
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
A Novel Method for Classifying Pedestrians & E-Scooter Users in Roadside Point Cloud
Data

Permalink
https://escholarship.org/uc/item/5fx5r3v5

Author
Gunasekar, Joy Mathew

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, available at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5fx5r3v5
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

A Novel Method for Classifying Pedestrians & E-Scooter Users in Roadside Point

Cloud Data

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Electrical Engineering

by

Joy Mathew Gunasekar

September 2024

Thesis Committee:

Dr. Guoyuan Wu, Chairperson
Dr. Matthew Barth

 Dr. Jiachen Li

Copyright by
Joy Mathew Gunasekar

2024

The Thesis of Joy Mathew Gunasekar is approved:

 Committee Chairperson

University of California, Riverside

 iv

ABSTRACT OF THE THESIS

A Novel Method for Classifying Pedestrians & E-Scooter Users in Roadside Point

Cloud Data

by

Joy Mathew Gunasekar

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, September 2024

Dr. Guoyuan Wu, Chairperson

In recent years, riding e-scooters as a hobby has evolved into one of the popular

forms of transportation in our city traffic. As it is becoming increasingly popular,

micromobility-related accidents have also increased. To reduce such casualties,

this thesis proposes a novel methodology to differentiate between e-scooter riders

and pedestrians in urban environments. The Intelligent Transportation Systems Joint

Program Office (ITS JPO) team that plans out safety features for city traffic will be able

to utilize this algorithm to collect data on e-scooter user's frequency in general

traffic. This data will allow city planners to plan out special road strips in places that

have registered high e-scooter usage, thus enabling safer commutes for e-scooter

riders. Although research on Vulnerable Road Users has increased in the past years,

there has been very little research done to ensure the safety of e-scooter users. This

work is among the first few to present a perception solution that works on point cloud

data. The novelty lies in harnessing “Elasticity” and “Spatial” data from the actors

 v

and using them as features to train ensemble learning models like Random Forest,

Gradient Boost, and XG Boost. Both the terms “Elasticity” and “Spatial” are well

explained in the methodology chapter of the thesis. All the tests were conducted in a

private dataset recorded during the peak rush hours on the college campus.

 vi

Contents

Chapter 1 Overview …………………………………………………………………….……………….1

1.1 Introduction ………………………………………………………………………………...1

1.2 Motivation ………………………………………..………………………………………….2

1.2.1 Vulnerable Road User Safety ………….………………………………..2

1.2.2 Transportation Equity ……………………………………………………..3

1.2.3 LiDAR Sensor ………………………..……………………………………….4

1.2.4 Artificial Intelligence in Intelligent Transportation System …….5

1.3 Gaps in Related Research ………………………….…………………………………..6

1.4 Major Contributions ……………………………….……………………………………..9

1.5 Road Map …………………………………………………..………………………………10

Chapter 2 Background ……………………………………………………………………..………...11

 2.1 Working of LiDAR Sensor ……………………………………………………….….….12

 2.2 Dataset ………………………………………………………………………….………….14

2.3 LiDAR Point Cloud Pre-Processing Methods …………..………………………..20

 2.4 Single LiDAR setup …………………………………..………………………………….21

 2.5 LiDAR Fusion ……………………………………..……………………………………….23

 2.5.1 Multi LiDAR Fusion ………………………………………………………….23

 2.5.2 LiDAR and Camera Fusion ………………..……………………….……..24

 2.6 Evaluation Metrics ……………………………………………………………………...29

Chapter 3 Methodology …………………………………..………………………………………….33

 3.1 Introduction ……………………………………………………………………………….33

 3.2 Architecture ……………………………………………………………………………….33

 3.3 Ground Plane Elimination ………………….…………………………………………35

3.4 Clustering ……………………………………………………….…………………………38

3.5 Convex Hull Construction and Volume Calculation ……..……………………40

3.6 Tracking ……………………………………………………………………….…………...44

3.7 Elasticity and Spatial Data ……………………………………….…………………...46

 vii

3.8 Classifier …………………………………………………………………………………..48

3.8.1 Random Forest …………………………………………….………………..48

3.8.2 XG Boost …………………………………..…………………………………..50

3.8.3 Gradient Boost ……………..………………………………………………..52

Chapter 4 Case Study ………………………………..……………………………………………….53

 4.1 Introduction ……………………………………………………………………………….53

 4.2 Data Collection ………………………..…………………………………………………53

 4.3 Visualizing Plane Elimination and Clustering Algorithms …………….…….55

 4.4 Visualizing Convex Hull Construction and Tracking Algorithms ….…..….58

 4.5 Visualizing Elasticity and Spatial Data ………………………….…………………59

 4.6 Result Analysis ……………………………………………………………………………68

 4.6.1 Random Forest Results ………………..………………………………….68

 4.6.2 XG Boost Results ………………………….………………………………..69

 4.6.3 Gradient Boost Results …………………..……………………………….70

 4.7 Performance Comparison …………………………….………………………………71

Chapter 5 Conclusions and Future Work ……………………….……………………………...73

 5.1 Conclusions …………………………………………………..………………………….73

 5.2 Future Work ……………………………………………………………………………….73

References ……………………………………………………………………………………………….74

 viii

List of Figures

Figure 1.1 Public perception of E-Scooters ………………………….………………………..…3

Figure 1.2 AI adoption in the global transportation industry ………….……………………..5

Figure 1.3 Differentiating Classifiers ……………………………………..………………………..8

Figure 1.4 Road Map …………………………………………………………………………….…….10

Figure 2.1 VRU research publications in IEEE Xplore ………………………………………..11

Figure 2.2 Time of flight measurement …………………………………………………………..13

Figure 2.3 Time of flight phase measurement principle …………………….……………….14

Figure 2.4 Frame from CODD synthetic dataset ………………………………………………16

Figure 2.5 Frame from Zenseact Open Dataset ………………………………..……………..16

Figure 2.6 Pedestrian detection system with and without LiDAR-based ROI detection

………..…27

Figure 2.7 PointPainting overview …………………………………………………….……………27

Figure 2.8 PointPainting results …………………………………………………………………….28

Figure 3.1 Proposed algorithm’s block diagram …………………………….…………………34

Figure 3.2 3D point cloud segmentation methods …………………………….……………..36

Figure 3.3 RANSAC flowchart …………………………………………………………..…………..37

Figure 3.4 Convex Hull ………………………………………………………………………………..40

Figure 3.5 2D Convex Hull ……………………………………………………………………………41

Figure 3.6 Syntax of Graham Scan …………………………………………………………………42

Figure 3.7 Jarvis March …………………………………………………………….………………….42

Figure 3.8 Jarvis March syntax ………………………….…………………………………………..43

Figure 3.9 Tetrahedron ………………………………………………………………………………..43

Figure 3.10 Finding the centroid of a convex hull ……………………….……………………..45

Figure 3.11 Visualizing Elasticity …………………………………………………………………..46

Figure 3.12 Visualizing Spatial Data ……………………………………………………………….47

Figure 3.13 Random Forest flowchart ………………………………………………………...…50

Figure 3.14 XG Boost flowchart …………………………………………………….………………51

 ix

Figure 3.15 Gradient Boost flowchart ……………………………………….……………………52

Figure 4.1 Data collection ………………………………………………………….………………..53

Figure 4.2 Visualizing point the dataset ………………………………………………………….55

Figure 4.3 Pedestrian with ground plane …………………………………………………………56

Figure 4.4 Segmented ground plane ……………………………………………………………...57

Figure 4.5 DBSCAN clustering ………………………………………………..…………………….57

Figure 4.6 Visualizing change in pose and volume of a pedestrian walking ……..…..58

Figure 4.7 Finding Euclidean distance between two clusters in subsequent frames

………....59

Figure 4.8 E-scooter approaching the LiDAR ……………………………………………………60

Figure 4.9 E-scooter departing from the LiDAR …………………..……………………………61

Figure 4.10 Pedestrian approaching the LiDAR ………………………..………………………62

Figure 4.11 Pedestrian departing from the LiDAR ……………………….……………………62

Figure 4.12 Unideal e-scooter data (departing from the LiDAR) ………….…….………..63

Figure 4.13 Unideal pedestrian data (approaching LiDAR) ………………………………...64

Figure 4.14 E-Scooter Spatial Data ………………………………………………..………………65

Figure 4.15 Pedestrian Spatial Data ……………………………………………………………...66

Figure 4.16 E-Scooter ……………………………………………………………….…………………66

Figure 4.17 Pedestrian …………………………………………………………..…………………...67

Figure 4.18 Random Forest …………………………………………………….……………………68

Figure 4.19 Confusion Matrix of Random Forest …………………….………………………..69

Figure 4.20 XG Boost ………………………………………………………………..…………………70

Figure 4.21 Confusion Matrix of XG Boost …………….………………………………………...70

Figure 4.22 Gradient Boost ……………….….………………………………………………..……70

Figure 4.23 Confusion Matrix of Gradient Boost …………………..…………….…………...71

 x

List of Tables

Table 2.1 Perception sensors ……….………………………………..…………..………………..12

Table 2.2 All the available VRU datasets featuring LiDAR data ………..…………….…...17

Table 2.3 PointPillar detection on BEV detection benchmark Kitti Dataset (mAP) ….21

Table 2.4 PointPillar detection on 3D detection benchmark Kitti Dataset (mAP) …...22

Table 2.5 Detection results (Kitti Dataset)….……………….…………………………….…….24

Table 2.6 Performance comparison of pedestrian detection ……………….……….…...28

Table 4.1 Results …………………….………………………………………………………………...72

1

Chapter 1 Overview

1.1 Introduction

On 13th December 2023, the World Health Organization published that approximately

1.9 million people lose their lives every year because of accidents in road traffic. Over

half of those people are classified as vulnerable road users. Twenty-three percent of

the tragic sum are listed as pedestrians. Drivers of micromobility devices like e-

scooters make up 3% and cyclists come up to 6%. Two or three-wheeled vehicles

account for 21% [1]. Technological improvement has made micro-mobility devices

such as electric scooters more reliable and widely used. In the state of California,

electric scooters are recognized as equals to motor vehicles and are required to

follow motor vehicle rules (CVC §21221) [125]. This means they are not allowed to

drive on sidewalks (CVC §21235(g)) [125]. However, this is rarely followed, especially

around college campuses, thus putting pedestrians at risk. This is because rough

road surfaces are unideal for riding e-scooters. Also, if a vehicle speeds beside an e-

scooter rider it can knock them off balance. Thus, in reality, it is riskier to ride with the

general traffic. The first step to solving this problem is designing special road strips

that would allow for safer e-scooter travel. Designing a perception algorithm that can

differentiate between pedestrians and micromobility users is probably the first step

to solving this issue. As the data obtained from the sensors will give city planners a

2

broader picture of e-scooter traffic in specific regions. This thesis aims to solve this

perception problem with point cloud data obtained from roadside LiDARs.

1.2 Motivation

1.2.1 Vulnerable Road User Safety

Road users that are not covered by an outside shield are referred to as Vulnerable

Road Users [145]. Thus pedestrians, cyclists, motorcyclists, scooterists, wheelchair

users, skateboarders, e-scooterists, and all similar users fall under this category. As

mentioned previously, VRU users approximately account for 1.9 million road

accident casualties. Three percent of the total accounts for micromobility-related

accidents. The number is shocking because e-scooters are not yet widely adopted.

As more people decide to utilize micromobility devices like e-scooters the number of

accidents is only expected to rise. Below attached is a graph that shows the public

perception of e-scooters.

3

Figure 1.1 Public Perception of E-Scooters [28]

Another indication of wide public acceptance of e-scooters comes from the data

shared by North American Bike Share and Scooter Share companies, which showed

that they have registered 52 million e-scooter trips [27]. Since e-scooters are easy to

handle, eco-friendly, low maintenance, and budget-friendly they are seen as a viable

option for transportation. This thesis uses this as one of the motivations to improve

safety for e-scooter users.

1.2.2 Transportation Equity

The law states that regardless of socio-economic status, race, gender, ethnicity, age,

or disability safe transportation resources must be accessible [136]. Here,

accessibility refers to walking paths, biking paths, roadways, and public transit. It

also involves making transportation easily accessible for disabled individuals. The

4

equity lens allows city planners to make safe roadways for all the people. With

increase in micromobility users and the increase in micromobility-related accidents

raises concerns about improving existing roadways to accommodate such users

safely into traffic.

