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Genome analysis
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Abstract

Motivation: Previous studies have shown that the heritability of multiple brain-related traits and disorders is highly
enriched in transcriptional enhancer regions. However, these regions often contain many individual variants, while
only a subset of them are likely to causally contribute to a trait. Statistical fine-mapping techniques can identify puta-
tive causal variants, but their resolution is often limited, especially in regions with multiple variants in high linkage
disequilibrium. In these cases, alternative computational methods to estimate the impact of individual variants can
aid in variant prioritization.

Results: Here, we develop a deep learning pipeline to predict cell-type-specific enhancer activity directly from gen-
omic sequences and quantify the impact of individual genetic variants in these regions. We show that the variants
highlighted by our deep learning models are targeted by purifying selection in the human population, likely indicat-
ing a functional role. We integrate our deep learning predictions with statistical fine-mapping results for 8 brain-
related traits, identifying 63 distinct candidate causal variants predicted to contribute to these traits by modulating
enhancer activity, representing 6% of all genome-wide association study signals analyzed. Overall, our study
provides a valuable computational method that can prioritize individual variants based on their estimated regulatory
impact, but also highlights the limitations of existing methods for variant prioritization and fine-mapping.

Availability and implementation: The data underlying this article, nucleotide-level importance scores, and code for
running the deep learning pipeline are available at https://github.com/Pandaman-Ryan/AgentBind-brain.

Contact: mgymrek@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

The World Health Organization estimates that nearly one in six of the
world’s population suffers from neurological and psychiatric disorders
(World Health Organization, 2006), which comprise 16.8% of global
deaths (GBD 2016 Neurology Collaborators, 2019). Large-scale genet-
ic studies have demonstrated that many brain traits and disorders,
including Alzheimer’s disease (AD), schizophrenia and intelligence, are
highly heritable, and that the majority of genetic variants contributing
to these traits reside in non-coding regulatory elements such as tran-
scriptional enhancer regions (Li et al., 2018; Nord and West, 2020).
However, identifying the specific genetic variants in these regions con-
tributing to disease is challenging. Compared to protein-coding regions,

genetic variants in enhancers are more difficult to interpret. Moreover,
enhancer activity is often highly cell-type specific, requiring detailed
epigenetic maps to accurately characterize (Li et al., 2018). Further,
true causal variants may be in high linkage disequilibrium (LD) with
many nearby variants, making it challenging to distinguish between
causal versus tagging variants.

Recently, numerous fine-mapping techniques (Benner et al.,
2016; Kichaev et al., 2014; Pickrell, 2014) have been developed to
prioritize putative causal variants from genome-wide association
study (GWAS) data. These methods take as input a list of variants in
a trait-associated region of the genome and then quantify the poster-
ior probability of causality of each variant while accounting for
local LD structure. However, fine-mapping methods still have
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difficulty identifying single causal variants with high probability
when adjacent variants are highly correlated, or when the density of
non-causal variants nearby is high (Schaid et al., 2018). In these
cases, prior information such as functional annotations or predic-
tions of the impact of individual variants may aid in variant priori-
tization (Kichaev et al., 2014).

Multiple recent methods have successfully leveraged deep learn-
ing to model regulatory features in non-coding DNA, such as chro-
matin accessibility and transcription factor binding (Avsec et al.,
2021; Corces et al., 2020; Lai et al., 2022; Zheng et al., 2021; Zhou
et al., 2019). These methods use model interpretation techniques
(Kelley et al., 2016; Selvaraju et al., 2017; Zhou and Troyanskaya,
2015) to generate nucleotide-level annotations of the impact of indi-
vidual sequence variants on cell-type-specific regulatory features.
Here, we develop a pipeline for prioritizing genetic variants pre-
dicted to impact cell-type-specific enhancer activities in the brain.
We first extend our previously published AgentBind framework
(Zheng et al., 2021) to model enhancer activity based on the maps
of local acetylation of histone H3 lysine 27 (H3K27ac) measured by
chromatin immunoprecipitation sequencing (ChIP-seq) in four brain
cell types (Nott et al., 2019) (neurons, microglia, astrocytes, and oli-
godendrocytes). Our models apply an improved model architecture
and incorporate additional spatial information (Liu et al., 2018) in
the input data, which we demonstrate boosts model performance.
We then apply Grad-CAM (Selvaraju et al., 2017), a post-analytical
model interpretation method for neural networks, to compute im-
portance scores at nucleotide resolution and characterize sequence
features predictive of H3K27ac activities. We find that variants pre-
dicted to have the highest impact on the H3K27ac signals are under
stronger negative selection compared to low-impact variants and
show a stronger allelic imbalance in observed H3K27ac signals.
Finally, we integrate our scores with fine-mapping results from
GWAS of eight brain-related traits to demonstrate how our pipeline
can identify and characterize putative causal variants that may act
via modulating enhancer activity.

