐻0 + 𝐻𝑐[(𝑗 + 1
2)𝜏]) for 𝑗 = 0, … , 𝑁 − 1), the

computation of several thousand matrix exponentials (i.e., 𝑒A[𝑗] for
𝑗 = 0, … , 𝑁 − 1), and the multiplication of these matrix exponentials
by a vector as shown in Eq. (4). In Eq. (4), because the matrices 𝐻0 and
𝐻𝑐 can be computed in advance (i.e., for each iteration, the 𝐵𝑥 and 𝐵𝑦

vectors, as well as the 𝐻𝑥 and 𝐻𝑦 matrices are given), hundreds of ma-

trix exponentials can be calculated simultaneously. The execution of line
8 involves the computation of a complex dot product and the computa-

tion of a norm. The implementation of line 10 requires the computation
of a large number of complex-valued matrix exponentials, matrix⋅matrix
multiplications, and matrix⋅vector multiplications. The implementation
of line 11 is similar to the implementation of line 7. Finally, the imple-

mentation of line 12 requires the addition of vectors. Note that billions
of arithmetic operations are needed for each iteration in this routine. In

addition, multiple iterations are required to achieve convergence.

J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

The complex-valued matrix operations in Algorithm 1 are time-

consuming. For example, as shown on line 7, a different matrix ex-

ponential is computed in each time step. Matrix exponentials are also
evaluated on line 12. Since these matrix exponentials share the same
problem size and memory requirements, there is a compelling case for
offloading these computations to GPUs and executing them in batches.
Consequently, the VAN-DAMME code leverages the high-performance
numerical capabilities of GPUs to handle the majority of these calcu-

lations [25]. This approach encompasses all matrix-related operations,
including matrix initializations, matrix exponentials, matrix⋅matrix and
matrix⋅vector multiplications, as well as various linear algebra tasks, re-

sulting in enhanced efficiency and reduced computational burden.

Algorithm 1: Quantum control algorithm in the VAN-DAMME
software package.

Input: Control duration 𝑇 , time step 𝜏 , initial magnetic control pulses
𝐵𝑥[(𝑗 +

1
2
)𝜏] and 𝐵𝑦[(𝑗 +

1
2
)𝜏] for 𝑗 = 0, … , 𝑁 − 1, static

Hamiltonian 𝐻0, control Hamiltonians 𝐻𝑥 =
1
2
∑𝑛𝑞

𝑖=1 𝜎(𝑖)
𝑥

and
𝐻𝑦 =

1
2
∑𝑛𝑞

𝑖=1 𝜎(𝑖)
𝑦

, initial state |𝜓init⟩, desired target state |𝜓target⟩,
threshold probability 𝛿, and maximum number of iterations
𝑀𝑎𝑥.

Output: Final propagated wavefunction, |𝜓𝑁 ⟩, and optimized magnetic
pulses 𝐵𝑥[(𝑗 +

1
2
)𝜏] and 𝐵𝑦[(𝑗 +

1
2
)𝜏] for 𝑗 = 0, … , 𝑁 − 1.

1 /* Working with zero-based indexing */

2 Transform the Hamiltonians 𝐻0, 𝐻𝑥, and 𝐻𝑦 with the
symmetry-assisted approach as described in Sec. 3

3 Initialize 𝐵𝑥[(𝑗 +
1
2
)𝜏] and 𝐵𝑦[(𝑗 +

1
2
)𝜏] for 𝑗 = 0, … , 𝑁 − 1

4 𝑃 = 0; 𝑙 = 0; |𝜓0⟩ = |𝜓init⟩
5 while 𝑙 < Max and 𝑃 < 𝛿 do

6 for 𝑗 = 0 to 𝑁 − 1 do

7 Calculate |𝜓𝑗+1⟩ using Eq. (4)

end

8 Update 𝑃 using Eq. (6)

9 for 𝑗 =𝑁 − 1 to 0 do

10 Calculate d𝑃 (|𝜓𝑁 ⟩)
d𝐵𝑥

|||(𝑗+ 1
2)𝜏

and d𝑃 (|𝜓𝑁 ⟩)
d𝐵𝑦

|||(𝑗+ 1
2)𝜏

using
backpropagation

end

11 Calculate update rate, 𝛾 , using golden section search

12 Update vectors 𝐵𝑥[(𝑗 +
1
2
)𝜏] and 𝐵𝑦[(𝑗 +

1
2
)𝜏] using Eq. (7)

13 𝑙 = 𝑙 + 1
end

14 return |𝜓𝑁 ⟩, 𝐵𝑥[(𝑗 +
1
2
)𝜏], and 𝐵𝑦[(𝑗 +

1
2
)𝜏] for 𝑗 = 0, … , 𝑁 − 1

3. Symmetry-assisted Hamiltonian reduction

While the VAN-DAMME software package can execute QOC calcu-

lations of arbitrary qubit configurations, a significant computational
speedup for QOC calculations of multi-qubit systems with permutation
(𝑆) or dihedral (𝐷) group symmetry [14] can be obtained, which we
focus on in this section. In these situations, the Hilbert space (ℂ2𝑛𝑞)
is decomposed into orthogonal subspaces. The evolution of the quan-

tum state is restricted in each subspace as long as the symmetry of the
multi-qubit system is preserved. The VAN-DAMME code can take ad-

vantage of the symmetry of the multi-qubit system to block diagonalize
the Hamiltonians such that the evolution of the multi-qubit system can
be calculated with each block separately. In particular, when the initial
and target states lie in only one subspace, quantum control calculations
are needed for only one block instead of the entire Hamiltonian.

As representative examples to demonstrate the capabilities of the
VAN-DAMME software package, we consider two typical entangled
states, the 𝑊 state [26] and the GHZ (Greenberger–Horne–Zeilinger)
state [27] given by

|𝑊 ⟩ = 1 |100…0⟩+ |010…0⟩+⋯+ |00…10⟩+ |00…01⟩ (8)
3

√
𝑛𝑞

()
Computer Physics Communications 307 (2025) 109403

and

|GHZ⟩ = 1√
2

(|0⟩⊗𝑛𝑞 + |1⟩⊗𝑛𝑞
)

(9)

in configurations containing up to 15 qubits. These two states are rep-

resentatives of the two non-biseparable classes of three-qubit states and
cannot be transformed into each other by local operations. These specific
states were proposed to prove Bell’s theorem and were later introduced
in various applications, including robust quantum memory storage [28],
quantum key distribution [29], and achieving the Heisenberg limit to
estimate error reduction in quantum metrology [30–32]. We define the
initial state as “all spin-up,” i.e., |0⟩⊗𝑛𝑞 . Both the initial and target states
lie in the first subspace under either 𝑆 or 𝐷 symmetry; therefore, we
only use the first block of the transformed Hamiltonian. Table 1 shows
a comparison of the dimensions between the complete Hilbert space
(ℂ2𝑛𝑞) and the first subspace 𝐷

1 under 𝐷 symmetry, which equals the
size of the complete Hamiltonian and the first block, respectively. Thus,
working with one block greatly reduces the computational complexity of
our algorithm. For example, in the case of 15 qubits, the VAN-DAMME
code executes quantum control calculations on reduced matrices of size
1,224 × 1,224 rather than the full 32,768 × 32,768 matrices; i.e., the
complexity is (2

𝑛𝑞

𝑛𝑞
) instead of (2𝑛𝑞).

It is worth noting that a desired transition may not be allowed even
if the initial and target states lie in the same subspace since the selection
rules of allowed transitions in each subspace are determined by the sys-

tem’s symmetry and coupling features. When there is no coupling, i.e.,

𝑐
(1)
cpl

, 𝑐(2)
cpl

, … , 𝑐
(⌊ 𝑛𝑞

2 ⌋)
cpl

= 0 in Eq. (2), the multi-qubit system has 𝑆 sym-

metry. The resonance frequency that excites all allowed transitions is
degenerate under 𝑆 symmetry, which forbids transitions to the 𝑊 or
GHZ state. The degeneracy of these resonance frequencies can be fully
broken by enabling all the coupling terms in Eq. (2). As such, the sym-

metry of the multi-qubit system is reduced to 𝐷, and each transition
allowed by the selection rule can be excited by pulses with a different
resonance frequency. Our previous studies have shown that breaking
the degeneracy of the resonance frequencies allows the multi-qubit sys-

tem to be more easily controllable [14]. In principle, when full coupling
is enabled, any transition can be realized as long as the initial and target
states are in the same symmetry-protected subspace.

In addition to preparing the 𝑊 and GHZ states in fully coupled
multi-qubit systems, we benchmark the controllability with arbitrary
transitions confined in the same subspace. Our tests on multiple transi-

tions between randomly designated states indicate that the algorithms
in the VAN-DAMME code can always converge if the initial and the tar-

get states are in the same subspace. This convergence arises because
the full coupling between qubits brings enhanced controllability to the
system, as discussed above. We have built the API of the VAN-DAMME
application so that users can define their own initial and target states.

