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ABSTRACT OF THE THESIS 
 
 

 
A Novel Method for Classifying Pedestrians & E-Scooter Users in Roadside Point 

Cloud Data 
 

by 
 
 

Joy Mathew Gunasekar 
 

Master of Science, Graduate Program in Electrical Engineering 
University of California, Riverside, September 2024 

Dr. Guoyuan Wu, Chairperson 
 
 

In recent years, riding e-scooters as a hobby has evolved into one of the popular 

forms of transportation in our city traffic. As it is becoming increasingly popular, 

micromobility-related accidents have also increased. To reduce such casualties, 

this thesis proposes a novel methodology to differentiate between e-scooter riders 

and pedestrians in urban environments. The Intelligent Transportation Systems Joint 

Program Office (ITS JPO) team that plans out safety features for city traffic will be able 

to utilize this algorithm to collect data on e-scooter user's frequency in general 

traffic. This data will allow city planners to plan out special road strips in places that 

have registered high e-scooter usage, thus enabling safer commutes for e-scooter 

riders. Although research on Vulnerable Road Users has increased in the past years, 

there has been very little research done to ensure the safety of e-scooter users. This 

work is among the first few to present a perception solution that works on point cloud 

data. The novelty lies in harnessing “Elasticity” and “Spatial” data from the actors 



 v 

and using them as features to train ensemble learning models like Random Forest, 

Gradient Boost, and XG Boost. Both the terms “Elasticity” and “Spatial” are well 

explained in the methodology chapter of the thesis. All the tests were conducted in a 

private dataset recorded during the peak rush hours on the college campus. 
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Chapter 1 Overview 

 

1.1 Introduction 
 

On 13th December 2023, the World Health Organization published that approximately 

1.9 million people lose their lives every year because of accidents in road traffic. Over 

half of those people are classified as vulnerable road users. Twenty-three percent of 

the tragic sum are listed as pedestrians. Drivers of micromobility devices like e-

scooters make up 3% and cyclists come up to 6%. Two or three-wheeled vehicles 

account for 21% [1]. Technological improvement has made micro-mobility devices 

such as electric scooters more reliable and widely used. In the state of California, 

electric scooters are recognized as equals to motor vehicles and are required to 

follow motor vehicle rules (CVC §21221) [125]. This means they are not allowed to 

drive on sidewalks (CVC §21235(g)) [125]. However, this is rarely followed, especially 

around college campuses, thus putting pedestrians at risk. This is because rough 

road surfaces are unideal for riding e-scooters. Also, if a vehicle speeds beside an e-

scooter rider it can knock them off balance. Thus, in reality, it is riskier to ride with the 

general traffic. The first step to solving this problem is designing special road strips 

that would allow for safer e-scooter travel. Designing a perception algorithm that can 

differentiate between pedestrians and micromobility users is probably the first step 

to solving this issue. As the data obtained from the sensors will give city planners a 
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broader picture of e-scooter traffic in specific regions. This thesis aims to solve this 

perception problem with point cloud data obtained from roadside LiDARs. 

1.2 Motivation 

1.2.1 Vulnerable Road User Safety 

Road users that are not covered by an outside shield are referred to as Vulnerable 

Road Users [145]. Thus pedestrians, cyclists, motorcyclists, scooterists, wheelchair 

users, skateboarders, e-scooterists, and all similar users fall under this category. As 

mentioned previously, VRU users approximately account for 1.9 million road 

accident casualties. Three percent of the total accounts for micromobility-related 

accidents. The number is shocking because e-scooters are not yet widely adopted. 

As more people decide to utilize micromobility devices like e-scooters the number of 

accidents is only expected to rise. Below attached is a graph that shows the public 

perception of e-scooters. 
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Figure 1.1 Public Perception of E-Scooters [28] 

 

Another indication of wide public acceptance of e-scooters comes from the data 

shared by North American Bike Share and Scooter Share companies, which showed 

that they have registered 52 million e-scooter trips [27]. Since e-scooters are easy to 

handle, eco-friendly, low maintenance, and budget-friendly they are seen as a viable 

option for transportation. This thesis uses this as one of the motivations to improve 

safety for e-scooter users. 

1.2.2 Transportation Equity  

The law states that regardless of socio-economic status, race, gender, ethnicity, age, 

or disability safe transportation resources must be accessible [136]. Here, 

accessibility refers to walking paths, biking paths, roadways, and public transit. It 

also involves making transportation easily accessible for disabled individuals. The 
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equity lens allows city planners to make safe roadways for all the people. With 

increase in micromobility users and the increase in micromobility-related accidents 

raises concerns about improving existing roadways to accommodate such users 

safely into traffic.  

1.2.3 LiDAR Sensor 

LiDAR is an acronym for Light Detection And Ranging, it is a laser-based remote 

sensing technology. This technology was shortly introduced after the invention of 

lasers in 1960. LiDAR’s architecture consists of laser beam sources and 

photodetectors, depending on the resolution requirements the laser beam sources 

increase. 1, 16, 32, 64, and 128 are the prevalent channels of resolution 

configurations. The instrument works based on two measurements, the first being 

the distance measured with respect to its location and the second being the position 

of the sensor in the environment (onboard or roadside) [137]. Table 2.1 mentions 

other possible perception sensors with their pros & cons. Comparatively LiDAR 

sensors have higher resolution, wide range, and are versatile. It is also the best 

choice for operating in changing weather conditions. With the adoption of 850 nm 

wavelength standards instead of the regular 905 & 1,550 nm, the point clouds are 

clearer in rainy, foggy, and snowy conditions, it also reduces power consumption. As 

technology improves, we are seeing a drop in prices. In 2015 the price of a single 

LiDAR unit was approximately marked around $75,000 [138]. Fast forward to today’s 
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market in 2024, a seventh generation top-of-the-line autonomous driving grade 

LiDAR from Ouster is priced at $25,999 (OS2-32) & $26,999 (OS2-128). Lower-end 

models of Ouster like OS1-32 and OS1-128 are priced at $8,000 and $18,000 

respectively [69]. This trend of falling prices indicates improvements in 

manufacturing technology and the introduction of more competition. Thus, it is safe 

to assume that in the future LiDARs will be more advanced, affordable, and prevalent 

in perception space and will likely be integrated with traffic lights and infrastructure 

for safety and data collection purposes. Keeping the wide application potential of 

LiDARs in mind, this research was developed to identify classes on the point cloud 

data. 

1.2.4 Artificial Intelligence in Intelligent Transportation System 

 

 

Figure 1.2 AI adoption in the global transportation industry. [60] 

 

As AI is becoming more prevalent it is being more quickly absorbed by the 

transportation market to make commuting faster, eco-friendly, and safer. Figure 1.2 
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shows the increase in AI usage in the transportation industry. The graph includes 

government institutions like Intelligent Transportation System Joint Program Office 

(ITS JPO) which was developed to improve roadway safety and travel quality. This has 

been possible due to the availability of data concerning pedestrians and vehicular 

traffic in an area. Depending on the data roadways are modified to accommodate 

them. Some of the algorithms utilized to reduce traffic congestion are Ant Colony 

Optimizer (ACO), Genetic Algorithm (GA), Fuzzy Logic Model (FLM), Simulated 

Annealing (SA), and Artificial Neural Network (ANN). All the algorithms listed are 

optimization algorithms that can be used to optimize traffic speeds [62]. The 

algorithm proposed in this thesis can be used by roadside LiDARs to identify e-

scooter users and collect data on their frequency to adjust road designs to 

accommodate them. 

1.3 Gaps in Related Research 

As explained previously, this thesis is amongst the very few to present a perception 

solution to classify e-scooter users in point cloud data. The existing methods use 

models like PointPillars [10] to train models to identify them. In 2D space, perception 

solutions to identify e-scooters in digital images have emerged in previous years. 

Apuruv and his team [76] are probably the first to bring a computer vision solution to 

this problem. They proposed to utilize YOLO V3 [77] architecture that has been pre-

trained on the [78] COCO dataset. This algorithm essentially points out all the 
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humans in each frame. To check if they were riding an e-scooter, the authors 

proposed a MobileNetV2 classifier [79] as the second module that would expand all 

the bounding boxes around the human class to see if they were riding on an e-scooter. 

