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ABSTRACT OF THE DISSERTATION

Traffic Throughput and Safety Enhancement for Vehicular Traffic Networks

by

Seokheon Cho

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California, San Diego, 2014

Professor Ramesh R. Rao, Chair

For decades, one of the most significant challenges in vehicular traffic networks

has been how to mitigate traffic congestion characterized by increased vehicle queueing

and slower traffic speeds. Whereas traffic congestion is a complicated and subjective

matter, congestion delay consists of recurrent delay and non-recurrent delay. Recurring

congestion is attributed to high excess demand that constitutes about half of congestion

delay, and most of the rest is non-recurring congestion mainly occurring due to inci-

dents. In order to reduce congestion more effectively in vehicular traffic networks, it

is necessary to focus on how to control high utility demand for using traffic systems

and how to guarantee safety against incidents by using various strategies, instead of in-

efficiently widening roads. Therefore, this dissertation provides diverse approaches to

improve system throughput as well as to enhance collision safety for vehicular traffic

xiv



networks through understanding of vehicular traffic flow, ramp-metering control, traffic

safety metric, and inter-vehicle velocity control.

In Chapter 2, we provide a macroscopic traffic flow model called a time-gap-

based traffic model, which is a good and simple representative model for vehicular traffic

flow. The proposed time-gap-based traffic model is well validated with empirical traffic

data using least squares matching and is consistent with previous research outcomes

about propagation velocity. Moreover, two analysis techniques to estimate the time gap

from traffic measurement data are suggested.

Chapter 3 presents two optimal coordinated ramp-metering algorithms based on

the time-gap-based traffic model defined in Chapter 2. The purpose of the two optimiza-

tion problems is to attain the maximum average system capacity for vehicular traffic

networks. In addition, both of them are coordinated ramp-metering strategies that make

use of the measurement data along a highway corridor to control all metered ramps si-

multaneously. One is a steady-state optimization problem used under supposition when

the traffic system reaches a steady-state, whereas another optimal control is a time-

variant optimization problem exploited when the traffic flow changes continuously with

respect to time. The time-variant optimization problem considers an on-ramp queue

management strategy.

We propose a traffic safety metric called a safety marginal value (SMV) to be

applied to continuous-space and discrete-time vehicular traffic networks in Chapter 4.

The SMV represents the safety level of collision risk at every time step and is bounded

by two non-negative integers. However, the computational complexity in determining

the SMV grows dramatically, particularly when the number of vehicles traveling on a

roadway increases. Hence, a finite space horizon for the SMV is also developed in order

to prune the computational complexity of our proposed traffic safety indicator. A safety

analysis of a car-following model is conducted with the SMV and with a microscopic

traffic simulation.

A car-following model called a target time-gap-based velocity update model is

proposed in Chapter 5. Our proposed microscopic traffic flow model is used for inter-

vehicle velocity control, which every vehicle exploits in order to refresh the velocity and

position for the next time step. The microscopic traffic simulation results are matched

xv



well with empirical traffic data. Thus, the target time-gap-based velocity update model

is considered a representative car-following model that can accurately mimic typical

driving behavior. The effective domains of the target time gap and the update time inter-

val, which guarantee both collision-free movement of all vehicles and system capacity

enhancement compared to the traffic data measured in the field, are examined.

xvi



Chapter 1

Introduction

1.1 Motivation

An annoying and bothersome phenomenon confronted frequently by commuters

is traffic congestion, particularly in growing and large metropolitan regions across the

world. There are many side effects of traffic jam: longer travel times for drivers, slower

traffic speeds, wasted fuel consumption, increased air pollution, higher likelihood of

collisions due to constant stop-and-go traffic, additional spillover traffic from congested

roadways onto adjacent streets, unhoped-for road rage, and increased travel costs. Traf-

fic congestion is categorized as recurrent delay or non-recurrent delay depending on the

cause of congestion. Recurring congestion is attributed to high excess demand, whereas

non-recurring congestion mainly occurs when there are unexpected incidents.

Examination of the causes of congestion is an essential prerequisite for relieving

traffic jams [1, 2, 3]. Kwon et al. [2, 3] analyzed the traffic data measured on I-15N

in San Diego, California, USA. According to their analysis, the measured total delay

is classified into three components: (1) the congestion caused by incidents; (2) the po-

tential mitigation in congestion that an optimal ramp-metering control can achieve; and

(3) the remaining congestion due to all other causes such as non-collision incidents,

lane closures, and weather. When traffic density exceeds the critical density by any

cause mentioned above, traffic flow breaks down and thus severe congestion occurs.

Collisions and potential mitigation constitute 31% and 46% of the total daily traffic con-

gestion, respectively. This implies that optimal congestion mitigation strategies such

1
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as ramp-metering and vehicular safety controls help to obtain the remarkable gain of

reducing around 77% of the delay.

Kwon et al.’s statistics that collisions account for around 1/3 of the total con-

gestion causes are consistent with the numerical statement reported by the California

Department of Transportation (Caltrans), USA. The average number of collisions per

day and the average accident clearance time per collision collected from May 1-7 in

2012 in San Diego, California, USA are given in Table 1.1. The average number of

collisions per day during rush hours on weekdays measured on highways I-5, I-15, and

I-805 is 5.4, 2.2, and 4.5, respectively. In addition, it takes longer than 40 min on av-

erage to clear each collision during weekday rush hours. Since more time is needed to

clear traffic congestion caused by incidents compared to collision clearance time, the

average traffic congestion clearance time is much longer than 40 min. To top it off,

this non-recurring delay intensifies the recurring congestion, in particular during rush

hours, creating more severe congestion. There still exist incidents that incur unwanted

and significant traffic jams during non-rush hours on weekdays, even though the average

number of collisions that happen during off hours is less than during rush hours. This

similar phenomenon can be observed on weekends even when there is no rush hours.

Also, the average accident clearance time is longer than 43.8 min during non-rush hours

on all highways except on a corridor of I-805 on weekends. Hence, the statistics shown

in Table 1.1 imply that a collision gives rise to a serious traffic jam by itself during

non-rush hours as well as aggravates recurring delays during rush hours.

According to another crash statistics conducted by the Missouri Department of

Transportation (MoDOT), more than 80% of all crashes are related to collisions among

neighboring vehicles [4]. Moreover, since most collisions are caused by drivers’ faults,

such as speeding, inattention by distraction, or intoxication, most incidents are avoidable

through consistent, careful driving or through use of an auxiliary driving control such as

autonomous driving and automatic cruise control. Therefore, various technical strategies

to augment traffic safety through vehicle controls and improve traffic system capacity

by mitigating congestion need to be investigated.
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Table 1.1: Measurement traffic data collected from May 1 to May 7 in 2012 in San
Diego, California, USA. (1) Average number of collisions per day. (2) Average accident
clearance time per collision.

Rush hours Non-rush hours

Average Average accident Average Average accident

number of clearance time number of clearance time

collisions per collision (min) collisions per collision (min)

Weekdays
I-5 5.4 40.1 2.6 57.5

I-15 2.2 64.9 1.2 55

I-805 4.5 58.3 2.6 47.7

Weekends
I-5 N/A N/A 8.5 43.8

I-15 N/A N/A 1.5 50

I-805 N/A N/A 2.5 25.6

1.2 Contributions

The philosophy of this dissertation is shown in Fig. 1.1. The final purposes

of the dissertation seek the traffic capacity and safety enhancement of vehicular traffic

networks. Diverse approaches need to be considered to accomplish these compositive

aims: (1) Develop a series of strategies to guarantee traffic safety and to relieve traffic

congestion by first gaining an understanding of vehicular traffic flow as an essential pre-

requisite. As an analysis result of the empirical traffic data, a macroscopic traffic flow

model called a time-gap-based traffic model is provided; (2) Create two coordinated

ramp-metering controls, which use real-time measurement data along a system-wide

highway corridor to control all metered ramps simultaneously, to maximize the aver-

age system throughput. A comparison between no ramp-metering and two coordinated

ramp-metering strategies is conducted through both a macroscopic traffic simulator and

a traffic flow estimation based on a time-gap-based traffic model; (3) Provide a traffic

safety metric called an anterior safety marginal value (SMV). The anterior SMV indi-

cates the safety level of collision risk with other vehicles, which is calculated at every

discrete time step. A safety analysis of a car-following model is performed with this

safety indicator under a microscopic traffic simulator. This induces safety enhancement

for vehicular traffic networks; (4) Develop a car-following model called a target time-
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Macroscopic 

traffic simulator

Safety 

Enhancement

Time-gap-based Traffic Model

        - Macroscopic traffic flow model

Coordinated Ramp-metering Control

        - Steady-state/time-variant ramp-metering control

Safety Marginal Value

        - Traffic safety metric

Target Time-gap-based Velocity Update Model

        - Car-following model

Topic 1: Understanding of vehicular traffic flow

Topic 2: Achieving maximum average system capacity

Topic 3: Providing inter-vehicle safety control

Topic 4: Providing inter-vehicle velocity control

Microscopic 

traffic simulator

Microscopic 

traffic simulator

Capacity 

Improvement

Figure 1.1: Philosophy of dissertation.

gap-based velocity update model. The target time-gap-based velocity update model is

used for inter-vehicle velocity control. When every vehicle in vehicular traffic system

uses the target time-gap-based velocity update model, the domains of the target time

gap and the update time interval that guarantee both safety and capacity improvement

are presented through a microscopic traffic simulator.

Most of studies for reducing traffic congestion have been conducted without fun-

damental knowledge of vehicular traffic flow, particularly such as drivers’ behavior or

their driving patterns; however, the understanding of vehicular traffic flow is a critical

and essential prerequisite for developing a series of diverse strategies related to traf-

fic flow dynamics, since the typical behavior of drivers is itself a creative and superior

algorithm not only to avoid collision but also to reduce congestion. Hence, the devel-

opment of a macroscopic traffic flow model through the analysis of traffic flow needs to

precede the provision of various algorithms to accomplish these purposes. That is, di-

verse system-wide managements, which are based on a macroscopic traffic flow model

reflecting the traffic flow characteristics well, will lead to a great synergistic effect to

enhance throughput and safety for vehicular traffic networks.

Various ramp-metering controls have been examined and recognized as an ef-

fective method of relieving recurrent congestion on highways by regulating the inflow

from on-ramps to the highway mainline; for example, ALINEA [5, 6, 7, 8, 9], BOTTLE-

NECK [10], ZONE [11], SWARM [12], and METALINE [13, 14, 15, 16, 17] are famous



5

existing ramp-metering algorithms. These ramp-metering strategies seek to maximize

capacity or to minimize the total travel times of vehicles on vehicular traffic systems.

However, the selection of only a proper macroscopic traffic flow model, which repre-

sents the vehicular traffic features created by vehicles, brings about correct outcomes of

the objective function defined for ramp-metering algorithms. Moreover, ramp-metering

control is a partial solution to total travel delay on roadways, because it considers only

recurrent congestion; that is, other studies, such as a traffic safety metric and inter-

vehicle safety control, also need to be investigated to mitigate non-recurrent congestion

and improve traffic safety.

A traffic safety metric is used to indicate safety level of collision risk and warn

of dangerous traffic circumstances in advance. This safety indicator is a good auxil-

iary control in intelligent vehicles to mitigate collisions. In addition, a car-following

model mimicking driving pattern needs to be developed, since typical driving behavior

without distraction is itself a creative and superior algorithm. An investigation of the

effective conditions for the proposed car-following model, which ensures collision-free

movement and system capacity enhancement, is important. When all vehicles use inter-

vehicle safety controls based on the effectual conditions of the model, a vehicular traffic

network can improve its performance, such as safety and throughput.

Therefore, we first provide a macroscopic traffic flow model describing traffic

flow and the typical behavior of drivers. We derive various strategies based on a macro-

scopic traffic flow model, which are (1) coordinated ramp-metering control to relieve

the potential congestion incurred by excess demand as well as (2) inter-vehicle safety

control using a car-following model to help to decrease accidents and congestion simul-

taneously. Moreover, a traffic safety metric is introduced to warn of and avoid collisions.

These studies can be mapped to other areas beyond traffic flow dynamics, such as reduc-

ing packet transmission delay, enlarging data transmission rate, decreasing packet loss

rate, and so on, in wireless communication systems.

1.3 Organization

The organization of this dissertation is as follows:
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Chapter 2 provides a macroscopic traffic flow model called a time-gap-based

traffic model, which is a good and simple representative model for vehicular traffic flow.

The proposed time-gap-based traffic model is well validated with empirical traffic data

using least squares matching and is consistent with previous research outcomes about

propagation velocity. Moreover, two analysis techniques to estimate the time gap from

traffic measurement data are suggested.

Chapter 3 proposes two optimal coordinated ramp-metering algorithms based

on the time-gap-based traffic model defined in Chapter 2. The purpose of the two op-

timization problems is to attain the maximum average system capacity for vehicular

traffic networks. In addition, both of them are coordinated ramp-metering strategies

that make use of the measurement data along a highway corridor to control all metered

ramps simultaneously. One is a steady-state optimization problem used under supposi-

tion when the traffic system reaches a steady-state, whereas another optimal control is a

time-variant optimization problem exploited when the traffic flow changes continuously

with respect to time. A time-variant optimization problem considers an on-ramp queue

management strategy.

Chapter 4 provides a traffic safety metric called a safety marginal value (SMV) to

be applied to continuous-space and discrete-time vehicular traffic networks. The SMV

represents the safety level of collision risk at every time step and is bounded by two

non-negative integers. However, the computational complexity in determining the SMV

grows dramatically, particularly when the number of vehicles traveling on a roadway

increases. Hence, a finite space horizon for the SMV is also developed in order to prune

the computational complexity of our proposed traffic safety indicator. A safety analysis

of a car-following model is conducted with the SMV and with a microscopic traffic

simulation.

Chapter 5 proposes a car-following model called a target time-gap-based veloc-

ity update model. Our proposed microscopic traffic flow model is used for inter-vehicle

velocity control, which every vehicle exploits in order to refresh the velocity and po-

sition for the next time step. The microscopic traffic simulation results are matched

well with empirical traffic data. Thus, the target time-gap-based velocity update model

is considered a representative car-following model that can accurately mimic typical
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driving behavior. The effective domains of the target time gap and the update time inter-

val, which guarantee both collision-free movement of all vehicles and system capacity

enhancement compared to the traffic data measured in the field, are examined.

Chapter 6 concludes with a brief summary and remarks about the various strate-

gies for the safety and throughput enhancements for vehicular traffic networks. More-

over, future research works that can be extended from the dissertation are discussed.



Chapter 2

Time-gap-based Traffic Model as a

Macroscopic Traffic Flow Model

There have been many studies for modeling vehicular traffic flow using fluid

models. However, these previous approaches do not accommodate realistic models for

traffic density, flow, and velocity. The existing traffic flow models also fail to uncover

the relationships among energy efficiency, capacity, and safety. In this Chapter, we

investigate vehicular traffic networks from a system-level perspective. In result, we

provide a time-gap-based mathematical traffic flow model for representing vehicular

traffic flow on highways. Our proposed model explains the widely known triangular

fundamental diagram, in particular by using three primary parameters: the maximum

free-flow velocity, a typical safety length of vehicles, and a mean value of the time gap

of the traffic data during congested conditions. A time-gap-based traffic flow model

is also well validated with empirical traffic data using least squares matching and with

previous research outcomes about propagation velocity. In addition, we suggest two

distinct analysis techniques to estimate the time gap from the traffic data measured on

highways.

2.1 Introduction

Many attempts to specify a relation among traffic flow, density, and speed have

been made. A macroscopic traffic model to correlate them forms the so-called fun-

8
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damental diagrams of traffic flow. Greenshields [18] derived a parabolic fundamental

diagram between flow and density. Lighthill, Whitham, and Richards [19, 20] used

Greenshields’s hypothesis and a conservation law of vehicles to provide a concave fun-

damental diagram, which is called first order LWR model. Newell [21] proposed a

triangular flow-density fundamental diagram as a simpler alternative to solve the LWR

model. Only two velocities characterize this model: a maximum free-flow velocity in a

free-flow regime and a propagation velocity for a congestion area. However, he did not

explain the correlation between propagation velocity and driving patterns.

Banks [22] considered the time gap which is the time required to travel the dis-

tance between the front end of a vehicle to the back end of its leading vehicle, and

showed the relation between the time gap and speed using real traffic data in the USA.

He found that during congested times, the average time gap was relatively constant,

while it diverges with large deviation during free-flow periods. However, he did not

derive a fundamental diagram from the time gap nor an analysis method to estimate the

time gap from raw traffic data.

The remainder of this Chapter is organized as follows: In Section 2.2, we present

a fundamental traffic pattern to describe the Newell model in congested states, which we

call a time-gap-based traffic model. We propose two different methods to estimate the

time gap from real traffic data measured by a single-loop and double-loop system in

Section 2.3. Section 2.4 shows various analysis results about the relation between the

time gap and a triangular fundamental diagram, and validates our proposed time-gap-

based traffic model with empirical traffic data.

2.2 Time-gap-based Traffic Model

In this Section, we derive a time-gap-based traffic model. The time gap, τ , is

defined as the time required to travel to the bumper of the vehicle in front of a typi-

cal vehicle. We assume that highways can be divided into homogeneous sections with

similar traffic characteristics and patterns at a local scale.
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2.2.1 Time-gap-based triangular fundamental diagram

It has been empirically observed that drivers generally travel to maintain safe

distance between themselves and the vehicles immediately in front of them in order to

prevent collisions. Because of this distance, there exists a time gap guaranteeing at least

a driver’s minimum reaction time, which has some average value with slight variation

by driver or by region. We also assume that there is a maximum free-flow velocity, vf ,

imposed either by physical limitations of the vehicles or by speed limits of the road.

Let Li denote the safety length of the ith vehicle for i ∈ N in feet. The safety

length is a summed value of the actual physical length of a vehicle and the positive

safety distance, say 0.1 feet, between any two consecutive vehicles on the same lane. In

addition, let L denote the average safety length of vehicles in feet. Let ρ, q, and v denote

the density, flow, and velocity for the homogeneous section considered. Their units are

vehicles per mile (vpm), vehicles per hour (vph), and miles per hour (mph), respectively.

Since one mile is 5280 feet, the maximum density ρmax per a lane is 5280/L and thus

ρ ≤ 5280/L for all sections and for all times. For a value of density ρ ≤ 5280/L,

the average distance between the front ends of vehicles is 5280ρ−1 and thus the average

car spacing which is the distance from the front end of a vehicle to the back end of its

leading vehicle is d = 5280ρ−1 − L in feet. At a constant velocity of v, the time in

seconds required to travel the car spacing d is d/ (c̄v), where c̄ is 5280/3600 which is

feet per second (fps). In order to follow the concept of the time gap τ , we must have

d/ (c̄v) ≥ τ . This becomes

v ≤ 1

c̄
· 5280ρ−1 − L

τ
. (2.1)

Since the velocity has the limitation v ≤ vf , by (2.1),

v ≤ min

[
vf ,

5280ρ−1 − L
c̄τ

]
.