To enable faster convergence, the VAN-DAMME code uses the am-

plified gradient modification scheme originally proposed from the TRA-

VOLTA package [13]. Within this approach, the amplification coeffi-

cient is defined as

𝛽 = 𝛽 ⋅
|⟨𝜓⟂|𝜓target⟩|
|⟨𝜓⟂|𝜓𝑁 ⟩| if |⟨𝜓⟂|𝜓𝑁 ⟩| < 0.01 ⋅ |⟨𝜓⟂|𝜓target⟩| ,

= 1 if |⟨𝜓⟂|𝜓𝑁 ⟩| ≥ 0.01 ⋅ |⟨𝜓⟂|𝜓target⟩| ,

(10)

where |𝜓⟂⟩ is the normalized difference of the target state and its pro-

jection on the initial state:

|𝜓⟂⟩ = |𝜓target⟩− |𝜓0⟩⟨𝜓0|𝜓target⟩√
1 − |⟨𝜓0|𝜓target⟩|2

, (11)

and 𝛽 is an empirical coefficient that is assigned the following values

for different transition tasks.

Computer Physics Communications 307 (2025) 109403J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Table 1

Comparison of dimensions of spaces for 𝑛𝑞 = 10 − 15. The dimension of (ℂ2𝑛𝑞) and 𝐷

1 is
2𝑛𝑞 and (2

𝑛𝑞

𝑛𝑞

), respectively.

Number of qubits, 𝑛𝑞 Complete Hilbert space (ℂ2𝑛𝑞) First subspace 𝐷

1 under 𝐷 symmetry

10 1,024 78

11 2,048 126

12 4,096 224

13 8,192 380

14 16,384 687

15 32,768 1,224
𝛽 =
√
10−3 if 𝜓target = |𝑊 ⟩ ,

=
√
10−9 if 𝜓target = |GHZ⟩ ,

=
√
10−3 ⋅ 1000𝑛𝑞−3 if 𝜓target = |1⟩⊗𝑛𝑞 .

(12)

When 𝑃 is small, the gradients in Eq. (7) are multiplied by the am-

plification coefficient to prevent an extremely large update rate, 𝛾 , in a
golden section search algorithm. Our previous study has shown that this
heuristic effectively reduces the cost of the search method [13], and, as
a result, the number of iterations for achieving convergence.

When the initial and target states are |0⟩⊗𝑛𝑞 and |GHZ⟩, respectively,
these two states are not orthogonal to each other. As a result, 𝑃 (|0⟩⊗𝑛𝑞)
is not at a local minimum of the loss function. In this situation, the opti-

mization problem becomes non-convex, which cannot be solved with the
gradient ascent approach. To resolve this difficulty, the VAN-DAMME
code uses the optimal control pulses for preparing |1⟩⊗𝑛𝑞 as an initial
guess for preparing the GHZ state. Regardless of whether the target state
is |GHZ⟩ or |1⟩⊗𝑛𝑞 , the expression, |𝜓⟂⟩ = |1⟩⊗𝑛𝑞 , always holds, which
implies that the optimal pulses for transitions to these two states must
have the same resonance frequencies. As such, when the control pulses
are initialized with the optimal pulses that prepare |1⟩⊗𝑛𝑞 , only the am-

plitudes need to be updated to evolve the multi-qubit system toward
the GHZ state. Our extensive tests with the VAN-DAMME code show
that these approaches enable facile convergence.

4. The computation of matrix exponentials

As shown in Algorithm 1, the computation of the exponential of a
matrix,

𝑒A𝑡 =
∞∑

𝑘=0

(A𝑡)𝑘

𝑘!
, (13)

is paramount in the acceleration of the quantum control of multi-qubit
systems. Multiple methods [20–22] have been proposed for implement-

ing Eq. (13), while few of these routines lead to accurate results. The
Scale and Square method based on Padé approximants is accurate when
properly implemented, which we briefly review below.

4.1. Padé approximants

The Padé approximate [22] to matrix 𝑒A is defined as

𝑅𝑝𝑞(A) = [𝐷𝑝𝑞(A)]−1𝑁𝑝𝑞(A), (14)

where

𝑁𝑝𝑞(A) =
𝑝∑

𝑘=0

(𝑝+ 𝑞 − 𝑘)!𝑝!
(𝑝+ 𝑞)!𝑘!(𝑝− 𝑘)!

A𝑘, (15)

and

𝐷𝑝𝑞(A) =
𝑞∑

𝑘=0

(𝑝+ 𝑞 − 𝑘)!𝑞!
(𝑝+ 𝑞)!𝑘!(𝑞 − 𝑘)!

(−A)𝑘. (16)

In Eq. (14), the non-singularity of 𝐷𝑝𝑞(A) is guaranteed if 𝑝 and 𝑞 are
4

large or if the eigenvalues of A are negative. Moreover, from Eqs. (15)
and (16), it should be noted that 𝑁𝑞𝑞(A) = 𝐷𝑞𝑞(−A). Moler et al. [20,21]

have shown that Padé approximants are accurate when the norm of A
is small. In addition, they have shown that diagonal approximants 𝑝 = 𝑞

are preferred over off-diagonal approximants 𝑝 ≠ 𝑞.

4.2. Scaling and squaring

Because Padé approximants are very accurate when the norm of A is
small, scaling and squaring methods have been proposed [22]. In this ap-

proach, the elements of the A matrix are first scaled down by a factor 𝑚
so that 𝑅𝑝𝑞(A∕𝑚) is a good approximation to 𝑒A∕𝑚. Then, the 𝑅𝑝𝑞(A∕𝑚)
matrix is raised to the 𝑚th power such that 𝑒A = (𝑅𝑝𝑞(A∕𝑚))𝑚. The scal-

ing and power-raising methods exploit the property of the exponential
function:

𝑒A = (𝑒A∕𝑚)𝑚. (17)

Furthermore, to speed up the computations in Eq. (17), 𝑚 is usually set
to 𝑚 = 2𝑗 with 𝑗 ≥ 0. If the 𝑒A∕2𝑗

matrix is computed via 𝑅𝑞𝑞(A∕2𝑗) as
described in Eq. (14), the parameters 𝑞 and 𝑗 have to be determined.
The work of Moler et al. [20,21] shows that if ||A|| ≤ 2𝑗−1,

[𝑅𝑞𝑞(A∕2𝑗)]2𝑗 = 𝑒A+E, (18)

where

||E||
||A|| ≤ 𝜖(𝑞, 𝑗). (19)

Eq. (19) can be used to determine the values of 𝑞 and 𝑗. That is, given a
tolerance error, 𝜖, and the norm, ||A||, multiple values of 𝑞 and 𝑗 can be
tabulated using an error function as described in Ref. [22]. Moreover, it
is sensible to pick the resulting pair (𝑞, 𝑗) that minimizes the amount of
work in the calculation of (𝑅𝑞𝑞(A∕𝑚))𝑚.

Furthermore, Higham [23] showed that it is advantageous to set 𝑞 =
13 and choose 𝑗 such that ||A||max∕2𝑗 ≤ 𝜃 where 𝜃 is a pre-calculated
constant (||A||max is the element of A with the maximum magnitude). By
doing so, the relative error introduced by the scaling and power-raising
method is bounded by 1.1 ×10−16, a factor proportional to the round-off
error in IEEE double-precision arithmetic. Setting lower values for 𝑞 (or
relaxing the constraints for 𝜃) decreases the computational complexity
of the calculations at the expense of lower accuracy. Since accuracy is
paramount in our work, we set 𝑞 = 13 and compute 𝜃 as mentioned
previously, at the expense of this additional computational cost.

4.3. CPU routine

The first step in the computation of 𝑒A is the computation of the
𝑁𝑞𝑞(A) and 𝐷𝑞𝑞(A) matrices. Efficient ways to compute these matrices
have been proposed [22,23], which we briefly describe below. The ma-

trix, 𝑁𝑝𝑞 , can be computed with the expression

𝑁𝑝𝑞(A) = 𝑏0I+ 𝑏1A + 𝑏2A
2 + 𝑏3A

3 + 𝑏4A
4 +⋯+ 𝑏12A

12 + 𝑏13A
13. (20)

Defining

V = 𝑏0I+ 𝑏2A
2 + 𝑏4A

4 + 𝑏6A
6 + 𝑏8A

8 + 𝑏10A
10 + 𝑏12A

12

(21)

= 𝑏0I+ 𝑏2A

2 + 𝑏4A
4 + 𝑏6A

6 + A6(𝑏8A2 + 𝑏10A
4 + 𝑏12A

6)

J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

and

U = 𝑏1A + 𝑏3A
3 + 𝑏5A

5 + 𝑏7A
7 + 𝑏9A

9 + 𝑏11A
11 + 𝑏13A

13

= A(𝑏1I+ 𝑏3A
2 + 𝑏5A

4 + 𝑏7A
6) + A7(𝑏9A2 + 𝑏11A

4 + 𝑏13A
6)

= A[(𝑏1I+ 𝑏3A
2 + 𝑏5A

4 + 𝑏7A
6) + A6(𝑏9A2 + 𝑏11A

4 + 𝑏13A
6)]

(22)

gives

𝑁𝑞𝑞(A) = V + U. (23)

Since 𝑁𝑞𝑞(A) = 𝐷𝑞𝑞(−A), it follows that 𝐷𝑞𝑞(A) = V − U. The ele-

ments 𝑏𝑖, 𝑖 = 0, … , 13, are the coefficients shown in Eq. (15). Finally,
once 𝑁𝑞𝑞(A) and 𝐷𝑞𝑞(A) are calculated, Eq. (14) has to be solved. Algo-

rithm 2 shows the steps for the computation of 𝑒A using Padé Approxi-

mants with scaling of the input matrix.