2 Results

2.1 Modeling H3K27ac-enriched enhancers in brain cell

types
We obtained published H3K27ac ChIP-seq data and ATAC-seq data
for four brain cell types (microglia, neurons, oligodendrocytes and
astrocytes) (Nott et al., 2019) (Fig. 1a; Section 4). For each cell type,
we identified putative active enhancers as H3K27ac-enriched open
chromatin at intronic and intergenic regions. After filtering, our
dataset consisted of between 12 074 and 21 415 non-overlapping
putative active enhancers for each cell type (Supplementary Table
S1). For each cell type, we constructed a binary dataset consisting of
1 kb sequences centered at H3K27ac-enriched enhancers (positive
samples) and sequences sampled with matched GC-content distribu-
tions (negative samples). We created multiple copies of each sample
through window shifting (Section 4) in order to reduce model over-
fitting and to ensure model predictions are robust to the relative lo-
cation of H3K27ac signals within each sequence.

We trained a separate model for each cell type. Our model train-
ing process consisted of two steps: pre-training and fine-tuning.
Previous studies (Novakovsky et al., 2021; Zheng et al., 2021) have
found that pre-training could substantially improve the performance
of deep learning models in modeling genomic sequences, especially
for small datasets. Similar to AgentBind, we first pre-trained our
models using a large published dataset consisting of epigenomics
profiles across 35 different cell types available from the DeepSEA
project (Zhou and Troyanskaya, 2015). Next, for each brain cell
type, we fine-tuned the pre-trained model to predict the active
enhancers. Model performance was evaluated using the area under
the receiver operating characteristic curve (auROC) and the area
under the precision–recall curve (auPRC). Similar to previous work
(Zhou and Troyanskaya, 2015), we left out sequences on chromo-
some 8 for cross-validation and sequences on chromosome 9 for
testing.

We tested two different deep learning architectures: the DanQ
(Quang and Xie, 2016) architecture used in AgentBind, and a ver-
sion of ResNet (He et al., 2016) modified from ChromDragoNN
(Nair et al., 2019). This ResNet architecture consisted of five convo-
lutional layers followed by eight residual blocks and two fully con-
nected layers (Section 4). The output of both models was a single
number between 0 and 1, indicating how likely the input sequence is
to have a strong level of H3K27ac. Compared to DanQ, the ResNet
architecture resulted in an average auROC increase of 0.023 and
auPRC increase of 0.025 (Fig. 1b–e; Supplementary Table S2).

Similar to previous studies (Novakovsky et al., 2021; Zheng
et al., 2021), we found that the pre-training step was able to boost
the performance of our models by 0.041 (auROC) and 0.041
(auPRC) on average (Supplementary Table S2). On top of the
ResNet model, we also applied the CoordConv (Liu et al., 2018)
technique which adds an extra coordinate channel to the input of
the first convolutional layer to better encode spatial information in
the input sequences (Section 4). We found this resulted in a notable
performance boost, with an average auROC and auPRC increase of
0.050 and 0.051, respectively. Overall, our final models could pre-
dict H3K27ac-enriched enhancer regions with high accuracy (mean
auROC¼0.966, mean auPRC¼0.967; Fig. 1b–e; Supplementary
Table S2).

2.2 Identifying sequence features predictive of

H3K27ac-enriched enhancers
We next applied Grad-CAM (Selvaraju et al., 2017), a model inter-
pretation technique we and others previously used to interpret gen-
omic sequence features learned by deep learning models (Chen et al.,
2021; Zheng et al., 2021), to characterize key sequence features con-
tributing to predictions of enhancer activities. We used Grad-CAM
to assign nucleotide-level scores quantifying the importance of each
base pair to the model prediction (Section 4). An example score pro-
file for a single sequence is shown in Figure 2a. In this example,
Grad-CAM scores highlight a short DNA sequence corresponding to
a PU.1 motif as an important predictor of enhancer activity of this
locus in microglia. Across all four cell types, the majority of high im-
portance scores are concentrated in a 200 bp window around the
center of H3K27ac-enriched enhancers (Fig. 2b).