This classifier was trained on a special dataset called the “IUPUI CSRC E-Scooter 

Rider Detection Benchmark Dataset.” The data pool has 10,749 digital images of e-

scooter riders and 10705 images of non-e-scooter riders. That is a total of 21454 

images in the collection. Although the study stated that it achieved validation results 

of 0.9, it did not mention if the network would be able to generalize on relatively new 

data [76]. Using the same YoloV3 architecture, research was done to identify e-

scooters, but the authors proposed a novel approach to separately identify the riders 

in an independent class. It is achieved by dividing the image into grids and relating 

parallel bounding boxes of the classes of interest. The study concluded that it had a 

validation accuracy of over 0.9 but the network was only trained on 140 images and 

tested on 60 images [80]. All images used in this research were obtained through 

internet image search. Since this study used cherry-picked images to test and train, 

questions about the algorithm’s applicability in real-life situations are being raised. 

The study also did not detail if their network could tackle occlusion or generalize on 

a foreign dataset. Based on the methodology proposed by Apuruv [76], a new study 

was released to make the model occlusion resistant. The model used two networks: 

COCO dataset trained CenterNet-Hourglass 104 [83] to detect pedestrians and 

ResNet101 [82] classifier to detect e-scooters. They also released a chart to 
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differentiate the performance of different classifiers trained on the same benchmark 

dataset [81].  

 
Figure 1.3 Differentiating Classifiers [81] 

The data from the experiment concluded that the ResNet101 [82] and ResNet34 [146] 

test accuracy was 0.460 compared to the method proposed by Apuruv which scored 

0.439 [81]. Provided here [84] is a comparison of different Yolo architecture’s 

performance in detecting e-scooters in urban landscapes. In the latest, a study was 

conducted that resulted in this methodology that can identify any micromobility user 

using YOLOX [85] and Flow Guided Feature Aggregation (FGFA) [86]. Essentially, 

these algorithms extract the spatiotemporal information of an actor to determine its 

class. Results also show that it is effective against blurry and occluded images as 

this architecture uses data from previous frames for continuous object classification. 

The algorithm was tested in a private dataset consisting of 4000 bicycles, 2500 

skateboards, and 2000 electric scooters [87]. The results showed that the Average 
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Precision (AP) for bicycles was 45.0, 23.2 for skateboards, and finally 47.6 for electric 

scooters, thus having a 38.6 mean average precision (mAP) for the model. Since the 

test was conducted in a private dataset there is no way of telling if this methodology 

is better than the previous methodologies listed above.  Although there has been 

significant research done in the last few years, to date there has been no perception 

algorithm uniquely developed to identify e-scooters in point cloud data. This thesis 

most likely will be the first to do so.  

1.4 Major Contributions 

To achieve class recognition, the thesis proposes to harness two types of data 

“elasticity” and “spatial”, which can only be extracted from 3D point cloud data. 

These two distinct features are then used to train ensemble learning algorithms. Both 

elasticity and spatial data are well defined in the third chapter of this thesis. To 

further inform the readers about this topic, this thesis includes a literature survey and 

methods to further improve the effectiveness of the proposed algorithm. 
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1.5 Road Map 

 

This thesis is split into five major chapters. The first chapter gives the introduction 

and overview of the thesis. Followed by motivation, gaps in the literature survey, and 

the major contribution presented in this thesis. The second chapter gives all the 

background information for the topics presented in this thesis. This allows readers 

across different technical backgrounds to understand the works presented in this 

study. Chapter three gives the methodology of the proposed algorithm’s architecture 

it also defines the terms “elasticity” and “spatial” data. The fourth chapter presents 

the readers with the results of the proposed architecture, it also points out some of 

the difficulties faced when working with a real-life dataset. The final chapter gives the 

conclusions of the work and points toward possible methods to improve the 

algorithm’s effectiveness in real-life scenarios. 

 
Figure 1.4 Road Map 
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Chapter 2 Background 

 

This chapter is put together to give background information on some of the prevailing 

topics discussed in this thesis. As mentioned in Chapter 1, the World Health 

Organization estimates that approximately 1.9 million road traffic-related deaths 

happen every year. An estimated sum of US $1.8 trillion is forecasted to compensate 

for all the road accident injuries caused between 2015 & 2030 [2]. Statistics like these 

have compelled researchers to focus more on vulnerable road users. Fig 2.1 shows 

the increase in VRU research publications in recent years, the collective sum is 

indicated by the red line.  

 

Figure 2.1 VRU research publications in IEEE Xplore. [3] 
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Most of the Intelligent Transportation Systems (ITS) being developed to make city 

traffic safer start with the most crucial step, perception. All the widely used 

perception sensors are listed, and their abilities are compared in Table 2.1.  

Table 2.1 Perception sensors. [3] 
 

In the upcoming subtopics, all the research undertaken to detect VRU is presented, 

along with the prevalent datasets available in this domain. 

2.1 Working of LiDAR Sensor 

 

Before we dive deep into perception topics in point cloud it is important to have a 

good understanding of the LiDAR’s working. This subsection goes through the basic 

work principles of LiDAR. As mentioned in the previous chapter, the instrument works 

based on two measurements, the first being the distance measured with respect to 

its location and the second being the position of the sensor in the environment 

(onboard or roadside). The distance can be measured by utilizing pulsed laser to 

measure the time of flight, which is essentially the time taken by the pulse to reach 

the photoreceptor after reflecting from a surface.  
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𝐷 = 𝐶 ∙ △ 𝑇/2   (2.1) 

With 𝐷 being the distance measured, 𝐶 being the speed of light and △ 𝑇 the time of 

flight. The equation above is used to measure the distance between the source and 

the object. The equation shows that the system is limited only by the returning pulse, 

meaning that miles of distance can be accurately mapped with high-powered lasers. 

 

 
Figure 2.2 Time of flight measurement [137]. 

 

The figure presented above explains the concept of time-of-flight measurement in 

LiDARs. Another approach to calculate the distance would be to measure the phase 

by utilizing Amplitude Modulated Continuous Waveform (AMCW) lasers. The phase 

shift between the returning pulse and the incident pulse employed is used to 

calculate the distance. 

𝐷 =
𝑐

2
 ⋅ △ 𝜙/(2 ∙ 𝜋 ∙ 𝑓𝑀)  (2.2) 



 

14 
 

As in the previous equation, D  refers to the distance calculated and  C  represents 

the speed of light. The modulation frequency is denoted by 𝑓𝑀  and phase shift by △

𝜙 . Unfortunately, the maximum range that can be measured precisely is 

approximately 100 m (328.08 ft).  

 
Figure 2.3 Time of flight phase measurement principle [137]. 

 

LiDAR sensors are widely being adopted into robotics, ITS, and self-driving 

applications. Table 2.1 mentions other possible perception sensors with their pros & 

cons, it is clear that LiDARs have a natural advantage over the others because they 

utilize lasers, which in return makes them quicker and more accurate. 

2.2 Dataset  

This subtopic presents Table 2.2 to give the readers a brief idea of all the available 

VRU datasets that contain point cloud data, it also details the other sensors used, 

the nature of the data (real or synthetic), the types of classes present and if it was 

captured by sensors onboard of a vehicle or sensors fixed in a structure. As more 

complex models are being developed the need for accurately annotated datasets 
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becomes more prevalent. To mitigate this issue synthetic datasets are being 

synthesized. Softwares like SUMO (Simulation of Urban MObility) [40], OpenCDA [39] 

CarMaker [108], Matlab, and CARLA (CAR Learning to Act) [41] feature tools to 

generate synthetic Lidar point cloud data. Since LiDAR data does not contain 

complex data like texture, lighting, and color [38] 3D rendering software like Unreal 

Engine 4 can replicate LiDAR data. But since the real-world data contains noises and 

occlusion which are usually not found in synthetic datasets the usage is limited. 