Algorithm 2: Computer implementation of the matrix exponen-

tial 𝑒A using Padé Approximants.

Input: Parameter 𝜃 and 𝑛 × 𝑛 matrix A.

Output: 𝑛 × 𝑛 matrix 𝑒A .

1 Determine 𝑠 (a minimal integer number) such that ||A||max∕2𝑠 ≤ 𝜃

2 Compute A = A∕2𝑠

3 Compute A2 = A A

4 Compute A4 = A2 A2

5 Compute A6 = A4 A2

6 Compute V = 𝑏0I+ 𝑏2A
2 + 𝑏4A

4 + 𝑏6A
6 +A6(𝑏8A2 + 𝑏10A

4 + 𝑏12A
6) (see

Eq. (21))

7 Compute U = A[𝑏1I+ 𝑏3A
2 + 𝑏5A

4 + 𝑏7A
6 +A6(𝑏9A2 + 𝑏11A

4 + 𝑏13A
6)]

(see Eq. (22))

8 Compute 𝑁𝑞𝑞(A) = V+ U

9 Compute 𝐷𝑞𝑞(A) = V −U

10 Solve the linear system of equations 𝐷𝑞𝑞(A)𝑅𝑞𝑞(A) =𝑁𝑞𝑞(A) for 𝑅𝑞𝑞(A)
(see Eq. (14))

11 return 𝑒A = (𝑅𝑞𝑞(A))2
𝑠

In line 1 of this algorithm, ||A||max = max𝑖,𝑗 |𝑎[𝑖, 𝑗]| for 𝑖 = 0, … , 𝑛 −1
and 𝑗 = 0, … , 𝑛 − 1. Otherwise, this algorithm is a straightforward im-

plementation of the equations just described. The algorithm is fast and
accurate for calculating only one matrix exponential, 𝑒A . In our work,
we require 𝑢 exponential matrices (i.e., 𝑒A[𝑖] for 𝑖 = 0, … , 𝑢 − 1) to be
computed simultaneously. While a parallel version of Algorithm 2 can
be implemented on CPUs without major effort, the VAN-DAMME soft-

ware package uses custom algorithms that harness the computational
power of GPUs [25,33], which we describe below.

4.4. GPU routine

As described in Section 2, our approach computes multiple matrix
exponentials in parallel. Because the A[𝑖] matrices for 𝑖 = 0, … , 𝑢 − 1,
are small (i.e., 1,224 × 1,224 or smaller), it is advantageous to com-

pute multiple exponentials 𝑒A[𝑖] simultaneously since computing a single
matrix exponential does not generate enough work for one GPU or a
multi-core CPU. The computation of multiple small matrix exponentials
in parallel provides enough work to saturate the GPU computational re-

sources. The computational field where hundreds or thousands of small
problems are solved efficiently in parallel is known as Batched Com-

putations [34–36,13]. In this field, the number of problems solved in
parallel is called the batch size. Examples of batched computations in-

clude the simultaneous multiplication of hundreds of small matrices, the
simultaneous factorization of hundreds of small matrices via the QR de-

composition, and the simultaneous factorization of hundreds of small
banded matrices via the LU decomposition. For multi-core platforms,
multiple approaches have been used to solve small problems simultane-

ously. For instance, if there are 𝑛 cores and 𝑚 problems, each core solves
5

an individual problem and continues until all tasks have been solved (the
Computer Physics Communications 307 (2025) 109403

one-core-one-problem approach). In other methods, multiple cores col-

laborate to solve an individual problem (the multiple-core-one-problem
approach).

The algorithm used in the VAN-DAMME software package for com-

puting the exponentials of multiple matrices simultaneously on GPUs
or multi-core CPUs is presented in Algorithm 3. In line 2, the A[𝑖] ma-

trices for 𝑖 = 0, ⋯ , 𝑢 − 1 are computed. As shown in Algorithm 1, for
each iteration, the H0 and H𝑐 matrices are computed first, and next, the
A[𝑖] matrices are obtained via matrix additions. In lines 3 and 4, if the
magnitude of the maximum element of matrix A[𝑖] is larger than 𝜃, the
elements of this matrix are scaled by a factor 2𝑠𝑖 such that ||A[𝑖]||max∕2𝑠𝑖

≤ 𝜃. In lines 5, 6, and 7, the A2[𝑖], A4[𝑖], and A6[𝑖] matrices are com-

puted. The V[𝑖] matrices are computed in multiple steps. First, in line 8,
the T[𝑖] matrices are computed in two steps: the matrix addition step,
𝑏8A

2[𝑖] + 𝑏10A
4[𝑖] + 𝑏12A

6[𝑖], and next, the matrix product step. Second,
in line 9, the V[𝑖] matrices are computed via matrix additions. Similar
steps are used in the computation of the U[𝑖] matrices as shown in lines
10 and 11. The linear systems described in line 14 are solved in multiple
steps. In the first step, the 𝐷𝑞𝑞(A[𝑖]) matrix is decomposed via the LU de-

composition [37,22]. Specifically, the P[𝑖], L[𝑖], and U∗[𝑖] matrices satis-

fying P[𝑖]𝐷𝑞𝑞(A[𝑖]) = L[𝑖]U∗[𝑖] are computed, where P[𝑖], L[𝑖], and U∗[𝑖]
are the permutation, lower triangular, and upper-triangular matrices,
respectively. In the next step, the inverse of the 𝐷𝑞𝑞 (A[𝑖]) matrices is cal-

culated, i.e., (𝐷𝑞𝑞(A[𝐼]))−1 = (P[𝑖]−1L[𝑖]U∗[𝑖])−1 = U∗[𝑖]−1L[𝑖]−1P[𝑖].
Finally, given (𝐷𝑞𝑞(A[𝐼]))−1, finding 𝑁𝑞𝑞(A[𝑖]) is immediate. In line 15,
the R𝑞𝑞(A[𝑖]) matrices are scaled up as described in Eq. (17).

Algorithm 3: Computation of matrix exponentials, 𝑒A[𝑖], for 𝑖 =
0, … , 𝑢 − 1, using Padé Approximants.

Input: Batch size 𝑢, parameter 𝜃, time step 𝜏 , and 𝑛 × 𝑛 matrices H0
and H𝑐 .

Output: 𝑛 × 𝑛 matrices 𝑒A[𝑖] , for 𝑖 = 0, … , 𝑢 − 1.

1 /* All of the steps below are executed in batches */

2 Compute A[𝑖] for 𝑖 = 0, … , 𝑢 − 1 (see Eq. (4))

3 Compute 𝑠𝑖 such that ||A[𝑖]||max∕2𝑠𝑖 ≤ 𝜃 for 𝑖 = 0, … , 𝑢 − 1
4 Compute A[𝑖] = A[𝑖]∕2𝑠𝑖 for 𝑖 = 0, … , 𝑢 − 1
5 Compute A2[𝑖] = A[𝑖]A[𝑖] for 𝑖 = 0, … , 𝑢 − 1
6 Compute A4[𝑖] = A2[𝑖]A2[𝑖] for 𝑖 = 0, … , 𝑢 − 1
7 Compute A6[𝑖] = A4[𝑖]A2[𝑖] for 𝑖 = 0, … , 𝑢 − 1
8 Compute T[𝑖] = A6[𝑖]

(
𝑏8A

2[𝑖] + 𝑏10A
4[𝑖] + 𝑏12A

6[𝑖]
)

for 𝑖 = 0, … , 𝑢 − 1
9 Compute V[𝑖] = 𝑏0I+ 𝑏2A

2[𝑖] + 𝑏4A
4[𝑖] + 𝑏6A

6[𝑖] + T[𝑖] for
𝑖 = 0, … , 𝑢 − 1

10 Compute T[𝑖] = A6[𝑖]
(
𝑏9A

2[𝑖] + 𝑏11A
4[𝑖] + 𝑏13A

6[𝑖]
)

for 𝑖 = 0, … , 𝑢 − 1
11 Compute U[𝑖] = A[𝑖]

(
𝑏1I+ 𝑏3A

2[𝑖] + 𝑏5A
4[𝑖] + 𝑏7A

6[𝑖] + T[𝑖]
)

for
𝑖 = 0, … , 𝑢 − 1

12 Compute 𝑁𝑞𝑞(A[𝑖]) = V[𝑖] +U[𝑖] for 𝑖 = 0, … , 𝑢 − 1
13 Compute 𝐷𝑞𝑞(A[𝑖]) = V[𝑖] −U[𝑖] for 𝑖 = 0, … , 𝑢 − 1
14 Solve 𝐷𝑞𝑞(A[𝑖])𝑅𝑞𝑞(A[𝑖]) =𝑁𝑞𝑞(A[𝑖]) for 𝑅𝑞𝑞(A[𝑖]) for 𝑖 = 0, … , 𝑢 − 1
15 return 𝑒A[𝑖] =

[
𝑅𝑞𝑞(A[𝑖])

]2𝑠𝑖

for 𝑖 = 0, … , 𝑢 − 1

4.5. Implementation of Algorithm 3

In the following sections, we describe the technical implementation
of Algorithm 3.