Next, we used importance score profiles to identify sequence fea-
tures most predictive of H3K27ac-enriched enhancers for each cell
type. To this end, we applied two strategies. First, we extracted 6-
mers from positive sequences and tested whether each unique 6-mer
is enriched within the 6-mers with the highest importance scores
(Section 4; Fig. 2c). We used Tomtom (Gupta et al., 2007) to associ-
ate 6-mers with known motifs. Tomtom compares each 6-mer
against the motifs in the JASPAR database (Castro-Mondragon
et al., 2022), a database with a large collection of common tran-
scription factor binding motifs, and then ranks motifs based on their
alignment with the query sequence. The most predictive 6-mers are
highly cell-type specific. For example, the top 6-mers for microglia
are associated with ETS, IRF, CEBP and MEF2 motifs, which cor-
respond to well-documented transcription factors important for
microglia phenotype and function (Gosselin et al., 2017; Holtman
et al., 2017; Masuda et al., 2012). Further, 6-mers corresponding to
the motifs for NeuroD transcription factors are most strongly
enriched in neurons, consistent with the known role of these factors
in neuronal differentiation (Tutukova et al., 2021). On the other
hand, several motifs are shared across cell types, as exemplified by
6-mers matching the NFI motif in astrocytes, neurons, and oligoden-
drocytes. Different members of the NFI family have been reported
to play an important role in the development of these cell types in
both mice and humans (Chen et al., 2017; Wilczynska et al., 2009).

Second, we applied TF-MoDISco (Shrikumar et al., 2018),
which leverages per-base importance scores to infer enriched
motifs. Compared to our k-mer-based approach above, TF-
MoDISco does not require motifs to be a fixed length and also
does not require exact matches between sequences from the same
motif. The top motifs (motifs occurring in >1% of enhancers)
identified from TF-MoDISco are consistent with those inferred
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from enriched 6-mers (Supplementary Fig. S1) while TF-
MoDISco further reveals more long motifs, such as CTCF
enriched in astrocytes and oligodendrocytes, which could not eas-
ily be captured by our k-mer approach. To test whether identified
sequence features are simply related to open chromatin, rather
than specifically to enhancer activity, we repeated model training

and motif analysis while constraining both positive and negative
sequences to be within open chromatin regions (Supplementary
Table S2). We found that the enriched motifs discovered by TF-
MoDISco were largely similar, although multiple new sequences
arise as top enriched motifs, such as RUNX in microglia and oli-
godendrocytes (Supplementary Fig. S2).

(a) (b) (c)

(d) (e)

Microglia Neuron

Oligodendrocyte Astrocyte

Fig. 1. Study overview. (a) Method schematic. We construct a ResNet model for four brain cell types and learn sequence features unique to the transcriptional enhancers in

these cells. We use Grad-CAM to score the contribution of each nucleotide to model predictions of enhancer activities. In parallel, we fine-map the GWAS SNPs of multiple

brain traits and identify the SNPs most strongly predicted to be causal. These candidate causal SNPs are then overlapped with the importance scores predicted by Grad-CAM

in relevant cell types for each trait. (b–e) CoordConv and ResNet improve model performance in (b) microglia, (c) neurons, (d) oligodendrocytes and (e) astrocytes. In each

plot, receiver operator curves (ROC) are shown for H3K27ac predictions generated from DanQ (grey dashed line), ResNet (golden solid line) and ResNet þ CoordConv (red

solid line)

(a)

(c)

(b) (d)

Pearson r2=0.760
two-sided p=6.70*10-3

-500 -300 -100 100 300 500

NEUROD AP-1MEF2CEBPIRFETSTFAP4SOXRFXNFI

Fig. 2. Interpreting sequence features contributing to brain cell-type-specific enhancer activity. (a) Example importance score profile. The x-axis denotes the central 500 bp re-

gion of a 1 kb sequence (chr2:127 885 699–127 886 699). The y-axis shows the importance score of each nucleotide predicted from the ResNetþCoordConv model in micro-

glia. In this example, a short DNA sequence that matches the known PU.1 motif is annotated with high importance scores. The components (6-mers) of this motif are enriched

in top-scoring 6-mers for microglia shown in Figure 2c. Full score profiles can be viewed through this online IGV link: https://tinyurl.com/ya2rc6nu. (b) Aggregate importance

score profiles. For each cell type, we computed the average absolute value of the importance score (y-axis) per position (x-axis) in active enhancer sequences from the

ResNetþCoordConv models. (c) Top 6-mers enriched for high importance scores across the four brain cell types. The heatmap shows the enrichment of each 6-mer in regions

with the highest importance scores for each cell type. The color of each block indicates the odds ratio of the enrichment and the size indicates the two-sided P-value based on a