Assuming that every driver travels as fast as possible, it is reasonable to suppose that

this inequality is satisfied with equality. Hence,

v = min

[
vf ,

5280ρ−1 − L
c̄τ

]
. (2.2)

Since the relationship among flow, density, and velocity satisfies with q = ρv, by (2.2),

q = min

[
ρvf ,

5280− ρL
c̄τ

]
. (2.3)
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This describes a relatively simple triangular fundamental diagram between the flow and

density shown in Fig. 2.1. The vehicular traffic system for a considered homogeneous

section has the maximum throughput qmax at a value of critical density ρ = ρc such that

ρcvf =
5280− ρcL

c̄τ
,

which becomes

ρc =
5280

c̄τvf + L
.

The corresponding maximal throughput achieved at the critical density ρc is given by

qmax = ρcvf =
5280vf
c̄τvf + L

.

Our proposed time-gap-based triangular fundamental diagram describes two dis-

tinct regions; a free-flow regime where the density is less than the critical density and

a congestion regime where the density exceeds the critical density. The positive slope

in a free-flow regime of a triangular fundamental diagram is the maximum free-flow

velocity vf , while the negative slope in a congestion regime is −L/ (c̄τ) mainly con-

sisting of the time gap τ by (2.3). Hence, we can explain how to derive a triangular

fundamental diagram with both the maximum free-flow velocity and time gap. We can

easily imagine that the larger the maximum velocity is in a homogeneous section, the

greater the throughput is. Additionally, a smaller time gap value means that vehicles

are tailgating closer to the vehicles immediately in front of them and thus allows for

larger capacity on highways, as long as this tailgating behavior guarantees no crashes.

This phenomenon can be also explained by our derivation (2.3); a smaller value of the

time gap shows that a negative slope in a congestion regime of our proposed triangular

fundamental diagram is steeper, because we fix a value of the safety length L and thus

a maximum density ρmax is predetermined as 5280/L. Hence, a steeper negative slope

under a predetermined maximum density causes both larger critical density and higher

maximum flow, i.e. larger capacity.

Note that our proposed model describes how the flow varies with the density at

a local point. In fact, a triangular fundamental diagram was provided as an idealized

traffic approximation by Newell [21], who recognized that this model provides simple

algorithms for maximizing throughput using ramp metering. However, even though
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Figure 2.1: Traffic flow on a road.

he presented a car-following model which is consistent with a triangular fundamental

diagram, he has not explained it in terms of the traffic parameters vf , L, and τ , as we

have done here.

2.3 Comparative Analysis of Time Gap from Measure-

ment Data

Both the USA and South Korea commonly embed an induction loop detector on

highways to collect real traffic data. However, induction loop detectors can measure up

to three parameters, so we are required to estimate the time gap from these insufficient

traffic observations. The USA uses a single-loop detector, whereas the South Korea

employs a dual-loop detector constructed by two consecutive single-loop detectors feet

apart. The type of measurement data collected from a single-loop detector is different

from that by a dual-loop detector. Hence, we create the distinct methods to derive the

time gap from measurement data of these two different detector systems.

2.3.1 Time gap analysis from single-loop detectors

Single-loop detectors deployed in the USA report the number of vehicles passing

over a detector and the occupancy counts occupied by passing vehicles per lane every



13

30 seconds. Because the sampling rate is at 30 Hz, the occupancy counts range from 0

to 900 over the 30 second window. Let n (kT ) denote the number of passing vehicles

per lane that is recorded during the kth time frame and reported at time kT , where T is

the measurement interval (i.e., 30 seconds in this case). As another available raw data,

the value of o (kT ) is the total number of clock ticks, known as the occupancy counts

when a vehicle is present over a detector in the kth sampling period. Let ld denote the

length of a detector to be 10 feet. Since ld > 0, this causes the duration of on-time of

each pulse to be larger, i.e. a fraction (L+ ld) /L, than if the detector diameter were

the ideal length ld = 0. We assume that all vehicles are uniformly distributed for the

same measurement period. The ratio that a vehicle is not present at a certain point of the

detector, i.e. at its leading side, for the kth measurement period can be estimated as(
900− o (kT ) · L

L+ld

900

)
.

Hence, the average estimated time gap for the kth measurement interval is

τ̃ (kT ) =
30
(

1−
(
o(kT )
900

)
·
(

L
L+ld

))
n (kT )

(2.4)

seconds. The flow for the kth measurement period is estimated to be

q̃ (kT ) =
n (kT )

30
· 3600 = 120n (kT ) (2.5)

vph. In addition, we assume that all vehicles travel with the same velocity within the

detector diameter. If we assume that the vehicles passing over a detector during the kth

interval travel the distance n (kT ) (L+ ld) feet for the time o(kT )
900

30 seconds, then the

average velocity for the kth interval is

ṽ (kT ) = n (kT ) (L+ ld)
30

c̄o (kT )
(2.6)

mph. Now, by (2.5), (2.6), and the equation ρ (kT ) = q (kT ) v (kT ) for all k ∈ {0 ∪ N},
we can draw a flow-density fundamental diagram and show the estimated time gap value

versus the density.

2.3.2 Time gap analysis from double-loop detectors

Even though the cost to deploy a double-loop detector is greater than a single-

loop detector, it has added measuring ability. Since a double-loop detector can collect
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the travel time data of each vehicle from the first loop to the second loop, it can calculate

the speed of an individual vehicle between the two known consecutive loops. However,

the speed provided from a dual-loop detector system is not the velocity of an individual

vehicle but the average speed of vehicles passing during the kth measurement interval.

We suppose that the velocity of every vehicle belonging to the same measurement in-

terval is equal to the average velocity provided by a dual-loop detector. Let vi denote

the velocity of the ith vehicle and v (kT ) denote the average velocity for the kth mea-

surement period. In addition, t̃i is the estimated passage time at which the ith vehicle

passes over the leading side of the first loop. Then, vi = v (kT ) for all i such that

t̃i ∈ ((k − 1)T, kT ]. Let t̃d(i,i−1) denote the time difference of the estimated passage

times between the ith vehicle and (i− 1)th vehicle. xi−1|(xi=0) is the position of the

(i− 1)th vehicle when its following ith vehicle just arrives at the leading side of the

first loop. In addition, let τ̃i denote the estimated time gap of the ith vehicle at that po-

sition. We then assume every vehicle travels with the same velocity after it passes over

a detector under the existing steady-state. Then,

vi−1 · t̃d(i,i−1) = xi−1|(xi=0) − L = vi · τ̃i.

This gives the estimated time gap for the ith vehicle

τ̃i =
vi−1

vi
t̃d(i,i−1). (2.7)

Hence, since a dual-loop detector provides the number of passing vehicles n (kT ) during

the kth measurement interval, by arithmetic average and (2.7), the average estimated

time gap for the kth measurement period is

τ̃ (kT ) =

∑n(kT )
i=1 τ̃i
n (kT )

(2.8)

for all i such that t̃i ∈ ((k − 1)T, kT ]. Now, by using the measurement data with n (kT )

and v (kT ), we can easily get the density for the kth measurement period and thus show

a flow-density fundamental diagram as well as the estimated time gap versus the density.
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2.4 Analysis, Results, and Discussions

We have measurements data collected from a single-loop detector in the USA

and from a dual-loop detector in the South Korea. One data set was measured on May

10, 2012, at La Jolla Village Dr. of I-805 SB, USA and the other set was collected on

Apr. 02, 2012, at PM. 31.91 of Yeongdong Express EB, South Korea. The raw traffic

data presented here is processed to remove potentially erroneous observations; some

examples of such measurements include the low number of passing vehicles during

one measurement interval representing a low density value in spite of erroneously high

occupancy counts or an extremely low velocity values. This case occurs when a vehicle

temporarily stops over a detector or a loop detector system is malfunctioning.

Fig. 2.2 shows the relationship between the traffic density and time gap esti-

mated by the analysis methods above. Fig. 2.2(a) uses real traffic data measured in the

USA, while Fig. 2.2(b) is the result of real traffic data from the South Korea. Each point

in the scatter plots gives the estimated density and time gap using the analysis method

above which are averaged over 30 seconds. Commonalities are apparent between the

two different geographical data sets. It is seen that the time gap varies widely when the

density is low. However, it is nearly constant when the density is above a critical density.

We show the average and standard deviation values of the estimated time gap

versus density in Fig. 2.3. These time gap and density pairs are placed into bins accord-

ing to their densities with a granularity of 1 vehicle per mile per lane per bin. The red

starred points and blue-circled points represent the average and standard deviation of

the estimated time gap for each density bin, respectively. Both the average and standard

deviation of the time gap are large in a free-flow regime where the density is less than

a critical density, i.e. 26 vpm for the USA data and 31 vpm for the South Korea. We

will discuss later the method for how to get the critical density from real traffic data. As

the density increases, both the average and standard deviation of the time gap decrease

until the density value approaches the critical density. Compared to a free-flow regime,

the data shows that the average time gap is fairly predictable as a constant value and that

its standard deviation is relatively small in a congestion regime despite the existence

of minor variation. The data shows several interesting points where average time gap

values are large even under high densities being larger than 170 vpm. The number of
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Figure 2.2: Estimated time gap vs. density. (a) Data measured on 05/10/2012 at La
Jolla Village Dr. of I-805 SB, USA. (b) Data measured on 04/02/2012 at PM. 31.01 of
Yeongdong EB, South Korea.
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Figure 2.3: Average and standard deviation of estimated time gap vs. density. (a) Data
measured on 05/10/2012 at La Jolla Village Dr. of I-805 SB, USA. (b) Data measured
on 04/02/2012 at PM. 31.01 of Yeongdong EB, South Korea.
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these interesting points is few, so this infrequent observation might be caused by erro-

neous instances when a vehicle stops just in front of a loop detector while maintaining

a distance to its leading vehicle that does not adhere to the normal traffic patterns of

following closely even under heavy congestion. A loop detector system error is also a

possibility.

The green line in the above plots shows the arithmetic mean value of the esti-

mated time gap for all measurement data points included in a congestion regime. The

mean time gap in a congestion region are about τ = 1.78 seconds in the USA and

τ = 2.00 seconds in the South Korea. It is obvious that drivers travel maintaining the

positive time gap to their leading vehicles to avoid collision, which is related to the brake

reaction time. The brake reaction time is defined as the amount of time required to ap-

ply the brakes upon recognition of danger. Many research studies about driver reaction

times have been conducted. Green [23] showed that a driver’s reaction time to a traffic

event increases with the degree of surprise to the driver. He provided that the average

reaction time to break for different situations is 0.75 seconds for an expected event, 1.20

to 1.35 seconds for an unexpected event such as brake lights of the lead vehicle, and

1.50 seconds for a sudden intrusion event. Mehmood [24] used a driving simulator to

estimate the mean reaction time for the following three scenarios. The mean reaction

time of a driver who is avoiding imminent collision is 0.92 to 1.94 seconds when he

tries to decelerate at a normal deceleration rate, while the reaction time range decreases

dramatically from 0.66 to 1.04 seconds when the driver decreases the velocity with a

maximum deceleration rate. In addition, it is 0.58 to 0.94 seconds against a stationary

leading vehicle. Taoka discussed a representative value of the reaction time for various

drivers based on experimental investigations [25, 26, 27, 28]. According to his estimates

of the break reaction time, the median range is from 1.07 to 1.14 seconds. Overall, we

can observe that the mean value of the driver’s reaction time is less than or almost equal

to the average time gap defined in a congestion regime. This observation provides the

insight that drivers subconsciously drive with their own time gap being larger than their

reaction time so as to avoid a rear-end collision.

Fig. 2.4 shows the flow and estimated density pairs, and the corresponding fun-

damental diagram using the same data sets from the USA and South Korea. Each circle
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Figure 2.4: Measurement data of flow vs. density and a time-gap-based traffic model.
(a) Data measured on 05/10/2012 at La Jolla Village Dr. of I-805 SB, USA. (b) Data
measured on 04/02/2012 at PM. 31.01 of Yeongdong EB, South Korea.
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in the scatter plots provides the flow and estimated density averaged over 30 seconds.

For reference, we draw a green line as a triangular flow-density fundamental diagram

by regression analysis with least squares from all data points. We can derive this line by

adjusting three important parameters: the critical density, and the positive and negative

slopes of a triangular fundamental diagram so as to best fit these flow and estimated

density sets. These parameters adjusted by least squares are listed in Table 2.1. In the

USA, the best fitted critical density, positive slope, and negative slope are 26 vpm, 72.95

mph, and −10.21 mph, respectively. The South Korea exhibits larger critical density

and gentler slopes than the USA does. Since the speed limit of the measurement area in

the South Korea is about 50 mph which is less than that in the USA with 65 mph, it is

expected that the South Korea has a more gradual positive slope in a free-flow regime

than the USA does.

A magenta line in Fig. 2.4 represents our proposed time-gap-based traffic model

drawn by (2.3). We need to use three parameters to draw it, which are the maximum

velocity, typical safety length of a vehicle, and the mean value of a time gap defined in

a congestion regime. We added 5 mph to the pre-defined speed limit, because people

normally travel with slightly higher speed than the regulated speed where there is no

traffic. Therefore, we set a maximum velocity, vf , as 70 and 55 mph for the USA and

South Korea, respectively. We can get the best fit critical density by least squares from

all data points. We then calculate the mean value of the time gap τ of the data points

for which the density values are larger than the best fitted critical density, that is to say

in a congestion regime. The calculated mean values of the time gap are approximately

τ = 1.78 seconds for the USA and τ = 2.00 seconds for the South Korea. Finally, we

can draw our proposed time-gap-based flow-density triangular fundamental diagram as

shown in Fig. 2.4.

By comparing the green and magenta lines in Fig. 2.4, we can observe that

our proposed time-gap-based traffic model almost corresponds to the best fit triangular

fundamental diagram by least squares. Therefore, not only does our proposed time-gap-

based traffic model explain well a triangular fundamental diagram provided by Newell

[21] with both a maximum velocity and a mean value of the time gap defined in a

congestion regime by (2.3), but also it is a good and simple representative model for
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vehicular traffic flow.

There is additional indirect evidence of the validity of the time-gap-based traffic

model for the fundamental diagram. When the traffic density changes, a shock wave is

launched and travels against the direction of the traffic flow at an almost constant speed,

which is called the propagation velocity. This propagation velocity, which is indepen-

dent of the density in a congestion regime, has been studied for many years [29, 30, 31].

A positive propagation velocity is used throughout Chapter 2. Mika [29] showed that

propagation velocity of stop-and-go traffic waves is around 6.22 to 12.42 mph. Win-

dover [30] used real traffic measurement data from I-880 NB, in Oakland, California,

which is identified as especially congested and showed that the propagation velocity

was nearly constant with 10.56 to 12.43 mph over the homogeneous section. Muñoz

and Zielke [31, 32] applied cross correlation of cumulative arrivals between two con-

secutive detector stations and provided that the shock wave propagates in reverse flow

direction at speeds of about 11.81 to 12.43 mph. Smilowitz [33] used the Lighthill-

Whitham-Richards (LWR) model [19, 20] to derive the wave velocity and showed that

the wave velocities propagating upstream on a single lane of homogeneous highway

section were 10.69 and 11.68 mph. Schönhof [34] investigated the real traffic data mea-

sured in Germany with many congested traffic states and found the propagation velocity

was approximately 9.32 mph.

Thus, this previous research shows that the propagation velocity is consistent

with our proposed time-gap-based traffic model, and in fact by (2.3), this time-gap-

based traffic model predicts that the constant propagation velocity, vp, is given by the

simple formula

vp =
L

c̄τ
.

Using L = 22 feet and τ = 1.78 seconds, which is a mean value of the time gap

estimated in the USA, the predicted propagation velocity is vp = 10.21 mph as listed

in Table 2.1. We can observe that this value is in range of the propagation velocity

provided by the above papers and thus the propagation velocity derived by our proposed

time-gap-based traffic model is consistent with earlier studies. Indeed, we believe that

the characteristic properties in congested traffic can be largely explained using the model

that we provide.
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Table 2.1: Adjusted parameters by least squares.

Nation
Critical Positive Slope (mph) Negative Slope (mph)

Density (vpm) (Free-flow Velocity) (Propagation Velocity)

USA 26 72.95 −10.21

South Korea 31 50.97 −5.00

2.5 Summary

We provided a time-gap-based traffic model, which explains well a triangular

flow-density fundamental diagram proposed by Newell, in particular by using three

principal parameters: maximum velocity, a typical safety length of vehicles, and a mean

value of the time gap of traffic data under congested conditions. Also, we proposed two

different analysis methods to estimate the time gap from real traffic data measured by

a single-loop and a dual-loop detector system. We found that the average and standard

deviation of the time gap vary widely when the traffic density is low, while its average

is nearly constant and its standard deviation is small in a congestion regime. This obser-

vation agrees with our time-gap-based traffic model presented here, which shows that a

mean value of the time gap is a major factor to characterize vehicular traffic flow, espe-

cially where the traffic is congested. A further meaningful observation is that a mean

value of the time gap defined in a congestion area is larger than or almost equal to the

average driver reaction time. This provides the insight that drivers unconsciously travel

with their own time gap being larger than their reaction time so as to avoid a real-end

collision towards their leading vehicles.

In conclusion, we have shown the validity of our proposed time-gap-based traffic

model. The time-gap-based traffic model represented with the three parameters above

almost corresponds with the best fitting triangular fundamental diagram by least squares

to the measured traffic. Also, the propagation velocity derived by a mean value of the

time gap is consistent with the propagation velocity studied for many years. Therefore,

our proposed time-gap-based traffic model is a good and simple representative model

for vehicular traffic flow.
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Chapter 3

Optimal Coordinated Ramp-metering

Control

Numerous studies have examined ramp-metering control to relieve highway con-

gestion. Unlike previous research, this Chapter presents two different optimization prob-

lems for achieving the maximum average system capacity over a highway corridor, using

both a time-gap-based traffic model describing traffic flow and the limited traffic data

measured by existing field facilities. Our proposed algorithms are coordinated ramp-

metering strategies controlling the metered rates at system-wide entrance ramps. The

origin-utilization relationship is taken into consideration in providing the mathematical

derivation for the steady-state optimization problem. This scheme regulates on-ramp

flows so as to keep traffic densities along the system below their critical densities. To

prevent an increase in adjacent street traffic, which might be caused by this scheme,

a time-variant linear programming problem is provided with both on-ramp queue con-

trol and traffic flow estimation. Comparative simulation results for two optimization

problems are presented.

3.1 Introduction

Ramp-metering control has been recognized as an effective method of relieving

congestion on highways by regulating the inflow from on-ramps to the highway main-

line. Chen [35] used Greenshields’s model to investigate on-ramp control for travel-rate

24
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maximization over the traffic network. He assumed that traffic origin-destination infor-

mation is available from the vehicular traffic network. However, this is not based on

real-time and empirical measurements from existing detectors in the traffic networks.

Realistically, it is desirable to control on-ramp flow using the limited traffic observations

measured from the existing traffic network such as the mainline flow, average speed on

the mainline, on-ramp flow, demand flow, and off-ramp flow during each time interval.