Figure 2.4 shows the perfection that comes with virtual datasets, and Figure 2.5 

shows a real point cloud frame. Notice the stark contrast of perfection in their 

geometry and 3D rendering between those scenarios. To account for that factor 

CARLA has introduced a toolbox that allows users to add imperfections. Users can 

change the atmosphere attenuation rate (measures K loss per meter), droop-off off 

general rate (probability of points being randomly eliminated), drop-off intensity limit 

(probability of points with K above a limit is untouched), drop-off intensity (probability 

of points with zero K value being dropped) and noise standard deviation [m] (standard 

deviation of in-built noise model to affect points). All the synthetic datasets are 

marked in red for easy spotting. To prove the hypothesis in this thesis a private 

dataset with high-resolution point clouds and a high number of e-scooter users was 

used. The combination of these two features was not available in open datasets. 
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Figure 2.4 Frame from CODD synthetic dataset [67] 

 

 

 

Figure 2.5 Frame from Zenseact Open Dataset [68] 
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Dataset Sensor Real/Simulation Onboard/Roadside VRU Class Present 

KITTI [17] Camera & 
LiDAR 

Real Onboard  Pedestrian & 
Cyclist 

Oxford 
RobotCar [20] 

Camera, 
LiDAR & 
Radar 

Real Onboard Pedestrian & 
Cyclist 

Astyx [21] Camera, 
LiDAR & 
Radar 

Real Onboard Pedestrian, 
Motorcyclist & 
Cyclist 

Dense [22] Camera, 
LiDAR & 
Radar 

Real Onboard Pedestrian  

Rope3D [126] Camera & 
LiDAR 

Real Onboard/Roadside Pedestrian & 
Cyclist 

TUM Traffic 
[129] 

Camera & 
LiDAR 

Real Roadside Pedestrian, 
Motorcyclist & 
Cyclist 

RCooper [127] Camera & 
LiDAR 

Real Roadside  Pedestrian, 
Motorcyclist, 
Tricycle & Cyclist 

DeepAccident 
[128] 

Camera & 
LiDAR 

Synthetic 
(CARLA) 

Onboard/Roadside Pedestrian, 
Motorcyclist & 
Cyclist 

Argoverse 1 [31] 
& 2 [32] 

Camera & 
LiDAR 

Real Onboard Pedestrian, Moped, 
Stroller, 
Motorcyclist& 
Cyclist 

nuScenes [19] Camera, 
LiDAR & 
Radar 

Real Onboard Adult Pedestrian, 
Child Pedestrian, 
Personal Mobility, 
Police, 
Construction 
Worker, 
Wheelchair, 
Stroller, 
Motorcyclist& 
Cyclist 

MulRan [34] LiDAR & 
Radar 

Real Onboard Pedestrian 

SemanticPOSS 
[47] 

LiDAR Real Onboard Pedestrian & 
Cyclist 

WADS [36] Camera & 
LiDAR 

Real Onboard Pedestrian 

BAAI-VANJEE 
[49] 

Camera & 
LiDAR 

Real Roadside Pedestrian, 
Motorcyclist, 
Cyclist & Tricycle 
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Waymo Open 
Dataset [18] 

Camera & 
LiDAR 

Real Onboard Pedestrian, 
Motorcyclist & 
Cyclist 

ONCE [37] Camera & 
LiDAR 

Real Onboard Pedestrian & 
Cyclist 

RADIATE [35] Camera, 
LiDAR & 
Radar 

Real Onboard Pedestrian, Group 
of Pedestrian, 
Motorcyclist & 
Cyclist  

CODD [74] Camera & 
LiDAR 

Synthetic 
(CARLA) 

Onboard Pedestrian 

V2X-Sim [121] Camera & 
LiDAR 

Synthetic 
(CARLA-SUMO) 

Roadside Pedestrian 

DAIR-V2X [72] Camera & 
LiDAR 

Real Onboard & 
Roadside 

Pedestrian & 
Cyclist 

DOLPHINS 
[123] 

Camera & 
LiDAR 

Synthetic 
(CARLA) 

Onboard & 
Roadside 

Pedestrian 

OPV2V [75] Camera & 
LiDAR 

Synthetic 
(OpenCDA & 
CARLA) 

Onboard Pedestrian 

View-of-Delft 
[46] 

Camera, 
LiDAR & 
Radar 

Real Onboard Pedestrian, Cyclist 
& Moped 

IPS300+ [48] Camera & 
LiDAR 

Real Roadside Pedestrian, 
Motorcyclist, 
Cyclist & Tricycle 

V2X-ViT [122] LiDAR Synthetic 
(CARLA & 
OpenCDA) 

Onboard & 
Roadside 

Pedestrian 

SynLIDAR [120] LiDAR Simulation 
(Unreal Engine) 

Onboard Male, Female, Kid, 
Motorcyclist & 
Cyclist  

Deliver [119]  Camera & 
LiDAR 

Synthetic 
(CARLA) 

Onboard Pedestrian & Two-
Wheeler 

Zenseact [42] Camera, 
LiDAR & 
Radar 

Real Onboard Pedestrian, Cyclist, 
Motorcyclist, 
Stroller, 
Wheelchair & 
Personal 
Transporter 

REHEARSE 
[110] 

Camera, 
LiDAR & 
Radar 

Real & Synthetic Onboard Pedestrian 

TWICE [109] Camera, 
LiDAR & 
Radar 

Real & Synthetic 
(CarMaker) 

Onboard Pedestrian & 
Cyclist 

IMPTC [50] Camera, 
LiDAR & 
UWB 

Real Roadside Pedestrian, Cyclist, 
Wheelchair, E-
Scooter & Stroller 



 

19 
 

WiDEVIEW [45] Camera, 
LiDAR & 
UWB 

Real Onboard Pedestrian 

V2V4Real [44] Camera & 
LiDAR 

Real Onboard Pedestrian  

IAMCV [43] Camera & 
LiDAR 

Real Onboard Pedestrian & 
Cyclist 

V2X-Real [73] Camera & 
LiDAR 

Real Onboard & 
Roadside 

Pedestrian, Cyclist, 
Motorcyclist & 
Scooter 

Table 2.2 All the available VRU datasets featuring LiDAR data. 
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2.3 LiDAR Point Cloud Pre-Processing Methods 

Like digital images, cloud data also comes with noises and there is a variety of 

methods to handle it. This subtopic is aimed at explaining some of the popular 

preprocessing techniques. Starting with Frequency Based Noise filtering [90], which 

can increase clarity and boost signal accuracy by eliminating noises in targeted 

frequency. This might not be beneficial to combat distortions or noises that are non-

frequency related. Variational Mode Decomposition [91] allows for marking 

important LiDAR echoes by strained decomposition of all the available signals. The 

success rate very much depends on parameter tuning which can get more 

complicated with more signals involved. Although computationally expensive with 

the inherent risk of increasing noise if not properly tuned the Richardson Lucy 

Deconvolution [92] method improves cluster delineation by adjusting blurring effects. 

Studies often use Adaptive Noise Reduction via PCA [93] as it can denoise with less 

computation power while preserving the data. However, it is observed to have poor 

performance if the point clouds are sparse and irregular. Real-time CNN for 

segmentation [94] might require specific hardware tools like (FPGA) Field 

Programmable Gate Array with NVIDIA deep learning accelerator. But it is rated to be 

fast and efficient with low power requirements. Similar to this, the Gaussian 

Decomposition for FPGA [95] will need FPGA hardware, but it yields faster processing 

speeds that allow it to work in real-time. 
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2.4 Single LiDAR setup 

Each LiDAR point cloud data has four values associated with it, (X, Y, Z, K). The first 

three values represent the coordinates, and the last value indicates the intensity. 

Usually, LiDAR point clouds contain millions of points per scan. Ouster LiDAR series 

OS0, OS1 & OS2 give an output of 5.02 M, 5.02 M & 2.62 M points per scan [69]. Before 

the data is fed into the perception algorithm it is usually down-sampled to reduce 

computational complexity. Uniform downsampling, farthest point, and nearest 

neighbor are some of the algorithms widely used to downsample the data. Algorithms 

like Point Net [14] [15] [16] strongly advocate for directly processing point clouds as 

data transformation renders the resulting data unnecessarily voluminous — while 

also introducing quantization artifacts that can obscure natural invariances of the 

data. 