Fisher’s exact test. In this heatmap, we only display 6-mers with odds ratio >4 in at least one cell type. (d) The relationship between allelic imbalance P-values and importance

scores. Points show the average importance scores (y-axis) for variants in different bins of -log10 P-values for allelic imbalance based on ATAC-seq in microglia. Error bars

show 61 standard error. The best-fit line for the points (in gray) is shown as the solid line (in red)
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To evaluate our nucleotide-level importance scores, we exam-
ined them against allelic imbalance based on microglia ATAC-seq
data from 16 individuals (Section 4). Briefly, an imbalance of
ATAC-seq reads from each allele at a heterozygous single-nucleotide
polymorphism (SNP) indicates a bias in regulatory activity between
the two genome copies. We found that nucleotide-level importance
scores computed based on the microglia model are correlated with
allelic imbalance summary statistics (-log10 two-sided P-values
based on a binomial test; Pearson r2 ¼ 0.760; two-sided P ¼
6:70 � 10�3; Fig. 2d) and with allelic imbalance ratios (Pearson r2 ¼
0.876; two-sided P ¼ 1:97 � 10�3; Supplementary Fig. S3), whereas
P-values computed for other cell types do not show significant cor-
relation with the importance scores from the microglia model
(Supplementary Fig. S4; two-sided P-value for neurons, oligoden-
drocytes and astrocytes are respectively 0.80, 0.50 and 0.51).
Further, SNPs with low allelic imbalance P-values (two-sided
P< 10�10) are strongly enriched with high importance scores (top
5% of Grad-CAM scores; two-sided Fisher’s exact test P ¼
2:48 � 10�22, odds ratio¼2.80). These results indicate that our im-
portance scores are indeed identifying individual variants with an
impact on cell-type-specific enhancer activity.

2.3 Variants with high impacts on enhancer activity are

under purifying selection
We hypothesized that variants with high impacts on brain regula-
tory activity would tend to be deleterious and thus kept at low fre-
quencies in the population. To test this hypothesis, we obtained
minor allele frequencies (MAFs) of all SNPs scored by Grad-CAM
from the gnomAD (Karczewski et al., 2020) database. We found
that in all cell types, rare variants (0 < MAF < 10�4) have higher
average importance scores (Fig. 3a) and that importance scores gen-
erally decrease as a function of MAF. Moreover, we stratified these
SNPs into three groups based on the ATAC-seq signals (low, me-
dium and high) of their local context regions and found that the cor-
relations between MAF and our importance scores remain strong.
For astrocytes, oligodendrocytes and neurons, the Pearson r2 scores
remain approximately the same regardless of ATAC-seq signals; for
microglia, the Pearson r2 is strongest in high ATAC-seq signals
(Supplementary Fig. S5). We also found that on average importance
scores are higher in regions with the highest ATAC-seq signals.

We additionally examined the percentage of variants in different
Grad-CAM score bins that are singletons, meaning the variant has
only been observed in a single individual. This ‘percent singletons’
has been previously used as a proxy for the deleteriousness of differ-
ent variant categories (Lek et al., 2016). Variants with top-scoring
importance scores (top 5% of Grad-CAM scores) show significantly
higher singleton percentages (Z-test for proportions two-sided P ¼

6:04 � 10�27). This trend is further pronounced when restricted to
the top 0.5% of high-scoring variants (Fig. 3b; P ¼ 3:48 � 10�7).
Overall, variants with high impacts on neuron enhancer activity
show the strongest signals of purifying selection, and microglia
showed the lowest. Taken together, these results suggest that var-
iants with high impacts on brain enhancer activity are deleterious
and are likely targeted by purifying selection.

2.4 Linking high-scoring variants with brain traits and

disorders
Previous studies have demonstrated an enrichment between cell-
type-specific brain enhancers and various neurological and psychi-
atric disorders (Nott et al., 2019). To investigate whether variants
predicted to disrupt enhancer activity might contribute to brain-
related complex traits, we analyzed GWAS summary statistics for
eight traits and disorders, including AD, schizophrenia, major de-
pressive disorder, bipolar disorder, autism spectrum disorder, intelli-
gence, risky behaviors and insomnia (Supplementary Table S3). For
each trait or disorder, we focused on the cell types for which previ-
ous analyses (Nott et al., 2019) identified enrichment of trait-
associated variants in enhancer regions (Supplementary Table S4).
We first applied fine-mapping to restrict our analysis to variants
with statistical evidence of causality. To this end, we applied
FINEMAP (Benner et al., 2016) separately at each previously identi-
fied genome-wide significant locus to identify candidate causal var-
iants for each trait [defined as inclusion in 95% credible sets for
each locus and posterior inclusion probability (PIP) >1%].
Importantly, this analysis only considers polymorphic sites (SNPs)
as candidate causal variants, and excludes sites with high Grad-
CAM scores that are not actually variable in the population.
Notably, we did not apply annotation-based fine-mapping tools
(Kichaev et al., 2014; Pickrell, 2014) since our importance score
annotations only account for a small subset of variants and thus are
not amenable to these methods which attempt to learn the import-
ance of each annotation directly from the data. For each trait, on
average 30 (1.12%) of all candidate causal variants identified over-
lapped an H3K27ac-enriched region in the cell types considered for
that trait. Of those, we defined high-impact variants as those with
importance scores in the top 20th percentile in each region. In total,
our pipeline identified 63 distinct fine-mapped variants predicted to
influence enhancer activities (Supplementary Tables S4 and S5). In
Supplementary Table S5, in addition to our importance scores, we
also computed and listed in silico mutagenesis scores for each vari-
ant (Section 4).