In addition, Chen calculated the mainline flow of each section of the traffic network by

summing up the mainline flow at the upstream-most section and on-ramp flows of its

upstream sections. Chen calculated this under the restrictive assumption that traffic on

all sections of the traffic network is in a free-flow regime; this can only be accomplished

by letting fewer vehicles enter highways, as a decrease in vehicle entry onto highways

causes unexpected interference with neighboring arterial roads. In order to avoid such

interference, the system designer has no choice but to permit more vehicles to enter the

highway mainline in spite of the mainline congestion. Hence, it is necessary to esti-

mate traffic density and flow using a traffic model that specifically takes into account

congested traffic states.

The ALINEA method proposed by Papageorgiou [6, 7, 36] is a traffic responsive

ramp-metering control based on real-time measurements that seek to attain maximum

capacity at the merge area of the on-ramp. This algorithm is simple and easily imple-

mented, and it has been shown to decrease the total time spent (TTS) in traffic and thus

to relieve congestion at a local scale. However, a significant drawback of the ALINEA

is that it is not a coordinated ramp-metering system but is instead a local feedback con-

trol. Hence, we need to provide optimal ramp-metering control to improve system-level

capacity.

Macroscopic traffic models to specify the relationship among traffic flow, den-

sity, and velocity form the so-called fundamental diagrams. Greenshields [18] derived

a parabolic fundamental diagram between traffic flow and density with the assump-

tion of a linear velocity-density relationship under uninterrupted traffic flow conditions.

Lighthill, Whitham, and Richards (LWR) [19, 20] used Greenshields’s hypothesis and

a non-linear conservation law of vehicles to provide a concave fundamental diagram,

which is called the first-order LWR model. Newell [21] proposed a triangular flow-
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density fundamental diagram as a simpler alternative to the LWR model. A time-gap-

based traffic model verified by empirical traffic data explains the Newell model with

both a mean value of the time gap and a typical safety length of vehicles in a congestion

regime [37].

In this Chapter, optimal coordinated ramp-metering control for maximizing av-

erage system-level throughput using a time-gap-based traffic model will be studied. In

Section 3.2, we present vehicular traffic network assumptions and a time-gap-based

traffic model used for estimating traffic flow and achieving optimal coordinated ramp-

metering control. In Section 3.3, we propose a steady-state optimal control that regulates

on-ramp flow rates at system-wide entrance ramps so as to keep traffic densities along

the system below their critical densities. The origin-utilization relationship is intro-

duced in providing the steady-state optimization problem. However, it causes on-ramp

queue spillover onto adjacent local streets. In contrast, a time-variant optimal problem is

derived considering an on-ramp queue control in order to diminish unexpected interfer-

ence with neighboring arterial roads in Section 3.4. Section 3.5 shows the comparative

simulation results of these optimization problems using a macroscopic traffic simulator.

3.2 Vehicular Traffic Network

In this Section, we describe a vehicular traffic network and specify the time-gap-

based fundamental diagram used for achieving the maximum average system capacity

for vehicular traffic networks.

3.2.1 Vehicular traffic network assumptions

Here, we first consider the vehicular traffic network shown in Fig. 3.1. We

assume that there are I entrance ramps, J exit ramps, and M sections, where I , J , and

M are bounded integer values. Let T be the time interval (e.g. 30 seconds) used for all

controllers to measure traffic data and to apply the newly calculated metered rate along

the highway corridor. Let ρ (kT, x), q (kT, x), and v (kT, x) denote the average traffic

density, flow, and velocity per lane that are reported at time kT and at point x with the

traffic data measured during the kth time frame, where k is a non-negative integer. Their
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Figure 3.1: Vehicular traffic network.

units are vehicles per mile (vpm), vehicles per hour (vph), and miles per hour (mph),

respectively. We suppose that highways can be divided into homogeneous sections with

similar traffic characteristics and patterns. Let ρm (kT ), qm (kT ), and vm (kT ) denote

the average traffic density, flow, and velocity per lane reported at time kT over the mth

section for m ∈ [1,M ]. Hence, by the homogeneity of section, ρ (kT, x) = ρm (kT ),

q (kT, x) = qm (kT ), and v (kT, x) = vm (kT ) for all points x belonging to the mth

section and for every time kT .

Let ei (kT ) denote the demand flow in vph entering the ith on-ramp queue de-

tected during the kth time frame for i ∈ [1, I]. Letwi (kT ) denote the number of vehicles

queued on the ith on-ramp queue at time kT . That is, wi (kT ) is the queue length of the

ith on-ramp queue. Let ri (kT ) denote the metered rate of the ith on-ramp queue in vph,

which is applied for the kth time frame.

Let fj (kT ) denote the off-ramp flow to the jth exit ramp measured during the

kth time frame. Let βj (kT ) denote the split ratio, which is the ratio of the number

of vehicles exiting to the jth off-ramp over the number of vehicles traveling on the

upstream section immediately before the jth off-ramp during the kth time frame, or

which is the ratio of the jth off-ramp flow to the total summed flow of the jth off-

ramp flow and the mainline flow of the downstream section just after the jth off-ramp.

This gives βj (kT ) ∈ [0, 1] for all j ∈ [1, J ] with β0 (kT ) = 0. Let m̃j denote

the downstream section index immediately after the jth exit ramp. Then, βj (kT ) =

fj (kT ) / (fj (kT ) + qm̃j (kT )) for all j ∈ [1, J ] and for all k.
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3.2.2 Time-gap-based traffic model

The time-gap-based traffic model shown in Fig. 3.2 explains the triangular fun-

damental diagram proposed by Newell [21], particularly by using three principal param-

eters: the maximum free-flow velocity in a free-flow region, a typical safety length of

vehicles, and a mean value of the time gap of traffic data under congested conditions

[37]. Since this time-gap-based traffic model is not only supported by empirical traffic

measurements but is also simple, we will use this model for estimating traffic flow and

providing optimal coordinated ramp-metering control for achieving maximum system

throughput. The traffic flow-density equation of a time-gap-based traffic model at time

kT and for the mth section is given by

qm (kT ) = min

{
vf,mρm (kT ) ,

5280− Lρm (kT )

c̄τm

}
, (3.1)

where vf,m is the maximum free-flow velocity for the mth section in mph, L is a typical

safety length of vehicles in feet, τm is the mean value of the time gap defined in a con-

gestion regime of the mth section in seconds, and c̄ is a constant with 5280/3600. The

vehicular traffic network for the consideredmth homogeneous section has the maximum

capacity qmax,m at a value of the critical density ρm (kT ) = ρc,m such that

vf,mρc,m =
5280− Lρc,m

c̄τm
,

which becomes

ρc,m =
5280

c̄τmvf,m + L
. (3.2)

The corresponding maximal throughput achieved at the critical density ρc,m is given by

qmax,m = vf,mρc,m =
5280vf,m

c̄τmvf,m + L
(3.3)

and also 0 ≤ qm (kT ) ≤ qmax,m holds for all times kT and for all m ∈ [1,M ]. We

define the same value of the jam density for all m ∈ [1,M ] as ρjam = 5280/L. Note

that vf,m, τm, ρc,m, and qmax,m are time-invariant.



29

  vpm

q
 vph

,f mv

,c m
jam0

max,mq

m

L

c


Figure 3.2: Time-gap-based traffic model.

3.3 Steady-state Optimization Problem for Maximum Ca-

pacity

In this Section, we consider a method of achieving ramp-metering control using

steady-state optimization without on-ramp queue control. On-ramp queue management

is used to prevent on-ramp queue spillover onto neighboring arterial streets by increas-

ing ramp-metering rate [38, 39]. This strategy can have an adverse effect on highway

mainline traffic and thus diminish the benefits of ramp-meter control. When the vehicu-

lar traffic network reaches the steady-state, traffic density of each homogeneous section

is constant with respect to time kT . Likewise, traffic flow and velocity also become

time-invariant in the steady-state. Thus, by the steady-state conditions, ρm (kT ) = ρm,

qm (kT ) = qm, vm (kT ) = vm, ri (kT ) = ri, fj (kT ) = fj , and βj (kT ) = βj for all

m ∈ [1,M ], i ∈ [1, I], j ∈ [1, J ] and for all times kT .

3.3.1 Traffic flow estimation

We consider that the last indices of the entrance ramp and exit ramp located

just before the mth section for some m ∈ [1,M ] are īm and j̄m, respectively. Then,

m = īm + j̄m for all m ∈ [1,M ]. Let j̃i,m and j̄i,m denote the indices of the upstream-

most and downstream-most exit ramps located between the ith entrance ramp and mth
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homogeneous section, respectively. We assume that vehicles traveling on the section

located just before each off-ramp exit from a highway with uniform distribution, no

matter which upstream entrance ramps they entered. By this hypothesis, the origin-

utilization equation for traffic flow of the mth section is given by

qm =
1

nm

īm∑
i=1

 j̄i,m∏
j=j̃i,m

(1− βj)

 ri, (3.4)

where nm is the number of lanes of the mth section. If a specific exit ramp cannot be

defined for j̃i,m, i.e. if there does not exist an exit ramp between the ith entrance ramp

and mth section, then j̃i,m = 0 and thus j̄i,m = 0.

3.3.2 Optimization problem

The main purpose of a ramp-metering algorithm is to control the metering rate

at all entrance ramps and thus to relieve congestion on highways. The most impor-

tant evaluation criteria for a ramp-metering strategy are total travel time (TTT) on the

mainline, total waiting time (TWT) at the entrance ramp, and total time spent (TTS),

which is the sum of TTT and TWT. That is, in order to improve system-wide total time

spent, it is desirable to utilize the limited throughput of all sections as close as possible

to their maximum capacity, qmax,m, for all m ∈ [1,M ]. Hence, we pursue the steady-

state optimization problem to maximize average system throughput on highways. In a

steady-state, the average system throughput per lane along the highway corridor, JC , is

given by

JC =
1

D

M∑
m=1

qmdm, (3.5)

where D is the total length of the vehicular traffic network and dm is the length of the

mth section. Substituting (3.4) into (3.5),

JC =
1

D

M∑
m=1


īm∑
i=1

 j̄i,m∏
j=j̃i,m

(1− βj)

 ri
 dm
nm

=
1

D
~r>B~a,

where ~a is the M × 1 vector whose element is the length over the number of lanes of the

mth section (i.e. am = dm/nm for all m ∈ [1,M ]), ~r is the I × 1 vector whose element
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is the metered rate at the ith entrance ramp, B is the I ×M origin-utilization matrix,

and (·)> is the transpose of the vector or matrix. The elements of the origin-utilization

matrix B are β(i,m), which refer to the proportion of vehicles entering from the ith on-

ramp and traveling on the mth section, where 0 ≤ β(i,m) ≤ 1 for all i ∈ [1, I] and all

m ∈ [1,M ]. If there exists m̂i with m̂i > i for each i ∈ [1, I] such that
β(i,m) = 0 for all m ∈ [1, m̂i),

β(i,m) = 1 for m = m̂i,

0 ≤ β(i,m) ≤ 1 for all m ∈ (m̂i,M ],

then the corresponding matrix B is called an upper unit trapezoidal matrix. Note that

the original-utilization matrix B is an upper unit trapezoidal matrix, thus reducing the

computational complexity needed to determine the average system throughput, JC .

To utilize the limited throughput of the system fully, we need to prevent the sharp

drop-off of traffic flow that occurs when traffic density is above critical density, which

eventually causes serious congestion. Hence, it is desirable to control the metered rates

at system-wide entrance ramps so as to keep traffic densities along the system below

their critical densities; that is, 0 ≤ ρm ≤ ρc,m for all m ∈ [1,M ]. By this optimization

strategy and (3.2), for all m ∈ [1,M ],

0 ≤ ρm ≤
5280

c̄τmvf,m + L
. (3.6)

By (3.1), for all m ∈ [1,M ],

qm
vf,m

≤ ρm ≤
5280− c̄τmqm

L
. (3.7)

Hence, by (3.6) and (3.7), the optimal traffic density range for the mth section is

qm
vf,m

≤ ρm ≤
5280

c̄τmvf,m + L
. (3.8)

Therefore, by (3.3) and (3.8) the optimization problem for achieving maximum

average system throughput, JC , along the vehicular traffic network becomes

max JC =
1

D

I∑
i=1


M∑

m=m̃i

 j̄i,m∏
j=j̃i,m

(1− βj)

 am
 ri =

1

D
~a>B>~r, (3.9)
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subject to, for all m ∈ [1,M ],0 ≤ 1
nm

∑īm

i=1

[∏j̄i,m

j=j̃i,m
(1− βj)

]
ri ≤ 5280vf,m

c̄τmvf,m+L
,

1
nm vf,m

∑īm

i=1

[∏j̄i,m

j=j̃i,m
(1− βj)

]
ri ≤ ρm ≤ 5280

c̄τmvf,m+L
,

where k̃i is the downstream section index immediately after the ith entrance ramp.

3.4 Time-variant Optimization Problem for Maximum

Capacity with On-ramp Queue Control

The optimization problem (3.9) for achieving maximum average system through-

put in the steady-state described in Section 3.3 is valid as long as the traffic of the mth

section is in a free-flow regime. Although this scheme shows the maximum system

capacity, it causes additional long-term congestion on entrance ramps and unexpected

interference with adjacent street traffic. In order to prevent this undesirable effect of

ramp-metering control, we need to consider an on-ramp queue management strategy.

However, if the high demand flow arrives at on-ramps continually, the activation of on-

ramp queue control unintentionally leads to the inevitable congestion on the highway

mainline. In this case, if the traffic flow summed up with the inflows from upstream on-

ramp queues of the mth section is larger than the corresponding maximum flow, qmax,m,

then the equation (3.9) cannot be used. Hence, we introduce a traffic flow estimation

method using both a fundamental diagram such as the time-gap-based traffic model de-

scribed in previous Section and the vehicle conservation law. The conservation law of

vehicles describes a physical constraint that the change in the number of vehicles on

a highway section is equivalent to the net difference between the inflowing number of

vehicles and the outflowing number of vehicles to or from the corresponding section.

3.4.1 On-ramp queue control

Let ĉi denote the maximum permissible queue length of the ith entrance ramp,

which is strictly less than the ith entrance ramp’s capacity, ci, with ĉi < ci. Let rmin
denote the minimum on-ramp discharge rate, which is the same constant for all entrance
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ramps i ∈ [1, I], i.e. 240 vph. Some minimum on-ramp discharge rate must be supported

because drivers want to stay on the entrance ramp for as short a time as possible. Thus,

for all i ∈ [1, I] and for every time kT ,

rmin ≤ ri (kT ) . (3.10)

Since the difference between the demand flow and metered rate should be less than or

equal to the admissible on-ramp queue length, for all i ∈ [1, I],

(ei (kT )− ri ((k + 1)T )) ≤ (ĉi − wi (kT ))

T̂
, (3.11)

where T̂ = T/3600. Also, since the metered rate should be less than or equal to the

maximum possible inflow rate considering the demand flow and current on-ramp queue

length, for all i ∈ [1, I],

ri ((k + 1)T ) ≤ ei (kT ) +
wi (kT )

T̂
. (3.12)

By (3.10), (3.11), and (3.12), and by letting ηi (kT ) = ei (kT ) + wi(kT )

T̂
, on-ramp queue

control is satisfied with

max

{
min {rmin, ηi (kT )} , ηi (kT )− ĉi

T̂

}
≤ ri ((k + 1)T ) ≤ ηi (kT ) (3.13)

for all i ∈ [1, I] and for all k.

3.4.2 Traffic flow estimation

Homogeneous sections comprising vehicular traffic networks are attached to ei-

ther the entrance ramp or exit ramp. In the case of a homogeneous section with an en-

trance ramp, there exists disturbance by the vehicles entering from the on-ramp queue.

Hence, based on the vehicle conservation law, traffic density of the mth section with an

entrance ramp at the next time (k + 1)T can be estimated by

ρm (kT ) = ρm ((k − 1)T ) + T̂
[
nm−1qm−1 ((k − 1)T )− nmqm ((k − 1)T )

+ rīm ((k − 1)T )
] 1

nmdm
.

(3.14)
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Unlike a homogeneous section with an entrance ramp, since input disturbance does

not exist in a section attached to an exit ramp, the estimated traffic density is linearly

dependent on that of its upstream section as

ρm (kT ) =
(
1− βj̄m ((k − 1)T )

)
ρm−1 ((k − 1)T ) . (3.15)

We can determine the estimated flow of themth section at time kT by substituting (3.14)

or (3.15) in (3.1).

3.4.3 Optimization problem

The time-variant optimization problem to find the metered rate for each entrance

ramp for achieving the maximum average system capacity per lane is a linear program-

ming problem of choosing ri (kT ) every time kT as, by (3.1), (3.3), and (3.13),

max JC (kT ) =
1

D

M∑
m=1

qm (kT ) dm, (3.16)

subjected to, for all m ∈ [1,M ],

0 ≤ qm (kT ) ≤ 5280vf,m
c̄τmvf,m+L

,

max
{

min {rmin, ηīm ((k − 1)T )} , ηīm ((k − 1)T )− ĉīm

T̂

}
≤ rīm (kT ) ≤ ηīm ((k − 1)T ) ,

0 ≤ ρm (kT ) ≤ ρjam,

where ηīm ((k − 1)T ) = eīm ((k − 1)T ) + wīm ((k−1)T )

T̂
and qm (kT ) is given by either

(3.14) or (3.15) depending on the type of the section.

3.5 Analysis, Results, and Discussions

In this Section, we present the comparative simulation results of the average

system capacity and velocity on a highway corridor with four different ramp-metering

strategies: with no ramp-metering control, ALINEA, a steady-state optimization scheme,

and a time-variant optimization method.
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Figure 3.3: Highway corridor for simulation example.

3.5.1 Simulation scenario

Fig. 3.3 specifies a highway corridor that we consider for simulation; it consists

of M = 8 sections, I = 5 entrance ramps including the first section that is the most

upstream toward the mainline, and J = 3 exit ramps. The second section attaches

to an entrance ramp and then each section contains, by turn, an entrance ramp and an

exit ramp. Each section has nm = 4 lanes for all m ∈ [1,M ]. The length of section

attached to an entrance ramp and an exit ramp is 1 and 0.1 miles, respectively. We set

the average safety length of vehicles to L = 22 feet, maximum free-flow velocity to

vf,m = 70 mph, and mean value of the time gap under congested status to τm = 1.78

seconds for all m ∈ [1,M ] as typically measured in the United States [37]. From this,

we can determine the critical density ρc,m, jam density ρjam, and maximum flow qmax,m

for each section using a time-gap-based traffic model. We suppose that each on-ramp

queue has the same permissible queue capacity of ĉi = 200 for all i ∈ [1, I] and that the

split ratio for each off-ramp is constant with βj (kT ) = 0.2 for all j ∈ [1, J ] and for all

k ≥ 0. In addition, we suppose that every section on the mainline has the same initial

density of ρm (0) = 10 for all m ∈ [1,M ]. Let the initial queue length on every on-ramp

queue be wi (0) = 0 for all i ∈ [1, I].

The demand flow entering to each on-ramp queue for each period is listed in

Table 3.1. The total simulation time is 5 hours and comprises three periods: we use

the amount of demand flow vector defined in the free-flow period for the first hour,

rush-hour period for the next 2 hours, and free-flow period again for the final 2 hours.
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Table 3.1: Demand flow.