 
Table 2.3 PointPillar detection on BEV detection benchmark Kitti Dataset (mAP). 

[10] 
 

To combat point cloud sparsity voxels were used to represent data to algorithms that 

work in 3D convolutional space [4] [5] [6] [7] [8]. Voxels divide the point cloud data 
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into three-dimensional cubes, encompassing the points within it. Voxel sizes are 

predefined depending on the required spatial resolution and available computational 

resources.  

Unlike point and voxel representations, the Bird’s Eye View (BEV) type of 

representation is usually used for algorithms that work in 2-D convolutional space. 

Since LiDAR points cannot overlap in a given frame its top view is projected onto a 

horizontal plane. This technique allows for the utilization of algorithms developed for 

2-D images to detect objects in point cloud data [9] [10] [11] [12] [13]. Above attached 

is Table 2.3 that shows the effectiveness of PointPillar (an architecture utilizing voxels 

to combat data cloud sparsity) on the BEV dataset. Table 2.4 shows its effectiveness 

in normal point cloud dataset. 

 

 
Table 2.4 PointPillar detection on 3D detection benchmark Kitti Dataset (mAP). [10] 
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2.5 LiDAR Fusion 

LiDAR fusion is a new field of research that allows for fusing two types of sensors for 

perception tasks. The subsections below talk about the different types of LiDAR 

fusion research available for VRU detection. 

2.5.1 Multi LiDAR Fusion 

Due to limitations such as sparse point clouds, occlusions, noise, and the flexible 

nature of the pedestrian class, researchers found it difficult to implement their 

algorithms. The research trend slowly changed as researchers believed denser LiDAR 

points may lead to better detection performance [51]. Therefore, some researchers 

have tried to fuse data from multiple independent LiDARs. Sensor fusion was 

believed to be the answer to most of the technical difficulties mentioned above. 

Primarily there are two methods of sensor fusion strategies, pre-classification & post 

classification [52], measurement integration done at the feature level or at raw data 

level falls into pre-classification. Measurement integration done after processing of 

the raw data falls under post-classification. Score & rank are widely sought-after 

features to be fused under this class [59]. To enable better perception for 

autonomous cars, it was proposed that a multi-LiDAR setup would be able to better 

determine the geometric features of the roadways thus enabling the vehicle to ride 

on road and off-road trails, also on low lighting conditions [53] [54] [55]. The basic 

philosophy behind dual multi-LiDAR setup is to create an overlapping space that is 
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expected to have more denser point clouds thus enabling better perception [56]. The 

same principle was tried on robots to ensure better mobility in both indoor & outdoor 

environments [57]. This setup when utilized for pedestrian detection yielded better 

results [58]. The suggested framework surpasses conventional raw data fusion 

algorithms in various scenarios. Its adaptability enables the utilization of diverse 

classification algorithms prior to fusion. Nevertheless, detection accuracies 

noticeably diminish when pedestrians are partially obscured. Challenging settings, 

particularly adverse weather conditions like rain, snow, and airborne particles, 

significantly influence algorithm performance. As Table 2.5 below shows, this multi-

LiDAR setup makes perception faster and more accurate. 

Table 2.5 Detection results (Kitti Dataset) [58] 

 

2.5.2 LiDAR and Camera Fusion 

Although LiDAR’s point clouds contain valuable depth information it lacks data on 

texture and color found in digital images. Fusing point clouds with digital images is 

an option to compensate for LiDAR’s data structure. But this also means that the 

model must process noises occurring in the digital images. Gaussian blur is usually 
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preferred to eliminate noises that might be present. Models like the flat earth model 

[64] exploit the assumption that relevant pedestrians are situated on a flat surface, 

such as the road or walkway, thus making it faster to find the region of interest. This 

model calculates the image region corresponding to the ground based on camera 

geometry, assuming a flat ground in the vehicle’s frontal view. Figure 2.6 below 

shows the comparison data. The relaxed free world model refers to having a small 

threshold of tolerance, since in the ideal world the surface is not completely flat, thus, 

to account for irregularities the relaxed flat world model was introduced. Although it 

makes the model faster, LiDAR-only detection methods tend to outperform multi-

sensor fusion methods in public benchmarks [63]. This is because practically during 

fusion, data from separate modalities tends to generalize at independent rates, and 

in some scenarios, they overfit [65]. PointPainting [66] a sequential fusion method 

was able to bridge the gap. PointPainting utilizes cameras to obtain digital images 

and performs semantic segmentation. After completion, the digital image will 

contain pixel-wise scores. The point clouds are allowed on the scene and now 

undergoes a point cloud detection pipeline. Depending on the two scores a decision 

is made. As mentioned in the earlier topic, this type of fusion is called post-

classification [52]. Below, Figure 2.7 is a detailed image explaining this process. 

Figure 2.8 shows the improvement in detection results in the Kitti dataset, a total 

increase of 6.3 mAP can be observed in the Painted PointPillar ++ across ten different 

classes [66]. The existing performance on pedestrian detection can be improved by 
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being capable of performing fusion at various levels [19]. Semantic Voxels utilizes 

semantic augmentation on the point cloud, the process involves encoding raw point 

data into pillars for geometric features and semantic point data into voxels for 

semantic features. These features are effectively fused. The experimental results on 

the KITTI test set demonstrate that Semantic Voxels achieves state-of-the-art 

performance in both 3D and bird’s eye view pedestrian detection benchmarks. Below 

attached is a table showing the difference in performances as different fusion is 

undertaken. For both 3D and bird’s eye view (BEV) detection tasks, early fusion 

results in the most substantial mean average precision (mAP) improvement, with a 

gain of 3.2 for 3D and 2.82 for BEV. Researchers are also exploring other fusion setups 

like thermal camera and LiDAR [70] & radar and LiDAR [71]. But to date are yet to 

provide any significant results that can compare with the previous state-of-the-art 

perception results in this domain. 
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Figure 2.6 Pedestrian detection system with and without LiDAR-based ROI detection. [64] 

 
 

 
Figure 2.7 PointPainting overview [66] 
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Figure 2.8 PointPainting results [66] 

 

 

 
Table 2.6 Performance comparison of pedestrian detection. [63] 
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2.6 Evaluation Metrics 

As we analyze and compare results across different studies it is important to know 

which metric we are comparing. Starting with precision, which is defined as the true 

value in a set of values that the algorithm predicts as true. Mathematically it can be 

expressed as, 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (2.3) 

True Positive (TP) refers to values that are marked as rightly assumed true values and 

False Positive (FP) refers to values that are incorrectly assumed as true values. False 

Negatives (FN) are true values that are wrongly assumed as false values. 

Recall, another widely used term refers to the number of times the algorithm finds 

the true value in all the positive values of a dataset. Mathematically it can be 

represented as, 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (2.4) 

Average precision (AP) is defined by the area under the precision-recall curve. The 

precision-recall curve is essentially the relation between the precision and recall 

values at separate thresholds. A model with high AP indicates that it is able to hold 

high recall and precision in most cases. They are also used to evaluate the 

robustness and accuracy of 3D models. AP is mathematically represented as, 
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𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0
  (2.5) 

In this equation, p(r) represents a function of precision with respect to recall. [130] 

Intersection over Union (IoU) also known as the Jaccard Index in the context of object 

detection is a metric that evaluates the performance of object detecting algorithms. 