For AD, we identified seven such SNPs. For example, we identi-
fied a single SNP (rs10792831) at a strong GWAS signal for AD
with FINEMAP PIP¼100% and an importance score in microglia

(a) (b)

Fig. 3. Variants predicted to have high impacts on brain enhancer activity are under increased purifying selection. (a) The relationship between MAF and importance scores for

microglia, neurons, oligodendrocytes and astrocytes. The y-axis shows the average importance scores. Pearson r2 values measuring the linear relationships are annotated in

plots. Variants and their MAFs were obtained from control samples in gnomAD v2.1.1. Positions not observed in gnomAD were excluded from the analysis. (b) The percent-

age of SNPs in each category that are singletons (Grey ¼ all sites, gold ¼ positions with top 5% importance scores and red ¼ positions with top 0.5% importance scores). In

both plots, error bars show 61 standard error
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higher than 99.4% of nearby positions (Fig. 4a). This SNP is located
�74 kb upstream of PICALM (Fishilevich et al., 2017), a gene
known to affect AD risk primarily by modulating the production,
transportation, and clearance of b-amyloid (Ab) peptide (Xu et al.,
2015). The SNP disrupts a PU.1 motif in a microglia-specific super-
enhancer region (Fig. 4a) previously shown to frequently interact
with PICALM through long-range chromosomal interactions
(Schmitt et al., 2016). Further, this SNP is associated with an allelic
imbalance in microglia ATAC-seq (two-sided P ¼ 7:28 � 10�4) and
with PICALM expression and splicing (Schubert et al., 2015) in the
hippocampus and dorsolateral prefrontal cortex tissues (Section 4;
Supplementary Table S6). Additional examples of high-impact SNPs
identified in AD include rs10933431 overlapping an intron of
INPP5D (PIP¼46.4%, ATAC allelic imbalance P-value ¼
5:81 � 10�6) and rs7920721 upstream of USP6NL (PIP¼14.2%,
ATAC allelic imbalance P-value ¼ 4:92 � 10�5; Supplementary Fig.
S6). In both of these cases, the identified SNP overlaps a microglia-
specific enhancer region, consistent with the known role of this cell
type in AD. Additional cell-type-specific examples are shown for
more traits and cell types in Figure 4 and Supplementary Figure S6.

Some of the variants we identified are associated with multiple
cell types or traits. For example, SNP rs13209138 (PIP¼34.0% for
intelligence) is predicted to impact enhancers with strong H3K27ac
signals in both neurons and astrocytes. This SNP overlaps with both
the TF motifs of EGR1 and SOX, which are respectively enriched in
neurons and astrocytes according to our TF-MoDISco results. This
SNP is located upstream of the gene POU3F2, a gene known to be
important for neuro-differentiation (Pang et al., 2011) (Fig. 4b). In
another example, SNP rs324017 is implicated separately in schizo-
phrenia (PIP¼36.8%) and insomnia (PIP¼11.9%; Fig. 4c). This
SNP disrupts a binding site for EGR1, a transcription factor
involved in response to stress and synaptic plasticity during REM
sleep (Duclot and Kabbaj, 2017; Lane et al., 2019).

3 Discussion

In this study, we presented a machine learning framework to quan-
tify the contribution of individual genetic variants to brain enhancer
activities. Our models can predict cell-type-specific H3K27ac-
enriched enhancers directly from sequences with high accuracy
(mean auROC¼0.966, mean auPRC¼0.967), and post hoc model
interpretation using Grad-CAM identified key sequence features
driving these predictions. Nucleotide-level importance scores

computed by our framework for H3K27ac-enriched enhancers are
highly concordant with observed allelic bias in ATAC-seq data. We
used these nucleotide-level importance scores to identify 63 candi-
date variants that may be causally driving published GWAS signals
for eight brain-associated traits.