Entrance ramp number Free-flow period (vph) Rush-hour period (vph)

1 1000 1800

2, 3, 4, 5 200 1000

3.5.2 Simulation results

Fig. 3.4 shows the average system capacity over 5 hours on a sample highway

corridor using the four specified ramp-metering controls. In addition, Fig. 3.5 shows the

average system velocity of all vehicles traveling over the highway corridor during the

specified 5-hour time frame. The average system flow is around 910 vph during the first

free-flow period, which is the same without regard to the type of ramp-metering control

and even under no ramp-metering operation. Once demand flow to all entrance ramps

increases dramatically as occurs during the rush-hour period, all four ramp-metering

methods show an instant throughput improvement approximate to the maximum system

capacity around 1800 vph because of the sudden increase in traffic density. As high de-

mand flow is injected into the vehicular traffic network continuously, no ramp-metering,

ALINEA, and time-variant optimization controls lead to a gradual degradation of sys-

tem throughput. However, steady-state optimization control method maintains a higher

system flow by limiting the metered rates at system-wide entrance ramps so as to keep

traffic densities along the system below their critical densities of about 25 vpm, caus-

ing on-ramp queue spillover to adjacent local streets. In contrast, following the rush-

hour period, since density along the system decreases, no ramp-metering, ALINEA,

and time-variant optimization controls show an increase in the average system capacity.

Note that the system capacity recovering from congestion does not reach capacity be-

fore flow breakdown. This observation describes traffic hysteresis phenomena [40, 41].

After vehicles of all on-ramp queues are discharged or traffic density on the mainline of

the system decreases below the critical density, average system throughput of all ramp-

metering controls returns to the initial simulation state.

In contrast to the other three ramp-metering approaches described here, the

steady-state optimization algorithm requires more than an hour to clear congestion;

this is because the steady-state scheme must evacuate numerous vehicles waiting on
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Figure 3.4: Average system capacity vs. time.
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both entrance ramp queues and adjacent arterial roads. Since ALINEA also does not

support on-ramp queue control, it incurs neighboring street traffic. However, the time-

variant ramp-metering algorithm not only keeps the queue length on entrance ramps

short enough to prevent build-up of vehicles at on-ramp queues, but it also generally

improves the average system throughput, particularly during congestion conditions.

When we fulfill the requirements of the steady-state ramp-metering method, all

vehicles on the mainline travel with a maximum free-flow velocity of 70 mph shown

in Fig. 3.5, but it has the drawback of requiring longer congestion clearance time for

dispersing vehicles both on entrance ramps and adjacent roads. Compared to the steady-

state method, other three schemes show that the average system speed decreases as the

number of vehicles wanting to use the highway network increases during the rush-hour

period, but the average speed of traveling vehicles on the mainline increases until traffic

returns to the normal free-flow state following the rush-hour period. As with the average

system capacity results, the time-variant ramp-metering scheme allows vehicles on the

highway mainline to travel with a higher velocity than is permitted by either ALINEA

or no ramp metering.

3.6 Summary

The goal of the Chapter 3 is to provide two optimal ramp-metering controls for

achieving maximum average system throughput on highways. The steady-state opti-

mization problem limits the inflow rate from entrance ramps into the mainline so as to

keep traffic densities along a highway corridor below their critical densities, whereas the

time-variant programming problem adopts on-ramp queue control to prevent additional

congestion onto neighboring arterial roads. The time-gap-based fundamental diagram

is used for estimating traffic flow as well as for demonstrating the constraints of two

optimization problems.

Use of the steady-state optimization scheme results in high average system ca-

pacity as well as increased average system velocity to the overall traffic network, but this

method has the drawback of incurring significant on-ramp queue spillover on adjacent

streets, thus requiring long congestion clearance time to return to the free-flow state.
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In contrast, the time-variant optimization problem for achieving the maximum average

system capacity is proven as an effective coordinated ramp-metering algorithm to pro-

vide higher system throughput and to increase the average system velocity, particularly

under congestion situations.
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Chapter 4

New Traffic Safety Metric

In this Chapter, we propose a traffic safety metric called the safety marginal value

(SMV) to be applied to discrete-time and continuous-space vehicular traffic networks.

Every vehicle in a network uses a set of vehicle states containing the position, velocity,

and lane index of all vehicles on a roadway to determine the SMV, while also control-

ling its velocity for the next time step. The anterior SMV is defined as the minimum

value from a set of the continuous safety level of collision risk with the leading vehicles

predicted by the collision avoidance (CA) margin time of each vehicle and is bounded

by two non-negative integers. The higher the anterior SMV, the lower the likelihood of

a rear-end accident occurring. However, the computational complexity of our proposed

safety metric grows dramatically as the number of vehicles traveling on a roadway in-

creases, since a set of vehicle states for all vehicles is needed to determine the SMV.

Thus, a finite space horizon for the anterior SMV is developed to reduce the computa-

tional complexity. That is, only a subset of vehicle states related to the finite number of

vehicles defined by a space horizon is required to provide a precise anterior SMV. This

simple and rigorous traffic safety metric will be useful in reducing vehicle-to-vehicle

crashes and could thus relieve traffic congestion caused by accidents. Moreover, the

anterior SMV can be used as a safety criterion to validate car-following models un-

der various environmental variables or as a key parameter of an objective function to

maximize safety levels on roadways. In particular, a safety analysis of the Gipps car-

following model is performed with a microscopic traffic simulation as well as with our

proposed safety indicator.

40
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4.1 Introduction

There have been many attempts to specify the movement of vehicles traveling

on vehicular traffic networks. In particular, existing car-following models describe the

interactive characteristics of vehicles, such as time headway, velocity, and acceleration

rate [42, 43, 44, 45, 46, 47]. The Gazis-Herman-Rothery (GHR) model [42], the most

well-known car-following model, was developed based on the hypothesis that an indi-

vidual driver’s acceleration is proportional to the relative speed and car spacing to its

leading vehicle. In addition to this assumption, Gipps [43] considered safety distance or

collision avoidance with the reasonable supposition that a driver incorporates an addi-

tional braking reaction time for safety. Hence, the Gipps model described the behavior

of real traffic in free-flow as well as in congested flow, which can be embedded in di-

verse microscopic traffic simulations. Wilson [44] provided a mathematical analysis of

the Gipps car-following model. He derived the speed-headway function for the Gipps

model with the numerical bound, where a physical solution can be defined, and analyzed

the stability of the uniform flow solutions. The existing car-following models, such as

the GHR model and the Gipps model, presented the driver’s response to the behavior

of the leading vehicle. However, these models cannot predict the risky and unexpected

driving behavior of the leading vehicle, since they were developed based on unrealistic

assumptions about the ideal safe behavior of drivers. Hence, these models can cause a

rear-end collision under some combination of variables. A traffic safety metric therefore

needs to be investigated as the basic essential for car-following models.

Kwon et al. [3] provided the evidence that most collisions are caused by hu-

man faults, such as speeding, intoxication, or inattention by distraction. Most crashes

are rear-end and broadside collisions, but the main relevant accident to car-following

models, unlike lane changing models, is a rear-end collision, which can be prevented

with the help of a proper safety assessment tool. Meanwhile, many studies on driver

assistance systems have been conducted for collision avoidance. In particular, adap-

tive cruise control (ACC) systems and braking assistance systems have been examined

to mitigate rear-end collisions. These systems use various sensors on a vehicle to pre-

dict the driver’s intent in different traffic situations, such as accelerating, braking, and

changing lanes, and to help to reduce unexpected incidents [48, 49]. ACC systems as
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an extension to the cruise control can help to enhance both safety and the driver’s com-

fort [50]. The representative goals of ACC systems is to maintain a certain car spacing

to the leading vehicle [51] and to automatically accelerate and brake [52]. In addi-

tion, probabilistic techniques have been used to analyze intentional driver behavior and

predict driver reaction, which are hidden Markov models (HMMs) [53, 54] and sparse

Bayesian learning [49]. However, driver assistance systems containing both ACC sys-

tems and probabilistic methods can not guarantee safe traffic patterns yet. Additional

assessment techniques that determine the degree of safety and thus mitigate dangerous

traffic circumstances are required for more controlled and advanced driver assistance

systems. A traffic safety metric indicating safety level of collision risk can be a good

auxiliary strategy in intelligent vehicles.

Hayward [55] initially defined Time-to-Collision (TTC) as a traffic safety indi-

cator, which is the time required for two consecutive vehicles in the same lane to collide

if they continuously travel at their current speed. TTC of the ith vehicle at time t is

given by

TTCi (t) =
xi−1 (t)− xi (t)− Li−1

vi (t)− vi−1 (t)
,

where xi (t) and vi (t) are the position and velocity of the ith vehicle at time t, respec-

tively. In addition, Li denotes the length of the ith vehicle, and the index of (i− 1)

means the lead of the ith vehicle. TTC is defined only for vi (t) > vi−1 (t). TTC has

proven to be an effective quantitative metric to rate the risk of collision [56, 57]. In

general, TTC is inversely proportional to accident involvement. That is, a smaller value

of TTC induces a higher level of crash risk. Another widely used safety measure is time

headway, defined as the time it will take for a vehicle to travel the distance from its front

end to the tip of its leading vehicle. By the definition of time headway, time headway of

the ith vehicle at a certain location x is

THi (x) = ti (x)− ti−1 (x) ,

where ti (x) denotes the time at which the ith vehicle passes the location x. There have

been studies about the relationship between time headway and the occurrence of col-

lisions [58, 59] that reveal an inverse relationship depending on traffic situations. In

particular, Vogel [60] investigated the two safety indicators, TTC and time headway,
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and claimed they are independent of each other. He found that these two measures are

appropriate for different purposes; TTC can be used to evaluate the actual safety of

the traffic environment, whereas the ease of observing and interpreting time headway

makes it a criterion for preventing tailgating. Bevrani et al. [61] selected the bounds

of TTC and time headway for the evaluation of a critical safety event and modified

the Gipps car-following model under the performance results so as to remedy the un-

safe vehicle movements of the Gipps model. Many studies used empirical traffic data

or simulation to suggest suitable ranges of the two safety indicators, which guarantee

collision-free trajectory [59, 62, 63, 64]. However, the proposed safety limits of TTC

and time headway are not only various for different traffic situations, but also ambigu-

ous for indicating the safety level of collision risk. For example, the recommend range

of TTC is from 1.5 s to 5 s in urban areas. Nevertheless, even if a vehicle travels with a

TTC of 1.4 s (being less than the lower bound), its movement can maintain a crash-free

trajectory. Therefore, there is a need for a new safety metric that shows the likelihood of

an accident occurring and applies identically, irrespective of diverse traffic conditions.

We propose a safety indicator, called the safety marginal value (SMV), to predict and

prevent a rear-end collision.

The remainder of this Chapter is organized as follows: In Section 4.2, we present

the vehicular traffic system assumptions for determining the anterior SMV. We define

the SMV as a rigorous safety metric in Section 4.3. In addition, we provide the ante-

rior collision avoidance likelihood function to derive the anterior SMV mathematically,

particularly for the following second vehicle. As its extension, Section 4.4 specifies

the general form of the anterior SMV, when multiple vehicles exist on vehicular traffic

networks. To derive the safety indicator, feasible combinations of trajectories of two

consecutive vehicles are investigated. In addition, in order to reduce the dramatically

growing computational complexity in determining the anterior SMV as the number of

vehicles in system increases, a finite space horizon for the anterior SMV is introduced.

In Section 4.5, we employ the Gipps car-following model to present simulation results.

We show a steady-state that guarantees collision-free movements and a catastrophe state

that results in collisions according to the different variables defined in the Gipps car-

following model. Furthermore, our proposed anterior space horizon and corresponding
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anterior SMV are examined under the various parameters of the model. In the resulting

simulation, the anterior SMV is verified as a strong and rigorous safety metric to indicate

the safety level of rear-end collision risk for a microscopic car-following model.

4.2 Vehicular Traffic Network

In this Section, we present the details of the vehicular traffic network overview

for the SMV. We first provide several traffic system assumptions.

4.2.1 Vehicular traffic system assumptions

We consider traffic flow on a roadway shown in Fig. 4.1. Assuming that there

are multiple vehicles traveling on a roadway, we use a set of vehicle states to determine

the SMV. A set of vehicle states at time kT for k ∈ {0 ∪ N} is given by C (kT ) =

{Ci (kT ) | for all i ∈ N}, where N is a set of natural numbers and T is the update time

interval. In other words, T is frequency of update in time to obtain the new SMV.

Ci (kT ) denotes the vehicle states of the ith vehicle at time kT . A set of vehicle states

consists of the position, velocity, and lane index for all vehicles and is newly updated

at every time step. That is, the vehicle states of the ith vehicle are given by Ci (kT ) =

{xi (kT ) , vi (kT ) , li (kT )}, where xi(kT ), vi(kT ), and li(kT ) are the position, velocity,

and lane index of the ith vehicle at time kT , respectively.

We suppose that every vehicle has the same maximum acceleration rate a+
max

and deceleration rate a−max, where a+
max > 0 and a−max < 0 are finite bounded. In ad-

dition, we assume that every vehicle knows a set of vehicle states of all other vehicles

on a roadway. Hence, each vehicle can predict the maximum and minimum trajectories

of other vehicles for some future time at every time step kT . The maximum trajec-

tory is the trajectory of a vehicle traveling with the maximum acceleration rate a+
max,

while the minimum trajectory is that of a moving vehicle with the maximum deceler-

ation rate a−max. When a vehicle travels with the maximum deceleration rate, once it

stops completely, its minimum trajectory stays stationary. Let di,max (kT + ∆t) and

di,min (kT + ∆t) denote the maximum and minimum trajectories of the ith vehicle at

time (kT + ∆t) for all ∆t ≥ 0, which are calculated from a set of vehicle states C (kT )
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Figure 4.1: Vehicular traffic network.

at time kT , respectively. Assume that each vehicle calculates its collision avoidance

(CA) margin time, which is the time required to stop completely with full application of

the brakes. Let hi (kT ) denote the CA margin time of the ith vehicle calculated at time

kT , which is thus given by −vi (kT ) /a−max.

Note that the CA margin time is the critical time in determining a safety indica-

tor. When a driver recognizes that a collision with the leading vehicle appears imminent,

he must try to stop as soon as possible by braking with the maximum deceleration rate to

prevent a rear-end crash, which leads to the minimum trajectory. In the case that the ve-

hicle’s path is the minimum trajectory, accident-free driving at the current time or even

the subsequent time is not sufficient for complete safety, since if a collision happens by

the CA margin time, it inevitably leads to a crash. That is to say, collision-free travel for

the ith vehicle defined at time kT is determined by accident occurrence not by the next

time step (k + 1)T , but by the CA margin time hi (kT ). Hence, each vehicle uses a set

of vehicle states of all other vehicles to draw the maximum and minimum trajectories

of all other automobiles by its calculated CA margin time in order to specify a safety

indicator at every time step.

4.3 Anterior Safety Marginal Value

In this Section, we present the mathematical forms for the anterior SMV.



46

4.3.1 Safety marginal value property

Every vehicle uses a set of vehicle states C (kT ) to determine two safety marginal

values: the anterior SMV, SMV A
i (kT ), and posterior SMV, SMV P

i (kT ). The anterior

SMV is used as a collision indicator against the leading vehicles. In contrast, when

a vehicle changes lanes on a roadway, it is necessary to refer to a safety metric such

as the posterior SMV. This metric utilizes the vehicle states of all following vehicles

to measure the safety level of collision risk to those vehicles. That is, the ith vehicle

needs a subset of vehicle states {C1 (kT ) , C2 (kT ) , . . . , Ci (kT )} to determine the an-

terior SMV and the other subset {Ci (kT ) , Ci+1 (kT ) , . . . , CM (kT )} to calculate the

posterior SMV. In this Chapter, only the anterior SMV is described, since only this is

associated with a rear-end collision.

The anterior safety marginal value function of the ith vehicle at time kT for

every i ∈ N is given by

SMV A
i ({C1 (kT ) , C2 (kT ) , . . . , Ci (kT )}) ∈ [0, 1].

SMV A
i (kT ) = 1 implies that the ith vehicle will not collide with other leading vehicles

by its CA margin time hi (kT ). That is, the ith vehicle is absolutely safe from collision

risk by its CA margin time. On the contrary, SMV A
i (kT ) = 0 implies that the ith

vehicle will crash into vehicles ahead of it before its CA margin time. SMV A
i (kT ) ∈

(0, 1) means that the ith vehicle is likely to crash into other leading vehicles by its CA

margin time. The larger the SMV, the safer the vehicle is; that is, the lower the likelihood

of a crash. The goal is to provide the anterior SMV at every time step, which can be

used as an effective reference metric for controlling a vehicle for safe driving against a

rear-end collision.

4.3.2 Anterior safety marginal value for the second vehicle

It can be assumed that the anterior SMV for the first vehicle is 1, as there is no

vehicle in front of the first vehicle on a straight road as shown in Fig. 4.1. However, the

anterior SMV for the following, second vehicle depends on the subset of vehicle states,

which is {C1 (kT ) , C2 (kT )} ⊂ C (kT ). Normally, the driving patterns of other drivers

can be estimated based on the traffic flow status, and thus the velocity and position
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of other vehicles can be predicted for some future time with positive error probability.

Most people generally drive with the assumption that their acceleration rate has some

distribution between the maximum acceleration rate and maximum deceleration rate;

for example, a vehicle location between the maximum and minimum trajectories might

follow a Gaussian distribution at any time. This implies that general driving patterns

are based on an unreliable estimation of the position and velocity of other vehicles for

some future time. This is not a particularly safe driving style, as this estimation does

not actively take into consideration even the possibility of an unexpected crash. Hence,

a worst-case driving scenario of the vehicles in front must be considered for safety. For

instance, even though the immediately leading vehicle has enough car spacing with no

accident risk, it might brake with intensity. However, if we assume that every vehicle

is traveling with uncertainty of the position and velocity of other vehicles for some

future time, then we can provide a tight and rigorous safety metric. Since a random

parameter shows the highest entropy when it has a uniform distribution, we suppose

that the trajectories of all vehicles have a uniform distribution between di,max (kT + ∆t)

and di,min (kT + ∆t) at any time ∆t ≥ 0 with the magnitude 1/[di,max (kT + ∆t) −
di,min (kT + ∆t)] for all i ∈ N, where di,max (kT + ∆t) and di,min (kT + ∆t) are the

maximum and minimum trajectories for the ith vehicle at time (kT + ∆t), respectively.

The maximum and minimum trajectories of the first two vehicles, and the cor-

responding collision and non-collision areas are shown in Fig. 4.2. The dotted (upper

colored in blue) and dash-dotted (lower in blue) lines represent the maximum and min-

imum trajectories of the first vehicle, respectively. The solid line (in red) describes the

minimum trajectory of the second vehicle. In addition, the circle (in blue) and star (in

red) shown in Fig. 4.2 refer to the CA margin time for the first and second vehicles,

respectively. The trajectories are obtained with the initial position vector [15.2, 0] m

and initial velocity vector [48.3, 96.6] km/h of the first two vehicles. The second ve-

hicle calculates the maximum and minimum trajectories of the first vehicle that is its

leading vehicle, and its own minimum trajectory by its CA margin time h2 (kT ). We

use the minimum trajectory of the second vehicle instead of its maximum trajectory for

calculating the anterior SMV of the second vehicle because if the driver of the second

vehicle recognizes that a collision with the first vehicle appears imminent, he must try to
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Figure 4.2: Collision and non-collision areas between two consecutive vehicles.

decrease the vehicle’s velocity by fully applying the brakes, which draws the minimum

trajectory.