4.5.1. Data layout

There are many possibilities for choosing the data layout. For ex-

ample, the multiple A[𝑖] matrices for 𝑖 = 0, … , 𝑢 − 1, can be stored in
contiguous or non-contiguous pools of GPU main memory. Because our
routine has to allocate memory for multiple matrices, with each ma-

trix having multiple instances (i.e., the A matrix needs memory for 𝑢
instances: see Algorithm 3), all the A[𝑖] matrices for 𝑖 = 0, … , 𝑢 − 1 are
stored in contiguous memory in the VAN-DAMME software package.

When the matrices are stored in contiguous pools of memory, only one

Computer Physics Communications 307 (2025) 109403J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Fig. 1. Schematic of pool of memory of size 𝑢 × 𝑛2 × sizeof(datatype) used in the VAN-DAMME software package.
memory allocation call is required. This approach saves time and mini-

mizes the fragmentation of the memory. Next, we store the A[𝑖] matrices
for 𝑖 = 0, … , 𝑢 −1 back to back. That is, given a pool of memory with size
𝑢 ×𝑛2 × sizeof(datatype), matrix A[0] is stored first, A[1] next, and so on,
with the A[𝑢 −1] matrix stored last. Moreover, to make use of the CUDA
API, each A[𝑖] matrix, as well as the other matrices in Algorithm 3, is
represented in column-major order. Fig. 1 depicts our approach.

4.5.2. Implementation details

We next analyze the technical implementation of our quantum con-

trol algorithms in the VAN-DAMME software package. Fortunately, the
latest CUDA BLAS library [19] supports many of the batch compu-

tations required in the implementation of this routine. These com-

putations include (a) batched multiplication of matrices (i.e., C[𝑖] =
𝛼A[𝑖]B[𝑖] + 𝛽C[𝑖] for 𝑖 = 0, … , 𝑢 − 1), (b) batched LU decomposition of
matrices (i.e., L[𝑖]U∗[𝑖] = P[𝑖]A[𝑖] for 𝑖 = 0, … , 𝑢 − 1), and (c) batched
inversion of matrices in the previous LU decomposition (i.e., A−1[𝑖] =
[P[𝑖]−1L[𝑖]U∗[𝑖]]−1 for 𝑖 = 0, … , 𝑢 − 1). Once computations (a), (b), and
(c) are executed, the implementation of line 14 in Algorithm 3 is imme-

diate: the LU decomposition of 𝐷𝑞𝑞(A[𝑖]) is executed, and (𝐷𝑞𝑞(A[𝑖]))−1

is computed followed by 𝑅𝑞𝑞(A[𝑖]) = (𝐷𝑞𝑞(A[𝑖]))−1𝑁𝑞𝑞(A[𝑖]).
Interestingly, CUDA BLAS neither implements the batched scaling

operation nor the batched addition of matrices unless the batched data
is stored contiguously in memory. Although these operations can be im-

plemented on the CPU, we did a custom implementation of them on
the GPU to minimize the data movement between the CPU and GPU
(and vice-versa), which takes advantage of the thousands of cores on
the target GPU. The implementation of line 3 requires finding the largest
element of each A[𝑖], and, next, the computation of 𝑠𝑖. Given 𝑠𝑖, the el-

ements of A[𝑖] must be scaled down as shown in line 4.

Fig. 2 shows the steps involved in the scaling of matrix A[𝑖] (the rows
of each matrix are depicted vertically). In part (𝑎), ceil(𝑛∕32) blocks
are created with each GPU block having 32 threads. In this design, the
first thread of the first block is responsible for finding the maximum
element of the first row of A[𝑖]. The second thread of the first block
finds the largest element of the second row of A[𝑖], and so on. In short,
the threads in the first GPU block find the largest elements in each of the
first 32 rows of A[𝑖]. The threads in the second block compute the largest
elements in each row of the next 32 rows. The other blocks compute the
largest elements for the remaining rows of A[𝑖]. At the end, the largest
elements in each row are written in the GPU main memory array r[𝑖].

In part (𝑏.1), a GPU block with 32 threads is created. The threads
in this block read the first 32 elements of array r[𝑖] and write these
elements into the shared memory array m[𝑖] of size 32. Next, this block
reads another 32 elements into registers. If the value in register one is
larger than the first element in array m[𝑖], the register is written into the
first element of m[𝑖] and likewise for the remaining 31 registers. This
process of reading and comparing continues until all the elements of r[𝑖]
have been processed. At the end of this step, the array m[𝑖] contains the
largest element of A[𝑖].

In part (𝑏.2), the largest element (i.e., ||A||max) of m[𝑖] is found.
6

This computation is done via a parallel reduction in shared memory.
First, a GPU block with 32 threads is created. Next, the first thread of
this block compares the first and second elements, and the maximum
of those elements is written into the first position of m[𝑖]. The second
thread compares the third and fourth elements of m[𝑖], and the largest
element is written into the third position of m[𝑖]. Likewise, the third
thread compares the fifth and sixth elements of m[𝑖], and the largest el-

ement is written into the fifth position of m[𝑖]. A similar process is used
for the remaining 13 threads in the block (the remaining 16 GPU threads
do not execute any work). At the end of this process, the threads in the
block synchronize their work. The amount of work to find the largest
element has been divided by two. Next, the step above repeats, but this
time, only considers the first, third, fifth, seventh, . . . , and thirty-first el-

ements of m[𝑖]. This time, thread one compares elements one and three,
thread two compares elements five and seven, and thread two com-

pares elements nine and eleventh, and so on for the first eight threads
in the block. The comparisons and synchronization continue until the
largest element (denoted as 𝑠𝑖) of m[𝑖] appears in the first position of
m[𝑖]. In the scientific computing literature, this type of computation is
known as Parallel Reduction via interleaved addressing [38]. Finally,
given ||A||max, the scaling factor 𝑠𝑖 is computed.

Finally, in part (𝑐), the division of the elements of A[𝑖] by 2𝑠𝑖 is ex-

ecuted by another routine, which divides the elements of matrix A[𝑖]
into square blocks, reads the elements in the block, divides them by 2𝑠𝑖 ,
and finally, writes the normalized elements back to the GPU main mem-

ory. The element 𝑠𝑖 is saved for later calculations. For multiple matrices
(i.e., A[𝑖] with 𝑖 = 0, … , 𝑢 − 1), 𝑢 routines are executed in parallel via
a GPU kernel that uses the (𝑥, 𝑦) dimensions to address the elements
of the A[𝑖] matrix and the 𝑧 dimension to address individual matrices
𝑧 = 0, … , 𝑢 − 1.

As mentioned above, the cuBLAS library does not implement batched
matrix additions. As a result, we implemented the operation C[𝑖] =
𝛼A[𝑖] + 𝛽C[𝑖] for 𝑖 = 0, 1, … , 𝑢 − 1. Our implementation is straightfor-

ward: the C[𝑖] and A[𝑖] matrices are split into 32 × 32 blocks (observing
boundaries), and a GPU routine is called that adds these blocks. This
routine reads two sub-blocks (one sub-block in A[𝑖] and another in
C[𝑖]), scales the blocks using the 𝛼 and 𝛽 parameters, respectively, and
then, adds the scaled sub-blocks. Finally, the routine writes the result-

ing sub-blocks into the GPU main memory. As before, this GPU kernel
uses the (𝑥, 𝑦) dimensions to address the elements of the A[𝑖] matrix
and the 𝑧 dimension to address individual matrices. To increase perfor-

mance, the batched matrix addition, C[𝑖] = 𝛼1A[𝑖] + 𝛼2B[𝑖] + 𝛽C[𝑖] for
𝑖 = 0, 1, … , 𝑢 − 1, is implemented in the same fashion.

4.5.3. Computational complexity

We now analyze the computational complexity of Algorithm 3. First,
all operations are complex-valued, so our analysis is in the context of
complex operations. For instance, multiplying two complex numbers re-

quires four multiplications and two additions for a total of six arithmetic
operations. To make our analysis simple, we count this multiplication
as one complex operation. Table 2 summarizes our findings.

The implementation of line 2 requires 𝑢 ×(2𝑛2) complex multipli-
cations and 𝑢 ×(𝑛2) complex additions. The implementation of line 3

Computer Physics Communications 307 (2025) 109403J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Fig. 2. GPU kernel for the normalization of the input 𝑛 × 𝑛 A[𝑖] matrix in the VAN-DAMME software package. In part (𝑎), the maximum value for each row is found,
and this value is written into the GPU main memory array, r[𝑖]. In parts (𝑏.1) and (𝑏.2), a reduction in GPU shared memory finds the largest element ||A||max in r[𝑖].
In part (𝑐), the value 𝑠𝑖 is used to compute ||A[𝑖]||∕2𝑠𝑖 .

Table 2

Computational complexity (with double-precision complex numbers).