Variants predicted most strongly by our framework to impact
brain enhancer activity show signals of increased purifying selection
compared to low-scoring variants based on allele frequencies in the
general population. This signal is strongest for variants predicted to
impact neuron enhancers, and weaker in other cell types, with
microglia showing the lowest signal. We hypothesize that this is due
to the different roles of these cell types at different stages of life.
Disorders for which neurons are implicated as the key cell type, such
as autism or other psychiatric disorders, tend to affect individuals
early in life or during child-bearing years, and therefore will be more
strongly selected against. On the other hand, microglia have been
primarily implicated in neurodegenerative diseases (Deczkowska
et al., 2018) which tend to occur later in life, and thus may not be
subject to negative selection.

While our pipeline identified multiple strong candidate variants,
we ultimately found that only a minority of GWAS signals for these
traits could be explained by our predictions. Of fine-mapped var-
iants, <1% were sufficiently close to an H3K27ac peak to be scored.
The 63 variants in our candidate set were found in 55 distinct
GWAS loci, representing 6% (55 out of 910 loci for the eight brain-
related traits) of all GWAS signals considered. We suggest several
hypotheses for this lack of overlap. First, our analysis is dependent
on fine-mapping results. Especially in regions with high LD, fine-
mapping may fail to accurately pinpoint the true causal variant.
Some existing methods, such as PAINTOR (Kichaev et al., 2014),
can incorporate functional annotations to prioritize functionally
relevant variants. However, it is challenging to use our importance
scores in this way as only a small subset of variants are being
studied, leaving 99.3% of variants unannotated. Second, our pipe-
line considers only the effects of SNPs but is not currently able to
score the impact of more complex structural or repetitive variants.
Third, our analysis of purifying selection suggests that variants with
high impacts on brain enhancer activity are under increased selective
pressure, and thus are kept at low frequencies in the population.
Thus, they may not be detected by current GWAS datasets, which
are mostly powered to detect common variant effects. Fourth, the
enhancer data we use are from pediatric patients and do not include
individuals from minority populations, and therefore some disease-
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Fig. 4. Examples of candidate causal SNPs predicted to impact cell-type-specific brain enhancer activity. In each (a–c), panels from the top show (i) gene annotations, (ii)

GWAS summary statistics (y-axis: -log10 P-values; x-axis: genomic coordinates), (iii) H3K27ac and ATAC-seq ChIP-seq signals for the entire region, (iv) importance scores

for sequences surrounding the variant of interest and (v) matched TF motifs
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specific enhancers are likely not included in this dataset. Finally,
while it is known that heritability for these traits is enriched in
brain-specific regulatory regions, it is possible that some GWAS sig-
nals are driven by alternative mechanisms unrelated to enhancer ac-
tivity or from cell types not interrogated in our study.

Altogether, our study provides a valuable deep learning pipeline
that accurately models brain cell-type-specific enhancer activity dir-
ectly from sequences, and can provide plausible interpretations of
strong GWAS signals in multiple traits including AD and schizo-
phrenia. Our framework is easily generalizable, and could also be
applied to study the impact of genetic variation on other molecular
phenotypes or to characterize the impact of both germline and som-
atic variants including those arising in cancer. Future efforts will be
required to incorporate additional disease-relevant datasets from
more diverse groups, and to disentangle the many GWAS signals
from these traits that remain unexplained by current variant annota-
tion and fine-mapping frameworks.

4 Methods

4.1 Brain cell-type-specific ChIP-seq and ATAC-seq

datasets
We previously generated ATAC-seq and H3K27ac ChIP-seq data
(Nott et al., 2019) for four brain cell types: microglia, neurons,
astrocytes and oligodendrocytes. These data were generated from
nuclei isolated from the cortical brain tissue of six male individuals
with ages ranging from 4 to 18 years. These data can be accessed on
dbGap under accession phs001373.v2.p2. We mapped these data to
the hg19 genome using Bowtie2 (Langmead and Salzberg, 2012)
v2.3.5 with default parameters. Since every cell type has at least
three biological replicates of different individuals, we first called un-
filtered ATAC-seq peaks for each replicate using the findPeaks script
of HOMER (Heinz et al., 2010) v4.11.1 with parameters ‘-style fac-
tor -L 0 -C 0 -fdr 0.9 -size 200’. We then used IDR (Li et al., 2011)
v2.0.3 with a threshold of 0.05 to identify reproducible open chro-
matin regions. Since IDR works with only two replicates at a time,
we applied it to each pair of replicates of the same cell type and
merged the reproducible peaks of each pair of replicates using the
mergePeaks script of HOMER with the parameter ‘-d 200’ to reach
a final set of reproducible ATAC-seq peaks for every cell type. We
computed the normalized number of H3K27ac ChIP-seq tags in an
expanded region of 1000 bp centered at each of these peaks and
added genomic annotations to these regions using the
annotatePeaks.pl script of HOMER with parameters ‘-norm 1e7 -
size -500,500’. Normalized tag counts were averaged across repli-
cates of the same cell type. We finally selected a high-confidence set
of enhancers for each brain cell type by restricting ATAC-seq peaks
to be within intronic or intergenic regions based on HOMER anno-
tations and restricted to peaks with more than 20 averaged, normal-
ized tags of H3K27ac. Our processing step resulted in 21 415
enhancers for microglia, 12 074 enhancers for neurons, 15 774
enhancers for astrocytes and 16 034 enhancers for oligodendrocytes
(Supplementary Table S1).