Generally, the IoU of two finite sets is expressed as, 

𝐼𝑜𝑈(𝐴, 𝐵) =
𝐴⋂𝐵

𝐴⋃𝐵
 = A⋂B / (|A|+|B|-A⋂B)   (2.6)    

A and B are independent finite sets. In the context of 2D object detection IoU is 

expressed as, 

𝐼𝑜𝑈(𝐵𝑔 , 𝐵𝑑) =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝐵𝑔 𝑎𝑛𝑑𝐵𝑔 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛 𝐵𝑔 𝑎𝑛𝑑 𝐵𝑑
    (2.7) 

𝐵𝑔 refers to the bounding box of the ground truth and 𝐵𝑑 refers to the bounding box of 

the predicted class. For objects in point cloud data IoU is decided in 3D space, it is 

standard practice to omit pitch and roll in the 3D space. It is assumed that all the 

bounding boxes lie flat on the ground. Thus, only yaw is taken into consideration. IoU 

for 3D bounding boxes is calculated using the following equation, 

𝐼𝑜𝑈3𝐷 =
𝐴𝑟𝑒𝑎𝑜𝑣𝑒𝑟𝑙𝑎𝑝× ℎ𝑜𝑣𝑒𝑟𝑙𝑎𝑝 

𝐴𝑟𝑒𝑎𝑔× ℎ𝑔+𝐴𝑟𝑒𝑎𝑑 × ℎ𝑑−𝐴𝑟𝑒𝑎𝑜𝑣𝑒𝑟𝑎𝑙𝑝× ℎ𝑜𝑣𝑒𝑟𝑙𝑎𝑝 
    (2.8) 
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𝐴𝑟𝑒𝑎𝑔  represents the area of the ground truth and 𝐴𝑟𝑒𝑎𝑑  refers to the area of the 

predicted bounding box, ℎ𝑜𝑣𝑒𝑟𝑙𝑎𝑝 &  ℎ𝑢𝑛𝑖𝑜𝑛 refers to the intersection & union in the z-

axis (height).  

 

Multiple Object Tracking Accuracy (MOTA) [88] is a measurement used to evaluate 

computer vision models that can track objects. It is mathematically written as, 

𝑀𝑂𝑇𝐴 = 1 −
(𝐹𝑁+𝐹𝑃+𝐼𝐷𝑆𝑊)

𝐺𝑇
   ∈ (−∞, 1]   (2.9) 

As mentioned previously, FN and FP hold the same meaning. GT here refers to the 

ground truth. ID refers to the unique code given to each object tracked. ID switches, 

if an object tracked is given a new ID despite already being assigned an ID, then it is 

called an ID Switch. IDSW in the equation refers to the sum of times ID switches 

occurred. Ideally, a tracking algorithm’s ID Switch should be null. Some of the 

classical metrics used in multiple object tracking are explained below. 

 False trajectories are predicted trajectories that fail to match with the ground truth. 

Mostly Tracked (MT) trajectories refer to the predicted trajectories that align with the 

ground truth at least in 80% of the frames. If predicted trajectories only match the 

ground truth in 20% of the frames, then those are marked as Mostly Lost (ML). In 

some publications, Multiple Object Tracking Percentage (MOTP) is preferred which is 

essentially the percentage report on MOTA. It is mathematically put together as, 
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𝑀𝑂𝑇𝑃 =
∑ 𝑑𝑡,𝑖𝑡,𝑖

∑ 𝐶𝑡𝑡
    (2.10) 

Here, 𝑑𝑡,𝑖 refers to the overlaps of the bounding box between the hypothesis 𝑖 with 

their marked ground truth. 𝐶𝑡 is the count of matches in 𝑡 frame [88].  
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Chapter 3 Methodology 

 

3.1 Introduction 

This chapter discusses the methodology used to create the algorithm proposed in 

this thesis. It starts with the algorithm’s architecture and progresses to elaborate on 

each of the system’s blocks individually. 

3.2 Architecture 

Figure 3.1 gives a brief description of the algorithm through the block diagram. In total, 

it contains five crucial subsystems (plane elimination, clustering, fitting convex hull, 

tracking & observing the elasticity, and spatial data exhibited) which will be 

elaborated further in the subtopics below. The algorithm is designed to take in 

segments of raw point clouds from the BEV perspective. This allows the algorithm to 

function more efficiently as background elimination algorithms do not have to be 

used, but ground plane elimination using RANdom SAmple Consensus (RANSAC) is 

done on the frame [97] [98]. It is further clustered using Density-Based Spatial 

Clustering of Application with Noise (DBSCAN) to avoid noises [96] [99] and identify 

all other actors that might be present in the frame. All the clusters are then fitted with 

a convex hull to find the volume. The architecture proposed in this thesis can classify 

classes by analyzing the elasticity and spatial data of an actor. The movement of the 

physical body in order to generate motion is defined as elasticity in this work. Since 



 

34 
 

humans must physically relocate their limbs even to generate the slightest 

momentum, elasticity is significantly observed, compared to the e-scooter users 

who must remain still and balanced while traveling.  

 
Figure 3.1 Proposed algorithm’s block diagram 

  

This elasticity is calculated by covering the object of interest with a convex hull and 

recording its volume in every frame as the cluster starts to gain momentum. So 

essentially, the algorithm tracks the cluster of interest and records the volume of the 

convex hull for t amount of time. Simultaneously spatial data is also recorded. Spatial 

data is the accumulation of a cluster’s point cloud over t amount of time. After every 

successful accumulation the volume of the cluster as a whole is recorded. Since e-

scooter users travel faster while maintaining little to no movement of their bodies the 

algorithm can differentiate them with the criteria mentioned above. Both of these 

terms are mathematically explained in section 3.7.  
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3.3 Ground Plane Elimination  

 

Plane elimination allows for the segmentation of the actors in interest. Since the 

proposed algorithm requires the calculation of the volume it is vital that the ground 

plane is eliminated before processing it further. To segment geometry in a point cloud, 

the algorithm must be based on any of the following methodologies: Region-Based, 

Edge Based, Graph-Based, Model-Based, or Attribute Based [100].  Starting with the 

region-based method, this methodology uses data from similar neighboring points to 

identify isolated regions and continually finds differences between regions. 

Comparatively, noise is resistant to the edge-based method but is known to under-

segment or over-segment in some cases. This method is further divided into Seeded 

Region and Unseeded Region. To use the Seeded Region method seed points must 

be predefined. Each region will then develop from the predefined seed points and 

grow by adding more neighboring points that comply with the set threshold [101].  

It is imperative to choose optimal seed points as this approach is very dependent on 

the predefined seed points and is very time-consuming. The Unseeded Region 

method does not require any predefined points, instead, it gathers all the points into 

a set and starts to divide into smaller sets. It continues until it can no longer fit the 

number of set points beyond the set threshold. This method can’t be practically used 

in complex scenes with unknown parameters. It requires a lot of prior knowledge like 

the number of regions, object models, etc. [102]. The edge-based method primarily 
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relies on locating points with sudden changes in K to determine boundaries. This was 

originally inspired by the work of Bhanu and his team. Sparsity, noise, and uneven 

collection of point clouds make it challenging to apply this in real-life scenarios [103]. 

 

 
Figure 3.2 3D point cloud Segmentation methods. [100] 

 

Model-based methods utilize pre-defined geometric shapes like squares, circles, etc. 

to segment shapes in a given point cloud frame. This idea is combined with the 

RANSAC model to segment point clouds. Since RANSAC was initially designed to 

identify mathematical shapes, it was an instant match to work in 3D segmentation. 

This method was further improved to segregate point cloud data and mesh. It was 

also able to identify primitive shapes in unorganized point cloud data [104]. 

Expanding on this work, new research was published detailing the detection of 

shapes that are translationally and rotationally symmetrical called Slippable shapes. 

Linear extrusion, plane, helix, surfaces of revolution, sphere, and cylinder fall under 

this category [105]. 
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Figure 3.3 RANSAC flowchart. [106] 

 

Graph-based methods are popular in autonomous navigation projects due to their 

robustness and efficiency. It works by using radius-based approaches or KNN [107] 

to make a graph from the point clouds. Graph Laplacian and clustering are further 

performed to segment planes. Usually, it is not used in real-time and requires special 

sensors and cameras to run this methodology [100]. Finally, attribute-based 

methods segment based on the available clustering features in a point cloud scene. 

Each cluster with a unique feature will be segmented. This methodology mostly relies 
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on the clarity of the points nearby and is very time-consuming when working with 

multidimensional features of large point cloud scenes. 

3.4 Clustering 

Clustering allows for isolating clusters of interest and tracking them to observe their 

elasticity and spatial data. Given below are some of the most widely used clustering 

algorithms in the point cloud domain. 

 K-means is a widely used clustering algorithm that works by iteratively combining 

points to the neighboring cluster’s center point and continues to update the 

midpoints based off the mean of the points assigned [111]. Density-Based Spatial 

Clustering of Applications with Noise (DBSAN) [99] performs clustering operations by 

grouping points based on their density and identifies the outlier points as noise. 