Line(s) Complexity Description

2 𝑢 ×(3𝑛2) Matrix additions

3 𝑢 ×(𝑛2) + 𝑢𝐶 Comparisons

4 𝑢 ×(𝑛2) Divisions

5,6,7 𝑢 ×(2𝑛3) Matrix multiplications

8 𝑢 ×(2𝑛3 + 3𝑛2 + 2𝑛2) Matrix additions and multiplications

9 𝑢 ×(5𝑛2 + 4𝑛2) Matrix additions

10, 11 Similar to lines 8 and 9 Matrix additions and multiplications

12,13 𝑢 ×(𝑛2) Matrix additions

14 𝑢 ×(2𝑛2∕3 + 2𝑛2 + 2𝑛3 + 2𝑛3) Solving a linear system via LU decomposition

15 (𝑠0 + 𝑠1 +⋯+ 𝑠𝑢−1)(2𝑛3) Matrix multiplications
requires about 𝑢 ×(𝑛2) operations and a constant number of operations.
Specifically, for each A[𝑖] matrix, the elements with the maximum norm
have to be found first for each row, requiring 𝑛(𝑛 − 1) complex compar-

isons; next, 𝑠𝑖 has to be computed. Finding the array m[𝑖] requires 𝑛 −32
comparisons, and the parallel reduction via interleaved addressing re-

quires 31 comparisons. The implementation of line 4 requires 𝑢 ×(𝑛2)
complex divisions in the worst case scenario. The number of arithmetic
operations required to execute lines 5, 6, and 7 is proportional to that
of matrix multiplication: 𝑢 ×(2𝑛3). The computation of line 8 requires
one matrix multiplication and two matrix additions. The execution of
the additions takes 3𝑛2 complex multiplications and 2𝑛2 complex ad-

ditions. A similar analysis applies for lines 9, 10, and 11. Line 14 is
very expensive to implement. First, executing the 𝐿𝑈 decomposition of
a square matrix requires 2𝑛2∕3 complex operations [37]. Next, finding
the inverses of L via forward substitution, or U∗ via backward substitu-

tion, requires 𝑛2 complex operations. In addition, given the inverses of
L and U, finding the inverse of 𝐷𝑞𝑞(A[𝑖]) requires 2𝑛3 complex opera-

tions as the post-multiplication by the matrix P[𝑖] can be implemented
via column exchanges. Solving for 𝑁𝑞𝑞(A[𝑖]) requires 2𝑛3 additional op-

erations. Finally, the implementation of line 15 requires multiple matrix
multiplications. Thus, the computation of the matrices 𝑒A[𝑖] is expensive,
which can be accelerated with GPUs, as demonstrated in our results in
7

Section 5.2.
4.5.4. Memory requirements

In this section, we analyze the memory requirements of the quan-

tum control algorithms in the VAN-DAMME software package. For a
batch size of 𝑢 and each 𝑛 × 𝑛 A[𝑖] matrix (for 𝑖 = 0, … , 𝑢 − 1) used in
the quantum control algorithm, representing the set of A[𝑖] matrices re-

quires 𝑢 × 𝑛2 × sizeof(datatype) bytes. In our case, the matrices A[𝑖] are
complex, and as a result, 16 bytes per element are required (i.e., com-

plex double-precision floating point numbers). Table 3 summarizes the
memory requirements of Algorithm 3 as a function of the number of
qubits when the size of the batch is set to 𝑢 = 128.

Table 3 does not include the 𝐷𝑞𝑞(A[𝑖]), 𝑁𝑞𝑞(A[𝑖]), and 𝑅𝑞𝑞(A[𝑖]) ma-

trices because once the U[𝑖] and V[𝑖] matrices are computed, the A2[𝑖],
A4[𝑖], A6[𝑖] and T[𝑖] matrices are deallocated, and as a result, additional
memory is available. As can be seen in Table 3, both the size of the
input matrices and the batch size cannot be increased simultaneously
since the physical memory available on the platform is limited. In ad-

dition, Algorithm 1 requires extra memory due to the implementation
of the backpropagation routine. For each iteration, the backpropaga-

tion method requires memory proportional to 𝑁 × 𝑛 × sizeof(datatype)

bytes. As previously mentioned, this implementation requires 16 bytes
per element. Thus, the combined memory requirements of the matrix

exponentials and the backpropagation routine account for over 95% of

Computer Physics Communications 307 (2025) 109403J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Table 3

Memory utilization for 10 - 15 qubits with a Batch size 𝑢 = 128.

Number of qubits 𝑛 A[𝑢], A2[𝑢], A4[𝑢], and A6[𝑢] T[𝑢] U[𝑢] V[𝑢] Total memory

10 78 47.6 MB 11.9 MB 11.9 MB 11.9 MB 83.3 MB

11 126 124.0 MB 31.0 MB 31.0 MB 31.0 MB 217.0 MB

12 224 392.0 MB 98.0 MB 98.0 MB 98.0 MB 686.0 MB

13 380 1128.0 MB 282.0 MB 282.0 MB 282.0 MB 1974.0 MB

14 687 3591.2 MB 897.8 MB 897.8 MB 897.8 MB 6284.6 MB

15 1224 11704.4 MB 2926.1 MB 2926.1 MB 2926.1 MB 20482.7 MB
the overall memory needs of Algorithm 1, enabling the simulation of
QOC problems involving 15 qubits or more.

5. Computational results and performance

5.1. Optimal controls for preparing the 𝑊 and GHZ states

To demonstrate the capabilities of the VAN-DAMME software pack-

age, we calculate optimal control pulses that evolve a multi-qubit system
with full coupling from |0⟩⊗𝑛𝑞 to the 𝑊 or GHZ state. Figs. 3(a) and (b)
compare the optimal control pulses between a 6- and 15-qubit system
for preparing the 𝑊 state. Note that the initial state |0⟩⊗𝑛𝑞 is next to the
𝑊 state in the transition cascade of a fully coupled multi-qubit system
[14]; i.e., the direct transition from |0⟩⊗𝑛𝑞 to the 𝑊 state is allowed by
the selection rule. As a result, this transition can be realized by control
pulses of only one resonance frequency. The shapes of 𝐵𝑥 and 𝐵𝑦 are
nearly identical and differ only by a 𝜋

2 phase shift; i.e., the transition
is enabled by a circularly polarized magnetic control pulse. Figs. 3(c)
and (d) compare the power spectra, i.e., the Fourier transform of the
optimal control pulses, between the 6- and 15-qubit system. It is worth
noting that the resonance frequency for the 15-qubit system is smaller
than that for 6-qubits. In general, a redshift in the resonance frequency
emerges as the number of qubits, 𝑛𝑞 , increases due to the introduction
of more coupling terms. Since the optimal control pulses are simple si-
nusoids, the probability 𝑃 converges to ≈ 1.0 in a few iterations for both
cases, as shown in Figs. 3(e) and (f).

Compared with the optimal control pulses that enable transitions
from |0⟩⊗𝑛𝑞 to the 𝑊 state, the optimal pulses for preparing the GHZ
state are significantly more complicated, as shown in Figs. 4(a) and (b).
In the power spectrum shown in Fig. 4(c), 14 resonance frequencies
emerge for the 6-qubit system. In contrast, Fig. 4(d) indicates several
hundreds of resonance frequencies are required to evolve a 13-qubit sys-

tem toward the GHZ state since the initial |0⟩⊗𝑛𝑞 state and |𝜓⟂⟩ = |1⟩⊗𝑛𝑞

are at the two ends of the transition cascade [14]. As such, any transition
allowed by the selection rule may be required to realize the transition
from |0⟩⊗𝑛𝑞 to the GHZ state, and these transitions are enabled by hun-

dreds of different resonance frequencies. Such complex optimal pulses
pose difficulties for convergence, as shown in Figs. 4(e) and (f). Inter-

estingly, if the pulses are initialized with white noise, the VAN-DAMME
code is unable to converge to prepare the GHZ state. Therefore, we ini-

tialized the pulses with the optimal pulses used to prepare |1⟩⊗𝑛𝑞 . This
initial guess contains all the required frequency components and initial-

izes 𝑃 = 0.5 in the first iteration rather than zero. The VAN-DAMME
code subsequently updates the amplitude for each resonance frequency
and achieves convergence in 8 and 150 iterations for the 6 and 13-qubit
systems, respectively.

In addition, we also calculated the optimal control pulses that pre-

pare the 𝑊 and GHZ states for fully coupled multi-qubit systems con-

taining up to 15 and 13 qubits, respectively. The quantum control cal-

culations for the 13-qubit GHZ state preparation was carried out on
only the GPU since it was computationally prohibitive to calculate on
the CPU (< 3 days on the GPU vs. ≈ 80 days on the CPU). The opti-

mal pulses, power spectra, amplitude of the control pulses/gradients in
each iteration, and the convergence of 𝑃 vs. iteration are the same for
the CPU and the CPU+GPU approaches, which demonstrate that our
8

approach was accurately implemented in the VAN-DAMME software
package. We compare the computational performance between the CPU
and CPU+GPU approaches in Section 5.2.

5.2. Computational performance on GPUs

To demonstrate the computational performance of our GPU paral-

lelization scheme in the VAN-DAMME code, we report the execution
times of Algorithm 1 on one compute node of the Perlmutter supercom-

puter [24] at NERSC, which is equipped with one EPYC-7763 processor
(a 64-core CPU) and 256 GB of RAM. In addition, each node houses
four NVIDIA A100 GPUs, each having 40 GB of RAM. In our calcula-

tions, we set the number of CPU threads to eight (one thread per core)
and use one GPU. Our testbed CPU [39] has a peak performance of
3.58 Teraflops per second and a maximum bandwidth of 204.8 GB/sec
while the testbed GPU [40] has a peak performance of 9.7 Teraflops per
second (FLOPS) and a maximum bandwidth of 2.0 terabytes per sec-

ond (TB/s). To assess the computational performance of Algorithm 1

on different hardware architectures, we compare the execution times
for two implementations: (1) a CPU baseline implementation that uti-

lizes threaded numerical routines in the Cray BLAS LibSci library [41],
and (2) our hybrid CPU+GPU implementation that utilizes the kernels
as described in Section 4.4. The most time-consuming operation in Al-

gorithm 1 is the calculation of matrix exponentials, which we further
analyze below.