Let us fix the time ∆t̂ ∈ (0, h2 (kT )]. We cut the trajectory plane vertically

at a certain time ∆t̂, so we specify two non-overlapped areas by the minimum tra-

jectory of the second vehicle, which are said to be collision and non-collision areas.

The first vehicle is located between d1,max

(
kT + ∆t̂

)
and d1,min

(
kT + ∆t̂

)
with a

uniform distribution by supposition. For example, we assume that ∆t̂ is at the time

indicated by a green vertical line as shown in Fig. 4.2. If the first vehicle is prac-

tically located between d1,max

(
kT + ∆t̂

)
and d2,min

(
kT + ∆t̂

)
under the condition

d1,max

(
kT + ∆t̂

)
> d2,min

(
kT + ∆t̂

)
, then the second vehicle does not collide with

the first vehicle at time
(
kT + ∆t̂

)
; this area is thus defined as a non-collision area,

as the second vehicle must be located at d2,min

(
kT + ∆t̂

)
for active safe driving. In
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contrast, if the first vehicle is located between d2,min

(
kT + ∆t̂

)
and d1,min

(
kT + ∆t̂

)
under the condition d2,min

(
kT + ∆t̂

)
> d1,min

(
kT + ∆t̂

)
, then the second vehicle

will crash into the first vehicle; this area is thus said to be a collision regime.

Now, we provide the anterior collision avoidance likelihood and the anterior col-

lision likelihood function for the second vehicle, which are continuous functions in time

and are denoted by function I〈N(2,1)〉 (kT + ∆t) and I〈A(2,1)〉 (kT + ∆t), respectively.

The anterior collision avoidance likelihood function shows the continuous safety level

of collision risk toward any other leading vehicles. The anterior collision avoidance

likelihood function and anterior collision likelihood function for the second vehicle at

any given time ∆t ∈ (0, h2 (kT )] are given by

I〈N(2,1)〉 (kT + ∆t) =

[
d1,max (kT + ∆t)− d2,min (kT + ∆t)

d1,max (kT + ∆t)− d1,min (kT + ∆t)

]
P

, (4.1)

I〈A(2,1)〉 (kT + ∆t) =

[
d2,min (kT + ∆t)− d1,min (kT + ∆t)

d1,max (kT + ∆t)− d1,min (kT + ∆t)

]
P

, (4.2)

where 〈N (i+ 1, i)〉means non-accident between two consecutive vehicles, the (i+ 1)st

and ith vehicles, 〈A (i+ 1, i)〉 means accident occurrence between these two vehicles,

and [f (t)]P is defined by

[f (t)]P =


1 for f (t) ≥ 1,

f (t) for 0 < f (t) < 1,

0 for f (t) ≤ 0.

(4.3)

Note that I〈N(2,1)〉 (kT + ∆t) + I〈A(2,1)〉 (kT + ∆t) = 1 for all k ∈ {0 ∪ N} and for all

∆t ∈ (0, h2 (kT )]. Finally, the anterior SMV is defined as the minimum value from

a set of the anterior collision avoidance likelihood function by the CA margin time.

Therefore, the anterior SMV of the second vehicle at time kT is given by

SMV A
2 (kT ) = min

∆t∈(0,h2(kT )]
I〈N(2,1)〉 (kT + ∆t) . (4.4)

The anterior collision avoidance likelihood function and corresponding anterior

SMV for the second vehicle are depicted in Fig. 4.3. The solid line describes an anterior

collision avoidance likelihood function with respect to time from (4.1). The star shown

here refers to the CA margin time of the second vehicle calculated at time kT , and
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Figure 4.3: Anterior collision avoidance likelihood function and corresponding anterior
SMV.

the square refers to the anterior SMV of the second vehicle, which is the minimum

value of an anterior collision avoidance likelihood function by its CA margin time. This

result is obtained under the same condition used for Fig. 4.2. As seen in Fig. 4.2,

it can be observed that the minimum trajectory of the second vehicle overtakes that

of the first vehicle after around 1.2 s, but it does not pass the maximum trajectory of

the first vehicle up until the CA margin time of the second vehicle. If the first vehicle

decreases its velocity with the maximum deceleration rate continuously from the time

kT , which drives its minimum trajectory, then the second vehicle will collide with its

leading vehicle around 1.2 s later, although the second vehicle decreases its velocity as

quickly as possible via full application of the brakes. On the contrary, if the first vehicle

increases its velocity constantly with the maximum acceleration rate, which drives its

maximum trajectory, then the two vehicles will never crash by the CA margin time of

the second vehicle; however, this does not assure collision-free movement at a later

time than the CA margin time. That is, there might exist a nonzero collision possibility

between two consecutive vehicles, which depends on their vehicle states updated at the

next time step. By the definition of the anterior SMV (4.4), the anterior SMV of the

second vehicle is about 0.55 under the scenario shown in Fig. 4.2.
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4.4 General Form of Anterior Safety Marginal Value

In this Section, we provide the general form of the anterior SMV. In addition,

we suggest using a finite space horizon for the anterior SMV in order to reduce the

computational complexity in determining the anterior SMV.

4.4.1 Anterior safety marginal value of the ith vehicle

Suppose that all vehicles are in the same lane; that is, li (kT ) = l for all i ∈ N
and for all k ∈ {0 ∪ N}. In that case, only the position and velocity from a set of

vehicle states need to be considered to determine the anterior SMV. Also suppose that

xi (kT ) > xi+1 (kT ) holds for all i ∈ N and for every time step kT ; that is, the ith

vehicle is followed by the (i+ 1)st vehicle. Let us fix i ∈ N and k ∈ {0 ∪ N}. The

maximum and minimum trajectories of the ith vehicle at time (kT + ∆t), which are

di,max (kT + ∆t) and di,min (kT + ∆t), are given by

di,max (kT + ∆t) = xi (kT ) + vi (kT ) ∆t+
a+
max

2
∆t2

for all ∆t ≥ 0, and

di,min (kT + ∆t) =



xi (kT ) + vi (kT ) ∆t+ a−max
2

∆t2

for all ∆t ∈ [0, hi (kT )] ,

xi (kT ) + vi (kT )hi (kT ) + a−max
2
hi (kT )2

for all ∆t > hi (kT ) ,

where hi (kT ) is the CA margin time of the ith vehicle determined at time kT with

hi (kT ) = −vi (kT ) /a−max. Note that di,max (kT + ∆t) is a strictly increasing func-

tion for all ∆t ≥ 0. di,min (kT + ∆t) is a strictly increasing function for all ∆t ∈
[0, hi (kT )], while it is the same constant as di,min (kT + hi (kT )) for all ∆t > hi (kT ).

Also, we have two conditions such that di,max (kT + ∆t) = di,min (kT + ∆t) for ∆t =

0 and di,max (kT + ∆t) > di,min (kT + ∆t) for all ∆t ∈ (0, hi (kT )].

Note that the critical and non-trivial proofs only are included.

Lemma 4.1. There exists εt > 0 such that

di,min (kT + εt) > di+1,max (kT + εt)
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for all i ∈ N and for every k ∈ {0 ∪ N}.

Proof. Fix i ∈ N and k ∈ {0 ∪ N}.

di,min (kT + εt)− di+1,max (kT + εt)

= [xi (kT )− xi+1 (kT )] + [vi (kT )− vi+1 (kT )] εt +

(
a−max − a+

max

2

)
εt

2,

which as εt goes to 0,

→ [xi (kT )− xi+1 (kT )]

Hence, since [xi (kT )− xi+1 (kT )] > 0, and i ∈ N and k ∈ {0 ∪ N} are arbitrary,

there exists εt > 0 such that di,min (kT + εt) > di+1,max (kT + εt) for some εt > 0 as

required.

Lemma 4.2. Let vi (kT ) ≥ vi+1 (kT ) for some i ∈ N and for some k ∈ {0 ∪ N}. Then,

di,max (kT + ∆t) > di+1,max (kT + ∆t)

and

di,min (kT + ∆t) > di+1,min (kT + ∆t)

for all ∆t ∈ [0, hi (kT )]. Furthermore,

di,max (kT + ∆t) > di+1,min (kT + ∆t)

for all ∆t ∈ [0, hi (kT )].

Proof. Suppose vi (kT ) ≥ vi+1 (kT ). Then, hi (kT ) ≥ hi+1 (kT ) holds by the defini-

tion of the CA margin time. Hence, we have

di,min (kT + ∆t)− di+1,min (kT + ∆t)

= [xi (kT )− xi+1 (kT )] + [vi (kT )− vi+1 (kT )] ∆t

for all ∆t ∈ [0, hi+1 (kT )]. By supposition, the relationship between the minimum tra-

jectories of two consecutive vehicles satisfies di,min (kT + ∆t) > di+1,min (kT + ∆t)

for all ∆t ∈ [0, hi+1 (kT )]. Since di,min (kT + hi+1 (kT )) > di+1,min (kT + hi+1 (kT )),

0 < di,min (kT + hi+1 (kT ))− di+1,min (kT + hi+1 (kT )) ,

which by the definition of the minimum trajectory, for all ∆t ∈ (hi+1 (kT ) , hi (kT )],
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<

[
xi (kT ) + vi (kT ) ∆t+

a−max
2

∆t2
]

−
[
xi+1 (kT ) + vi+1 (kT )hi+1 (kT ) +

a−max
2

hi+1 (kT )2

]
= di,min (kT + ∆t)− di+1,min (kT + ∆t) .

Hence,

di,min (kT + ∆t) > di+1,min (kT + ∆t)

for all ∆t ∈ (hi+1 (kT ) , hi (kT )] and thus this holds for all ∆t ∈ [0, hi (kT )]. Similarly,

by the definition of the maximum trajectory and supposition,

di,max (kT + ∆t) > di+1,max (kT + ∆t)

is satisfied for all ∆t ∈ [0, hi (kT )] as required. In addition, since di,max (kT + ∆t) ≥
di,min

(
kT + ∆t

)
for all i ∈ N and for all ∆t ∈ [0, hi (kT )],

di,max (kT + ∆t) > di+1,min (kT + ∆t)

for all ∆t ∈ [0, hi (kT )].

Lemma 4.2 yields the following Corollary.

Corollary 4.3. For some i ∈ N and for some k ∈ {0 ∪ N}, suppose that there exists

∆t̂ ∈
(
0, max

{
hi (kT ) , hi+1 (kT )

}]
such that

di,max
(
kT + ∆t̂

)
≤ di+1,max

(
kT + ∆t̂

)
,

di,min
(
kT + ∆t̂

)
≤ di+1,min

(
kT + ∆t̂

)
, or

di,max
(
kT + ∆t̂

)
≤ di+1,min

(
kT + ∆t̂

)
.

Then, vi (kT ) < vi+1 (kT ).

Lemma 4.4. Suppose that there exists ∆t̂ ∈ (0, hi (kT )] such that di,max
(
kT + ∆t̂

)
=

di+1,max

(
kT + ∆t̂

)
. Then,

di,min
(
kT + ∆t̂

)
= di+1,min

(
kT + ∆t̂

)
holds and vice versa. Also, di+1,max

(
kT + ∆t̂

)
> di,min

(
kT + ∆t̂

)
. This implies that

vi (kT ) < vi+1 (kT ). Hence,

di,max (kT + ∆t) > di+1,max (kT + ∆t) and di,min (kT + ∆t) > di+1,min (kT + ∆t)
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for all ∆t ∈
[
0,∆t̂

)
, and

di,max (kT + ∆t) < di+1,max (kT + ∆t) and di,min (kT + ∆t) < di+1,min (kT + ∆t)

for all ∆t ∈
(
∆t̂ , hi+1 (kT )

]
are satisfied.

Proof. Suppose there exists ∆t̂ ∈ (0, hi (kT )] such that the equality, di,max
(
kT + ∆t̂

)
= di+1,max

(
kT + ∆t̂

)
, holds. Then, by Corollary 4.3, vi (kT ) < vi+1 (kT ) and thus

hi (kT ) < hi+1 (kT ). For some ∆t̂ ∈ (0, hi (kT )],

di,max
(
kT + ∆t̂

)
− di+1,max

(
kT + ∆t̂

)
=

[
xi (kT ) + vi (kT ) ∆t̂+

a+
max

2
∆t̂

2
]
−
[
xi+1 (kT ) + vi+1 (kT ) ∆t̂+

a+
max

2
∆t̂

2
]

=

[
xi (kT ) + vi (kT ) ∆t̂+

a−max
2

∆t̂
2
]
−
[
xi+1 (kT ) + vi+1 (kT ) ∆t̂+

a−max
2

∆t̂
2
]

= di,min
(
kT + ∆t̂

)
− di+1,min

(
kT + ∆t̂

)
.

This shows that di,max
(
kT + ∆t̂

)
= di+1,max

(
kT + ∆t̂

)
is satisfied for some ∆t̂ ∈

(0, hi (kT )] if and only if di,min
(
kT + ∆t̂

)
= di+1,min

(
kT + ∆t̂

)
holds. In addition,

since di,max (kT + ∆t) > di,min (kT + ∆t) for all ∆t ∈ (0, hi (kT )] and for all i ∈ N,

di+1,max

(
kT + ∆t̂

)
> di,min

(
kT + ∆t̂

)
. We note that, by supposition,

∆t̂ = −xi (kT )− xi+1 (kT )

vi (kT )− vi+1 (kT )
∈ (0, hi (kT )] . (4.5)

Since vi (kT ) < vi+1 (kT ), (4.5) yields

− [vi (kT )− vi+1 (kT )] ∆t < [xi (kT )− xi+1 (kT )]

for any ∆t ∈
[
0,∆t̂

)
. This gives

0 < [xi (kT )− xi+1 (kT )] + [vi (kT )− vi+1 (kT )] ∆t

= di,max (kT + ∆t)− di+1,max (kT + ∆t) ,

which since ∆t < ∆t̂ ≤ hi (kT ) < hi+1 (kT ),

= di,min (kT + ∆t)− di+1,min (kT + ∆t) .

Accordingly, we have di,max (kT + ∆t) > di+1,max (kT + ∆t) and di,min (kT + ∆t) >

di+1,min (kT + ∆t) for all ∆t ∈
[
0,∆t̂

)
. In a similar way, by (4.5), we can show
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that di,max (kT + ∆t) < di+1,max (kT + ∆t) is satisfied for all ∆t ∈
(
∆t̂, hi+1 (kT )

]
and di,min (kT + ∆t) < di+1,min (kT + ∆t) holds for all ∆t ∈

(
∆t̂, hi (kT )

]
. Now,

we need to show that di,min (kT + ∆t) < di+1,min (kT + ∆t) holds even for all ∆t ∈
(hi (kT ) , hi+1 (kT )]. Since ∆t̂ ≤ hi (kT ), by (4.5), we have[

xi (kT ) + vi (kT )hi (kT ) +
a−max

2
hi (kT )2

]
≤
[
xi+1 (kT ) + vi+1 (kT )hi (kT ) +

a−max
2

hi (kT )2

]
, (4.6)

which since hi (kT ) < hi+1 (kT ),

< di+1,min (kT + ∆t)

for all ∆t ∈ (hi (kT ) , hi+1 (kT )]. Also, the left-hand side of the inequality (4.6)

is equivalent to di,min (kT + ∆t) for all ∆t ∈ (hi (kT ) , hi+1 (kT )]. Consequently,

di,min (kT + ∆t) < di+1,min (kT + ∆t) for all ∆t ∈ (hi (kT ) , hi+1 (kT )] and thus this

holds for all ∆t ∈
(
∆t̂, hi+1 (kT )

]
as required.

The proofs for the following Lemmas 4.5 and 4.6 are similar to that of Lemma

4.4, so we skip their proofs.

Lemma 4.5. Let there exist ∆t̂ ∈ (hi (kT ) , hi+1 (kT )] such that di,max
(
kT + ∆t̂

)
=

di+1,max

(
kT + ∆t̂

)
. Then,

di,max (kT + ∆t) > di+1,max (kT + ∆t) for all ∆t ∈
[
0,∆t̂

)
,

di,max (kT + ∆t) < di+1,max (kT + ∆t) for all ∆t ∈
(
∆t̂, hi+1 (kT )

]
,

di,min (kT + ∆t) > di+1,min (kT + ∆t) for all ∆t ∈
[
0,∆t̂

]
.

Lemmas 4.4 and 4.5 imply that if the speed of the (i+ 1)st vehicle is faster than

that of its leading vehicle at some time kT and for some i ∈ N, vi (kT ) < vi+1 (kT ) but

xi (kT ) > xi+1 (kT ), then there might exist time ∆t̂ > 0 such that the maximum trajec-

tories of two consecutive vehicles coincide, di,max
(
kT + ∆t̂

)
= di+1,max

(
kT + ∆t̂

)
.

After their rencounter, the maximum trajectory of the (i+ 1)st vehicle keeps ahead of

that of the ith vehicle by its CA margin time hi+1 (kT ). This is also well explained

by the fact that the change of relative difference of the two vehicles’ maximum trajec-

tories, [di,max (kT + ∆t)− di+1,max (kT + ∆t)], has the constant negative slope with

[vi (kT )− vi+1 (kT )] < 0 for all ∆t ∈ [0, hi+1 (kT )].
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Lemma 4.6. Let there exist ∆t̂ ∈ (hi (kT ) , hi+1 (kT )] such that di,min
(
kT + ∆t̂

)
=

di+1,min

(
kT + ∆t̂

)
. Then,

di,min (kT + ∆t) > di+1,min (kT + ∆t) for all ∆t ∈
[
0,∆t̂

)
,

di,min (kT + ∆t) < di+1,min (kT + ∆t) for all ∆t ∈
(
∆t̂, hi+1 (kT )

]
,

di,max (kT + ∆t) < di+1,max (kT + ∆t) for all ∆t ∈
[
∆t̂, hi+1 (kT )

]
.

Lemma 4.7. Suppose that there exists ∆t̂ ∈
(
0,max

{
hi (kT ) , hi+1 (kT )

}]
such that

di,min
(
kT + ∆t̂

)
= di+1,max

(
kT + ∆t̂

)
. Then,

di,min (kT + ∆t) > di+1,max (kT + ∆t) for all ∆t ∈
[
0,∆t̂

)
,

di,min (kT + ∆t) < di+1,max (kT + ∆t)

for all ∆t ∈
(
∆t̂,max {hi (kT ) , hi+1 (kT )}

]
.

Furthermore,

di,max (kT + ∆t) > di+1,max (kT + ∆t) and di,min (kT + ∆t) > di+1,min (kT + ∆t)

hold for all ∆t ∈
[
0,∆t̂

]
.