1.2.3 LiDAR Sensor

LiDAR is an acronym for Light Detection And Ranging, it is a laser-based remote

sensing technology. This technology was shortly introduced after the invention of

lasers in 1960. LiDAR’s architecture consists of laser beam sources and

photodetectors, depending on the resolution requirements the laser beam sources

increase. 1, 16, 32, 64, and 128 are the prevalent channels of resolution

configurations. The instrument works based on two measurements, the first being

the distance measured with respect to its location and the second being the position

of the sensor in the environment (onboard or roadside) [137]. Table 2.1 mentions

other possible perception sensors with their pros & cons. Comparatively LiDAR

sensors have higher resolution, wide range, and are versatile. It is also the best

choice for operating in changing weather conditions. With the adoption of 850 nm

wavelength standards instead of the regular 905 & 1,550 nm, the point clouds are

clearer in rainy, foggy, and snowy conditions, it also reduces power consumption. As

technology improves, we are seeing a drop in prices. In 2015 the price of a single

LiDAR unit was approximately marked around $75,000 [138]. Fast forward to today’s

5

market in 2024, a seventh generation top-of-the-line autonomous driving grade

LiDAR from Ouster is priced at $25,999 (OS2-32) & $26,999 (OS2-128). Lower-end

models of Ouster like OS1-32 and OS1-128 are priced at $8,000 and $18,000

respectively [69]. This trend of falling prices indicates improvements in

manufacturing technology and the introduction of more competition. Thus, it is safe

to assume that in the future LiDARs will be more advanced, affordable, and prevalent

in perception space and will likely be integrated with traffic lights and infrastructure

for safety and data collection purposes. Keeping the wide application potential of

LiDARs in mind, this research was developed to identify classes on the point cloud

data.

1.2.4 Artificial Intelligence in Intelligent Transportation System

Figure 1.2 AI adoption in the global transportation industry. [60]

As AI is becoming more prevalent it is being more quickly absorbed by the

transportation market to make commuting faster, eco-friendly, and safer. Figure 1.2

6

shows the increase in AI usage in the transportation industry. The graph includes

government institutions like Intelligent Transportation System Joint Program Office

(ITS JPO) which was developed to improve roadway safety and travel quality. This has

been possible due to the availability of data concerning pedestrians and vehicular

traffic in an area. Depending on the data roadways are modified to accommodate

them. Some of the algorithms utilized to reduce traffic congestion are Ant Colony

Optimizer (ACO), Genetic Algorithm (GA), Fuzzy Logic Model (FLM), Simulated

Annealing (SA), and Artificial Neural Network (ANN). All the algorithms listed are

optimization algorithms that can be used to optimize traffic speeds [62]. The

algorithm proposed in this thesis can be used by roadside LiDARs to identify e-

scooter users and collect data on their frequency to adjust road designs to

accommodate them.

1.3 Gaps in Related Research

As explained previously, this thesis is amongst the very few to present a perception

solution to classify e-scooter users in point cloud data. The existing methods use

models like PointPillars [10] to train models to identify them. In 2D space, perception

solutions to identify e-scooters in digital images have emerged in previous years.

Apuruv and his team [76] are probably the first to bring a computer vision solution to

this problem. They proposed to utilize YOLO V3 [77] architecture that has been pre-

trained on the [78] COCO dataset. This algorithm essentially points out all the

7

humans in each frame. To check if they were riding an e-scooter, the authors

proposed a MobileNetV2 classifier [79] as the second module that would expand all

the bounding boxes around the human class to see if they were riding on an e-scooter.

This classifier was trained on a special dataset called the “IUPUI CSRC E-Scooter

Rider Detection Benchmark Dataset.” The data pool has 10,749 digital images of e-

scooter riders and 10705 images of non-e-scooter riders. That is a total of 21454

images in the collection. Although the study stated that it achieved validation results

of 0.9, it did not mention if the network would be able to generalize on relatively new

data [76]. Using the same YoloV3 architecture, research was done to identify e-

scooters, but the authors proposed a novel approach to separately identify the riders

in an independent class. It is achieved by dividing the image into grids and relating

parallel bounding boxes of the classes of interest. The study concluded that it had a

validation accuracy of over 0.9 but the network was only trained on 140 images and

tested on 60 images [80]. All images used in this research were obtained through

internet image search. Since this study used cherry-picked images to test and train,

questions about the algorithm’s applicability in real-life situations are being raised.

The study also did not detail if their network could tackle occlusion or generalize on

a foreign dataset. Based on the methodology proposed by Apuruv [76], a new study

was released to make the model occlusion resistant. The model used two networks:

COCO dataset trained CenterNet-Hourglass 104 [83] to detect pedestrians and

ResNet101 [82] classifier to detect e-scooters. They also released a chart to

8

differentiate the performance of different classifiers trained on the same benchmark

dataset [81].

Figure 1.3 Differentiating Classifiers [81]

The data from the experiment concluded that the ResNet101 [82] and ResNet34 [146]

test accuracy was 0.460 compared to the method proposed by Apuruv which scored

0.439 [81]. Provided here [84] is a comparison of different Yolo architecture’s

performance in detecting e-scooters in urban landscapes. In the latest, a study was

conducted that resulted in this methodology that can identify any micromobility user

using YOLOX [85] and Flow Guided Feature Aggregation (FGFA) [86]. Essentially,

these algorithms extract the spatiotemporal information of an actor to determine its

class. Results also show that it is effective against blurry and occluded images as

this architecture uses data from previous frames for continuous object classification.

The algorithm was tested in a private dataset consisting of 4000 bicycles, 2500

skateboards, and 2000 electric scooters [87]. The results showed that the Average

9

Precision (AP) for bicycles was 45.0, 23.2 for skateboards, and finally 47.6 for electric

scooters, thus having a 38.6 mean average precision (mAP) for the model. Since the

test was conducted in a private dataset there is no way of telling if this methodology

is better than the previous methodologies listed above. Although there has been

significant research done in the last few years, to date there has been no perception

algorithm uniquely developed to identify e-scooters in point cloud data. This thesis

most likely will be the first to do so.

1.4 Major Contributions

To achieve class recognition, the thesis proposes to harness two types of data

“elasticity” and “spatial”, which can only be extracted from 3D point cloud data.

These two distinct features are then used to train ensemble learning algorithms. Both

elasticity and spatial data are well defined in the third chapter of this thesis. To

further inform the readers about this topic, this thesis includes a literature survey and

methods to further improve the effectiveness of the proposed algorithm.

10

1.5 Road Map

This thesis is split into five major chapters. The first chapter gives the introduction

and overview of the thesis. Followed by motivation, gaps in the literature survey, and

the major contribution presented in this thesis. The second chapter gives all the

background information for the topics presented in this thesis. This allows readers

across different technical backgrounds to understand the works presented in this

study. Chapter three gives the methodology of the proposed algorithm’s architecture

it also defines the terms “elasticity” and “spatial” data. The fourth chapter presents

the readers with the results of the proposed architecture, it also points out some of

the difficulties faced when working with a real-life dataset. The final chapter gives the

conclusions of the work and points toward possible methods to improve the

algorithm’s effectiveness in real-life scenarios.

Figure 1.4 Road Map

11

Chapter 2 Background

This chapter is put together to give background information on some of the prevailing

topics discussed in this thesis. As mentioned in Chapter 1, the World Health

Organization estimates that approximately 1.9 million road traffic-related deaths

happen every year. An estimated sum of US $1.8 trillion is forecasted to compensate

for all the road accident injuries caused between 2015 & 2030 [2]. Statistics like these

have compelled researchers to focus more on vulnerable road users. Fig 2.1 shows

the increase in VRU research publications in recent years, the collective sum is

indicated by the red line.

Figure 2.1 VRU research publications in IEEE Xplore. [3]

12

Most of the Intelligent Transportation Systems (ITS) being developed to make city

traffic safer start with the most crucial step, perception. All the widely used

perception sensors are listed, and their abilities are compared in Table 2.1.

Table 2.1 Perception sensors. [3]

In the upcoming subtopics, all the research undertaken to detect VRU is presented,

along with the prevalent datasets available in this domain.

2.1 Working of LiDAR Sensor

Before we dive deep into perception topics in point cloud it is important to have a

good understanding of the LiDAR’s working. This subsection goes through the basic

work principles of LiDAR. As mentioned in the previous chapter, the instrument works

based on two measurements, the first being the distance measured with respect to

its location and the second being the position of the sensor in the environment

(onboard or roadside). The distance can be measured by utilizing pulsed laser to

measure the time of flight, which is essentially the time taken by the pulse to reach

the photoreceptor after reflecting from a surface.

13

𝐷 = 𝐶 ∙ △ 𝑇/2 (2.1)

With 𝐷 being the distance measured, 𝐶 being the speed of light and △ 𝑇 the time of

flight. The equation above is used to measure the distance between the source and

the object. The equation shows that the system is limited only by the returning pulse,

meaning that miles of distance can be accurately mapped with high-powered lasers.

Figure 2.2 Time of flight measurement [137].

The figure presented above explains the concept of time-of-flight measurement in

LiDARs. Another approach to calculate the distance would be to measure the phase

by utilizing Amplitude Modulated Continuous Waveform (AMCW) lasers. The phase

shift between the returning pulse and the incident pulse employed is used to

calculate the distance.

𝐷 =
𝑐

2
 ⋅ △ 𝜙/(2 ∙ 𝜋 ∙ 𝑓𝑀) (2.2)

14

As in the previous equation, D refers to the distance calculated and C represents

the speed of light. The modulation frequency is denoted by 𝑓𝑀 and phase shift by △

𝜙 . Unfortunately, the maximum range that can be measured precisely is

approximately 100 m (328.08 ft).

Figure 2.3 Time of flight phase measurement principle [137].

LiDAR sensors are widely being adopted into robotics, ITS, and self-driving

applications. Table 2.1 mentions other possible perception sensors with their pros &

cons, it is clear that LiDARs have a natural advantage over the others because they

utilize lasers, which in return makes them quicker and more accurate.

2.2 Dataset

This subtopic presents Table 2.2 to give the readers a brief idea of all the available

VRU datasets that contain point cloud data, it also details the other sensors used,

the nature of the data (real or synthetic), the types of classes present and if it was

captured by sensors onboard of a vehicle or sensors fixed in a structure. As more

complex models are being developed the need for accurately annotated datasets

15

becomes more prevalent. To mitigate this issue synthetic datasets are being

synthesized. Softwares like SUMO (Simulation of Urban MObility) [40], OpenCDA [39]

CarMaker [108], Matlab, and CARLA (CAR Learning to Act) [41] feature tools to

generate synthetic Lidar point cloud data. Since LiDAR data does not contain

complex data like texture, lighting, and color [38] 3D rendering software like Unreal

Engine 4 can replicate LiDAR data. But since the real-world data contains noises and

occlusion which are usually not found in synthetic datasets the usage is limited.

Figure 2.4 shows the perfection that comes with virtual datasets, and Figure 2.5

shows a real point cloud frame. Notice the stark contrast of perfection in their

geometry and 3D rendering between those scenarios. To account for that factor

CARLA has introduced a toolbox that allows users to add imperfections. Users can

change the atmosphere attenuation rate (measures K loss per meter), droop-off off

general rate (probability of points being randomly eliminated), drop-off intensity limit

(probability of points with K above a limit is untouched), drop-off intensity (probability

of points with zero K value being dropped) and noise standard deviation [m] (standard

deviation of in-built noise model to affect points). All the synthetic datasets are

marked in red for easy spotting. To prove the hypothesis in this thesis a private

dataset with high-resolution point clouds and a high number of e-scooter users was

used. The combination of these two features was not available in open datasets.