Fig. 5 shows the execution times for a single iteration of Algorithm 1

when applied to 10 - 15 qubits. To obtain the execution times of our
baseline implementation (i.e., using CPUs only), we use one node on
the Perlmutter supercomputer at NERSC. Because the complexity of the
routine is dominated by the computation of matrix exponentials, we see
proportional changes in the execution times: larger arguments in the
matrix exponentials result in longer simulations. In our baseline CPU
code, we observe that as the number of qubits increases, the execu-

tion time per iteration increases. On average, the increase in execution
times is 3.6 for each additional qubit that is added. The minimum in-

crease in execution times occurs when the number of qubits increases
from 10 to 11 (a 2.5× increase). The maximum increase occurs when
the number of qubits increases from 14 to 15 (a 4.9× increase). This
is in agreement with our expectations: these time increases correspond
to changes in the size of the matrix exponentials, as shown in Table 3,
and as a result, rises in the computational complexity, as shown in Ta-

ble 2.

To obtain the execution times of our hybrid implementation (i.e.,
8 cores + 1 GPU), we used the same hybrid node on the Perlmutter su-

percomputer. In our implementation, all matrix operations are executed
on the GPU. These operations include the computation of matrix expo-

nentials, as shown in Algorithm 3, as well as other matrix operations
required in Algorithm 1. As shown in Fig. 5, the observed results are in
agreement with the expected behavior. On average, the increase in ex-

ecution times is 3.9. The minimum increase in execution times occurs
when the number of qubits increases from 10 to 11 (a 1.3× increase);
the maximum increase occurs when the number of qubits increases from
14 to 15 (a 7.3× increase). As shown previously, these increases corre-

spond to changes in the size of the matrices and, as a result, changes in
the computational complexity.

To further understand the execution times of our CPU+GPU hybrid

algorithm, Table 4 shows the percentage of execution times per kernel

Computer Physics Communications 307 (2025) 109403J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Fig. 3. Comparison of quantum optimal control calculations executed with the VAN-DAMME code for (a, c, e) 6-qubit and (b, d, f) 15-qubit systems with full coupling
for preparing the 𝑊 state. (a, b) Optimal control pulses; (c, d) Power spectra; (e, f) Convergence of transition probability vs. iteration.
for 10, 12, and 14 qubits for one iteration in Algorithm 1. As shown
in this table, the LU factorization takes more than 50% of the execu-

tion time for all the cases. Moreover, two steps in the computation of
the matrix exponentials, the LU factorization and the inversion of ma-

trices (previous LU decomposition), take more than 65% of the overall
execution time for all the cases. The overall computation of matrix expo-

nentials requires additional matrix additions and matrix multiplications
(see Table 3), and as a result, the computation of exponentials takes 80%
or more of the overall execution time for all the cases. In short, the LU
decomposition of matrices is the most time-consuming operation. Be-

cause the two fundamental operations in the LU decomposition are the
swapping and subtraction of rows, and because all the rows of the target
matrix cannot be stored in shared memory simultaneously, the perfor-

mance of this kernel is limited by the GPU memory bandwidth, i.e., the
LU decomposition is a memory-bound kernel. The second-most time-

consuming kernel is the multiplication of matrices, whose performance
is limited by the number of floating point operations the GPU executes
per clock cycle, i.e., the multiplication of matrices is a compute-bound
kernel.

A comparison of execution times indicates that our hybrid CPU+GPU
implementation in the VAN-DAMME software package is 18.4 times
faster (based on a geometric average) than the baseline CPU routines.
The minimum gains are for the case of 10 qubits, which is 10.0 times
faster. The maximum gains are for the simulation of 13 qubits, which is
9

31.2 times faster. The observed gains in performance are due to multiple
Table 4

Percentage of total execution time for each Kernel in the VAN-DAMME code.

Kernel 10 qubits 12 qubits 14 qubits

cuBLAS LU Factorization 54.9 51.0 55.4

cuBLAS Matrix Multiplication 22.7 22.8 23.5

cuBLAS LU Inversion 16.9 16.3 18.2

Inhouse Matrix Addition 3.8 6.0 2.2

Inhouse Matrix A[𝑖] Calculation 0.7 1.2 0.4

Inhouse Matrix Max Operation 0.2 0.4 0.1

Other Kernels 0.8 2.3 0.2

factors. First, in Algorithm 1, the computation of the matrix exponentials
is the most time-consuming operation, and to achieve the best perfor-

mance, our routine uses Padé approximants, which are known to be fast
and accurate. To make the computation robust, we numerically scaled
down/up the input and output of the matrix exponentials. Moreover, to
exploit the parallelism present in our algorithm, the VAN-DAMME code
computed hundreds of matrix exponentials simultaneously, as shown
in Routine 3. In addition, each line of code in Routine 3 has been
parallelized, and high-performance kernels have been implemented or
borrowed from existing libraries. In our algorithm, shown in Table 4,
the LU decomposition of matrices and the multiplication of matrices are
the most critical arithmetic operations. To achieve competitive perfor-

mance, the VAN-DAMME code uses the batched routines in the cuBLAS

library. From the CUDA documentation, the batched LU decomposi-

Computer Physics Communications 307 (2025) 109403J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Fig. 4. Comparison of quantum optimal control calculations executed with the VAN-DAMME code for (a, c, e) 6-qubit and (b, d, f) 13-qubit systems with full coupling
10

for preparing the GHZ state. (a, b) Optimal control pulses; (c, d) Power spectra; (e, f) Convergence of transition probability vs. iteration.

Computer Physics Communications 307 (2025) 109403J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Fig. 5. Execution times (log scale) of the VAN-DAMME code on CPUs and GPUs for quantum control calculations on 10 - 15 qubits. The number in parenthesis is the

ratio of the execution time on CPUs to that on GPUs.

tion of matrices has been tailored to decompose small-sized matrices
and take advantage of both the GPU memory bandwidth and the GPU
floating-point throughput. Other batched operations in the cuBLAS li-
brary, including the batched matrix inversions (previous LU decompo-

sition) and batched matrix multiplications, have been tailored to work
on small-sized matrices, which are used in the VAN-DAMME software
package. Also, our kernels, including those for matrix initializations and
additions, have been designed to work in batches as shown in Fig. 2. As
shown in Table 4, our kernels only use about 8.0% of the overall exe-

cution time. In contrast, the CPU library routines are not optimized for
batched operations and, therefore, do not perform well for the quantum
control calculations in this work.

Fig. 5 shows that as the size of the matrices increases, the compara-

tive gains in performance of our hybrid CPU+GPU approach decrease.
Table 4 shows that the most time-consuming task for all qubit configu-

rations is the LU decomposition. As described above, the LU decompo-

sition is a memory-bound kernel. For large matrices, the cost of moving
data between the GPU main memory and the GPU shared memory, or the
GPU registers, affects the overall performance. A similar reasoning ap-

plies to LU inversions, which is the third most time-consuming task. De-

spite this behavior, our projections indicate that our hybrid CPU+GPU
implementation in the VAN-DAMME software package should be about
8.0 times faster for 16 qubits.

6. Conclusions

In conclusion, we have developed and provided the open-source
VAN-DAMME software package for accelerating QOC calculations of
multi-qubit systems with advanced GPU parallelization approaches. To
enable additional computation performance, the VAN-DAMME code
also leverages symmetry-based techniques that can decompose the
multi-qubit Hilbert space to block diagonalize the Hamiltonians used
in the QOC calculations. This reduction uses the first block of the trans-

formed Hamiltonians in QOC calculations and limits the state transition
to a symmetry-protected subspace to suppress quantum errors. To un-

derstand the computational bottlenecks in the VAN-DAMME code, we
carried out several extensive tests on data layout, computational com-

plexity, memory requirements, and performance. These extensive anal-

yses allowed us to develop computationally efficient approaches to com-

pute matrix exponentials on GPUs since this is the most time-consuming
11

operation in the QOC algorithm. To enable these performance gains, the
VAN-DAMME software package uses a custom GPU routine that com-

putes the exponentials of hundreds of small matrices simultaneously
using Padé approximants. To ensure the numerical robustness of our
calculations, we leveraged various properties of the matrix exponential,
including scaling down the argument of the matrix exponential and sub-

sequent scaling up of the resulting matrices after the matrix exponential
is computed.