Epsilon is the predefined search radius and min points is the number of minimum 

points that should constitute a cluster. This value is also predefined, the optimum 

value is found by the trial-and-error method.  

Considered an extension of DBSCAN, the Ordering Points To Identify the Clustering 

Structure (OPTICS) algorithm [115] classifies points by their cluster density, and 

based on the density it maintains a hierarchical order. Unlike DBSCAN this does not 

need epsilon value, it adapts to varying density using a reachability plot which makes 

it computationally expensive. Utilizing a similar methodology, the Mean Shift 

Clustering algorithm locates dense point clouds and clusters them. It then continues 
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to iteratively move the points to the mean of their local diffusion until it converges. 

The hierarchical Clustering algorithm iteratively combines similar clusters until all 

available points belong to one cluster [112]. Spectral clustering finds the eigenvalues 

and eigenvectors of the matrix to cluster the point clouds, thus making it 

computationally expensive [113]. Fuzzy C-Means [114] allows for points to be a part 

of numerous clusters with different degrees of membership points in each cluster. 

The membership points and cluster centers are iterated. By representing the point 

clouds as a mixture of Gaussian distribution and computing the parameters of the 

diffusion through the expectation-maximization algorithm the probabilistic Gaussian 

Mixture Model [116] is able to cluster points in the point cloud. Balanced Iterative 

Reducing and Clustering using Hierarchy (BIRCH) clusters points by creating a 

hierarchical tree of subclusters. It continues to iterate points in the cluster using a 

hierarchical clustering algorithm and combines the subclusters, creating big clusters 

[117] [118]. 
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3.5 Convex Hull Construction and Volume Calculation 

 

 
Figure 3.4 Convex Hull [134] 

 

After clustering the point of interest, a convex hull fits over the point clouds, thus 

encompassing all the available points within it. Theoretically, a convex hull is the 

smallest polygon (polyhedron in 3D space) that can enclose a fixed number of points 

in a given plane.  This method allows for the calculation of volume to compute 

elasticity and spatial data. Furthermore, to a certain extent, this method is resistant 

to issues caused by point cloud sparsity. Figure 3.4 shows a convex hull 

encompassing all the points within it and thus turning into a sphere construct a 

convex hull. Graham Scan [141] is one of the widely used algorithms to compute 

convex hull. It works by finding any one vertex in the convex hull and sorting the rest 
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of the points as scanned from that vertex. Let the leftmost point of the convex hull be 

denoted by 𝑥0 and mark the points left by angle from 𝑥0 moving in counterclockwise 

encompassing 𝑥1, 𝑥2, … , 𝑥𝑛−1. Let 𝑥𝑛 = 𝑥0 , if 𝑥𝑗  is eliminated then for 𝑖 < 𝑗 < 𝑘 the 

points 𝑥𝑖 →  𝑥𝑗 →  𝑥𝑘 will form a right turn. Thus, 𝑥𝑗  is enveloped inside the triangle 

(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘) and not on the convex hull. The figure below visualizes this concept. 

 

 
Figure 3.5 2D Convex Hull [141] 

 

Every time the algorithm’s while loop is activated a point is stacked or eliminated. At 

the highest the loop is activated 2𝑛 times as a point is only looked at once. The syntax 

of Graham Scan is attached below. 
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Figure 3.6 Syntax of Graham Scan [141] 

 
 
 

The wrapping algorithm, also known as Jarvis March [139] [141] works by seeking out 

points in the order in which they appear. Let the leftmost point be 𝑥0 and 𝑥1 be the 

first point when viewed from 𝑥0 in counterclockwise route. Similarly, let 𝑥2 be the first 

point when viewed from 𝑥1in counterclockwise route and so on. 

 

 
Figure 3.7 Jarvis March [141] 

 

 It takes linear time to find 𝑥𝑖+1 and at the maximum, the while loop is activated ℎ 

times, here ℎ refers to the number of vertices on the convex hull, the algorithm is very 
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robust but gets slow if there are too many points to process. The syntax of Jarvis 

March is attached below. 

 
Figure 3.8 Jarvis March syntax [141] 

 
 

After fitting the convex hull, the volume is calculated by computing the volume of all 

the available tetrahedrons, as it is proved that convex polyhedra can always be 

tetrahedralizable [23]. Since the surface of the convex will always be made of 

triangular facets, an arbitrary point 𝑄 is fixed near the middle of the convex hull and 

imaginary lines from each vertex of the triangular facet are drawn to 𝑄, thus creating 

a tetrahedron. This process is repeated for every triangular facet on the surface of the 

convex hull. Figure 3.4 shows a convex hull fitted over a spherical cluster of point 

clouds, notice the triangular facets making up the surface of the sphere. 

 

 
Figure 3.9 Tetrahedron [140] 
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Assuming 𝑄 as the arbitrary point and 𝐵, 𝐶, 𝐷 as the vertexes of the facet, the 

volume of the tetrahedron can be calculated using, 

𝑣1 =
1

6
|{(𝑄𝐵⃗⃗ ⃗⃗  ⃗  × 𝑄𝐶⃗⃗⃗⃗  ⃗) ․ 𝑄𝐷⃗⃗⃗⃗⃗⃗ }|   (3.1) 

 
The final volume 𝑉 of a single convex hull is calculated by summing up all the 
volumes of the available tetrahedrons. 
 
 

𝑉 =  𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 + ⋯   (3.2) 
 

3.6 Tracking 

 
After fitting the convex hull, the point cloud cluster in interest is tracked to observe 

their elasticity. Usually, tracking is done by extracting features and creating a 3D 

search map [143] or finding the cosine similarity between the template and search 

branch [142]. But in this thesis tracking is achieved by finding the centroid of a convex 

hull and finding the Euclidean distance between the convex hull’s centroid in the 

successive frame. The algorithm finds Euclidean distance with all the clusters 

encompassed with convex hull and selects the cluster that has the least distance.  

 

The centroid is the mean of all the coordinates in the 3D space, it can be 

mathematically represented as, 

 

𝐶𝑥 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 , 𝐶𝑦 =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  , 𝐶𝑧 =

1

𝑛
∑ 𝑧𝑖

𝑛
𝑖=1      (3.3) 
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𝐶1 = (𝐶𝑥, 𝐶𝑦, 𝐶𝑧)   (3.4) 

𝐶𝑥, 𝐶𝑦, 𝐶𝑧  refers to the coordinates of the centroid, 𝑛  refers to the total number of 

vertices on the surface of the convex hull and 𝐶 represents the calculated centroid 

of the convex hull. As explained, after calculating the centroid of all the convex hulls 

present in frame one and the frame subsequent to it, the Euclidean distance between 

the points is computed. Below Euclidean distance is found for two centroid points 

𝐶1and 𝐶2, 

𝑑 = √(𝐶2𝑥 − 𝐶1𝑥)2 + (𝐶2𝑦 − 𝐶1𝑦)2 + (𝐶2𝑧 − 𝐶1𝑧)2   (3.5) 

 

 
Figure 3.10 Finding the centroid of a convex hull.  
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The tracking method proposed in this thesis was not compared to other tracking 

methods as 3D tracking is not the focus of this thesis, regardless this methodology 

suited this scenario. The results of this methodology are attached in the next section. 

3.7 Elasticity & Spatial Data 

Elasticity and Spatial data are the two features that are observed while tracking the 

cluster of interest for 𝑡 amount of time. These two are considered as the features to 

predict a class. 

 

 
Figure 3.11 Visualizing Elasticity 

 

The figure above shows a pedestrian walking in successive frames. As the pedestrian 

moves, their elasticity value starts out at 8.7475, increases to 9.3374, and drops to 

9.1261. Elasticity can be mathematically represented as, 

𝑆𝑖(𝑡) is the set of all the points for an actor 𝑖 at time 𝑡.  