16

Figure 2.4 Frame from CODD synthetic dataset [67]

Figure 2.5 Frame from Zenseact Open Dataset [68]

17

Dataset Sensor Real/Simulation Onboard/Roadside VRU Class Present

KITTI [17] Camera &
LiDAR

Real Onboard Pedestrian &
Cyclist

Oxford
RobotCar [20]

Camera,
LiDAR &
Radar

Real Onboard Pedestrian &
Cyclist

Astyx [21] Camera,
LiDAR &
Radar

Real Onboard Pedestrian,
Motorcyclist &
Cyclist

Dense [22] Camera,
LiDAR &
Radar

Real Onboard Pedestrian

Rope3D [126] Camera &
LiDAR

Real Onboard/Roadside Pedestrian &
Cyclist

TUM Traffic
[129]

Camera &
LiDAR

Real Roadside Pedestrian,
Motorcyclist &
Cyclist

RCooper [127] Camera &
LiDAR

Real Roadside Pedestrian,
Motorcyclist,
Tricycle & Cyclist

DeepAccident
[128]

Camera &
LiDAR

Synthetic
(CARLA)

Onboard/Roadside Pedestrian,
Motorcyclist &
Cyclist

Argoverse 1 [31]
& 2 [32]

Camera &
LiDAR

Real Onboard Pedestrian, Moped,
Stroller,
Motorcyclist&
Cyclist

nuScenes [19] Camera,
LiDAR &
Radar

Real Onboard Adult Pedestrian,
Child Pedestrian,
Personal Mobility,
Police,
Construction
Worker,
Wheelchair,
Stroller,
Motorcyclist&
Cyclist

MulRan [34] LiDAR &
Radar

Real Onboard Pedestrian

SemanticPOSS
[47]

LiDAR Real Onboard Pedestrian &
Cyclist

WADS [36] Camera &
LiDAR

Real Onboard Pedestrian

BAAI-VANJEE
[49]

Camera &
LiDAR

Real Roadside Pedestrian,
Motorcyclist,
Cyclist & Tricycle

18

Waymo Open
Dataset [18]

Camera &
LiDAR

Real Onboard Pedestrian,
Motorcyclist &
Cyclist

ONCE [37] Camera &
LiDAR

Real Onboard Pedestrian &
Cyclist

RADIATE [35] Camera,
LiDAR &
Radar

Real Onboard Pedestrian, Group
of Pedestrian,
Motorcyclist &
Cyclist

CODD [74] Camera &
LiDAR

Synthetic
(CARLA)

Onboard Pedestrian

V2X-Sim [121] Camera &
LiDAR

Synthetic
(CARLA-SUMO)

Roadside Pedestrian

DAIR-V2X [72] Camera &
LiDAR

Real Onboard &
Roadside

Pedestrian &
Cyclist

DOLPHINS
[123]

Camera &
LiDAR

Synthetic
(CARLA)

Onboard &
Roadside

Pedestrian

OPV2V [75] Camera &
LiDAR

Synthetic
(OpenCDA &
CARLA)

Onboard Pedestrian

View-of-Delft
[46]

Camera,
LiDAR &
Radar

Real Onboard Pedestrian, Cyclist
& Moped

IPS300+ [48] Camera &
LiDAR

Real Roadside Pedestrian,
Motorcyclist,
Cyclist & Tricycle

V2X-ViT [122] LiDAR Synthetic
(CARLA &
OpenCDA)

Onboard &
Roadside

Pedestrian

SynLIDAR [120] LiDAR Simulation
(Unreal Engine)

Onboard Male, Female, Kid,
Motorcyclist &
Cyclist

Deliver [119] Camera &
LiDAR

Synthetic
(CARLA)

Onboard Pedestrian & Two-
Wheeler

Zenseact [42] Camera,
LiDAR &
Radar

Real Onboard Pedestrian, Cyclist,
Motorcyclist,
Stroller,
Wheelchair &
Personal
Transporter

REHEARSE
[110]

Camera,
LiDAR &
Radar

Real & Synthetic Onboard Pedestrian

TWICE [109] Camera,
LiDAR &
Radar

Real & Synthetic
(CarMaker)

Onboard Pedestrian &
Cyclist

IMPTC [50] Camera,
LiDAR &
UWB

Real Roadside Pedestrian, Cyclist,
Wheelchair, E-
Scooter & Stroller

19

WiDEVIEW [45] Camera,
LiDAR &
UWB

Real Onboard Pedestrian

V2V4Real [44] Camera &
LiDAR

Real Onboard Pedestrian

IAMCV [43] Camera &
LiDAR

Real Onboard Pedestrian &
Cyclist

V2X-Real [73] Camera &
LiDAR

Real Onboard &
Roadside

Pedestrian, Cyclist,
Motorcyclist &
Scooter

Table 2.2 All the available VRU datasets featuring LiDAR data.

20

2.3 LiDAR Point Cloud Pre-Processing Methods

Like digital images, cloud data also comes with noises and there is a variety of

methods to handle it. This subtopic is aimed at explaining some of the popular

preprocessing techniques. Starting with Frequency Based Noise filtering [90], which

can increase clarity and boost signal accuracy by eliminating noises in targeted

frequency. This might not be beneficial to combat distortions or noises that are non-

frequency related. Variational Mode Decomposition [91] allows for marking

important LiDAR echoes by strained decomposition of all the available signals. The

success rate very much depends on parameter tuning which can get more

complicated with more signals involved. Although computationally expensive with

the inherent risk of increasing noise if not properly tuned the Richardson Lucy

Deconvolution [92] method improves cluster delineation by adjusting blurring effects.

Studies often use Adaptive Noise Reduction via PCA [93] as it can denoise with less

computation power while preserving the data. However, it is observed to have poor

performance if the point clouds are sparse and irregular. Real-time CNN for

segmentation [94] might require specific hardware tools like (FPGA) Field

Programmable Gate Array with NVIDIA deep learning accelerator. But it is rated to be

fast and efficient with low power requirements. Similar to this, the Gaussian

Decomposition for FPGA [95] will need FPGA hardware, but it yields faster processing

speeds that allow it to work in real-time.

21

2.4 Single LiDAR setup

Each LiDAR point cloud data has four values associated with it, (X, Y, Z, K). The first

three values represent the coordinates, and the last value indicates the intensity.

Usually, LiDAR point clouds contain millions of points per scan. Ouster LiDAR series

OS0, OS1 & OS2 give an output of 5.02 M, 5.02 M & 2.62 M points per scan [69]. Before

the data is fed into the perception algorithm it is usually down-sampled to reduce

computational complexity. Uniform downsampling, farthest point, and nearest

neighbor are some of the algorithms widely used to downsample the data. Algorithms

like Point Net [14] [15] [16] strongly advocate for directly processing point clouds as

data transformation renders the resulting data unnecessarily voluminous — while

also introducing quantization artifacts that can obscure natural invariances of the

data.

Table 2.3 PointPillar detection on BEV detection benchmark Kitti Dataset (mAP).

[10]

To combat point cloud sparsity voxels were used to represent data to algorithms that

work in 3D convolutional space [4] [5] [6] [7] [8]. Voxels divide the point cloud data

22

into three-dimensional cubes, encompassing the points within it. Voxel sizes are

predefined depending on the required spatial resolution and available computational

resources.

Unlike point and voxel representations, the Bird’s Eye View (BEV) type of

representation is usually used for algorithms that work in 2-D convolutional space.

Since LiDAR points cannot overlap in a given frame its top view is projected onto a

horizontal plane. This technique allows for the utilization of algorithms developed for

2-D images to detect objects in point cloud data [9] [10] [11] [12] [13]. Above attached

is Table 2.3 that shows the effectiveness of PointPillar (an architecture utilizing voxels

to combat data cloud sparsity) on the BEV dataset. Table 2.4 shows its effectiveness

in normal point cloud dataset.

Table 2.4 PointPillar detection on 3D detection benchmark Kitti Dataset (mAP). [10]

23

2.5 LiDAR Fusion

LiDAR fusion is a new field of research that allows for fusing two types of sensors for

perception tasks. The subsections below talk about the different types of LiDAR

fusion research available for VRU detection.

2.5.1 Multi LiDAR Fusion

Due to limitations such as sparse point clouds, occlusions, noise, and the flexible

nature of the pedestrian class, researchers found it difficult to implement their

algorithms. The research trend slowly changed as researchers believed denser LiDAR

points may lead to better detection performance [51]. Therefore, some researchers

have tried to fuse data from multiple independent LiDARs. Sensor fusion was

believed to be the answer to most of the technical difficulties mentioned above.

Primarily there are two methods of sensor fusion strategies, pre-classification & post

classification [52], measurement integration done at the feature level or at raw data

level falls into pre-classification. Measurement integration done after processing of

the raw data falls under post-classification. Score & rank are widely sought-after

features to be fused under this class [59]. To enable better perception for

autonomous cars, it was proposed that a multi-LiDAR setup would be able to better

determine the geometric features of the roadways thus enabling the vehicle to ride

on road and off-road trails, also on low lighting conditions [53] [54] [55]. The basic

philosophy behind dual multi-LiDAR setup is to create an overlapping space that is

24

expected to have more denser point clouds thus enabling better perception [56]. The

same principle was tried on robots to ensure better mobility in both indoor & outdoor

environments [57]. This setup when utilized for pedestrian detection yielded better

results [58]. The suggested framework surpasses conventional raw data fusion

algorithms in various scenarios. Its adaptability enables the utilization of diverse

classification algorithms prior to fusion. Nevertheless, detection accuracies

noticeably diminish when pedestrians are partially obscured. Challenging settings,

particularly adverse weather conditions like rain, snow, and airborne particles,

significantly influence algorithm performance. As Table 2.5 below shows, this multi-

LiDAR setup makes perception faster and more accurate.

Table 2.5 Detection results (Kitti Dataset) [58]

2.5.2 LiDAR and Camera Fusion

Although LiDAR’s point clouds contain valuable depth information it lacks data on

texture and color found in digital images. Fusing point clouds with digital images is

an option to compensate for LiDAR’s data structure. But this also means that the

model must process noises occurring in the digital images. Gaussian blur is usually

25

preferred to eliminate noises that might be present. Models like the flat earth model

[64] exploit the assumption that relevant pedestrians are situated on a flat surface,

such as the road or walkway, thus making it faster to find the region of interest. This

model calculates the image region corresponding to the ground based on camera

geometry, assuming a flat ground in the vehicle’s frontal view. Figure 2.6 below

shows the comparison data. The relaxed free world model refers to having a small

threshold of tolerance, since in the ideal world the surface is not completely flat, thus,

to account for irregularities the relaxed flat world model was introduced. Although it

makes the model faster, LiDAR-only detection methods tend to outperform multi-

sensor fusion methods in public benchmarks [63]. This is because practically during

fusion, data from separate modalities tends to generalize at independent rates, and

in some scenarios, they overfit [65]. PointPainting [66] a sequential fusion method

was able to bridge the gap. PointPainting utilizes cameras to obtain digital images

and performs semantic segmentation. After completion, the digital image will

contain pixel-wise scores. The point clouds are allowed on the scene and now

undergoes a point cloud detection pipeline. Depending on the two scores a decision

is made. As mentioned in the earlier topic, this type of fusion is called post-

classification [52]. Below, Figure 2.7 is a detailed image explaining this process.

Figure 2.8 shows the improvement in detection results in the Kitti dataset, a total

increase of 6.3 mAP can be observed in the Painted PointPillar ++ across ten different

classes [66]. The existing performance on pedestrian detection can be improved by

26

being capable of performing fusion at various levels [19]. Semantic Voxels utilizes

semantic augmentation on the point cloud, the process involves encoding raw point

data into pillars for geometric features and semantic point data into voxels for

semantic features. These features are effectively fused. The experimental results on

the KITTI test set demonstrate that Semantic Voxels achieves state-of-the-art

performance in both 3D and bird’s eye view pedestrian detection benchmarks. Below

attached is a table showing the difference in performances as different fusion is

undertaken. For both 3D and bird’s eye view (BEV) detection tasks, early fusion

results in the most substantial mean average precision (mAP) improvement, with a

gain of 3.2 for 3D and 2.82 for BEV. Researchers are also exploring other fusion setups

like thermal camera and LiDAR [70] & radar and LiDAR [71]. But to date are yet to

provide any significant results that can compare with the previous state-of-the-art

perception results in this domain.

27

Figure 2.6 Pedestrian detection system with and without LiDAR-based ROI detection. [64]

Figure 2.7 PointPainting overview [66]

28

Figure 2.8 PointPainting results [66]

Table 2.6 Performance comparison of pedestrian detection. [63]

29

2.6 Evaluation Metrics

As we analyze and compare results across different studies it is important to know

which metric we are comparing. Starting with precision, which is defined as the true

value in a set of values that the algorithm predicts as true. Mathematically it can be

expressed as,

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2.3)

True Positive (TP) refers to values that are marked as rightly assumed true values and

False Positive (FP) refers to values that are incorrectly assumed as true values. False

Negatives (FN) are true values that are wrongly assumed as false values.

Recall, another widely used term refers to the number of times the algorithm finds

the true value in all the positive values of a dataset. Mathematically it can be

represented as,

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2.4)

Average precision (AP) is defined by the area under the precision-recall curve. The

precision-recall curve is essentially the relation between the precision and recall

values at separate thresholds. A model with high AP indicates that it is able to hold

high recall and precision in most cases. They are also used to evaluate the

robustness and accuracy of 3D models. AP is mathematically represented as,

30

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0
 (2.5)

In this equation, p(r) represents a function of precision with respect to recall. [130]

Intersection over Union (IoU) also known as the Jaccard Index in the context of object

detection is a metric that evaluates the performance of object detecting algorithms.