Proof. Suppose that there exists ∆t̂ ∈
(
0,max

{
hi (kT ) , hi+1 (kT )

}]
such that

di,min
(
kT + ∆t̂

)
= di+1,max

(
kT + ∆t̂

)
. Let

d̄ (kT + ∆t) = di+1,max (kT + ∆t)− di,min (kT + ∆t)

for all ∆t ∈ (0,max {hi (kT ) , hi+1 (kT )}]. Since [a+
max − a−max] > 0, d̄ (kT + ∆t)

is an upward quadratic function for all ∆t ∈ [0,max {hi (kT ) , hi+1 (kT )}]. Let ∆t∗

denote the minima of the function, d̄ (kT + ∆t). Then, we have

∆t∗ = − [vi+1 (kT )− vi (kT )]

[a+
max − a−max]

.

In addition, the slope of d̄ (kT + ∆t) is given by(
a+
max − a−max

)
∆t+ [vi+1 (kT )− vi (kT )]

for all ∆t ∈ [0,max {hi (kT ) , hi+1 (kT )}]. If ∆t = 0, by the initial position condition,

d̄ (kT ) = [xi+1 (kT )− xi (kT )] < 0.



57

Suppose vi (kT ) ≥ vi+1 (kT ). Then, ∆t∗ ≥ 0. Since d̄ (kT + ∆t) has the posi-

tive slope for all ∆t ∈ (∆t∗, hi (kT )], the function d̄ (kT + ∆t) is a strictly increasing

function for all ∆t > ∆t∗. Hence, if there exists ∆t̂ ∈ (0,max {hi (kT ) , hi+1 (kT )}]
such that di,min

(
kT + ∆t̂

)
= di+1,max

(
kT + ∆t̂

)
with vi (kT ) ≥ vi+1 (kT ), then the

first claim here holds.

Now, suppose that vi (kT ) < vi+1 (kT ). Then, the minima of the function,

d̄ (kT + ∆t), is less than 0. Since d̄ (kT + ∆t) has the positive slope for all ∆t ∈
[0, hi+1 (kT )], the function d̄ (kT + ∆t) is a strictly increasing function for all ∆t ≥ 0.

Hence, if there exists ∆t̂ ∈ (0,max {hi (kT ) , hi+1 (kT )}] such that di,min
(
kT + ∆t̂

)
=

di+1,max

(
kT + ∆t̂

)
with vi (kT ) < vi+1 (kT ), then the first claim here is satisfied as

required.

Consequently, since di,max (kT + ∆t) > di,min (kT + ∆t) is always true for all

∆t > 0 and for all i ∈ N, by the first claim,

di,max (kT + ∆t) > di+1,max (kT + ∆t) and di,min (kT + ∆t) > di+1,min (kT + ∆t)

are satisfied for all ∆t ∈
[
0,∆t̂

]
as required.

The proof for the following Lemma 4.8 is similar to that of Lemma 4.7, so we

skip its proof.

Lemma 4.8. Suppose that there exist(s) ∆t̂j ∈ (0, hi+1 (kT )] for j = 1 and 2 such that

di,max
(
kT + ∆t̂j

)
= di+1,min

(
kT + ∆t̂j

)
. Then, if ∆t̂1 = ∆t̂2 = ∆t̂,

di,max (kT + ∆t) > di+1,min (kT + ∆t)

for all ∆t ∈ [0, hi+1 (kT )] with ∆t 6= ∆t̂, or if ∆t̂1 < ∆t̂2,

di,max (kT + ∆t) > di+1,min (kT + ∆t)

for all ∆t ∈
[
0,∆t̂1

)
or for all ∆t ∈

(
min

{
∆t̂2, hi+1 (kT )

}
, hi+1 (kT )

]
,

di,max (kT + ∆t) < di+1,min (kT + ∆t)

for all ∆t ∈
(
∆t̂1,min

{
∆t̂2, hi+1 (kT )

})
.

A combination of trajectories shows the location relationship among the maxi-

mum and minimum trajectories of any two vehicles at a certain time. Combining Lem-

mas 4.2 and 4.4 to 4.8 immediately yields the following.
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Theorem 4.9. For any ∆t ∈
[
0,max

{
hi (kT ) , hi+1 (kT )

}]
, the relationship among

the maximum and minimum trajectories of two consecutive vehicles is expressed as only

one single case from the following 10 combinations of trajectories:

1. di,max (kT + ∆t) > di,min (kT + ∆t) > di+1,max (kT + ∆t) > di+1,min (kT + ∆t),

2. di,max (kT + ∆t) > di,min (kT + ∆t) = di+1,max (kT + ∆t) > di+1,min (kT + ∆t),

3. di,max (kT + ∆t) > di+1,max (kT + ∆t) > di,min (kT + ∆t) > di+1,min (kT + ∆t),

4. di,max (kT + ∆t) = di+1,max (kT + ∆t) > di,min (kT + ∆t) = di+1,min (kT + ∆t),

5. di+1,max (kT + ∆t) > di,max (kT + ∆t) > di+1,min (kT + ∆t) > di,min (kT + ∆t),

6. di,max (kT + ∆t) = di+1,max (kT + ∆t) > di,min (kT + ∆t) > di+1,min (kT + ∆t),

7. di+1,max (kT + ∆t) > di,max (kT + ∆t) > di,min (kT + ∆t) > di+1,min (kT + ∆t),

8. di+1,max (kT + ∆t) > di,max (kT + ∆t) > di,min (kT + ∆t) = di+1,min (kT + ∆t),

9. di+1,max (kT + ∆t) > di,max (kT + ∆t) = di+1,min (kT + ∆t) > di,min (kT + ∆t),

10. di+1,max (kT + ∆t) > di+1,min (kT + ∆t) > di,max (kT + ∆t) > di,min (kT + ∆t).

Lemma 4.10. Let there exist ∆t̃ and ∆t̂ ∈ (0, hi+1 (kT )] with hi (kT ) < hi+1 (kT )

such that

di,min
(
kT + ∆t̃

)
= di+1,max

(
kT + ∆t̃

)
and

di,max
(
kT + ∆t̂

)
= di+1,max

(
kT + ∆t̂

)
.

Then, ∆t̃ < ∆t̂.

Proof. Since di,max (kT + ∆t) > di,min (kT + ∆t) for all ∆t > 0, by the first supposi-

tion,

di,max
(
kT + ∆t̃

)
> di+1,max

(
kT + ∆t̃

)
.

Hence, by Lemmas 4.4, 4.5 and the second supposition, ∆t̃ < ∆t̂ holds as required.
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The proof for the following Lemma 4.11 is similar to that of Lemma 4.10, so we

skip its proof.

Lemma 4.11. Let there exist ∆t̃ and ∆t̂ ∈ (0, hi+1 (kT )] with hi (kT ) < hi+1 (kT )

such that

di,min
(
kT + ∆t̃

)
= di+1,min

(
kT + ∆t̃

)
and

di,max
(
kT + ∆t̂

)
= di+1,min

(
kT + ∆t̂

)
.

Then, ∆t̃ < ∆t̂.

Theorem 4.12. Anterior SMV of the ith Vehicle

Suppose that there are multiple vehicles traveling in the same lane. Let SMV A
i (kT )

be the anterior SMV of the ith vehicle at time kT . Then, the anterior SMV of the ith

vehicle at time kT is given by

SMV A
i (kT )

= min
∆t∈(0,hi(kT )]


 min

l∈[1,(i−1)]
{dl,max (kT + ∆t)} − di,min (kT + ∆t)

min
l∈[1,(i−1)]

{dl,max (kT + ∆t)} − min
l∈[1,(i−1)]

{dl,min (kT + ∆t)}


P

 .

(4.7)

Proof. We will use mathematical induction. By (4.1) and (4.4), the anterior SMV (4.7)

holds for i = 2.

Suppose that the anterior SMV defined in (4.7) is true for some i ∈ N. Let

IA〈N(~i )〉 (kT + ∆t) denote the anterior collision avoidance likelihood function of the ith

vehicle at time (kT + ∆t) toward any other leading vehicles. This shows the continuous

safety level of collision risk of the ith vehicle toward any other leading vehicles in time.

Then, we have

IA〈N(~i )〉 (kT + ∆t)=

 min
l∈[1,(i−1)]

{dl,max (kT + ∆t)} − di,min (kT + ∆t)

min
l∈[1,(i−1)]

{dl,max (kT + ∆t)} − min
l∈[1,(i−1)]

{dl,min (kT + ∆t)}


P

.

(4.8)
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Now, we need to show that the anterior SMV (4.7) holds also for i + 1. By the

definition of the anterior SMV and (4.8), it is sufficient to prove that

IA〈N(
−−→
i+1)〉 (kT + ∆t) =

 min
l∈[1,i ]

{dl,max (kT + ∆t)} − di+1,min (kT + ∆t)

min
l∈[1,i ]

{dl,max (kT + ∆t)} − min
l∈[1,i ]

{dl,min (kT + ∆t)}


P

,

(4.9)

because it immediately yields

SMV A
i+1 (kT ) = min

∆t∈(0,hi+1(kT )]
IA〈N(

−−→
i+1)〉 (kT + ∆t) .

Using the law of total probability into the anterior collision avoidance likelihood func-

tion of the (i+ 1)st vehicle,

IA〈N(
−−→
i+1)〉 (kT + ∆t) = IA〈N(i+1,i)|N(~i )〉 (kT + ∆t) · IA〈N(~i )〉 (kT + ∆t)

+ IA〈N(i+1,i)|A(~i )〉 (kT + ∆t) · IA〈A(~i )〉 (kT + ∆t) , (4.10)

where IA〈N(i+1,i)|N(~i )〉 (kT + ∆t) and IA〈N(i+1,i)|A(~i )〉 (kT + ∆t) specify the anterior col-

lision avoidance likelihood function of the (i+ 1)st vehicle toward the ith vehicle, given

the conditions that the ith vehicle does not collide with any other leading vehicles and

that there exists an accident between the ith vehicle and any other leading vehicles,

respectively. In addition, IA〈N(~i )〉 (kT + ∆t) denotes the anterior collision avoidance

likelihood function of the ith vehicle, while IA〈A(~i )〉 (kT + ∆t) represents its anterior

collision likelihood function. It is supposed that the law of inertia is negligible when

any two consecutive vehicles crash. In other words, two vehicles are stationary at the

very accident site where they crash. If the ith vehicle does not crash into any other

leading vehicles, then the feasible maximum position of the accident-free ith vehicle

is the minimum value between min1≤l≤(i−1) {dl,max (kT + ∆t)} and di,max (kT + ∆t),

while its possible minimum position is di,min (kT + ∆t). Furthermore, the ith vehi-

cle must be located farther than the maximum position between di,min (kT + ∆t) and

di+1,min (kT + ∆t), so that the (i+ 1)st vehicle does not collide with the accident-free

ith vehicle. That is, the ith vehicle is located between

min

{
min

1≤l≤(i−1)
{dl,max (kT + ∆t)} , di,max (kT + ∆t)

}
and

max {di,min (kT + ∆t) , di+1,min (kT + ∆t)} .
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Let

dl̂,max (kT + ∆t) = min
1≤l≤(i−1)

{dl,max (kT + ∆t)} , (4.11)

dl̃,min (kT + ∆t) = min
1≤l≤(i−1)

{
dl,min

(
kT + ∆t

)}
. (4.12)

Hence, the anterior collision avoidance likelihood function of the (i+ 1)st vehicle to-

ward the ith vehicle under the condition that the ith vehicle does not collide with any

other leading vehicles becomes

IA〈N(i+1,i)|N(~i )〉 (kT + ∆t) =

[
α1 (kT + ∆t)− α2 (kT + ∆t)

α1 (kT + ∆t)− di,min (kT + ∆t)

]
P

, (4.13)

where

α1 (kT + ∆t) = min
{
dl̂,max (kT + ∆t) , di,max (kT + ∆t)

}
and

α2 (kT + ∆t) = max {di,min (kT + ∆t) , di+1,min (kT + ∆t)} .

In contrast, if the ith vehicle collides with any other leading vehicles, then

the feasible maximum position of the crashed ith vehicle is the minimum value be-

tween min1≤l≤(i−1) {dl,max (kT + ∆t)} and di,min (kT + ∆t), while its possible min-

imum position is min1≤l≤(i−1) {dl,min (kT + ∆t)}. In order for the (i+ 1)st vehicle

not to crash into the ith vehicle under this given condition, the ith vehicle must be lo-

cated farther than the maximum position between min1≤l≤(i−1) {dl,min (kT + ∆t)} and

di+1,min (kT + ∆t) and thus it places between

min

{
min

1≤l≤(i−1)
{dl,max (kT + ∆t)} , di,min (kT + ∆t)

}
and

max

{
min

1≤l≤(i−1)
{dl,min (kT + ∆t)} , di+1,min (kT + ∆t)

}
.

Therefore, the anterior collision avoidance likelihood function of the (i+ 1)st vehicle

toward the ith vehicle given the condition that there exists an accident between the ith

vehicle and any other leading vehicles is

IA〈N(i+1,i)|A(~i )〉 (kT + ∆t) =

[
α3 (kT + ∆t)− α4 (kT + ∆t)

α3 (kT + ∆t)− dl̃,min (kT + ∆t)

]
P

, (4.14)
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where

α3 (kT + ∆t) = min
{
dl̂,max (kT + ∆t) , di,min (kT + ∆t)

}
and

α4 (kT + ∆t) = max
{
dl̃,min (kT + ∆t) , di+1,min (kT + ∆t)

}
.

By the fact that IA〈N(~i )〉 (kT + ∆t) + IA〈A(~i )〉 (kT + ∆t) = 1 holds for all i ∈ N
and for all for all ∆t ∈ (0, hi (kT )], (4.8), (4.11), and (4.12), the ith vehicle obtains

the anterior collision avoidance likelihood function and the anterior collision likelihood

function towards any other leading vehicles at time kT

IA〈N(~i )〉 (kT + ∆t) =

[
dl̂,max (kT + ∆t)− di,min (kT + ∆t)

dl̂,max (kT + ∆t)− dl̃,max (kT + ∆t)

]
P

(4.15)

and

IA〈A(~i )〉 (kT + ∆t) =

[
di,min (kT + ∆t)− dl̃,min (kT + ∆t)

dl̂,max (kT + ∆t)− dl̃,min (kT + ∆t)

]
P

, (4.16)

respectively.

The maximum and minimum trajectories of all leading vehicles of the ith ve-

hicle are considered in determining its anterior SMV. Instead of employing all these

trajectories, however, only two paths are required for specifying the safety level of col-

lision risk of the ith vehicle: the upper path consisting of minimum values among the

maximum trajectories of the leading vehicles in time and the lower path constituting

minimum values among their minimum trajectories. These upper and lower paths are

represented by (4.11) and (4.12), respectively. Even though the number of vehicles in

front of the ith vehicle is in practice (i− 1), a platoon of these leading vehicles can be

regarded as one single virtual vehicle. In addition, we define the maximum and min-

imum trajectories of a leading virtual vehicle as the upper and lower paths described

here, respectively. In other words, dl̂,max (kT + ∆t) denotes the maximum trajectory of

a leading virtual vehicle and dl̃,min (kT + ∆t) describes its minimum trajectory. Recall

that di,max (kT + ∆t) and di,min (kT + ∆t) are increasing continuous functions for all

i ∈ N and for all ∆t ∈ (0,maxi∈N {hi (kT )}]. Since the minimum of finite continuous

functions is a continuous function, and the minimum of finite increasing functions is an

increasing function, both dl̂,max (kT + ∆t) and dl̃,min (kT + ∆t) are increasing contin-

uous functions. Hence, we can apply Theorem 4.9 to two consecutive vehicles between
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the ith vehicle and its leading virtual vehicle. That is, we can imagine that there exist 10

combinations of trajectories between the ith vehicle and its consecutive leading virtual

vehicle. We will show that (4.9) is equivalent to (4.10) under the first case of Theorem

4.9, which is given by

dl̂,max (kT + ∆t) > dl̃,min (kT + ∆t) > di,max (kT + ∆t) > di,min (kT + ∆t) (4.17)

for some ∆t ∈
[
0,max0≤l≤(i+1)

{
hl (kT )

}]
. Let us fix the time ∆t ∈

[
0,max0≤l≤(i+1){

hl (kT )
}]

. Substituting (4.17) in (4.15) and (4.16) yields, by (4.3),

IA〈N(~i )〉 (kT + ∆t) = 1 and IA〈A(~i )〉 (kT + ∆t) = 0,

and thus, by (4.10), (4.13), and (4.17),

IA〈N(
−−→
i+1)〉 (kT + ∆t) = IA〈N(i+1,i)|N(~i )〉 (kT + ∆t)

=

[
di,max (kT + ∆t)−max {di,min (kT + ∆t) , di+1,min (kT + ∆t)}

di,max (kT + ∆t)− di,min (kT + ∆t)

]
P

. (4.18)

We suppose that di,min (kT + ∆t) ≤ di+1,min (kT + ∆t). From (4.18), we have

IA〈N(
−−→
i+1)〉 (kT + ∆t) =

[
di,max (kT + ∆t)− di+1,min (kT + ∆t)

di,max (kT + ∆t)− di,min (kT + ∆t)

]
P

,

which by (4.17),

=

 min
l∈[1,i ]

{dl,max (kT + ∆t)} − di+1,min (kT + ∆t)

min
l∈[1,i ]

{dl,max (kT + ∆t)} − min
l∈[1,i ]

{dl,min (kT + ∆t)}


P

,

which is exactly equivalent to (4.9).

Suppose that di,min (kT + ∆t) > di+1,min (kT + ∆t). From (4.18), we have

IA〈N(
−−→
i+1)〉 (kT + ∆t) = IA〈N(i+1,i)|N(~i )〉 (kT + ∆t) = 1,

which is also identical with (4.9) easily obtained by employing (4.3) and (4.17) into

(4.9). Thus, note that (4.9) holds if (4.8) is true under the first case of Theorem 4.9. We

can show this claim holds under the other nine combinations of trajectories defined in

Theorem 4.9.

Consequently, by the principle of mathematical induction, we conclude that

IA〈N(~i )〉 (kT + ∆t) =

 min
l∈[1,(i−1)]

{dl,max (kT + ∆t)} − di,min (kT + ∆t)

min
l∈[1,(i−1)]

{dl,max (kT + ∆t)} − min
l∈[1,(i−1)]

{dl,min (kT + ∆t)}


P
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is true for all i ∈ N and for every k ∈ {0 ∪ N} and thus, by the definition of the anterior

SMV, the anterior SMV of the ith vehicle at time kT is defined as

SMV A
i (kT )

= min
∆t∈(0,hi(kT )]


 min

l∈[1,(i−1)]
{dl,max (kT + ∆t)} − di,min (kT + ∆t)

min
l∈[1,(i−1)]

{dl,max (kT + ∆t)} − min
l∈[1,(i−1)]

{dl,min (kT + ∆t)}


P

 .