4.2 Model training
The sequences of high-confidence enhancers identified above were
used as positive sequences in our model training. Negative sequences
were chosen to have matched repeat and GC content and were gen-
erated using the ‘genNullSeqs’ function of gkmSVM (Ghandi et al.,
2016) v0.81.

To avoid the bias of model training toward open chromatin
regions and to incorporate wider contexts, we created 10 copies for
each positive and negative sequence with equally distanced window
shifts with a gap of 100 bp. All copies included the core H3K37ac
regions but with different amounts of context areas included up-
stream and downstream.

Both positive and negative sequences were one-hot encoded into
1000 by 4 matrices based on the sequence present in the hg19 refer-
ence genome. Nucleotides marked as ‘N’ were converted to vectors
with entries of 0.25 for each of the four nucleotides.

4.3 ResNet model architecture
Our ResNet architecture consisted of five standalone convolutional
layers, eight residual blocks and two fully connected layers. The
standalone convolutional layers have kernels with sizes ranging
from 1 to 5 and a number of channels ranging from 64 to 256. The
standalone convolutional layers have small kernels: the kernel size
of the first two layers is 5, with 128 channels; the kernel size of the
next two layers is 3, with 256 channels. The fifth layer is used for
dimensionality reduction and has a kernel size of 1 with 64 chan-
nels. These convolutional layers are used for extracting basic se-
quence features such as motifs and motif combinations. The eight
residual blocks were constructed the same as in ChromDragoNN
(Nair et al., 2019), with a standalone convolutional layer after every
two blocks. Batch normalization layers were used after all convolu-
tional layers. The final two layers were fully connected layers with
1000 neurons each. This model takes one-hot encoded 1000 bp
sequences as input and outputs a number ranging between 0 and 1
to indicate whether the sequence is predicted to contain an
H3K27ac signal.

Previous studies (El Jurdi et al., 2021; Liu et al., 2018; Zhu and
Kim, 2021) have shown that adding hard-coded channels for the
data coordinates into the convolutional layers can improve their
translation invariance property and boost model performance in
pattern localization and object detection tasks. In our ResNet
model, we converted the first convolutional layer into a CoordConv
layer. The coordinates were defined as the distance from the center
of H3K27ac regions, with upstream nucleotides labeled as negative
and downstream labeled as positive. These coordinates were then
re-scaled to range from �1 to 1.

4.4 Model interpretation
We implemented the Grad-CAM method (Selvaraju et al., 2017) to
interpret our ResNet model by computing an individual score for
each nucleotide of the input sequence which indicates its importance
in determining the model’s prediction. In our implementation of
Grad-CAM, we chose the second to the last standalone convolution-
al layer prior to the ResNet blocks as the layer of interest. The recep-
tive field of neurons is 13 in the feature maps of this layer, with
enough length to cover the cores of most of the common transcrip-
tion factor motifs. Following the weighting method proposed in the
Grad-CAM method, we calculated the weight of each feature map
in this layer and used these weights to compute a weighted combin-
ation of feature map activations. This gave us a coarse importance
map for the input sequence. To acquire a finer resolution at the
base-pair level, we mapped this coarse importance map onto the in-
put sequence and multiplied it with input gradients elementwise. We
define the importance scores used in downstream analyses as the
scores in the resulting finer resolution map. We also computed in-
silico mutagenesis scores for the variants of interest by calculating
the difference of our ResNet network outputs with the reference
sequences and mutated sequences as input.