Generally, the IoU of two finite sets is expressed as,

𝐼𝑜𝑈(𝐴, 𝐵) =
𝐴⋂𝐵

𝐴⋃𝐵
 = A⋂B / (|A|+|B|-A⋂B) (2.6)

A and B are independent finite sets. In the context of 2D object detection IoU is

expressed as,

𝐼𝑜𝑈(𝐵𝑔 , 𝐵𝑑) =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝐵𝑔 𝑎𝑛𝑑𝐵𝑔

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛 𝐵𝑔 𝑎𝑛𝑑 𝐵𝑑
 (2.7)

𝐵𝑔 refers to the bounding box of the ground truth and 𝐵𝑑 refers to the bounding box of

the predicted class. For objects in point cloud data IoU is decided in 3D space, it is

standard practice to omit pitch and roll in the 3D space. It is assumed that all the

bounding boxes lie flat on the ground. Thus, only yaw is taken into consideration. IoU

for 3D bounding boxes is calculated using the following equation,

𝐼𝑜𝑈3𝐷 =
𝐴𝑟𝑒𝑎𝑜𝑣𝑒𝑟𝑙𝑎𝑝× ℎ𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎𝑔× ℎ𝑔+𝐴𝑟𝑒𝑎𝑑 × ℎ𝑑−𝐴𝑟𝑒𝑎𝑜𝑣𝑒𝑟𝑎𝑙𝑝× ℎ𝑜𝑣𝑒𝑟𝑙𝑎𝑝
 (2.8)

31

𝐴𝑟𝑒𝑎𝑔 represents the area of the ground truth and 𝐴𝑟𝑒𝑎𝑑 refers to the area of the

predicted bounding box, ℎ𝑜𝑣𝑒𝑟𝑙𝑎𝑝 & ℎ𝑢𝑛𝑖𝑜𝑛 refers to the intersection & union in the z-

axis (height).

Multiple Object Tracking Accuracy (MOTA) [88] is a measurement used to evaluate

computer vision models that can track objects. It is mathematically written as,

𝑀𝑂𝑇𝐴 = 1 −
(𝐹𝑁+𝐹𝑃+𝐼𝐷𝑆𝑊)

𝐺𝑇
 ∈ (−∞, 1] (2.9)

As mentioned previously, FN and FP hold the same meaning. GT here refers to the

ground truth. ID refers to the unique code given to each object tracked. ID switches,

if an object tracked is given a new ID despite already being assigned an ID, then it is

called an ID Switch. IDSW in the equation refers to the sum of times ID switches

occurred. Ideally, a tracking algorithm’s ID Switch should be null. Some of the

classical metrics used in multiple object tracking are explained below.

 False trajectories are predicted trajectories that fail to match with the ground truth.

Mostly Tracked (MT) trajectories refer to the predicted trajectories that align with the

ground truth at least in 80% of the frames. If predicted trajectories only match the

ground truth in 20% of the frames, then those are marked as Mostly Lost (ML). In

some publications, Multiple Object Tracking Percentage (MOTP) is preferred which is

essentially the percentage report on MOTA. It is mathematically put together as,

32

𝑀𝑂𝑇𝑃 =
∑ 𝑑𝑡,𝑖𝑡,𝑖

∑ 𝐶𝑡𝑡
 (2.10)

Here, 𝑑𝑡,𝑖 refers to the overlaps of the bounding box between the hypothesis 𝑖 with

their marked ground truth. 𝐶𝑡 is the count of matches in 𝑡 frame [88].

33

Chapter 3 Methodology

3.1 Introduction

This chapter discusses the methodology used to create the algorithm proposed in

this thesis. It starts with the algorithm’s architecture and progresses to elaborate on

each of the system’s blocks individually.

3.2 Architecture

Figure 3.1 gives a brief description of the algorithm through the block diagram. In total,

it contains five crucial subsystems (plane elimination, clustering, fitting convex hull,

tracking & observing the elasticity, and spatial data exhibited) which will be

elaborated further in the subtopics below. The algorithm is designed to take in

segments of raw point clouds from the BEV perspective. This allows the algorithm to

function more efficiently as background elimination algorithms do not have to be

used, but ground plane elimination using RANdom SAmple Consensus (RANSAC) is

done on the frame [97] [98]. It is further clustered using Density-Based Spatial

Clustering of Application with Noise (DBSCAN) to avoid noises [96] [99] and identify

all other actors that might be present in the frame. All the clusters are then fitted with

a convex hull to find the volume. The architecture proposed in this thesis can classify

classes by analyzing the elasticity and spatial data of an actor. The movement of the

physical body in order to generate motion is defined as elasticity in this work. Since

34

humans must physically relocate their limbs even to generate the slightest

momentum, elasticity is significantly observed, compared to the e-scooter users

who must remain still and balanced while traveling.

Figure 3.1 Proposed algorithm’s block diagram

This elasticity is calculated by covering the object of interest with a convex hull and

recording its volume in every frame as the cluster starts to gain momentum. So

essentially, the algorithm tracks the cluster of interest and records the volume of the

convex hull for t amount of time. Simultaneously spatial data is also recorded. Spatial

data is the accumulation of a cluster’s point cloud over t amount of time. After every

successful accumulation the volume of the cluster as a whole is recorded. Since e-

scooter users travel faster while maintaining little to no movement of their bodies the

algorithm can differentiate them with the criteria mentioned above. Both of these

terms are mathematically explained in section 3.7.

35

3.3 Ground Plane Elimination

Plane elimination allows for the segmentation of the actors in interest. Since the

proposed algorithm requires the calculation of the volume it is vital that the ground

plane is eliminated before processing it further. To segment geometry in a point cloud,

the algorithm must be based on any of the following methodologies: Region-Based,

Edge Based, Graph-Based, Model-Based, or Attribute Based [100]. Starting with the

region-based method, this methodology uses data from similar neighboring points to

identify isolated regions and continually finds differences between regions.

Comparatively, noise is resistant to the edge-based method but is known to under-

segment or over-segment in some cases. This method is further divided into Seeded

Region and Unseeded Region. To use the Seeded Region method seed points must

be predefined. Each region will then develop from the predefined seed points and

grow by adding more neighboring points that comply with the set threshold [101].

It is imperative to choose optimal seed points as this approach is very dependent on

the predefined seed points and is very time-consuming. The Unseeded Region

method does not require any predefined points, instead, it gathers all the points into

a set and starts to divide into smaller sets. It continues until it can no longer fit the

number of set points beyond the set threshold. This method can’t be practically used

in complex scenes with unknown parameters. It requires a lot of prior knowledge like

the number of regions, object models, etc. [102]. The edge-based method primarily

36

relies on locating points with sudden changes in K to determine boundaries. This was

originally inspired by the work of Bhanu and his team. Sparsity, noise, and uneven

collection of point clouds make it challenging to apply this in real-life scenarios [103].

Figure 3.2 3D point cloud Segmentation methods. [100]

Model-based methods utilize pre-defined geometric shapes like squares, circles, etc.

to segment shapes in a given point cloud frame. This idea is combined with the

RANSAC model to segment point clouds. Since RANSAC was initially designed to

identify mathematical shapes, it was an instant match to work in 3D segmentation.

This method was further improved to segregate point cloud data and mesh. It was

also able to identify primitive shapes in unorganized point cloud data [104].

Expanding on this work, new research was published detailing the detection of

shapes that are translationally and rotationally symmetrical called Slippable shapes.

Linear extrusion, plane, helix, surfaces of revolution, sphere, and cylinder fall under

this category [105].

37

Figure 3.3 RANSAC flowchart. [106]

Graph-based methods are popular in autonomous navigation projects due to their

robustness and efficiency. It works by using radius-based approaches or KNN [107]

to make a graph from the point clouds. Graph Laplacian and clustering are further

performed to segment planes. Usually, it is not used in real-time and requires special

sensors and cameras to run this methodology [100]. Finally, attribute-based

methods segment based on the available clustering features in a point cloud scene.

Each cluster with a unique feature will be segmented. This methodology mostly relies

38

on the clarity of the points nearby and is very time-consuming when working with

multidimensional features of large point cloud scenes.

3.4 Clustering

Clustering allows for isolating clusters of interest and tracking them to observe their

elasticity and spatial data. Given below are some of the most widely used clustering

algorithms in the point cloud domain.

 K-means is a widely used clustering algorithm that works by iteratively combining

points to the neighboring cluster’s center point and continues to update the

midpoints based off the mean of the points assigned [111]. Density-Based Spatial

Clustering of Applications with Noise (DBSAN) [99] performs clustering operations by

grouping points based on their density and identifies the outlier points as noise.

Epsilon is the predefined search radius and min points is the number of minimum

points that should constitute a cluster. This value is also predefined, the optimum

value is found by the trial-and-error method.

Considered an extension of DBSCAN, the Ordering Points To Identify the Clustering

Structure (OPTICS) algorithm [115] classifies points by their cluster density, and

based on the density it maintains a hierarchical order. Unlike DBSCAN this does not

need epsilon value, it adapts to varying density using a reachability plot which makes

it computationally expensive. Utilizing a similar methodology, the Mean Shift

Clustering algorithm locates dense point clouds and clusters them. It then continues

39

to iteratively move the points to the mean of their local diffusion until it converges.

The hierarchical Clustering algorithm iteratively combines similar clusters until all

available points belong to one cluster [112]. Spectral clustering finds the eigenvalues

and eigenvectors of the matrix to cluster the point clouds, thus making it

computationally expensive [113]. Fuzzy C-Means [114] allows for points to be a part

of numerous clusters with different degrees of membership points in each cluster.

The membership points and cluster centers are iterated. By representing the point

clouds as a mixture of Gaussian distribution and computing the parameters of the

diffusion through the expectation-maximization algorithm the probabilistic Gaussian

Mixture Model [116] is able to cluster points in the point cloud. Balanced Iterative

Reducing and Clustering using Hierarchy (BIRCH) clusters points by creating a

hierarchical tree of subclusters. It continues to iterate points in the cluster using a

hierarchical clustering algorithm and combines the subclusters, creating big clusters

[117] [118].

40

3.5 Convex Hull Construction and Volume Calculation

Figure 3.4 Convex Hull [134]

After clustering the point of interest, a convex hull fits over the point clouds, thus

encompassing all the available points within it. Theoretically, a convex hull is the

smallest polygon (polyhedron in 3D space) that can enclose a fixed number of points

in a given plane. This method allows for the calculation of volume to compute

elasticity and spatial data. Furthermore, to a certain extent, this method is resistant

to issues caused by point cloud sparsity. Figure 3.4 shows a convex hull

encompassing all the points within it and thus turning into a sphere construct a

convex hull. Graham Scan [141] is one of the widely used algorithms to compute

convex hull. It works by finding any one vertex in the convex hull and sorting the rest

41

of the points as scanned from that vertex. Let the leftmost point of the convex hull be

denoted by 𝑥0 and mark the points left by angle from 𝑥0 moving in counterclockwise

encompassing 𝑥1, 𝑥2, … , 𝑥𝑛−1. Let 𝑥𝑛 = 𝑥0 , if 𝑥𝑗 is eliminated then for 𝑖 < 𝑗 < 𝑘 the

points 𝑥𝑖 → 𝑥𝑗 → 𝑥𝑘 will form a right turn. Thus, 𝑥𝑗 is enveloped inside the triangle

(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘) and not on the convex hull. The figure below visualizes this concept.

Figure 3.5 2D Convex Hull [141]

Every time the algorithm’s while loop is activated a point is stacked or eliminated. At

the highest the loop is activated 2𝑛 times as a point is only looked at once. The syntax

of Graham Scan is attached below.

42

Figure 3.6 Syntax of Graham Scan [141]

The wrapping algorithm, also known as Jarvis March [139] [141] works by seeking out

points in the order in which they appear. Let the leftmost point be 𝑥0 and 𝑥1 be the

first point when viewed from 𝑥0 in counterclockwise route. Similarly, let 𝑥2 be the first

point when viewed from 𝑥1in counterclockwise route and so on.

Figure 3.7 Jarvis March [141]

 It takes linear time to find 𝑥𝑖+1 and at the maximum, the while loop is activated ℎ

times, here ℎ refers to the number of vertices on the convex hull, the algorithm is very

43

robust but gets slow if there are too many points to process. The syntax of Jarvis

March is attached below.