We interpret the general formula for the anterior SMV of the ith vehicle as fol-

lows: physically, there exist (i− 1) vehicles in front of the ith vehicle. However, we

regard a platoon consisting of the leading (i− 1) vehicles as one single virtual vehi-

cle, which affects the anterior SMV of the ith vehicle. The maximum and minimum

trajectories of a single virtual vehicle in front of the ith vehicle are

min
1≤l≤(i−1)

dl,max (kT + ∆t) and min
1≤l≤(i−1)

dl,min (kT + ∆t) ,

respectively. This implies that the maximum trajectory of a leading virtual vehicle is

described as the upper path consisting of minimum values among the maximum trajec-

tories of other leading vehicles in time, while its minimum trajectory is characterized as

the lower path constituting minimum values among its other leading vehicles’ minimum

trajectories. The concept of the maximum and minimum trajectories of a leading virtual

vehicle is well supported by the fact that minimum values, not maximum values, among

the maximum and minimum trajectories of the leading vehicles actually have a decisive

effect on the safety level of rear-end collision risk. We note that, by (4.1) and (4.4), the

anterior SMV of the ith vehicle (4.7) is exactly identical to that of the second vehicle,

which follows a single virtual vehicle whose maximum and minimum trajectories are

min1≤l≤(i−1) dl,max (kT + ∆t) and min1≤l≤(i−1) dl,min (kT + ∆t), respectively.

4.4.2 Computational complexity reduction for the anterior safety

marginal value

As the value of i increases, the computational complexity for the anterior SMV

(4.7) in Theorem 4.12 dramatically grows because this formula considers all of the lead-
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ing vehicles in determining the anterior SMV. Let us consider that the finite space hori-

zon that affects the anterior SMV of the ith vehicle. The space horizon is defined as

the number of leading vehicles that are needed in order to affect non-unity SMV. Let

SHA
i (kT ) denote the space horizon for the anterior SMV of the ith vehicle at time kT .

The definition of the anterior space horizon yields its mutual relation with the anterior

SMV.

Lemma 4.13. SHA
i (kT ) = 0 if and only if SMV A

i (kT ) = 1. However, SHA
i (kT ) ∈

N if and only if SMV A
i (kT ) ∈ [0, 1).

Note that the zero value of the anterior space horizon guarantees collision-free

travel by the CA margin time, whereas the non-zero value implies that a rear-end col-

lision might occur with some positive probability. For example, if the anterior space

horizon is 1 for the ith vehicle, it is likely that the ith vehicle will crash into only the

(i− 1)th vehicle; that is, it will never collide with any other leading vehicles except the

(i− 1)st vehicle by the CA margin time of the ith vehicle. In this case, an interesting ob-

servation provides that the minimum trajectories of any other leading vehicles in front

of the (i− 1)st vehicle are farther than that of the ith vehicle consistently by the CA

margin time of the ith vehicle; that is, dj,min (kT + ∆t) > di,min (kT + ∆t) holds for

all j ∈ [1, i− 2] and for all ∆t ∈ [0, hi (kT )], and there exists some ∆t̂ ∈ (0, hi (kT )]

such that di−1,min (kT + ∆t) = di,min (kT + ∆t). In addition, di−1,min (kT + ∆t) >

di,min (kT + ∆t) for all ∆t ∈
[
0,∆t̂

)
and di−1,min (kT + ∆t) < di,min (kT + ∆t) for

all ∆t ∈
(
∆t̂, hi (kT )

]
.

Theorem 4.14. Finite Anterior Space Horizon

Suppose that there exists ji = maxJi (kT ) for every i ≥ 2 and for every k ∈ {0 ∪ N}
such that

Ji (kT ) = argmin
l∈[1,i]

{dl,max (kT + hi (kT ))} .

Then, the finite anterior space horizon of the ith vehicle at time kT is given by

SHA
i (kT ) = (i− ji) (4.19)
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and its corresponding anterior SMV is

SMV A
i (kT )

= min
∆t∈(0,hi(kT )]


 min

l∈[ji,(i−1)]
{dl,max (kT + ∆t)} − di,min (kT + ∆t)

min
l∈[ji,(i−1)]

{dl,max (kT + ∆t)} − min
l∈[ji,(i−1)]

{dl,min (kT + ∆t)}


P

 .

(4.20)

Proof. Fix i ≥ 2 and k ∈ {0 ∪ N}. Note that Ji (kT ) 6= ∅ and Ji (kT ) ⊂ {1, 2, · · · , i}.
Hence, by the supposition, there exists ji = maxJi (kT ) such that

dji,max (kT + hi (kT )) ≤ dl,max (kT + hi (kT )) (4.21)

for all l ∈ [1, i].

We suppose that ji = i. By Lemmas 4.4 and 4.5, (4.21) yields

di,min (kT + ∆t) < min
l∈[1,(i−1)]

{dl,min (kT + ∆t)}

for all ∆t ∈ (0, hi (kT )], which gives

min
l∈[1,(i−1)]

{dl,max (kT + ∆t)} − di,min (kT + ∆t)

> min
l∈[1,(i−1)]

{dl,max (kT + ∆t)} − min
l∈[1,(i−1)]

{dl,min (kT + ∆t)} (4.22)

for all ∆t ∈ (0, hi (kT )]. Let us fix ∆t̂ ∈ (0, hi (kT )]. Let

dl̄,max
(
kT + ∆t̂

)
= min

l∈[1,(i−1)]

{
dl,max

(
kT + ∆t̂

)}
.

Since dl̄,min (kT + ∆t) < dl̄,max (kT + ∆t) for all ∆t ∈ (0, hi (kT )], we have

min
l∈[1,(i−1)]

{
dl,min

(
kT + ∆t̂

)}
≤ dl̄,min

(
kT + ∆t̂

)
< dl̄,max

(
kT + ∆t̂

)
= min

l∈[1,(i−1)]

{
dl,max

(
kT + ∆t̂

)}
. (4.23)

Since ∆t̂ ∈ (0, hi (kT )] is arbitrary, by (4.23),

min
l∈[1,(i−1)]

{dl,max (kT + ∆t)} − min
l∈[1,(i−1)]

{dl,min (kT + ∆t)} > 0 (4.24)

for all ∆t ∈ (0, hi (kT )]. Hence, by (4.3), (4.22), (4.24), and Theorem 4.12, SMV A
i (kT )

= 1 also satisfies (4.20). Further, by the definition of the anterior space horizon or

Lemma 4.13, SHA
i (kT ) = (i− i) = 0, which supports (4.19).
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Now, we suppose that ji 6= i. By the definition of the anterior space horizon,

we need to show that SHA
i (kT ) = (i− ji) ∈ N such that SMV A

i (kT ) ∈ [0, 1). By

Theorem 4.12, it is sufficient to prove that there exists some ∆t ∈ (0, hi (kT )] such that min
l∈[1,(i−1)]

{dl,max (kT + ∆t)} − di,min (kT + ∆t)

min
l∈[1,(i−1)]

{dl,max (kT + ∆t)} − min
l∈[1,(i−1)]

{dl,min (kT + ∆t)}

 < 1. (4.25)

By Lemmas 4.4, 4.5, and (4.21), we have

di,min (kT + hi (kT )) > dji,min (kT + hi (kT )) ≥ min
l∈[1,(i−1)]

{dl,min (kT + hi (kT ))} ,

which by (4.21) again, min
l∈[1,(i−1)]

{dl,max (kT + hi (kT ))} − di,min (kT + hi (kT ))

min
l∈[1,(i−1)]

{dl,max (kT + hi (kT ))} − min
l∈[1,(i−1)]

{dl,min (kT + hi (kT ))}

 < 1.

This inequality specifies that there exists ∆t = hi (kT ) such that (4.25) holds and thus

SHA
i (kT ) = (i− ji) ≥ 1 such that SMV A

i (kT ) ∈ [0, 1), which supports (4.19).

Finally, we will show that (4.7) of Theorem 4.12 has a simplified version of

(4.20), which is the corresponding anterior SMV to the finite space horizon SHA
i (kT ) =

(i− ji). By (4.21),

dji,max (kT + hi (kT )) ≤ dl,max (kT + hi (kT ))

for all l ∈ [1, ji], which by Lemmas 4.4 and 4.5,

dji,max (kT + ∆t) = min
l∈[1,ji]

{dl,max (kT + ∆t)} (4.26)

and

dji,min (kT + ∆t) = min
l∈[1,ji]

{dl,min (kT + ∆t)} (4.27)

for all ∆t ∈ (0, hi (kT )]. Substituting (4.26) and (4.27) in (4.7) yields a reduced form

of the anterior SMV for the ith vehicle at time kT

SMV A
i (kT )

= min
∆t∈(0,hi(kT )]


 min

l∈[ji,(i−1)]
{dl,max (kT + ∆t)} − di,min (kT + ∆t)

min
l∈[ji,(i−1)]

{dl,max (kT + ∆t)} − min
l∈[ji,(i−1)]

{dl,min (kT + ∆t)}


P


as required.



68

Note that the larger the value of i, the more complicated the formula of the an-

terior SMV. However, we can dramatically prune the general form of the anterior SMV

with the following easy search at the CA margin time of the ith vehicle by examining

the anterior space horizon (i− ji), where ji = maxJi (kT ) such that

Ji (kT ) = argmin
l∈[1,i]

{dl,max (kT + hi (kT ))} .

4.5 Simulation Results and Discussions

In this Section, we examine the simulation results of the proposed anterior space

horizon and corresponding anterior SMV; the former is used to reduce the computational

complexity dramatically required to determine the latter.

4.5.1 Description of the simulation environment

It is assumed that a string of vehicles is moving on a long corridor of a 2 km

looping road. Unlike a straight road, every vehicle uses the vehicle states of all vehicles

to provide the anterior SMV, since all vehicles except itself are its leading vehicles on

a looping road. For instance, when the number of vehicles traveling on our considered

roadway is M , the leading vehicles of the first vehicle (i.e., lead-most vehicle) are from

the M th vehicle (i.e., last-most vehicle) to the second vehicle. Also, the velocity and

position of the first vehicle are influenced by its leading vehicles. There are two critical

reasons why we prefer a looping road rather than a straight road for simulation: 1)

the given constant density can be maintained until the simulation is terminated; and

2) no boundary condition for the lead-most vehicle is necessary. Furthermore, Mason

et al. [65] showed that traffic characteristics such as stability and the propagation of

disturbances are observed for looping and linear roads in the case that a large number

of vehicles travel on a long roadway. In that regard, many researchers in practice have

been carrying out computer simulations on a long corridor of looping roads.

We use the initial conditions for simulation that every vehicle starts to move with

zero velocity and at a random location on a given looping system. We also suppose that

every traveling vehicle on a vehicular traffic network employs the same car-following
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model to update its vehicle states. The example car-following model exploited in this

Chapter is the Gipps car-following model. This model consists of a few parameters

mimicking the behavior of real traffic. A different combination of parameters affects

the safety level of collision risk. In addition, it is reasonable to assume that vehicles

in a platoon travel on a single-lane road where there is no overtaking, because we only

examine the anterior SMV as a traffic safety indicator for a rear-end collision without

taking account of lane changing models. Therefore, we observe our developed ante-

rior SMV under various variables provided from the Gipps car-following model. Note

that the proposed safety assessment tool does not aim at comparison with car-following

models to figure out the best. Its true purpose is to provide an unbiased safety evaluator

for a certain combination of parameters defined in a car-following model and to specify

a realistic safety reference for an auxiliary driving control such as autonomous driving

and automatic cruise control.

We define several states as a result of our simulation: a global steady-state, a

local steady-state, and a catastrophe state. In general, the local traffic flow characteris-

tics, such as the density, velocity, and flow, vary as functions of the position. However,

when all vehicles move at the same speed with respect to time without crashes, it should

be treated as a steady-state. Furthermore, if all vehicles maintain constant and time

independent car spacing, we can specify that the traffic system realizes a global steady-

state. This implies that the traffic flow on a corridor of a vehicular network is constant

in a global steady-state. On the contrary, if we look at a sufficiently small part of a

vehicle platoon, both velocity and car spacing are essentially constants only for each

part of a string. The main difference compared to a global steady-state is that constant

car spacing is valid only microscopically, when this small traffic system reaches a lo-

cal steady-state. Since we assume that the same car-following model is applied to all

vehicles and thus driving characteristics are the same for every vehicle in our simula-

tion, once the vehicular traffic system establishes a steady-state, all vehicles remain in

corresponding steady-states without a rear-end collision. In other words, before reach-

ing a steady-state, we can observe an accident according to the values of variables of a

car-following model, which is defined as a catastrophe state.
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4.5.2 Gipps car-following model

We employ the Gipps car-following model to examine traffic safety through the

help of the anterior SMV. Gipps provided a car-following model describing the behav-

ior of driver response based on the supposition that a driver incorporates an additional

breaking reaction time for safety [43, 44]. The new velocity of the ith vehicle for the

next time step, vi ((k + 1)T ), is determined from the Gipps car-following model given

by

vi ((k + 1)T ) = min

{
vi (kT ) + 2.5 a+

i,maxT

(
1− vi (kT )

vf

)√
0.025 +

vi (kT )

vf
,

bi

(
T

2
+ θ

)
+

√
b2
i

(
T

2
+ θ

)2

− bi
{

2si (kT )− vi (kT )T − vi−1 (kT )2

b̂i−1

}}
,

(4.28)

where si (kT ) is the car spacing between two consecutive vehicles, the ith and (i− 1)st

vehicles, defined as si (kT ) = [xi−1 (kT )− xi (kT )− li−1] at time kT , a+
i,max denotes

the maximum acceleration rate for the ith vehicle to be willing to undertake, vf is the

maximum velocity that is the same for all vehicles, θ is a safety margin time that is an

additional delay for safety, bi is the most severe deceleration rate undertaken by the ith

vehicle, and b̂i−1 is the brake rate of the (i− 1)st vehicle predicted by its following,

the ith vehicle. Gipps initially used the braking reaction time, which is the elapsed time

between the recognition of a safety hazard and the commencement of the brakes, instead

of the update time interval (T ) in (4.28). However, we interpret the braking reaction

time as the update time interval, according to his remark that traffic flow behaves well

even when it is replaced with T . The first argument of the the Gipps traffic model

(4.28) is attained in free-flow condition, whereas the second argument is dominated in

a congested traffic situation. We note that the newly generated velocity is truncated by

both 0 and vf .

4.5.3 Simulation results

In our simulation, we use the following parameters: All vehicles in a traffic

system generate the vehicle states at every time step of T = 60 s. The maximum
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acceleration rate, a+
i,max, is a constant of a+

max = 4.41 m/s2 for all vehicles. vf is equal

to 117 km/h, which is the average value of the maximum velocity measured in the USA

[37]. This typical measured maximum velocity is greater than the speed limit, because

people normally drive faster than the speed regulated by law. We set a safety margin

time of θ to 0 s to ensure that the time interval to update both the vehicle states and the

anterior SMV depends on only T , not on θ. The length of the ith vehicle, li, is equal to

L for all vehicles, where L denotes the average safety length of vehicles of 6.7 m. The

most severe deceleration rate and estimated brake rate are constants for all vehicles with

bi = b = 3 m/s2 and b̂i = b̂. The density is 31 v/km/lane (50 v/mile/lane) with the units

presenting the number of vehicles per kilometer (or mile) per lane. The given value is a

so-called low-congested density.

We take three different values of the estimated deceleration rate of the vehicle

in front, b̂, with the fixed value of b. Our conjecture about the relationship between the

most severe brake rate and estimated retardation rate is as follows: as the value of b̂

decreases, given the fixed value of the true applied brake rate of b, the traffic system is

transformed from a collision-free state to a catastrophe state of inevitable rear-end col-

lisions. The reason is that every vehicle brakes much harder than the following vehicle

expects, incurring a terrible tailgating phenomenon by the following vehicle. We will

illustrate the simulation results regarding the anterior space horizon and corresponding

anterior SMV depending on the value of b̂.

Global Steady-state

We set b̂ = 5 m/s2. Comparing it with b = 3 m/s2 means that every vehicle

decelerates less than its following vehicle predicts. This leads to enough car spacing

between any two consecutive vehicles, ensuring no risk of collision. In other words,

every vehicle behind performs perfect defensive driving.

Various simulation results using the Gipps car-following model under b̂ = 5m/s2

> b = 3m/s2 are shown in Figs. 4.4 and 4.5. These are truncated by the simulation time

of 1500 s, since the vehicular system reaches a steady-state and thus there is no longer an

observable change. Fig. 4.4(a) depicts the average speed of all vehicles over a long cor-

ridor of 2 km. The vehicular system in this scenario establishes a steady-state, because
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Figure 4.4: Simulation results of the Gipps car-following model under b̂ = 5m/s2 >
b = 3m/s2. (a) Average speed of vehicles in simulation time. (b) Average car spacing
of vehicles passing at a certain microscopic spot in simulation time.

the average speed of all vehicles, as well as the velocity of each individual vehicle, con-

verge to around 50 km/h, as the simulation time goes. Defensive driving explains why

the observed average speed is much less compared to the maximum velocity of vf = 117

km/h. This light traffic congestion can be relieved by decreasing the value of b̂ under the

given b. In addition, we measure the car spacing data of the vehicles passing at a certain
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Figure 4.5: Safety indicator results of the Gipps car-following model under b̂ =
5m/s2 > b = 3m/s2. (a) Minimum value of anterior SMVs of all vehicles in sim-
ulation time. (b) Maximum value of their anterior space horizons in simulation time.

point of a road over every single update time interval and take its average. The average

car spacing of any two consecutive vehicles passing at a microscopic spot is represented

in Fig. 4.4(b). Its initial fluctuation between 23.5 m and 28 m decays as the simulation

time goes. This observation implies that every vehicle keeps traveling with the same car



74

spacing of around 25.5 m towards the vehicle immediately in front it, which is defined

as a global steady-state.

All vehicles calculate their anterior space horizon and corresponding anterior

SMV at every time step, which refer to (4.19) and (4.20), respectively. The minimum

value of the computed anterior SMVs of all vehicles with respect to time is shown in

Fig. 4.5(a), while the maximum value of their anterior space horizons in simulation time

is represented in Fig. 4.5(b). The minimum value of the anterior SMV and maximum

value of the anterior space horizon in time can be denoted as

min
i∈[1,M ]

{
SMV A

i (kT )
}

and max
i∈[1,M ]

{
SHA

i (kT )
}

for every k ∈ {0 ∪ N}, respectively. Here, M denotes the number of vehicles traveling

on a vehicular traffic network. Since the minimum value of the anterior SMVs is 1 by

the end of the simulation, we note that every vehicle always has an anterior SMV of

1. By the definition of the anterior SMV, this implies that every vehicle will always

travel without collision unless an abrupt perturbation exists. Similarly, according to the

simulation result related to the anterior space horizon, no leading vehicle influences its

following vehicles to have non-unity anterior SMV. These two results show coherence

to Lemma 4.13.

Therefore, this experiment enables the vehicular traffic system to achieve a global

steady-state as well as to support perfect safety, if every vehicle uses the defensive driv-

ing habits with enough car spacing based on the presumption that its leading vehicle

brakes less than expected. Now, we will investigate the other two states by decreasing

only the value of b̂.

Local Steady-state

We set the estimated deceleration rate of the vehicle ahead to b̂ = 2.6m/s2,

which is slightly less than b = 3m/s2. It can be understood that every vehicle brakes

slightly harder than its following vehicle anticipates.