𝐶(𝑆𝑖(𝑡) ) is defined as the convex hull function which generates a convex hull for a 

set of points 𝑆𝑖  and  𝐹(. ) is defined as the function to calculate the volume of the 

convex hull. 
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𝑓(𝐶(𝑆(𝑡))) = 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡   (3.6) 

 

𝑉(1) = 𝑓(𝐶(𝑆𝑖(1)))   (3.7) 

𝑉(2) = 𝑓(𝐶(𝑆𝑖(2)))   (3.8) 

𝑉(3) = 𝑓(𝐶(𝑆𝑖(3)))   (3.9) 

𝑉(𝑡) = 𝑓(𝐶(𝑆𝑖(𝑛)))   (3.10) 

 

𝐸 = {𝑉(1), 𝑉(2), 𝑉(3),… , 𝑉(𝑡)}   (3.11) 

The final spatial values are represented in a set (𝐸). 

 

The figure below shows the accumulation of the point clouds as time 𝑡 increases. 

This results in a steady increase in volume depending on their pace as the pedestrian 

walks: 8.745, 11.0764 & 12.506. 

 
Figure 3.12 Visualizing Spatial Data 

 
 

𝐾(1) = 𝑓(𝐶({𝑆𝑖(1)}))   (3.12) 

𝐾(2) = 𝑓(𝐶({𝑆𝑖(1) ∪ 𝑆𝑖(2)}))   (3.13) 

𝐾(3) = 𝑓(𝐶({𝑆𝑖(1) ∪ 𝑆𝑖(2) ∪ 𝑆𝑖(3)}))   (3.14) 

𝐾(𝑡) = 𝑓(𝐶({𝑆𝑖(1) ∪ 𝑠(2) ∪ 𝑆𝑖(3)  ∪ 𝑆𝑖(𝑛)}))   (3.15) 
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𝐽 = {𝐾(1), 𝐾(2), 𝐾(3),… , 𝐾(𝑡)}   (3.16) 

The final spatial values are represented in a set (𝐽). Before making any predictions, 

the classifier algorithm creates its own set (𝑀) where the values of the set 𝐸  and 𝐽 

are interwoven. 

𝑀 = {𝐸(1),𝐾(1), 𝐸(2), 𝐾(2), 𝐸(3), 𝐾(3),… , 𝐸(𝑡), 𝐾(𝑡)}   (3.17) 

The classifier algorithm learns to find the temporal dependency between the values 

presented in the set M. 

 

3.8 Classifier  

The classifier block is the last addition to the architecture. This part is responsible for 

reviewing the recorded elasticity & spatial data and identifying the temporal 

dependency between the recorded values. Once the pattern is noticed the algorithm 

proceeds to classify the class of the identified cluster. This thesis explores three such 

algorithms that can explore temporal dependence patterns: Random Forest [131], 

XG Boost [133], and Gradient Boost [135]. All these three algorithms are explained 

further in the subsections below. 

3.8.1 Random Forest 

Introduced by Leo Breiman in 2001, the random forest [131] is part of the ensemble 

learning models. Here, different models of the same algorithm come together to 

make a prediction. This makes the algorithm more resistant to overfitting, predicts 
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better even with missing values, and makes parallelization possible, thus lesser 

training times. The algorithm works by assembling n number of decision trees, to 

make sure that each decision tree has its own perspective random feature selection 

is utilized. This also makes sure that the algorithm is trained from a diverse dataset. 

This is then followed by bagging, resulting in the creation of a separate subset of data 

for each decision tree thus increasing variability and making the model more robust. 

All the decision trees then proceed to cast individual votes to make a prediction, the 

final prediction is based on the mode across all the trees [24] [29]. The concept is 

well explained through the flow chart attached below. 
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Figure 3.13 Random Forest flowchart. [144] 

 

3.8.2 XG Boost 

Extreme Gradient Boosting, widely known as XG Boost, is a supervised machine 

learning algorithm based on boosting. Like random forest, this algorithm also uses 

decision trees and is a part of the ensemble learning family. But unlike random forest, 

each new tree is built to reduce the residual error of the tree built previously. A 

regularization function is included to avoid overfitting, early stoppage is also 

supported. Since it requires building trees by learning the mistakes of the previous 

tree the process cannot be parallelized, making it computationally slower than 
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random forest. However, this also allows it to perform better with datasets that have 

missing values as each new tree learns to predict the missing values [133] [25]. The 

figure below shows the working of XG Boost. You can see the residual value being 

passed down subsequently, this allows the newer trees to learn and perform better 

than the previous ones. 

 
Figure 3.14 XG Boost flowchart. [133] 

 

The algorithm can be mathematically expressed as, 

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹𝐾
𝑘=1    (3.18) 

With 𝑦̂𝑖 being the predicted value, 𝑓𝑘(𝑥𝑖)  represents the function of input in k-th 

decision tree, K marks the total number of decision trees and F is the set of all the 

possible values. 
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3.8.3 Gradient Boost 

Gradient Boost is a toned-down version of XG Boost. They both belong to the same 

family of algorithms, but Gradient Boost does not come with regularization terms like 

L1 (Lasso) and L2 (Ridge) or early stopping techniques to reduce overfitting [30].  

 
Figure 3.15 Gradient Boost flowchart. [135] 

 

The flowchart attached above explains the algorithm. As you can see, the working is 

very similar to the gradient boost algorithm. 
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Chapter 4 Case Study 

 

4.1 Introduction 

With the methodology explained in the previous chapter, we will explore and discuss 

the results obtained and the issues faced while working with real dataset.  

4.2 Data Collection 

 

 
Figure 4.1 Data collection 

 

Before going into the results, it is crucial to understand how the dataset was 

collected. The data collection team (Edison Li, Saswat Priyadarshi Nayak & Xuanpeng 

Zaho) used Ouster OS1-128 to collect the point cloud data. The LiDAR sensor was set 

on a tripod in the afternoon hours in front of the Bourns College of Engineering. The 
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recorded dataset contains rich pedestrian and micromobility interactions. The frame 

rate was set at 10 Hz. Using the methodology discussed in the previous chapter, 202 

sets of elasticity and spatial of pedestrians and e-scooter users were collected. Each 

set has eight values of elasticity and spatial data corresponding to a single actor. In 

other words, each actor had 16 values associated with them, thus the machine 

learning algorithms used had 16 features to differentiate between a class. Since the 

dataset was captured at 10 HZ, collecting 8 pairs of values accounted for 800 

milliseconds. Thus, the algorithm takes 1/8 of a second to differentiate between a 

class. This thesis shows the results of the models trained with 8 pairs of elasticity and 

spatial data, depending on the dataset available this number can be decreased or 

increased.  Below are the results of the algorithms used. Figure 4.2 shows three 

pedestrians walking towards the LiDAR and two pedestrians walking away from the 

sensor. For better visibility two pedestrians approaching the LiDAR are highlighted in 

red. 
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Figure 4.2 Visualizing the dataset 

 

4.3 Visualizing Plane Elimination and Clustering Algorithms 

It is imperative that the algorithm eliminates the ground plane before processing 

further. Figure 4.3 shows a pedestrian segmented with the ground plane; it is easy to 

observe that if the ground plane is included most of the elasticity features exhibited 

by the class will be left unnoticed as the convex hull envelops a broader area. This 

thesis uses RANSAC to identify planes, the algorithm’s robust nature allows for quick 

ground plane elimination without disturbing the actors. The green dots represented 

in Figure 4.4 are the segmented plane in a point cloud scene. 
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Figure 4.3 Pedestrian with ground plane 

 

As mentioned previously, this thesis uses DBSCAN to cluster the points. After 

filtering out the ground plane the point clouds are sent for clustering. Clustering 

allows us to filter out any stray points that might affect the volume calculation in the 

next step. It also allows for isolating multiple actors in a scene. Figure 4.5 shows 

DBSCAN clustering two pedestrians into two respective clusters and eliminating the 

stray points in the bottom left corner. 
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Figure 4.4 Segmented ground plane. 

 

 
Figure 4.5 DBSCAN clustering 
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4.4 Visualizing Convex Hull Construction and Tracking Algorithms 

 

 
Figure 4.6 Visualizing change in pose and volume of a pedestrian walking. 