Figure 3.8 Jarvis March syntax [141]

After fitting the convex hull, the volume is calculated by computing the volume of all

the available tetrahedrons, as it is proved that convex polyhedra can always be

tetrahedralizable [23]. Since the surface of the convex will always be made of

triangular facets, an arbitrary point 𝑄 is fixed near the middle of the convex hull and

imaginary lines from each vertex of the triangular facet are drawn to 𝑄, thus creating

a tetrahedron. This process is repeated for every triangular facet on the surface of the

convex hull. Figure 3.4 shows a convex hull fitted over a spherical cluster of point

clouds, notice the triangular facets making up the surface of the sphere.

Figure 3.9 Tetrahedron [140]

44

Assuming 𝑄 as the arbitrary point and 𝐵, 𝐶, 𝐷 as the vertexes of the facet, the

volume of the tetrahedron can be calculated using,

𝑣1 =
1

6
|{(𝑄𝐵⃗⃗ ⃗⃗ ⃗ × 𝑄𝐶⃗⃗⃗⃗ ⃗) ․ 𝑄𝐷⃗⃗⃗⃗⃗⃗ }| (3.1)

The final volume 𝑉 of a single convex hull is calculated by summing up all the
volumes of the available tetrahedrons.

𝑉 = 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 + ⋯ (3.2)

3.6 Tracking

After fitting the convex hull, the point cloud cluster in interest is tracked to observe

their elasticity. Usually, tracking is done by extracting features and creating a 3D

search map [143] or finding the cosine similarity between the template and search

branch [142]. But in this thesis tracking is achieved by finding the centroid of a convex

hull and finding the Euclidean distance between the convex hull’s centroid in the

successive frame. The algorithm finds Euclidean distance with all the clusters

encompassed with convex hull and selects the cluster that has the least distance.

The centroid is the mean of all the coordinates in the 3D space, it can be

mathematically represented as,

𝐶𝑥 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 , 𝐶𝑦 =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 , 𝐶𝑧 =

1

𝑛
∑ 𝑧𝑖

𝑛
𝑖=1 (3.3)

45

𝐶1 = (𝐶𝑥, 𝐶𝑦, 𝐶𝑧) (3.4)

𝐶𝑥, 𝐶𝑦, 𝐶𝑧 refers to the coordinates of the centroid, 𝑛 refers to the total number of

vertices on the surface of the convex hull and 𝐶 represents the calculated centroid

of the convex hull. As explained, after calculating the centroid of all the convex hulls

present in frame one and the frame subsequent to it, the Euclidean distance between

the points is computed. Below Euclidean distance is found for two centroid points

𝐶1and 𝐶2,

𝑑 = √(𝐶2𝑥 − 𝐶1𝑥)2 + (𝐶2𝑦 − 𝐶1𝑦)2 + (𝐶2𝑧 − 𝐶1𝑧)2 (3.5)

Figure 3.10 Finding the centroid of a convex hull.

46

The tracking method proposed in this thesis was not compared to other tracking

methods as 3D tracking is not the focus of this thesis, regardless this methodology

suited this scenario. The results of this methodology are attached in the next section.

3.7 Elasticity & Spatial Data

Elasticity and Spatial data are the two features that are observed while tracking the

cluster of interest for 𝑡 amount of time. These two are considered as the features to

predict a class.

Figure 3.11 Visualizing Elasticity

The figure above shows a pedestrian walking in successive frames. As the pedestrian

moves, their elasticity value starts out at 8.7475, increases to 9.3374, and drops to

9.1261. Elasticity can be mathematically represented as,

𝑆𝑖(𝑡) is the set of all the points for an actor 𝑖 at time 𝑡.

𝐶(𝑆𝑖(𝑡)) is defined as the convex hull function which generates a convex hull for a

set of points 𝑆𝑖 and 𝐹(.) is defined as the function to calculate the volume of the

convex hull.

47

𝑓(𝐶(𝑆(𝑡))) = 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 (3.6)

𝑉(1) = 𝑓(𝐶(𝑆𝑖(1))) (3.7)

𝑉(2) = 𝑓(𝐶(𝑆𝑖(2))) (3.8)

𝑉(3) = 𝑓(𝐶(𝑆𝑖(3))) (3.9)

𝑉(𝑡) = 𝑓(𝐶(𝑆𝑖(𝑛))) (3.10)

𝐸 = {𝑉(1), 𝑉(2), 𝑉(3),… , 𝑉(𝑡)} (3.11)

The final spatial values are represented in a set (𝐸).

The figure below shows the accumulation of the point clouds as time 𝑡 increases.

This results in a steady increase in volume depending on their pace as the pedestrian

walks: 8.745, 11.0764 & 12.506.

Figure 3.12 Visualizing Spatial Data

𝐾(1) = 𝑓(𝐶({𝑆𝑖(1)})) (3.12)

𝐾(2) = 𝑓(𝐶({𝑆𝑖(1) ∪ 𝑆𝑖(2)})) (3.13)

𝐾(3) = 𝑓(𝐶({𝑆𝑖(1) ∪ 𝑆𝑖(2) ∪ 𝑆𝑖(3)})) (3.14)

𝐾(𝑡) = 𝑓(𝐶({𝑆𝑖(1) ∪ 𝑠(2) ∪ 𝑆𝑖(3) ∪ 𝑆𝑖(𝑛)})) (3.15)

48

𝐽 = {𝐾(1), 𝐾(2), 𝐾(3),… , 𝐾(𝑡)} (3.16)

The final spatial values are represented in a set (𝐽). Before making any predictions,

the classifier algorithm creates its own set (𝑀) where the values of the set 𝐸 and 𝐽

are interwoven.

𝑀 = {𝐸(1),𝐾(1), 𝐸(2), 𝐾(2), 𝐸(3), 𝐾(3),… , 𝐸(𝑡), 𝐾(𝑡)} (3.17)

The classifier algorithm learns to find the temporal dependency between the values

presented in the set M.

3.8 Classifier

The classifier block is the last addition to the architecture. This part is responsible for

reviewing the recorded elasticity & spatial data and identifying the temporal

dependency between the recorded values. Once the pattern is noticed the algorithm

proceeds to classify the class of the identified cluster. This thesis explores three such

algorithms that can explore temporal dependence patterns: Random Forest [131],

XG Boost [133], and Gradient Boost [135]. All these three algorithms are explained

further in the subsections below.

3.8.1 Random Forest

Introduced by Leo Breiman in 2001, the random forest [131] is part of the ensemble

learning models. Here, different models of the same algorithm come together to

make a prediction. This makes the algorithm more resistant to overfitting, predicts

49

better even with missing values, and makes parallelization possible, thus lesser

training times. The algorithm works by assembling n number of decision trees, to

make sure that each decision tree has its own perspective random feature selection

is utilized. This also makes sure that the algorithm is trained from a diverse dataset.

This is then followed by bagging, resulting in the creation of a separate subset of data

for each decision tree thus increasing variability and making the model more robust.

All the decision trees then proceed to cast individual votes to make a prediction, the

final prediction is based on the mode across all the trees [24] [29]. The concept is

well explained through the flow chart attached below.

50

Figure 3.13 Random Forest flowchart. [144]

3.8.2 XG Boost

Extreme Gradient Boosting, widely known as XG Boost, is a supervised machine

learning algorithm based on boosting. Like random forest, this algorithm also uses

decision trees and is a part of the ensemble learning family. But unlike random forest,

each new tree is built to reduce the residual error of the tree built previously. A

regularization function is included to avoid overfitting, early stoppage is also

supported. Since it requires building trees by learning the mistakes of the previous

tree the process cannot be parallelized, making it computationally slower than

51

random forest. However, this also allows it to perform better with datasets that have

missing values as each new tree learns to predict the missing values [133] [25]. The

figure below shows the working of XG Boost. You can see the residual value being

passed down subsequently, this allows the newer trees to learn and perform better

than the previous ones.

Figure 3.14 XG Boost flowchart. [133]

The algorithm can be mathematically expressed as,

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹𝐾
𝑘=1 (3.18)

With 𝑦̂𝑖 being the predicted value, 𝑓𝑘(𝑥𝑖) represents the function of input in k-th

decision tree, K marks the total number of decision trees and F is the set of all the

possible values.

52

3.8.3 Gradient Boost

Gradient Boost is a toned-down version of XG Boost. They both belong to the same

family of algorithms, but Gradient Boost does not come with regularization terms like

L1 (Lasso) and L2 (Ridge) or early stopping techniques to reduce overfitting [30].

Figure 3.15 Gradient Boost flowchart. [135]

The flowchart attached above explains the algorithm. As you can see, the working is

very similar to the gradient boost algorithm.

53

Chapter 4 Case Study

4.1 Introduction

With the methodology explained in the previous chapter, we will explore and discuss

the results obtained and the issues faced while working with real dataset.

4.2 Data Collection

Figure 4.1 Data collection

Before going into the results, it is crucial to understand how the dataset was

collected. The data collection team (Edison Li, Saswat Priyadarshi Nayak & Xuanpeng

Zaho) used Ouster OS1-128 to collect the point cloud data. The LiDAR sensor was set

on a tripod in the afternoon hours in front of the Bourns College of Engineering. The

54

recorded dataset contains rich pedestrian and micromobility interactions. The frame

rate was set at 10 Hz. Using the methodology discussed in the previous chapter, 202

sets of elasticity and spatial of pedestrians and e-scooter users were collected. Each

set has eight values of elasticity and spatial data corresponding to a single actor. In

other words, each actor had 16 values associated with them, thus the machine

learning algorithms used had 16 features to differentiate between a class. Since the

dataset was captured at 10 HZ, collecting 8 pairs of values accounted for 800

milliseconds. Thus, the algorithm takes 1/8 of a second to differentiate between a

class. This thesis shows the results of the models trained with 8 pairs of elasticity and

spatial data, depending on the dataset available this number can be decreased or

increased. Below are the results of the algorithms used. Figure 4.2 shows three

pedestrians walking towards the LiDAR and two pedestrians walking away from the

sensor. For better visibility two pedestrians approaching the LiDAR are highlighted in

red.

55

Figure 4.2 Visualizing the dataset

4.3 Visualizing Plane Elimination and Clustering Algorithms

It is imperative that the algorithm eliminates the ground plane before processing

further. Figure 4.3 shows a pedestrian segmented with the ground plane; it is easy to

observe that if the ground plane is included most of the elasticity features exhibited

by the class will be left unnoticed as the convex hull envelops a broader area. This

thesis uses RANSAC to identify planes, the algorithm’s robust nature allows for quick

ground plane elimination without disturbing the actors. The green dots represented

in Figure 4.4 are the segmented plane in a point cloud scene.

56

Figure 4.3 Pedestrian with ground plane

As mentioned previously, this thesis uses DBSCAN to cluster the points. After

filtering out the ground plane the point clouds are sent for clustering. Clustering

allows us to filter out any stray points that might affect the volume calculation in the

next step. It also allows for isolating multiple actors in a scene. Figure 4.5 shows

DBSCAN clustering two pedestrians into two respective clusters and eliminating the

stray points in the bottom left corner.

57

Figure 4.4 Segmented ground plane.

Figure 4.5 DBSCAN clustering

58

4.4 Visualizing Convex Hull Construction and Tracking Algorithms

Figure 4.6 Visualizing change in pose and volume of a pedestrian walking.

Convex hull is used to find the volume of the cluster, Figure 4.6 shows a pedestrian

wrapped in a convex hull in three successive frames. You can notice the change in

volume as the pedestrian expands and contracts their limbs to generate motion, thus

exhibiting elasticity as explained earlier. Figure 4.7 shows the tracking algorithm in

action, the green point shown in the figure represents the calculated centroid and the

red shade represents the convex hull wrapping the point clouds. The two clusters

represented belong to a single pedestrian in consecutive frames, the taskbar below

pictures read “Euclidean distance between centroids: 0.24478.” This distance will

59

dramatically be larger for any other convex hull apart from its own in consecutive

frames.

Figure 4.7 Finding Euclidean distance between two clusters in subsequent frames.

4.5 Visualizing Elasticity and Spatial Data

In this subsection, the elasticity and spatial data are visualized by charting them on

the graphs presented below. Figure 4.8 shows the elasticity graph of an e-scooter

user. But although micromobility users do not necessarily move their body elasticity

is still observed. This is partly due to the noise as it disturbs the cluster’s volume.

Below attached is a graph (fig. 4.8) plotted between the time and volume of an e-

60

scooter rider approaching the LiDAR sensor. You will be able to observe the reduction

in volume of the convex hull of the rider.

Figure 4.8 E-scooter approaching the LiDAR.