All of the operations in the VAN-DAMME code are executed in
batches to maximize computational efficiency, which include scaling
of the arguments in the matrix exponentials, computation of Padé fac-

tors, computation of matrix⋅matrix and matrix⋅vector products, addi-

tion of matrices, and other matrix and vector operations. To validate
the accuracy of our implementation, we applied the GPU-accelerated
VAN-DAMME code to a variety of multi-qubit QOC calculations on con-

ventional CPUs and benchmarked its performance on state-of-the-art
A100 GPUs. These computational timing tests demonstrated that the
GPU-accelerated VAN-DAMME code generates the same results (i.e., op-

timal pulses, power spectra, gradients, and convergence properties) as
the benchmark calculations on CPUs but with a speedup that is 18.4×
faster. Our GPU-accelerated approach allows efficient calculations of
multi-qubit systems containing up to 15 qubits and beyond, and the
custom parallelization techniques in the VAN-DAMME code can be used
for the efficient implementation of QOC applications across multiple do-

mains.

CRediT authorship contribution statement

José M. Rodríguez-Borbón: Writing – review & editing, Writing –
original draft, Visualization, Validation, Software, Methodology, Inves-

tigation, Formal analysis, Data curation, Conceptualization. Xian Wang:

Writing – review & editing, Writing – original draft, Visualization, Val-

idation, Software, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization. Adrián P. Diéguez: Writing – review &
editing, Writing – original draft, Visualization, Validation, Methodol-

ogy, Investigation, Formal analysis, Data curation. Khaled Z. Ibrahim:

Writing – review & editing, Writing – original draft, Visualization, Val-

idation, Software, Methodology, Investigation, Formal analysis, Data
curation. Bryan M. Wong: Writing – review & editing, Writing – origi-

nal draft, Supervision, Resources, Project administration, Methodology,

Investigation, Funding acquisition, Formal analysis, Conceptualization.

Computer Physics Communications 307 (2025) 109403J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This work was supported by the U.S. Department of Energy Office of
Science, Office of Advanced Scientific Computing Research, Scientific
Discovery through the Advanced Computing (SciDAC) program under
Award Number DE-SC0022209. This research used resources of the Na-

tional Energy Research Scientific Computing Center (NERSC), a U.S. De-

partment of Energy Office of Science User Facility located at Lawrence
Berkeley National Laboratory, operated under Contract No. DE-AC02-

05CH11231 using NERSC award BES-ERCAP0023692.

Data availability

The VAN-DAMME program is available via the Computer Physics
Communications library link (https://doi .org /10 .17632 /zcgw2n5bjf .1).

References

[1] J.M. Gambetta, J.M. Chow, M. Steffen, Building logical qubits in a superconducting
quantum computing system, npj Quantum Inf. 3 (1) (2017) 2.

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo,
F.G. Brandao, D.A. Buell, et al., Quantum supremacy using a programmable super-

conducting processor, Nature 574 (7779) (2019) 505–510.

[3] V.E. Manucharyan, J. Koch, L.I. Glazman, M.H. Devoret, Fluxonium: single Cooper-

pair circuit free of charge offsets, Science 326 (5949) (2009) 113–116.

[4] L.B. Nguyen, Y.-H. Lin, A. Somoroff, R. Mencia, N. Grabon, V.E. Manucharyan, High-

coherence fluxonium qubit, Phys. Rev. X 9 (4) (2019) 041041.

[5] J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett.
74 (20) (1995) 4091.

[6] T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander,
W. Hänsel, M. Hennrich, R. Blatt, 14-qubit entanglement: creation and coherence,
Phys. Rev. Lett. 106 (13) (2011) 130506.

[7] S. Ebadi, T.T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein,
R. Samajdar, H. Pichler, W.W. Ho, et al., Quantum phases of matter on a 256-atom
programmable quantum simulator, Nature 595 (7866) (2021) 227–232.

[8] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, Optimal control
of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algo-

rithms, J. Magn. Res. 172 (2) (2005) 296–305.

[9] T. Caneva, T. Calarco, S. Montangero, Chopped random-basis quantum optimization,
Phys. Rev. A 84 (2) (2011) 022326.

[10] V.F. Krotov, I. Feldman, An iterative method for solving optimal-control problems,
Eng. Cybern. 21 (2) (1983) 123–130.

[11] A. Raza, C. Hong, X. Wang, A. Kumar, C.R. Shelton, B.M. Wong, NIC-CAGE: an
open-source software package for predicting optimal control fields in photo-excited
chemical systems, Comput. Phys. Commun. 258 (2021) 107541.

[12] X. Wang, P. Kairys, S.H.K. Narayanan, J. Hückelheim, P. Hovland, Memory-efficient
differentiable programming for quantum optimal control of discrete lattices, in: 2022
IEEE/ACM Third International Workshop on Quantum Computing Software (QCS),
IEEE, 2022, pp. 94–99.

[13] J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez, K.Z. Ibrahim, B.M. Wong, TRA-

VOLTA: GPU acceleration and algorithmic improvements for constructing quantum
optimal control fields in photo-excited systems, Comput. Phys. Commun. 296 (2024)
109017.

[14] X. Wang, M.S. Okyay, A. Kumar, B.M. Wong, Accelerating quantum optimal con-

trol of multi-qubit systems with symmetry-based Hamiltonian transformations, AVS
Quantum Sci. 5 (4) (2023).

[15] D. Lu, K. Li, J. Li, H. Katiyar, A.J. Park, G. Feng, T. Xin, H. Li, G. Long, A. Brodutch,
J. Baugh, B. Zeng, R. Laflamme, Enhancing quantum control by bootstrapping a
quantum processor of 12 qubits, npj Quantum Inf. 3 (1) (2017) 45.

[16] N. Leung, M. Abdelhafez, J. Koch, D. Schuster, Speedup for quantum optimal con-

trol from automatic differentiation based on graphics processing units, Phys. Rev. A
95 (4) (2017) 042318.

[17] S.H.K. Narayanan, T. Propson, M. Bongarti, J. Hückelheim, P. Hovland, Reduc-

ing memory requirements of quantum optimal control, in: International Confer-

ence on Computational Science, Springer International Publishing, Cham, 2022,
pp. 129–142.

[18] D. Kirk, NVIDIA CUDA software and GPU parallel computing architecture, in: Pro-

ceedings of the 6th International Symposium on Memory Management, ISMM ’07,
Association for Computing Machinery, New York, NY, USA, 2007, pp. 103–104.

[19] NVIDIA Incorporated, CUDA toolkit documentation, https://developer .nvidia .com /
cuda -toolkit, 2023. (Accessed 19 October 2024).

[20] C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a ma-

trix, SIAM Rev. 20 (4) (1978) 801–836.

[21] C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a ma-

trix, twenty-five years later, SIAM Rev. 45 (1) (2003) 3–49.

[22] G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edition, The Johns Hopkins
University Press, 2715 North Charles Street, Baltimore, MD, 21218, USA, 2013.

[23] N.J. Higham, The scaling and squaring method for the matrix exponential revisited,
SIAM J. Matrix Anal. Appl. 26 (4) (2005) 1179–1193.

[24] N.E.R.S.C. NERSC, NERSC technical documentation, https://docs .nersc .gov, 2022.
(Accessed 19 October 2024).

[25] A. Danalis, G. Marin, C. McCurdy, J.S. Meredith, P.C. Roth, K. Spafford, V. Tippa-

raju, J.S. Vetter, The scalable heterogeneous computing (SHOC) benchmark suite,
in: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, 2010, pp. 63–74.

[26] A. Cabello, Bell’s theorem with and without inequalities for the three-qubit
Greenberger-Horne-Zeilinger and W states, Phys. Rev. A 65 (3) (2002) 032108.

[27] D.M. Greenberger, M.A. Horne, A. Zeilinger, Going beyond Bell’s theorem, in: Bel-

l’s Theorem, Quantum Theory and Conceptions of the Universe, Springer, 1989,
pp. 69–72.

[28] M. Fleischhauer, M.D. Lukin, Quantum memory for photons: dark-state polaritons,
Phys. Rev. A 65 (2) (2002) 022314.

[29] M. Hillery, V. Bužek, A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59 (3)
(1999) 1829.

[30] J.J. Bollinger, W.M. Itano, D.J. Wineland, D.J. Heinzen, Optimal frequency measure-

ments with maximally correlated states, Phys. Rev. A 54 (6) (1996) R4649.

[31] V. Giovannetti, S. Lloyd, L. Maccone, Quantum-enhanced measurements: beating the
standard quantum limit, Science 306 (5700) (2004) 1330–1336.

[32] V. Giovannetti, S. Lloyd, L. Maccone, Quantum metrology, Phys. Rev. Lett. 96 (1)
(2006) 010401.

[33] V. Volkov, J.W. Demmel, Benchmarking GPUs to tune dense linear algebra, in: SC’08:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, IEEE, 2008,
pp. 1–11.

[34] A. Haidar, T. Dong, P. Luszczek, S. Tomov, J. Dongarra, Optimization for perfor-

mance and energy for batched matrix computations on GPUs, in: Proceedings of the
8th Workshop on General Purpose Processing Using GPUs, 2015, pp. 59–69.

[35] A. Haidar, T. Dong, P. Luszczek, S. Tomov, J. Dongarra, Batched matrix computations
on hardware accelerators based on GPUs, Int. J. High Perform. Comput. Appl. 29 (2)
(2015) 193–208.

[36] J. Dongarra, S. Hammarling, N.J. Higham, S.D. Relton, P. Valero-Lara, M. Zounon,
The design and performance of batched blas on modern high-performance computing
systems, Proc. Comput. Sci. 108 (2017) 495–504.