 

Convex hull is used to find the volume of the cluster, Figure 4.6 shows a pedestrian 

wrapped in a convex hull in three successive frames. You can notice the change in 

volume as the pedestrian expands and contracts their limbs to generate motion, thus 

exhibiting elasticity as explained earlier. Figure 4.7 shows the tracking algorithm in 

action, the green point shown in the figure represents the calculated centroid and the 

red shade represents the convex hull wrapping the point clouds. The two clusters 

represented belong to a single pedestrian in consecutive frames, the taskbar below 

pictures read “Euclidean distance between centroids: 0.24478.” This distance will 
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dramatically be larger for any other convex hull apart from its own in consecutive 

frames. 

 

 
Figure 4.7 Finding Euclidean distance between two clusters in subsequent frames. 

 

 

4.5 Visualizing Elasticity and Spatial Data 

In this subsection, the elasticity and spatial data are visualized by charting them on 

the graphs presented below. Figure 4.8 shows the elasticity graph of an e-scooter 

user. But although micromobility users do not necessarily move their body elasticity 

is still observed. This is partly due to the noise as it disturbs the cluster’s volume. 

Below attached is a graph (fig. 4.8) plotted between the time and volume of an e-
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scooter rider approaching the LiDAR sensor. You will be able to observe the reduction 

in volume of the convex hull of the rider.  

 
Figure 4.8 E-scooter approaching the LiDAR. 

 

Figure 4.9 attached below shows the graph of a rider moving away from the LiDAR 

sensor. Notice the increase in volume of the convex hull as time moves forward. It 

can be observed that the slope of the graph is not even, this is due to the noises 

encountered by the clustering algorithm.  
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Figure 4.9 E-scooter departing from the LiDAR. 

 

The same phenomenon is observed in pedestrian class also, Figure 4.10 shows the 

change in volume of a pedestrian approaching the LiDAR. Figure 4.11 shows the 

change in volume of a pedestrian departing from the LiDAR sensor. Notice how the 

pedestrian graphs have a lot of peaks. This continuous rise and fall of the peaks 

represent the change in the elasticity of a walking pedestrian. Since the 

micromobility riders exhibit little to no movement this is not observed in their graphs.  
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Figure 4.10 Pedestrian approaching the LiDAR. 

 

 

 
Figure 4.11 Pedestrian departing from the LiDAR. 

 

In some extremely noisy cases, the graph plotted between time and volume tends to 

exhibit more unwanted peaks which can result in false positives. Figure 4.12 shows 
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an e-scooter user departing from the LiDAR. The abnormal peaks observed can be 

due to noise clustered by DBSCAN as part of the main cluster. The steep fall of the 

points indicates that the cluster has suffered from partial occlusion.  

 
Figure 4.12 Unideal e-scooter data (departing from the LiDAR). 

 
 
Figure 4.13 shows a case of noisy pedestrian data. Some points in the point cloud 

could have disappeared thus causing the volume to steeply fall (possibility of partial 

occlusion). The first tall peak might have been caused due to clustering algorithm 

allowing stray points in the cluster. Unideal sets of data are not rare, training an 

algorithm with only elasticity data feature is bound to perform poorly. To avoid this 

scenario, the algorithm considers a second feature (spatial data) before classifying. 
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Figure 4.13 Unideal pedestrian data (approaching LiDAR). 

 

As mentioned previously, spatial data is the accumulation of point cloud of a specific 

cluster over a period of t time. Figure 4.14 shows the increase in volume of an e-

scooter rider in 2s. In Figure 4.15 a pedestrian’s increase in volume is shown for 2s. 

The algorithm learns to differentiate between these two curves by noticing the 

pattern of jumps in volume. Since pedestrians move slower compared to e-scooters 

their change in volume is not very significant. As a comparison, the pedestrian’s 

volume starts at 14 and ends at 64 by the end of 2s. For the same time frame, the e-

scooter starts at 19 and ends at 178. Comparatively, this factor is less likely to be 

affected by noise.  
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Figure 4.14 E-Scooter Spatial Data 

 

But if the rider decides to drive their scooter to match the pace of an adjacent 

pedestrian, then the model will not be able to tell the difference. Also, if an actor is 

too close to the LiDAR sensor physical movements may not be well observed, this 

will result in slight volume changes that only result in small peaks. These small peaks 

can technically be present in e-scooter elasticity graph due to noise. Since point 

clouds can get partially or fully occluded in some cases utilizing two distinct types of 

features to classify improves the chances of true positives. Thus, elasticity data and 

spatial is considered before classification.  
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Figure 4.15 Pedestrian Spatial Data 

 

 
Figure 4.16 E-Scooter  

Figure 4.  
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Figure 4.16 shows the spatial data of an e-scooter user for T= 2s. As the actor moves 

in the field their clusters accumulate with respect to their previous cluster at T-1. 

Figure 4.17 shows the spatial data of a pedestrian for T= 3s. 

 
Figure 4.17 Pedestrian  
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4.6 Result Analysis 

 

Three algorithms namely Random Forest, XG Boost and Gradient Boost are trained 

with the same dataset and their results are analyzed by plotting a confusion matrix. 

The actual picture of the terminal is also attached, it shows the features used for 

training and also depicts the accuracy of the model.  

 

4.6.1 Random Forest Results 

Trained with 16 features (eight sets of elasticity data & eight sets of spatial data). 

Pedestrian and scooter classes each had 101 sets of data, bringing the total to 202 

sets as you can see in Figure 4.18. N estimator = 81000 and random state = 43. 

 
Figure 4.18 Random Forest 
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Figure 4.19 Confusion Matrix of Random Forest 

 
 

The confusion matrix for Random Forest is presented in Figure 4.19. The figure shows 

the result of the test data. Out of the original sets (202) that were recorded, 40% of 

the data (81) was used as test sets for the algorithm. 

 

4.6.2 XG Boost Results 

Trained with 16 features. Pedestrian and scooter classes each had 101 sets of data, 

bringing the total to 202 sets as you can see in Figure 4.20. N estimator = 81000 and 

random state = 43. 
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Figure 4.20 XG Boost 

 

 
 Figure 4.21 Confusion Matrix of XG Boost 

 
 

Figure 4.20 presents the confusion matrix of the Gradient Boost algorithm. Out of the 

81 sets of data four sets were misclassified as e-scooters and four as pedestrians.  

 

4.6.3 Gradient Boost Results 

 
Figure 4.22 Gradient Boost 
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Trained with 16 features. Pedestrian and scooter classes each had 101 sets of data, 

bringing the total to 202 sets as you can see in the picture. N estimator = 9,000 and 

random state = 43. Since XG Boost only uses 9000 N estimators it delivers faster 

results than the other two algorithms. After the N estimator is set to 9,000 the 

accuracy does not change. It takes Random Forest 81,000 N estimators to give 

90.17% accuracy, but XG Boost does it with just 9,000. 

 
Figure 4.23 Confusion Matrix of Gradient Boost 

 
Figure 4.23 presents the confusion matrix of the Gradient Boost algorithm. Out of the 

81 sets of data four sets were misclassified as e-scooters and seven as pedestrian.  

 

4.7 Performance Comparison  

The Table shows the accuracy and the n estimators of all the algorithms used. XG 

Boost and Random Forest had similar accuracy. But since XG Boost only required 

9,000 n estimators, it performed the fastest among the three. 
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Table 4.1 Results 
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Chapter 5 Conclusions and Future Work 

 

5.1 Conclusions 

As the public perception of e-scooters increases, more commuters are willing to 

adapt. Unfortunately, since the existing roads are not designed to accommodate 

such users, we are observing increased accidents and casualties. This thesis has 

proposed a novel approach to identify e-scooters from point cloud data recorded 

with roadside LiDAR sensors. City planners can use this algorithm to understand the 

frequency of e-scooter users in different time frames. This data will then allow for the 

design of specialized road strips in important regions for safer commuting of e-

scooters. Out of the three algorithms tested XG Boost had the highest precision of 

90.17% with the least number of n estimators. 

5.2 Future Work 

• The proposed algorithm can be made more efficient by using sensor fusion 

methods to better cluster points to avoid unwanted elasticity readings.  

• The algorithm can also be paired with point cloud perception algorithms like 

PointPillars to find the region of interest and then proceed to track and classify 

if the actor is a pedestrian or an e-scooter user. 
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