Figure 4.9 attached below shows the graph of a rider moving away from the LiDAR

sensor. Notice the increase in volume of the convex hull as time moves forward. It

can be observed that the slope of the graph is not even, this is due to the noises

encountered by the clustering algorithm.

61

Figure 4.9 E-scooter departing from the LiDAR.

The same phenomenon is observed in pedestrian class also, Figure 4.10 shows the

change in volume of a pedestrian approaching the LiDAR. Figure 4.11 shows the

change in volume of a pedestrian departing from the LiDAR sensor. Notice how the

pedestrian graphs have a lot of peaks. This continuous rise and fall of the peaks

represent the change in the elasticity of a walking pedestrian. Since the

micromobility riders exhibit little to no movement this is not observed in their graphs.

62

Figure 4.10 Pedestrian approaching the LiDAR.

Figure 4.11 Pedestrian departing from the LiDAR.

In some extremely noisy cases, the graph plotted between time and volume tends to

exhibit more unwanted peaks which can result in false positives. Figure 4.12 shows

63

an e-scooter user departing from the LiDAR. The abnormal peaks observed can be

due to noise clustered by DBSCAN as part of the main cluster. The steep fall of the

points indicates that the cluster has suffered from partial occlusion.

Figure 4.12 Unideal e-scooter data (departing from the LiDAR).

Figure 4.13 shows a case of noisy pedestrian data. Some points in the point cloud

could have disappeared thus causing the volume to steeply fall (possibility of partial

occlusion). The first tall peak might have been caused due to clustering algorithm

allowing stray points in the cluster. Unideal sets of data are not rare, training an

algorithm with only elasticity data feature is bound to perform poorly. To avoid this

scenario, the algorithm considers a second feature (spatial data) before classifying.

64

Figure 4.13 Unideal pedestrian data (approaching LiDAR).

As mentioned previously, spatial data is the accumulation of point cloud of a specific

cluster over a period of t time. Figure 4.14 shows the increase in volume of an e-

scooter rider in 2s. In Figure 4.15 a pedestrian’s increase in volume is shown for 2s.

The algorithm learns to differentiate between these two curves by noticing the

pattern of jumps in volume. Since pedestrians move slower compared to e-scooters

their change in volume is not very significant. As a comparison, the pedestrian’s

volume starts at 14 and ends at 64 by the end of 2s. For the same time frame, the e-

scooter starts at 19 and ends at 178. Comparatively, this factor is less likely to be

affected by noise.

65

Figure 4.14 E-Scooter Spatial Data

But if the rider decides to drive their scooter to match the pace of an adjacent

pedestrian, then the model will not be able to tell the difference. Also, if an actor is

too close to the LiDAR sensor physical movements may not be well observed, this

will result in slight volume changes that only result in small peaks. These small peaks

can technically be present in e-scooter elasticity graph due to noise. Since point

clouds can get partially or fully occluded in some cases utilizing two distinct types of

features to classify improves the chances of true positives. Thus, elasticity data and

spatial is considered before classification.

66

Figure 4.15 Pedestrian Spatial Data

Figure 4.16 E-Scooter

Figure 4.

67

Figure 4.16 shows the spatial data of an e-scooter user for T= 2s. As the actor moves

in the field their clusters accumulate with respect to their previous cluster at T-1.

Figure 4.17 shows the spatial data of a pedestrian for T= 3s.

Figure 4.17 Pedestrian

68

4.6 Result Analysis

Three algorithms namely Random Forest, XG Boost and Gradient Boost are trained

with the same dataset and their results are analyzed by plotting a confusion matrix.

The actual picture of the terminal is also attached, it shows the features used for

training and also depicts the accuracy of the model.

4.6.1 Random Forest Results

Trained with 16 features (eight sets of elasticity data & eight sets of spatial data).

Pedestrian and scooter classes each had 101 sets of data, bringing the total to 202

sets as you can see in Figure 4.18. N estimator = 81000 and random state = 43.

Figure 4.18 Random Forest

69

Figure 4.19 Confusion Matrix of Random Forest

The confusion matrix for Random Forest is presented in Figure 4.19. The figure shows

the result of the test data. Out of the original sets (202) that were recorded, 40% of

the data (81) was used as test sets for the algorithm.

4.6.2 XG Boost Results

Trained with 16 features. Pedestrian and scooter classes each had 101 sets of data,

bringing the total to 202 sets as you can see in Figure 4.20. N estimator = 81000 and

random state = 43.

70

Figure 4.20 XG Boost

 Figure 4.21 Confusion Matrix of XG Boost

Figure 4.20 presents the confusion matrix of the Gradient Boost algorithm. Out of the

81 sets of data four sets were misclassified as e-scooters and four as pedestrians.

4.6.3 Gradient Boost Results

Figure 4.22 Gradient Boost

71

Trained with 16 features. Pedestrian and scooter classes each had 101 sets of data,

bringing the total to 202 sets as you can see in the picture. N estimator = 9,000 and

random state = 43. Since XG Boost only uses 9000 N estimators it delivers faster

results than the other two algorithms. After the N estimator is set to 9,000 the

accuracy does not change. It takes Random Forest 81,000 N estimators to give

90.17% accuracy, but XG Boost does it with just 9,000.

Figure 4.23 Confusion Matrix of Gradient Boost

Figure 4.23 presents the confusion matrix of the Gradient Boost algorithm. Out of the

81 sets of data four sets were misclassified as e-scooters and seven as pedestrian.

4.7 Performance Comparison

The Table shows the accuracy and the n estimators of all the algorithms used. XG

Boost and Random Forest had similar accuracy. But since XG Boost only required

9,000 n estimators, it performed the fastest among the three.

72

Table 4.1 Results

73

Chapter 5 Conclusions and Future Work

5.1 Conclusions

As the public perception of e-scooters increases, more commuters are willing to

adapt. Unfortunately, since the existing roads are not designed to accommodate

such users, we are observing increased accidents and casualties. This thesis has

proposed a novel approach to identify e-scooters from point cloud data recorded

with roadside LiDAR sensors. City planners can use this algorithm to understand the

frequency of e-scooter users in different time frames. This data will then allow for the

design of specialized road strips in important regions for safer commuting of e-

scooters. Out of the three algorithms tested XG Boost had the highest precision of

90.17% with the least number of n estimators.

5.2 Future Work

• The proposed algorithm can be made more efficient by using sensor fusion

methods to better cluster points to avoid unwanted elasticity readings.

• The algorithm can also be paired with point cloud perception algorithms like

PointPillars to find the region of interest and then proceed to track and classify

if the actor is a pedestrian or an e-scooter user.

74

References

[1] World Health Organization. 2023. Global status report on road safety 2023. World
Health Organization, Geneva, Switzerland. ix, 81 p. pages.

[2] Simiao Chen, Michael Kuhn, Klaus Prettner, and David E Bloom. 2019. The global
macroeconomic burden of road injuries: estimates and projections for 166 countries.
The Lancet Planetary Health 3, 9 (2019), e390–e398. https://doi.org/10.1016/S2542-
5196(19)30170-6

[3] Renato M. Silva, Gregório F. Azevedo, Matheus V. V. Berto, Jean R. Rocha, Eduardo
C. Fidelis, Matheus V. Nogueira, Pedro H. Lisboa, Tiago A. Almeida. 2024. Vulnerable
Road Users Detection and Safety Enhancement: A Comprehensive Survey.

[4] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn: Point-voxel
feature set abstraction for 3d object detection,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 10 529–10 538.

[5] S. Shi, L. Jiang, J. Deng, Z. Wang, C. Guo, J. Shi, X. Wang, and H. Li, “Pv-rcnn++:
Point-voxel feature set abstraction with local vector representation for 3d object
detection,” International Journal of Computer Vision, vol. 131.

[6] Maosheng Ye, Shuangjie Xu, Tongyi Cao, “HVNet: Hybrid Voxel Network for LiDAR
Based 3D Object Detection”; Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 1631-1640.

[7] Jordan S. K. Hu, Tianshu Kuai, Steven L. Waslander “Point Density-Aware Voxels
for LiDAR 3D Object Detection”; Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022, pp. 8469-8478.

https://doi.org/10.1016/S2542-5196(19)30170-6
https://doi.org/10.1016/S2542-5196(19)30170-6

75

[8] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Data-driven 3d voxel patterns for object
category recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 1903–1911.

[9] J. Huang, G. Huang, Z. Zhu, Y. Ye, and D. Du, “Bevdet: Highperformance multi-
camera 3d object detection in bird-eye-view,” arXiv preprint arXiv:2112.11790, 2021.

[10] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang & Oscar
Beijbom ; PointPillars: Fast Encoders for Object Detection from Point Clouds.

[11] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d object detection network
for autonomous driving. In CVPR, 2017.

 [12] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander. Joint 3d proposal
generation and object detection from view aggregation. In IROS, 2018.

[13] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud based 3d
object detection. In CVPR, 2018.

[14] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. CoRR abs/1612.00593 (2016).

[15] Li, Y., Bu, R., Sun, M., Chen, B.: Pointcnn (2018).

[16] Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds (2018).

76

[17] A Geiger, P Lenz & R Urtasun ; Vision meets robotics: The KITTI dataset, 2013.

[18] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai
Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay
Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger,
Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens, Zhifeng Chen,
Dragomir Anguelov; Scalability in Perception for Autonomous Driving: Waymo Open
Dataset.

[19] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, Oscar Beijbom; nuScenes: A
Multimodal Dataset for Autonomous Driving. Computer Vision and Pattern
Recognition (CVPR), 2020.

[20] W. Maddern, G. Pascoe, C. Linegar and P. Newman, "1 Year, 1000km: The Oxford
RobotCar Dataset", The International Journal of Robotics Research (IJRR), 2016.

[21] Michael Meyer and Georg Kuschk; “Automotive RADAR dataset for deep learning
based 3D object detection”. 2019 16th European radar conference.

[22] Bijelic, Mario and Gruber, Tobias and Mannan, Fahim and Kraus, Florian and
Ritter, Werner and Dietmayer, Klaus and Heide, Felix; “Seeing Through Fog Without
Seeing Fog:Deep Multimodal Sensor Fusion in Unseen Adverse Weather”. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2022.

[23] Kiat-Choong Chen, Ian Hsieh, Cao An Wang; “A Genetic Algorithm for Minimum
Tetrahedralization of a Convex Polyhedron”. Halifax, Nova Scotia, August 11–13,
2003.

77

[24] https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/

[25] https://www.datacamp.com/tutorial/xgboost-in-python

[26] Vicente Milanés, Jorge Villagrá, Jorge Godoy, Javier Simó, Joshué Pérez, and
Enrique Onieva; An Intelligent V2I-Based Traffic Management System. IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 1,
MARCH 2012.

[27] https://www.ghsa.org/resources/news-releases/TRB-Escooter-Safety Report22

[28] https://appinventiv.com/blog/escooter-trends-and-statistics/

[29] https://www.datacamp.com/tutorial/random-forests-classifier-python

[30] https://www.datacamp.com/tutorial/guide-to-the-gradient-boosting-algorithm

[31] Guldenring, J., Wietfeld, C.: Scalability analysis of context-aware multi-RAT Car-
to-Cloud communication. In: IEEE 92nd Vehicular Technology Conference (VTC2) on
Proceedings, Victoria, Canada, pp. 1–6. IEEE (2020).

[32] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak,
Andrew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva Ramanan, James Hays;
“Argoverse: 3D Tracking and Forecasting with Rich Maps”. Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://www.datacamp.com/tutorial/xgboost-in-python
https://www.ghsa.org/resources/news-releases/TRB-Escooter-Safety%20Report22
https://appinventiv.com/blog/escooter-trends-and-statistics/
https://www.datacamp.com/tutorial/random-forests-classifier-python
https://www.datacamp.com/tutorial/guide-to-the-gradient-boosting-algorithm

78

[33] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh,
Siddhesh Khandelwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony
Kaesemodel Pontes, Deva Ramanan and Peter Carr and James Hays. “Argoverse 2:
Next Generation Datasets for Self-driving Perception and Forecasting”. NeurIPS
Datasets and Benchmarks 2021.

[34] Giseop Kim; Yeong Sang Park; Younghun Cho; Jinyong Jeong; Ayoung Kim.
“MulRan: Multimodal Range Dataset for Urban Place Recognition”. 2020 IEEE
International Conference on Robotics and Automation.

[35] Marcel Sheeny, Emanuele De Pellegrin, Saptarshi Mukherjee, Alireza Ahrabian,
Sen Wang, Andrew Wallace; “RADIATE: A Radar Dataset for Automotive Perception
in Bad Weather”. 2021 IEEE International Conference on Robotics and Automation.