4.5 Benchmarking data augmentation
To understand the influence of augmenting training data through
window-shifting, we trained two sets of models, respectively using
data with and without window-shifting. All other parameters and
training settings were the same. We did not use CoordConv in either
of these experiments to avoid introducing implicit position informa-
tion. After these two sets of models were fully trained, we used them
to interpret a test dataset processed by window-shifting. The core
H3K27ac regions in this test dataset appeared in each part of the
1000 bp sequence window at the same frequency. We expected the
aggregated importance scores to be distributed evenly as is shown in
Supplementary Figure S7a. But the aggregated importance scores
predicted by the set of models trained without window-shifting were
slightly concentrated near the center of 1000 bp sequence windows
(Supplementary Fig. S7b). These suggest that the window-shifting
process played an important role in making the translation variance
property more robust in deep learning models.
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4.6 Identifying sequence features predictive of

H3K27ac-enriched enhancers
To identify important sequence features, we segmented positive
H3K27ac sequences from each cell type into 6-bp sequences (6-
mers) using a sliding window. We computed the average importance
score of each 6-mer and ranked all 6-mers based on this score. We
defined top-scoring sequences as those with the top 1% of scores.
Similar to in AgentBind (Zheng et al., 2021), we then performed a
Fisher’s Exact Test for each 6-mer to test whether it is enriched in
the top-scoring subsequences for that cell type. Tests were per-
formed using the fisher_exact method from the Python scipy.stats li-
brary (https://docs.scipy.org/doc/scipy/reference/stats.html). The
significantly enriched 6-mers were aligned with known motifs from
the JASPAR database (Castro-Mondragon et al., 2022) using
Tomtom (Gupta et al., 2007) v5.1.1 to infer the most likely motifs
associated with every 6-mer.

We additionally used TF-MoDISco (Shrikumar et al., 2018)
v0.5.16.0 to cluster and aggregate the importance scores and recover
motifs occurring in the H3K27Ac regions. The core 500 bp of each
H3K27ac region and its importance scores were used as input. We
use its built-in LaplaceNullDist function to generate null distribu-
tions with a sampling size of 10 000. To enable TF-MoDISco to find
longer motifs, we set the trim_to_window_size as 500 in its
seqlets_to_patterns_factory.

4.7 Analysis of variant allele frequencies
We obtained SNP allele frequencies computed across 5192 control
samples from gnomAD (Karczewski et al., 2020) v2.1.1. For each
cell type, we collected the MAFs for the gnomAD SNPs that were
also scored in our H3K27ac dataset. We defined singletons as SNPs
whose total allele counts in gnomAD were at least 1000 and for
which the reference or alternate allele was observed only once. The
singleton ratio of a set of SNPs is defined as the percentage of
gnomAD SNPs in this set that are singletons.

4.8 Allelic imbalance analysis
We combined the original ATAC-seq data of four different individu-
als (Nott et al., 2019) with twelve additional ATAC-seq data of ex
vivo microglia obtained from previous literature (Gosselin et al.,
2017). We first masked the hg19 genome with ‘N’ at positions tested
by AD GWAS (Jansen et al., 2019a) and re-mapped all the sixteen
datasets to this masked genome using Bowtie2 with parameter ‘–np
0’ meaning no penalty for ‘N’ (Langmead and Salzberg, 2012). Then
we counted the number of reads with different alleles at each pos-
ition using the mpileup tool from samtools (Danecek et al., 2021)
v0.1.15 followed by the mpileup2snp function of VarScan (Koboldt
et al., 2012) v2.4.3. Read counts for the reference and variant allele
at each masked position were compared by a binomial test to iden-
tify significant allelic imbalance.

In Figure 2b and Supplementary Figure S4, we focused on the
SNPs with allelic imbalance data available and binned them based
on their allelic imbalance -log10 P-values. We used 9 bins evenly dis-
tributed between 0 and 20 with a gap of 2.5. The value of each bin
defines its lower bound. We also used the same method to bin the al-
lelic imbalance ratio (-log10) in Supplementary Figure S3 and
grouped the SNPs into 9 bins evenly distributed between 0.4 and 2.0
with a gap of 0.2. The allelic imbalance ratio is computed as min(to-
tal_ref_reads, total_var_reads)/total_reads at each SNP.

4.9 Fine-mapping published GWAS signals
We used FINEMAP (Benner et al., 2016) v1.4 to fine-map variants
in each genome-wide significant locus identified in the studies listed
in Supplementary Table S3. LD for each pair of input variants was
computed using the script ‘CalcLD_1KG_VCF.py’ from PAINTOR
v3.05 based on available genotypes from the 1000 Genomes
Project phase 3 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/).

Sources of GWAS summary statistics are listed in Supplementary
Table S3 (Grove et al., 2019; Jansen et al., 2019a,b; Karlsson Linnér

et al., 2019; Mullins et al., 2021; Savage et al., 2018; Skene et al.,
2018; Wray et al., 2018). For studies only providing lead SNPs in-
stead of a range, we defined a GWAS locus as a window of
250 000 bp with a lead SNP in the center. FINEMAP was run with
default parameters allowing up to 5 causal SNPs per locus.
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