[37] L.N. Trefethen, D. Bau III, Numerical Linear Algebra, 1st edition, 1997, Siam, 3600
Market Street, 6th Floor, Philadelphia, PA, 19104, USA.

[38] M. Harris, et al., Optimizing parallel reductions in CUDA, Nvidia Dev. Technol. 2 (4)
(2007) 70.

[39] AMD Incorporated, AMD EPYC-7763 processor, https://www .amd .com /en /
products /processors /server /epyc /7003 -series /amd -epyc -7763 .html, 2020. (Ac-

cessed 19 October 2024).

[40] NVIDIA Incorporated, NVIDIA a100 tensor core GPU, https://images .nvidia .com /
aem -dam /en -zz /Solutions /data -center /nvidia -ampere -architecture -whitepaper .pdf,
2020. (Accessed 19 October 2024).

[41] N.E.R.S.C. NERSC, The Cray BLAS libraries, https://docs .nersc .gov /development /
libraries /libsci, 2022. (Accessed 19 October 2024).
12

https://doi.org/10.17632/zcgw2n5bjf.1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibFCD2B4706C1BC775BCCBD4A358B149C4s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibFCD2B4706C1BC775BCCBD4A358B149C4s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib419B6E0B56488821985E301627EA94ACs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib419B6E0B56488821985E301627EA94ACs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib419B6E0B56488821985E301627EA94ACs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibC5AB9F2DBA831529DC18A21F63A802ABs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibC5AB9F2DBA831529DC18A21F63A802ABs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib8CD97DAF31BE13ADA42AF70CD6357204s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib8CD97DAF31BE13ADA42AF70CD6357204s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib2BCF89EF7B50C98C983262ADDD7604C5s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib2BCF89EF7B50C98C983262ADDD7604C5s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib3229DDE671327165BCCB8CF2BC027201s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib3229DDE671327165BCCB8CF2BC027201s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib3229DDE671327165BCCB8CF2BC027201s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibA4B6037058A68F70A2A4CF83CA496074s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibA4B6037058A68F70A2A4CF83CA496074s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibA4B6037058A68F70A2A4CF83CA496074s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibEC90EA0091D7876704E8B9F5BCAB47A0s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibEC90EA0091D7876704E8B9F5BCAB47A0s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibEC90EA0091D7876704E8B9F5BCAB47A0s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibA39F40B9A48BE0FD7C788CD6E1F34E35s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibA39F40B9A48BE0FD7C788CD6E1F34E35s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib808C4EF5DF92F20E9C82575568C924EDs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib808C4EF5DF92F20E9C82575568C924EDs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib890196A0DC15DF1785909B273C16A99Fs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib890196A0DC15DF1785909B273C16A99Fs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib890196A0DC15DF1785909B273C16A99Fs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib94D7EB96B0E2BC0AF0DDAC0846FA3466s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib94D7EB96B0E2BC0AF0DDAC0846FA3466s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib94D7EB96B0E2BC0AF0DDAC0846FA3466s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib94D7EB96B0E2BC0AF0DDAC0846FA3466s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib1C47F2ABECE456CFF7FC2FCD81DD2246s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib1C47F2ABECE456CFF7FC2FCD81DD2246s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib1C47F2ABECE456CFF7FC2FCD81DD2246s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib1C47F2ABECE456CFF7FC2FCD81DD2246s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib013C2EE104351C36EEFFDF2F3F19BE2Bs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib013C2EE104351C36EEFFDF2F3F19BE2Bs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib013C2EE104351C36EEFFDF2F3F19BE2Bs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib191ABFF8237632BDD9DDA8B440AA70A2s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib191ABFF8237632BDD9DDA8B440AA70A2s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib191ABFF8237632BDD9DDA8B440AA70A2s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib6EB7E47D990B167621073694967E3BEFs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib6EB7E47D990B167621073694967E3BEFs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib6EB7E47D990B167621073694967E3BEFs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib330B379E2FAE7BE8B5552F995D4FE718s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib330B379E2FAE7BE8B5552F995D4FE718s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib330B379E2FAE7BE8B5552F995D4FE718s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib330B379E2FAE7BE8B5552F995D4FE718s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib96F33D6640E52832EF6CAD2E89C2FAD3s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib96F33D6640E52832EF6CAD2E89C2FAD3s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib96F33D6640E52832EF6CAD2E89C2FAD3s1
https://developer.nvidia.com/cuda-toolkit
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibA2A769663D16D7C3A44AF998E355FC1Es1
https://developer.nvidia.com/cuda-toolkit
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibA2A769663D16D7C3A44AF998E355FC1Es1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib17E44EB5C73984BBFE431F6CBC2476A6s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib17E44EB5C73984BBFE431F6CBC2476A6s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib5B41C67402FFEFB813AD50B87FCA5300s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib5B41C67402FFEFB813AD50B87FCA5300s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib054CA0E8A5C14ECA695CD4A51D87D8FEs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib054CA0E8A5C14ECA695CD4A51D87D8FEs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib57081D821DD5D3E9C94C12BCECF870E4s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib57081D821DD5D3E9C94C12BCECF870E4s1
https://docs.nersc.gov
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibA3752B0C65A93DE74081E622FFA1375Cs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibA3752B0C65A93DE74081E622FFA1375Cs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib8221FCC253BA8522AD751D4FF4F3AA3Cs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib8221FCC253BA8522AD751D4FF4F3AA3Cs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib8221FCC253BA8522AD751D4FF4F3AA3Cs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib8221FCC253BA8522AD751D4FF4F3AA3Cs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib7BC87FF28C67465AACF54892BC71DFCBs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib7BC87FF28C67465AACF54892BC71DFCBs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib7C9F2E80589944AE241C0B5FA8B362BBs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib7C9F2E80589944AE241C0B5FA8B362BBs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib7C9F2E80589944AE241C0B5FA8B362BBs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib28E414AD5AB3F6EC73FA5F6333E4C421s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib28E414AD5AB3F6EC73FA5F6333E4C421s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib561C201EEAACE768A14BDAC010A4912Fs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib561C201EEAACE768A14BDAC010A4912Fs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib5B72AE2C4D24AB8FF0B02F2800B8A765s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib5B72AE2C4D24AB8FF0B02F2800B8A765s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib3C38B92B090086A0E0FA1EE168C53BE5s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib3C38B92B090086A0E0FA1EE168C53BE5s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibDBC2359D732767454400C3703ADE35A7s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibDBC2359D732767454400C3703ADE35A7s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib60AE1ADCFB1527C60C46E51DC573911Fs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib60AE1ADCFB1527C60C46E51DC573911Fs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib60AE1ADCFB1527C60C46E51DC573911Fs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibD04B5D0A6244ECA594E77B3EA9C2AF90s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibD04B5D0A6244ECA594E77B3EA9C2AF90s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bibD04B5D0A6244ECA594E77B3EA9C2AF90s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib2656D0598719062A02C5A7272A2A053Es1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib2656D0598719062A02C5A7272A2A053Es1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib2656D0598719062A02C5A7272A2A053Es1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib12F019F41B6B90273D64E87AB0BBBEA5s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib12F019F41B6B90273D64E87AB0BBBEA5s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib12F019F41B6B90273D64E87AB0BBBEA5s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib2C395532C38FFE0F894C10C6705B72A6s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib2C395532C38FFE0F894C10C6705B72A6s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib2C3AFB41B35332A3DF9A8218984DB490s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib2C3AFB41B35332A3DF9A8218984DB490s1
https://www.amd.com/en/products/processors/server/epyc/7003-series/amd-epyc-7763.html
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib839FE61BB8279B8ADA4AE2B931DBFD0Bs1
https://www.amd.com/en/products/processors/server/epyc/7003-series/amd-epyc-7763.html
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib839FE61BB8279B8ADA4AE2B931DBFD0Bs1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib839FE61BB8279B8ADA4AE2B931DBFD0Bs1
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib1C19B5F68B7E802787AD45A8CB2E8F06s1
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib1C19B5F68B7E802787AD45A8CB2E8F06s1
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib1C19B5F68B7E802787AD45A8CB2E8F06s1
https://docs.nersc.gov/development/libraries/libsci
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib8C123487E073EB5641FAF10AF1BA3D23s1
https://docs.nersc.gov/development/libraries/libsci
http://refhub.elsevier.com/S0010-4655(24)00326-6/bib8C123487E073EB5641FAF10AF1BA3D23s1

	VAN-DAMME: GPU-accelerated and symmetry-assisted quantum optimal control of multi-qubit systems
	1 Introduction
	2 Theory and computational methodology
	3 Symmetry-assisted Hamiltonian reduction
	4 The computation of matrix exponentials
	4.1 Padé approximants
	4.2 Scaling and squaring
	4.3 CPU routine
	4.4 GPU routine
	4.5 Implementation of Algorithm 3
	4.5.1 Data layout
	4.5.2 Implementation details
	4.5.3 Computational complexity
	4.5.4 Memory requirements

	5 Computational results and performance
	5.1 Optimal controls for preparing the W and GHZ states
	5.2 Computational performance on GPUs

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Data availability
	References