[36] Akhil Kurup and Jeremy Bos; “DSOR: A Scalable Statistical Filter for Removing
Falling Snow from LiDAR Point Clouds in Severe Winter Weather”. Computer Vision
and Pattern Recognition, 2021.

[37] Mao, Jiageng and Niu, Minzhe and Jiang, Chenhan and Liang, Xiaodan and Li,
Yamin and Ye, Chaoqiang and Zhang, Wei and Li, Zhenguo and Yu, Jie and Xu,
Chunjing and others; “One Million Scenes for Autonomous Driving: ONCE Dataset”.
2021, https://arxiv.org/abs/2106.11037.

[38] Jabłoński, Joanna Iwaniec, and Wojciech Zabierowski; “Comparison of
Pedestrian Detectors for LiDAR Sensor Trained on Custom Synthetic, Real and Mixed
Datasets”. https://doi.org/10.3390/s22187014.

[39] Runsheng Xu, Yi Guo, Xu Han, Xin Xia, Hao Xiang, and Jiaqi Ma. 2021. OpenCDA:
An Open Cooperative Driving Automation Framework Integrated with Co-Simulation.
In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).
IEEE, IEEE, Indianapolis, IN, USA, 1155–1162.

https://arxiv.org/abs/2106.11037
https://doi.org/10.3390/s22187014

79

[40] Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. 2011.
SUMO – Simulation of Urban MObility: An Overview. In Proceedings of SIMUL 2011,
The Third International Conference on Advances in System Simulation. ThinkMind,
Barcelona, Spain, 55–60.

[41] Alexey Dosovitskiy and German Ros and Felipe Codevilla and Antonio Lopez and
Vladlen Koltun; “CARLA}: {An} Open Urban Driving Simulator”. Proceedings of the 1st
Annual Conference on Robot Learning, pg. 1 – 16, 2017.

[42] Mina Alibeigi, William Ljungbergh, Adam Tonderski, Georg Hess, Adam Lilja, Carl
Lindstrom, Daria Motorniuk, Junsheng Fu, Jenny Widahl, and Christoffer Petersson.
2023. Zenseact Open Dataset: A large-scale and diverse multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. IEEE, Montreal, Canada, 20121–20131.

[43] Novel Certad, Enrico del Re, Helena Korndörfer, Gregory Schröder, Walter
Morales-Alvarez, Sebastian Tschernuth, Delgermaa Gankhuyag, Luigi del Re, and
Cristina Olaverri-Monreal; “2024. Interaction of Autonomous and Manually
Controlled Vehicles Multi scenario Vehicle Interaction Dataset”. IEEE Intelligent
Transportation Systems Magazine (2024).

[44] Runsheng Xu, Xin Xia, Jinlong Li, Hanzhao Li, Shuo Zhang, Zhengzhong Tu,
Zonglin Meng, Hao Xiang, Xiaoyu Dong, Rui Song, Hongkai Yu, Bolei Zhou, Jiaqi Ma;
“V2V4Real: A Real-world Large-scale Dataset for Vehicle-to-Vehicle Cooperative
Perception”. CVPR 2023.

[45] Jia Huang, Alvika Gautam, Junghun Choi, Srikanth Saripalli; “WiDEVIEW: An
UltraWideBand and Vision Dataset for Deciphering Pedestrian-Vehicle Interactions”.
arXiv:2309.16057 [cs.RO].

80

[46] Andras Palffy, Ewoud Pool, Srimannarayana Baratam, Julian F. P. Kooij, Dariu M.
Gavrila; “Multi-Class Road User Detection With 3+1D Radar in the View-of-Delft
Dataset”. IEEE ROBOTICS AND AUTOMATION LETTERS 2022.

[47] Yancheng Pan, Biao Gao, Jilin Mei, Sibo Geng, Chengkun Li, Huijing Zhao;
“SemanticPOSS: A Point Cloud Dataset with Large Quantity of Dynamic Instances”.
IEEE Intelligent Vehicles Symposium (2020).

[48] Huanan Wang, Xinyu Zhang, Jun Li, Zhiwei Li, Lei Yang, Shuyue Pan, Yongqiang
Deng. “IPS300+: a Challenging Multimodal Dataset for Intersection Perception
System”. 2021 arXiv:2106.02781 [cs.CV].

[49] Deng Yongqiang, Wang Dengjiang, Cao Gang, Ma Bing, Guan Xijia, Wang Yajun,
Liu Jianchao, Fang Yanming, Li Juanjuan; “BAAI-VANJEE Roadside Dataset: Towards
the Connected Automated Vehicle Highway technologies in Challenging
Environments of China”. 2021 arXiv:2105.14370 [cs.CV].

[50] M. Hetzel, H. Reichert, G. Reitberger, K. Doll, E. Fuchs, and B. Sick "The IMPTC
Dataset: An Infrastructural Multi-Person Trajectory and Context Dataset", IV 2023,
Anchorage USA.

[51] Tao WU, Jun Hu, Lei Ye, Kai Ding; A Pedestrian Detection Algorithm Based on
Score Fusion for Multi-LiDAR Systems. Sensor Fusion For Autonomous Vehicles,
2021.

[52] Jain, A.; Nandakumar, K.; Ross, A. Score normalization in multimodal biometric
systems. Pattern Recognit. 2005, 38, 2270–2285.

81

[53] Kevin Peterson; Jason Ziglar; Paul E. Rybski; Fast feature detection and
stochastic parameter estimation of road shape using multiple LIDAR, IEE 2008.

[54] Arturo L. Rankin, Andres Huertas, Larry H. Matthies; Night-time negative
obstacle detection for off-road autonomous navigation, 2007.

[55] Jacoby Larson, Mohan Trivedi; Lidar based off-road negative obstacle detection
and analysis, 2011.

[56] Erke Shang, Xiangjing An, Tao Wu, Qiping Yuan, Hangen He; LiDAR Based
Negative Obstacle Detection for Field Autonomous Land Vehicles, 2005.

[57] Christoph Mertz, Luis E. Navarro-Serment, Robert MacLachlan, Paul Rybski,
Aaron Steinfeld, Arne Suppe, Christopher Urmson, Nicolas Vandale, Martial Herbert,
Chuck Thorpe, David Duggins, Jay Gowdy; Moving object detection with laser
scanners, 2012.

[58] Tao WU, Jun Hu, Lei Ye, Kai Ding; A Pedestrian Detection Algorithm Based on
Score Fusion for Multi-LiDAR Systems. Sensor Fusion For Autonomous Vehicles,
2021.

[59] Arun A. Ross, Anil K. Jain, Karthik Nandakumar. Handbook of Multibiometrics,
2006.

[60] https://requestum.com/blog/ai-in-transportation-and-logistics

[62] R. Abduljabbar, H. Dia, S. Liyanage, S.A. Bagloee; Applications of Artificial
intelligence in transport: an overview, Sustainability 11 (189) (2019).

https://requestum.com/blog/ai-in-transportation-and-logistics

82

[63] Juncong Fei, Wenbo Chen, Philipp Heidenreich, Sascha Wirges, and Christoph
Stiller; SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR
Point Cloud and Semantic Segmentation.

[64] Maite Szarvas, Utsushi Sakait and Jun Ogata; Real-time Pedestrian Detection
Using LIDAR and Convolutional Neural Networks, 2006.

[65] W. Wang, D. Tran, and M. Feiszli, “What Makes Training Multi-Modal Networks
Hard?” arXiv preprint arXiv:1905.12681, 2019.

[66] Sourabh Vora, Alex H. Lang, Bassam Helou & Oscar Beijbom ; PointPainting:
Sequential Fusion for 3D Object Detection. 2020 CVPR Access.

[67] www.github.com/eduardohenriquearnold/CODD

[68] www.zod.zenseact.com/frames/

[69] www.ouster.com

[70] Ji Dong Choi and Min Young Kim; “A sensor fusion system with thermal infrared
camera and LiDAR for autonomous vehicles and deep learning based object
detection”. ICT Express Volume 9, Issue 2, April 2023.

[71] Wael Farag; “Real-time lidar and radar fusion for road-objects detection and
tracking”. International Journal of Computational Science and Engineering Vol. 24,
No. 5, 2021.

http://www.github.com/eduardohenriquearnold/CODD
http://www.zod.zenseact.com/frames/
http://www.ouster.com/

83

[72] Haibao Yu, Yizhen Luo, Mao Shu, Yiyi Huo, Zebang Yang, Yifeng Shi, Zhenglong
Guo, Hanyu Li, Xing Hu, Jirui Yuan, Zaiqing Nie; “DAIR-V2X: A Large-Scale Dataset for
Vehicle-Infrastructure Cooperative 3D Object Detection”. arXiv:2204.05575 [cs.CV].
2022.

[73] Hao Xiang, Zhaoliang Zheng, Xin Xia, Runsheng Xu, Letian Gao, Zewei Zhou, Xu
Han, Xinkai Ji, Mingxi Li, Zonglin Meng, Li Jin, Mingyue Lei, Zhaoyang Ma, Zihang He,
Haoxuan Ma, Yunshuang Yuan, Yingqian Zhao, Jiaqi Ma; “V2X-Real: a Largs-Scale
Dataset for Vehicle-to-Everything Cooperative Perception”. arXiv:2403.16034
[cs.CV], 2024.

[74] Arnold, Eduardo and Mozaffari, Sajjad and Dianati, Mehrdad; “Fast and Robust
Registration of Partially Overlapping Point Clouds”. IEEE Robotics and Automation
Letters, 2021.

[75] Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, Jiaqi Ma; “OPV2V: An Open
Benchmark Dataset and Fusion Pipeline for Perception with Vehicle-to-Vehicle
Communication”. In 2022 International Conference on Robotics and Automation
(ICRA). IEEE, IEEE, Philadelphia, PA, USA, 2583–2589.

[76] Kumar Apurv, Renran Tian, and Rini Sherony; “Detection of E-scooter Riders in
Naturalistic Scenes”. arXiv:2111.14060 [cs.CV]. 2021.

[77] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[78] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll´ ar, C. L.
Zitnick, Microsoft coco: common objects in context, in: European Conference on
Computer Vision, Springer, 2014.

84

[79] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018.

[80] H. Nguyen, M. Nguyen, Q. Sun, Electric scooter and its rider detection framework
based on deep learning for supporting scooter-related injury emergency services, in:
International Symposium on Geometry and Vision, Springer, 2021.

[81] Shane Gilroy a,b, , Darragh Mullins b , Edward Jones b , Ashkan Parsi b , Martin
Glavin b; “E-Scooter Rider detection and classification in dense urban
environments”. Results in Engineering Volume 16, December 2022.

[82] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[83] X. Zhou, D. Wang, P. Krahenbühl, “Objects as Points”, arXiv preprint arXiv:
1904.07850.

[84] Dong Chen, Arman Hosseini, Arik Smith, Amir Farzin Nikkhah, Arsalan Heydarian,
Omid Shoghli, Bradford Campbell; “Performance Evaluation of Real-Time Object
Detection for Electric Scooters”, arXiv:2405.03039 [cs.CV], 2024.

[85] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding
yolo series in 2021. arXiv preprint arXiv:2107.08430, 2021.

[86] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flowguided feature
aggregation for video object detection. In Proceedings of the IEEE international
conference on computer vision, pages 408–417, 2017.

85

[87] Khalil Sabri, Célia Djilali, Guillaume-Alexandre Bilodeau, Nicolas Saunier,
Wassim Bouachir; “Detection of Micromobility Vehicles in Urban Traffic Videos”.
arXiv:2402.18503 [cs.CV], 2024.

[88] Gioele Ciaparrone, Francisco Luque Sánchez, Siham Tabik, Luigi Troiano,
Roberto Tagliaferri, Francisco Herrera; “Deep Learning in Video Multi-Object
Tracking: A Survey”. arXiv:1907.12740 [cs.CV].

[89] Bo Wu & Ram Nevatia; “Detection and Tracking of Multiple, Partially Occluded
Humans by Bayesian Combination of Edgelet based Part Detectors”. International
Journal of Computer Vision, 2007.

[90] Jiaying Wu, J. A. N. van Aardt, Joseph McGlinchy, and Gregory P. Asner. 2012. A
Robust Signal Preprocessing Chain for Small-Footprint Waveform LiDAR. IEEE
Transactions on Geoscience and Remote Sensing 50, 8 (2012).

[91] H. Li, J. Chang, F. Xu, Z. Liu, Z. Yang, L. Zhang, S. Zhang, R. Mao, X. Dou, and B.
Liu. 2019. Efficient Lidar Signal Denoising Algorithm Using Variational Mode
Decomposition Combined with a Whale Optimization Algorithm. Remote Sensing 11,
2 (2019).

[92] Jiaying Wu, J. A. N. van Aardt, Joseph McGlinchy, and Gregory P. Asner. 2012. A
Robust Signal Preprocessing Chain for Small-Footprint Waveform LiDAR. IEEE
Transactions on Geoscience and Remote Sensing 50, 8 (2012).

[93] Yao Duan, Chuanchuan Yang, Hao Chen, Weizhen Yan, and Hongbin Li. 2021.
Low-complexity point cloud denoising for LiDAR by PCA-based dimension reduction.
Optics Communications 482 (2021).

86

[94] X. Xie, L. Bai, and X. Huang. 2022. Real-Time LiDAR Point Cloud Semantic
Segmentation for Autonomous Driving. Electronics 11, 1 (2022),
doi.org/10.3390/electronics11010011.

[95] G. Zhou, X. Zhou, J. Chen, G. Jia, and Q. Zhu. 2022. LiDAR Echo Gaussian
Decomposition Algorithm for FPGA Implementation. Sensors 22, 12 (2022).

[96] Martin Ester, Hans-Peter Kriegel, Jiirg Sander, Xiaowei Xu; “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise”.
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96). 1996.

[97] Martin A. Fischler, Robert C. Bolles; “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography”.
Communications of the ACMVol. 24, No. 6, 1981.

[98] Lin Li, Yang,Haihong Zhu, Dalin Li, You Li and Lei Tang; “An Improved RANSAC for
3D Point Cloud Plane Segmentation Based on Normal Distribution Transformation
Cells”. 2017, doi.org/10.3390/rs9050433.

[99] Hui Chen, Man Liang, Wanquan Liu, Weina Wang, Peter Xiaoping Liu; “An
approach to boundary detection for 3D point clouds based on DBSCAN clustering”.
Pattern Recognition Volume 124, April 2022.

[100] Anh Nguyen; Bac Le; “3D point cloud segmentation: A survey”. IEEE Conference
on Robotics, Automation and Mechatronics. 2013.

[101] P.J. Besl, R.C. Jain, Segmentation through variable order surface fitting, IEEE
Transaction on Pattern Analysis and Machine Intelligence 10, 1988.

87

[102] J. Chen, B. Chen, Architectural modeling from sparsely scanned range data. Int.
J. Comput. Vision 78, 2008.

[103] B. Bhanu, S. Lee, C. Ho, and T. Henderson, Range data processing:
Representation of surfaces by edges. In proc.int. Pattern recognition conf, 1896.

[104] R. Schnabel, R. Wahl, R.Klein, Efficient ransac for point cloud shape detection.
Comput. Graph. Forum 26(2), 214-226, 2007.

[105] N. Gelfand, L. Guibas, Shape segmentation using local slippage analysis. In
Proceedings of Eurographics, pp. 214-223. ACM, New York, 2004.

[106] Ramy Ashraf Zeineldin and Nawal El-Fishawy; “A Survey of RANSAC
enhancements for Plane Detection in 3D Point Clouds”, Menoufia Journal of
Electronic Engineering Research, July 2017.

[107] A. Golovinskiy, T. Funkhouser, Min-cut based segmentation of point clouds,
IEEE Workshop on Search in 3D and Video at ICCV, 2009.

[108] ipg-automotive.com/en/products-solutions/software/carmaker/

[109] Leonardo Novicki Neto, Fabio Reway, Yuri Poledna, Maikol Funk Drechsler,
Eduardo Parente Ribeiro, Werner Huber and Christian Icking; “TWICE Dataset: Digital
Twin of Test Scenarios in a Controlled Environment”. IEEE Sensors Journal, 2023.

[110] Fredrik Warg, Sebastien Liandrat, Valentina Donzella, Graham Lee, Pak Hung
Chan, Reija Viinanen, Antti Kangasrääsiö, Umut Cihan, Heikki Hyyti, Tobias
Waldheuer, et al. 2023. ROADVIEW Robust Automated Driving in Extreme Weather:

88

Deliverable D2. 1: Definition of the complex environment conditions. WP2–Physical
system setup, use cases, requirements and standards.

[111] Abiodun M. Ikotun, Absalom E. Ezugwu, Laith Abualigah, Belal Abuhaija, Jia
Heming; “K-means clustering algorithms: A comprehensive review, variants analysis,
and advances in the era of big data”. Information Sciences Volume 622, April 2023.

[112] Sakshi Patel; Shivani Sihmar; Aman Jatain; “A study of hierarchical clustering
algorithms”. International Conference on Computing for Sustainable Global
Development (INDIACom), 2015.

[113] Ulrike von Luxburg; “A Tutorial on Spectral Clustering”, arXiv:0711.0189 [cs.DS],
2007.

[114] James C. Bezdek, Robert Ehrlich, William Full; “FCM: The fuzzy c-means
clustering algorithm”. Computers & Geosciences, Volume 10, Issues 2–3, 1984.

[115] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander; “OPTICS:
ordering points to identify the clustering structure”. Proceedings of the 1999 ACM
SIGMOD international conference on Management of data.

[116] D. Reynolds; “Gaussian Mixture Models”. Encyclopedia of Biometrics 18
October 2018.

[117] Siddharth Madan & Kristin J. Dana; “Modified balanced iterative reducing and
clustering using hierarchies (m-BIRCH) for visual clustering”. Pattern Analysis and
Applications Volume 19, pages 1023–1040, (2016).

89

[118] cdn.neuvition.com/technology-blog/clustering-algorithms.html

[119] Jiaming Zhang, Ruiping Liu, Hao Shi, Kailun Yang, Simon Reiß, Kunyu Peng,
Haodong Fu, Kaiwei Wang, Rainer Stiefelhagen; “Delivering Arbitrary-Modal
Semantic Segmentation”, arXiv:2303.01480 [cs.CV], 2023.

[120] Aoran Xiao, Jiaxing Huang, Dayan Guan, Fangneng Zhan, Shijian Lu; “Transfer
Learning from Synthetic to Real LiDAR Point Cloud for Semantic Segmentation”,
arXiv:2107.05399 [cs.CV], 2021.

[121] Yiming Li, Dekun Ma, Ziyan An, Zixun Wang, Yiqi Zhong, Siheng Chen, Chen
Feng; “V2X-Sim: Multi-Agent Collaborative Perception Dataset and Benchmark for
Autonomous Driving”, arXiv:2202.08449 [cs.CV], 2022.

[122] Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-Hsuan Yang, Jiaqi Ma;
“V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer”,
arXiv:2203.10638 [cs.CV], 2022.

[123] Ruiqing Mao, Jingyu Guo, Yukuan Jia, Yuxuan Sun, Sheng Zhou, Zhisheng Niu;
“DOLPHINS: Dataset for Collaborative Perception enabled Harmonious and
Interconnected Self-driving”, arXiv:2207.07609 [cs.CV], 2022.

[124] https://law.justia.com/codes/california/2009/veh/21220-21235.html

[125] https://codes.findlaw.com/ca/vehicle-code/veh-sect-21235

https://law.justia.com/codes/california/2009/veh/21220-21235.html
https://codes.findlaw.com/ca/vehicle-code/veh-sect-21235

90

[126] Xiaoqing Ye, Mao Shu, Hanyu Li, Yifeng Shi, Yingying Li, Guangjie Wang, Xiao
Tan, Errui Ding; “Rope3D: TheRoadside Perception Dataset for Autonomous Driving
and Monocular 3D Object Detection Task”, arXiv:2203.13608 [cs.CV], 2022.

[127] Ruiyang Hao, Siqi Fan, Yingru Dai, Zhenlin Zhang, Chenxi Li, Yuntian Wang,
Haibao Yu, Wenxian Yang, Jirui Yuan, Zaiqing Nie; “RCooper: A Real-world Large-
scale Dataset for Roadside Cooperative Perception”, arXiv:2403.10145 [cs.CV],
2024.

[128] Tianqi Wang, Sukmin Kim, Ji Wenxuan, Enze Xie,
Chongjian Ge, Junsong Chen, Zhenguo Li, Ping Luo; “DeepAccident: A Motion and
Accident Prediction Benchmark for V2X Autonomous Driving”, arXiv:2304.01168v5
[cs.CV], 2023.

[129] Walter Zimmer, Christian Creß, Huu Tung Nguyen & Alois C. Knoll; “TUMTraf
Intersection Dataset: All You Need for Urban 3D Camera-LiDAR Roadside
Perception”, 2023 IEEE 26th International Conference on Intelligent Transportation
Systems (ITSC).

[130] Dingfu Zhou, Jin Fang, Xibin Song, Chenye Guan, Junbo Yin, Yuchao Dai,
Ruigang Yang; “IoU Loss for 2D/3D Object Detection”, arXiv:1908.03851 [cs.CV],
2019.

[131] Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001).

[132] Kunhare, N., Tiwari, R. & Dhar, J. Particle swarm optimization and feature
selection for intrusion detection system. Sādhanā 45, 109 (2020).

91

[133] Guo, Rui; Zhao, Zhiqian; Wang, Tao; Liu, Guangheng; Zhao, Jingyi; Gao,
Dianrong; “Degradation State Recognition of Piston Pump Based on ICEEMDAN and
XGBoost”, Applied Sciences (2076-3417), 2020, Vol 10, Issue 18, p6593.

[134] Netzer Moriya; “Form Convex Hull to Concavity: Surface Contraction Around a
Point Set”, arXiv:2401.14189v2, 06 Mar 2024.

[135] Yu Zhang et al 2024 J. Phys.: Condens. Matter 36 015101.

[136]https://www.kittelson.com/ideas/the-importance-of-the-equity-lens-in-
transportation-planning-and-design

[137] Royo, S.; Ballesta-Garcia, M. An Overview of Lidar Imaging Systems for
Autonomous Vehicles. Appl. Sci. 2019, Vol. 9, Page 4093 2019, 9, 4093,
doi:10.3390/APP9194093.

[138]https://www.forbes.com/sites/enriquedans/2020/09/11/the-incredible-
shrinking-lidar/

[139] Nitesh, K., Jana, P.K. Relay Node Placement with Assured Coverage and
Connectivity: A Jarvis March Approach. Wireless Pers Commun 98, 1361–1381 (2018).

[140] https://www.cuemath.com/geometry/tetrahedron/

[141] https://people.computing.clemson.edu/~goddard/texts/algor/A1.pdf

https://www.kittelson.com/ideas/the-importance-of-the-equity-lens-in-transportation-planning-and-design
https://www.kittelson.com/ideas/the-importance-of-the-equity-lens-in-transportation-planning-and-design
https://www.forbes.com/sites/enriquedans/2020/09/11/the-incredible-shrinking-lidar/
https://www.forbes.com/sites/enriquedans/2020/09/11/the-incredible-shrinking-lidar/
https://www.cuemath.com/geometry/tetrahedron/
https://people.computing.clemson.edu/~goddard/texts/algor/A1.pdf

92

[142] Hao Zou, Jinhao Cui, Xin Kong, Chujuan Zhang, Yong Liu, Feng Wen, and
Wanlong Li. F-siamese tracker: A frustum-based double siamese network for 3d
single object tracking. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, Oct 2020. ISBN 9781728162126. doi: 10.1109/

iros45743.2020.9341120.

[143] Silvio Giancola, Jesus Zarzar, and Bernard Ghanem. Leveraging shape
completionfor 3d siamese tracking. In Proceedings of the IEEE/CVF Conference on
Computer vision and Pattern Recognition (CVPR). IEEE, June 2019. ISBN
9781728132938.

[144] Kunhare, N., Tiwari, R. & Dhar, J. Particle swarm optimization and feature
selection for intrusion detection system. Sādhanā 45, 109 (2020).

[145] National Safety Council. “Position/Policy Statement, Vulnerable Road Users.”
https://nsc.org/getattachment/d5babee6-582d-4e66-804f-8d06f9b021a4/t-
vulnerable-road-users-147

[146] Koonce, B. (2021). ResNet 34. In: Convolutional Neural Networks with Swift for
Tensorflow. Apress, Berkeley, CA.

https://nsc.org/getattachment/d5babee6-582d-4e66-804f-8d06f9b021a4/t-vulnerable-road-users-147
https://nsc.org/getattachment/d5babee6-582d-4e66-804f-8d06f9b021a4/t-vulnerable-road-users-147