The average speed of all vehicles and average car spacing of two consecutive ve-

hicles are shown in Fig. 4.6(a) and 4.6(b), respectively. The average speed approaches

the maximum velocity of vf = 117km/h. In contrast, the car spacing fluctuates con-

stantly between around 23.5 m and 27.5 m. These two results produce the traffic flow
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Figure 4.6: Simulation results of the Gipps car-following model under b̂ = 2.6m/s2 <
b = 3m/s2. (a) Average speed of vehicles in simulation time. (b) Average car spacing
of vehicles passing at a certain microscopic spot in simulation time.

characterizing a local steady-state. In other words, once vehicles travel as fast as the

maximum velocity, the system reaches a steady-state; each vehicle has the same ve-

locity of vf , but with different and time-invariant car spacing. A set of car spacings

for all vehicles fixed in a local steady-state is formed according to their initial random

locations.
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Figure 4.7: Safety indicator results of the Gipps car-following model under b̂ =
2.6m/s2 < b = 3m/s2. (a) Minimum value of anterior SMVs of all vehicles in simula-
tion time. (b) Maximum value of their anterior space horizons in simulation time.

Fig. 4.7 describes the evolution of the minimum anterior SMV and maximum an-

terior space horizon for every vehicle in simulation time. One observes that at least one

vehicle provides non-unity anterior SMV and non-zero anterior space horizon before es-

tablishing a steady-state of around 100 s as shown in Fig. 4.6(a). The minimum anterior
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SMV falls to around 0.65, whereas the maximum anterior space horizon increases to 3.

This indicates that the vehicle travels with mounting collision risk. Fortunately, b̂ and b

are similar in rate, which means the vehicle can escape gradually from a dangerous acci-

dent zone by performing moderate driving. A driver having moderate driving behavior

is neither a slowpoke nor a tailgater. He is in between these two extremes and is de-

scribed as a generally typical driver. Finally, once the vehicular traffic system reaches a

steady-state, no vehicle has a leading vehicle that affects non-unity anterior SMV. Thus,

a platoon of vehicles using the Gipps car-following model with the variables defined in

this experiment can travel under perfectly safe conditions in spite of the existence of

rear-end collision risk possibility in the early simulation phase.

Catastrophe State

We reduce the estimated brake rate to b̂ = 1.4m/s2, which is much less than the

most severely applied brake rate of b = 3m/s2. This relation signifies that every vehicle

brakes much harder than its following vehicle expects, which results in car spacing being

narrow enough to be about to collide. In other words, drivers under these conditions can

be considered as tailgaters.

The changes of the safety indicator values in time, up until a rear-end collision

occurs, are shown in Fig. 4.8. Since vehicles are tailgating recklessly, a crash can be

observed at barely 12 s. There exists at least one vehicle having non-unity anterior

SMV and anterior space horizon of 1 from 6 s. Hence, owing to the vehicle’s stubborn

tailgating driving, it finally causes an accident with the vehicle in front. This could be

avoided by creating enough car spacing through a decrease in its velocity. However, a

string of vehicles traveling with an adversely big gap between two brake rates has no

choice but to land in a catastrophe state.

Different simulation experiments for establishing a local steady-state or a catas-

trophe state show non-unity anterior SMV during the initial simulation times. The esti-

mated brake rate being slightly less than the practical deceleration rate lets the vehicle

with non-unity anterior SMV have an opportunity to gradually escape from the danger-

ous accident zone. However, if the anticipated brake rate is much less than the practical

deceleration rate, the vehicle with non-zero anterior space horizon must collide with the
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Figure 4.8: Safety indicator results of the Gipps car-following model under b̂ =
1.4m/s2 < b = 3m/s2. (a) Minimum value of anterior SMVs of all vehicles in simula-
tion time. (b) Maximum value of their anterior space horizons in simulation time.

vehicle in front by maintaining the value of the predicted brake rate as shown in a catas-

trophe state. This comparison gives us remarkable results. When a vehicle controlled

by the Gipps car-following model provides non-unity anterior SMV, if it automatically

increases the estimated brake rate for its leading vehicle, it can provide an increase in
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the collision avoidance possibility. Therefore, our proposed anterior SMV is verified as

a rigorous and magnificent safety indicator to warn of the likelihood of a collision and

to prevent a rear-end crash.

4.6 Summary

The proposed safety marginal value (SMV) can be utilized as a traffic safety

metric to prevent unexpected vehicle-to-vehicle collisions on roadways. The anterior

SMV indicates the safety level of a rear-end accident with the vehicles ahead, as calcu-

lated by its collision avoidance (CA) margin time. Every vehicle on a vehicular traffic

network uses a set of vehicle states to determine the anterior SMV for every time step.

The vehicle states contain the position, velocity, and lane index of all vehicles.

We have provided a simpler, general form for the anterior SMV, even in instances

when multiple vehicles travel on roadways. However, since this general form requires

an explosive increase in computational complexity with respect to the number of vehi-

cles, we defined the space horizon for the anterior SMV, which is the finite number of

leading vehicles that affect non-unity anterior SMV. In other words, the finite anterior

space horizon obtained by an easy search at the CA margin time remarkably prunes the

computational complexity in determining the anterior SMV. To show the effectiveness

and efficiency of our proposed anterior SMV, we employed the Gipps car-following

model to present simulation results. The non-unity value of the anterior SMV implies

the existence of collision likelihood by the CA margin time. Our simulation showed that

the vehicular traffic network reaches two different states upon non-unity anterior SMV.

A vehicle with positive collision possibility escapes from a dangerous collision zone by

driving moderately, and thus the system realizes a collision-free steady-state. On the

contrary, a vehicle will ultimately crash into other leading vehicles by performing stub-

born tailgating driving in spite of the alarm by the anterior SMV warning of imminent

danger of collision.

Therefore, we conclude that the anterior SMV can be used as a rigorous safety

criterion to indicate the collision avoidance level of rear-end collision risk when eval-

uating various conditions consisting of different variables provided in a car-following
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model. As further work, we need to investigate how to use the calculated anterior SMV

in controlling the velocity of a vehicle for the next time step so as to guarantee collision-

free driving. In addition, it will be necessary to study how to extend the concept of our

proposed safety metric into a primary parameter of an objective function to maximize

safety or to minimize congestion in vehicular traffic networks.
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Chapter 5

A Target Time-gap-based Velocity

Update Model

We provide a car-following model called a target time-gap-based velocity update

model in this Chapter. Every vehicle in a vehicular traffic network uses our proposed

model to refresh its velocity and position for the next time step based on the given target

time gap. The allocation of the target time gap value for an individual vehicle can be

utilized in various ways; for example, the target time gap can be the constant for every

vehicle, or it can follow a distribution. The results of a microscopic traffic simulation

based on our proposed car-following model are well validated with empirical traffic

data. This implies that a target time-gap-based velocity update model mimics the typical

behavior of drivers. A safety analysis of a target time-gap-based velocity update model

is performed with the help of the anterior SMV, which is a traffic safety metric to indicate

the likelihood of accident occurrence. Using the anterior safety marginal value (SMV) as

a tool, three different regions are defined with respect to the traffic density, the constant

target time gap applied for all vehicles, and the update time interval needed to refresh

the velocity of vehicles: a collision-free region, a transition region, and a catastrophe

region. A collision-free area is the sub domain of the target time gap and the update time

interval under fixed traffic density, which always assures the collision-free movement of

vehicles unless an abrupt perturbation exists. On the contrary, a catastrophe area is the

sub domain that will result in accidents. We also provide the mathematical analysis for

a steady-state of a target time-gap-based velocity update model and compare it with the

81
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microscopic traffic simulation results. Finally, the effective domain of the target time

gap and the update time interval is presented, assuring both collision-free movements of

vehicles and a system capacity improvement compared to the traffic measurement data.

5.1 Introduction

The provisions of a macroscopic traffic flow model are considered fundamen-

tally essential to understand traffic flow dynamics. A macroscopic traffic flow model

forms the basis of the fundamental diagram delineating the relationship among traffic

density, flow, and velocity on highways. A macroscopic fundamental diagram is used

to estimate traffic flow and to regulate the metered rate at entrance ramps along a high-

way corridor. The first attempt at modeling traffic flow at the macroscopic level was

made by Greenshields [18]. He proposed a linear velocity-density fundamental dia-

gram, which implies a parabolic shaped flow-density curve, under uninterrupted traffic

flow conditions. Lighthill, Whitham, and Richards (LWR) [19, 20] developed a con-

cave fundamental diagram, called the first-order LWR model, based on Greenshields’s

hypothesis and a nonlinear conservation law of vehicles. Despite its simplicity and

its successful explanation for the formation and backward propagation of traffic dis-

turbances, the first-order LWR model fails to describe various traffic features, such as

capacity drop and traffic hysteresis. Several high-order macroscopic traffic flow models

were developed in order to resolve the drawbacks of the LWR model. These include

the second-order Payne-Whitham (PW) model [66, 67], the second-order Aw-Rascle-

Zhang (ARZ) model [68, 69], and the third-order model introduced by Helbing [70].

Newell [21] initially proposed a triangular flow-density fundamental diagram, which is

a simpler alternative to the first-order LWR model. The Newell model is characterized

by two velocities: a maximum free-flow velocity in a free-flow regime and a propaga-

tion velocity in a congested situation. However, the Newell model is limited because it

does not specify the relation between propagation velocity and the typical behavior of

drivers. The time-gap-based traffic model introduced by Cho et al. [37] is also a triangu-

lar flow-density curve such as the Newell model, but it is generally verified by empirical

traffic data irrespective of highway areas, and it specifically explains the Newell model
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by using three major parameters: the maximum free-flow velocity in a free-flow regime,

a typical safety length of vehicles, and an average value of the measured time gap in a

congestion condition.

In contrast to a macroscopic fundamental diagram, a microscopic traffic flow

model specifies the microscopic dynamic properties, such as the velocity and position,

of a single vehicle. In particular, a car-following model describes the behavior of driver

response to the leading vehicle in the same lane. Car-following models are generally di-

vided into three types according to the formation hypothesis of each model: the Gazis-

Herman-Rothery (GHR) family of models, the safety distance or collision avoidance

(CA) models, and the psychophysical or action point (AP) models. The GHR model

[42], the most well-known car-following model, states that an individual driver’s accel-

eration is proportional to the velocity of his vehicle, relative speed, and car spacing to

its leading vehicle. The representative safety distance or CA model introduced by Gipps

[43] has an assumption that the driver of a following vehicle incorporates a braking re-

action time in order to keep an adequate distance from its leading vehicle for safety.

In particular, the Gipps model describes the behavior of following vehicles subjected

to different traffic conditions, such as free-flow and congested flow. AP models ini-

tially discussed by Michaels [71] use thresholds where a vehicle changes its dynamic

properties. That is, a vehicle reacts to variations in relative speed or car spacing to the

vehicle in front of it only when the relevant defined thresholds are reached [72, 73].

The existing car-following models, such as the GHR model, the CA model, and the AP

model, describe a driver’s response to the behavior of a leading vehicle, and their results

match with empirical traffic data. However, they lack in an investigation of their usabil-

ity, safety, and capacity analysis. These models cannot be correlated with any existing

macroscopic traffic flow model to show how they would function from the point of view

of flow characteristics. Another drawback of these models is that the macroscopic level

results obtained from them cannot support macroscopic traffic features such as capacity

drop and traffic hysteresis. These two weaknesses suggest that the usability of the ex-

isting car-following models is limited. The capacity drop is defined as a discharge flow

drop after a local traffic disruption becomes active [74, 75, 76]. In particular, Koshi et

al. [74] suggested that the traffic flow-density relationship resembles a reversed λ shape
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with a capacity drop of 1% to 18% from the achievable maximum flow in a free-flow

regime to that in a congested region at the same density value [77, 78, 79, 80]. Traffic

hysteresis is explained by the phenomenon of the acceleration curve lying below the

deceleration curve at the same density [41, 81, 82]. In other words, vehicular traffic

networks exhibit traffic hysteresis when average traffic flow measured in the onset of

congestion is higher than that observed while congestion is released. Also, since the ex-

isting car-following models were developed based on unrealistic suppositions that every

driver always seeks safety without distraction, they cannot predict the unexpected and

risky driving behavior of the vehicle in front. These models can predict incidents under

some combinations of parameters defined in themselves, which raises doubts about per-

fect safety. Therefore, a new car-following model needs to be designed that possesses

the following properties: (1) the model should mimic the typical behavior of drivers,

(2) the model should have a close connection with a macroscopic fundamental diagram,

(3) the results obtained from the model should describe the traffic flow characteristics

such as capacity drop and traffic hysteresis, (4) the analysis of usability, safety, and ca-

pacity for the model should be feasible, and (5) the parameters in the model should be

provided, particularly for ensuring safety and capacity enhancements.

If all vehicles in a vehicular traffic network use the same car-following model,

they tend to form a platoon of finite vehicles. The selection of values for the parame-

ters defined in a car-following model decides whether a string of vehicles either reach a

steady-state or make collisions. The so-called string stability containing a steady-state

car-following mode have been studied [83, 84]. Four control policies, which main-

tain constant car spacing, constant time headway, constant velocity, and constant safety

factor, have been mainly considered for vehicle follower systems. The string stability

ensures that errors of this individual control policy decrease as it propagates along the

vehicle stream. Vehicle-to-vehicle (V2V) wireless communication was shown to be im-

portant in order to achieve string stability with the given control policies, particularly

with the constant car spacing [85]. Centralized control as well as decentralized regu-

lation for a string of coupled traveling vehicles have been examined [83, 86]. When a

discrete-time and continuous-space car-following model is considered, its string stabil-

ity is able to depend on traffic density and the update time interval being frequency of
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update in time. Therefore, an analysis of safety and capacity of a car-following model,

when a vehicular traffic system reaches string stability, is necessary according to the key

parameters, such as traffic density, the update time interval, and so on, defined in the

model.

A traffic safety indicator can be used to analyze the safety of a car-following

model. Hayward [55] initially introduced Time-to-Collision (TTC), which is the time

required for two consecutive vehicles in the same lane to collide if they consistently

move at their current velocity. The smaller the TTC, the higher the risk of a rear-end

collision. TTC has been verified as an effective quantitative indicator to rate collision

risk. Another widely known safety measure is time headway, which is defined as the

time it takes to travel the distance from the front end of a vehicle to that of the vehicle in

front. Suitable ranges of the safety indicators, such as TTC and time headway, have been

studied to ensure collision-free movements of all vehicles through empirical traffic data

or microscopic traffic simulation results [59, 63, 64]. However, the suggested bounds

of TTC and time headway change for different traffic conditions and are ambiguous for

specifying the safety level of collision risk. In order to resolve the limitations of the

TTC and time headway, a safety metric called the anterior safety marginal value (SMV)

was presented in Chapter 4. The anterior SMV has the efficient capability to provide a

numerical value that shows the likelihood of incident occurrence and applies identically

to all vehicles, irrespective of various traffic situations.

The remainder of this paper is organized as follows: In Section 5.2, a brief expla-

nation of the target time-gap-based traffic model, which is a macroscopic fundamental

diagram, and the reasonable justification for its extension to a car-following model are

stated. In addition, we provide a new car-following model, called a target time-gap-

based velocity update model, which is developed from the the time-gap-based traffic

model. We present a vehicular traffic network for various analysis of our proposed car-

following model in Section 5.3. In Section 5.4, the average time gap with respect to

traffic density and traffic flow with respect to density under various target time gap val-

ues are obtained in order to show the usability of the target time-gap-based velocity up-

date model. We mention the anterior SMV as a traffic safety metric used to analyze the

safety of the model in Section 5.5. Rear-end collision risk evolutions in simulation time
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are observed under four scenarios depending on the values of the target time gap and

the update time interval with the help of the safety indicator. In addition, the collision

ratio according to a combination of three key parameters in the target time-gap-based

velocity update model is examined. We introduce three different regions to describe the

collision ratio and emphatically assert the importance of the selection of three primary

parameters’ values for collision-free movements of vehicles in our considered vehicu-

lar traffic flow. In Section 5.6, the average practical time gap and the average system

velocity in a steady-state of the model are analyzed mathematically and verified with

the corresponding simulation results. In addition, the numerical capacity obtained from

the analysis about the average system velocity and the empirical capacity measured in

a highway are compared. The effective domain of the target time gap and the update

time interval for each traffic density is presented, which ensures both system through-

put improvement based on the comparative result in a steady-state and collision-free

movements of vehicles.

5.2 A Target Time-gap-based Velocity Update Model

In this Section, we present a target time-gap-based velocity update model that is

a simple and adequate car-following model. In addition, a time-gap-based traffic model

[37], which is a macroscopic traffic flow model, is explained as a triggering point of a

target time-gap-based velocity update model.

5.2.1 Time-gap-based traffic model

The time-gap-based traffic model shown in Fig. 5.1 is well validated with the

traffic data measured from single-loop and double-loop detector systems using least

squares matching, and with previous research on propagation velocity and driver reac-

tion times [37]. In that regard, the time-gap-based traffic model is considered to be a

good and simple representative fundamental diagram for describing traffic flow. The

time gap is defined as the time required to travel the car spacing between two con-

secutive vehicles. In particular, the provided time-gap-based traffic model explains a

triangular flow-density traffic model initially proposed by Newell [21], by using three
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Figure 5.1: Time-gap-based traffic model.

key parameters: the maximum free-flow velocity defined in a free-flow region, an aver-

age safety length of vehicles, and a mean value of the time gap of traffic data defined

during congested conditions.

Let q, ρ, and v denote traffic flow, density, and velocity per lane, respectively.

Traffic flow means the number of vehicles passing over the unit time (in vehs/h) and

traffic density is the number of vehicles traveling over the unit distance (in vehs/km).

The unit of velocity is km/h. The flow-density fundamental diagram of the time-gap-

based traffic model, which specifies a relation among traffic flow, density, and velocity,

is given by

q = min

{
ρ vf ,

1000− ρL
ĉ τ

}
, (5.1)

where vf is the maximum free-flow velocity (in km/h), L is an average safety length of

vehicles (in m), τ is the mean value of the time gap defined in a congestion region (in s),

and ĉ is a constant of 1000/3600. Here, the safety length of a vehicle is a summed value

of its actual physical length and positive car spacing needed for safety when all vehicles

stop completely, say 1 m.

As shown in Fig. 5.1, a vehicular traffic network attains the maximum capacity

qmax at a value of the critical density ρc such that

ρc =
1000

ĉ τ vf + L
.
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The corresponding maximal throughput is easily calculated from the relationship among

traffic flow, density, and velocity, of q = ρ v. Also, we can define the jam density as

ρjam = 1000/L.

The first argument of (5.1) is dominated in a free-flow traffic situation, while

its second is attained in congested conditions. The traffic data measurement shows that

the average and standard deviation of the time gap vary widely in a free-flow regime,

whereas its average is nearly constant, and its standard deviation is small regardless of

the value of traffic density, particularly when traffic density is larger than the critical

density. A typical value of the time gap is a major parameter to describe traffic flow in a

congestion region. Hence, this remarkable observation confirms that the time-gap-based

traffic model is characterized as a well-defined macroscopic traffic flow model.

5.2.2 Target time-gap-based velocity update model

Contrary to a macroscopic fundamental diagram such as the time-gap-based traf-

fic model, a microscopic traffic flow model specifies the interaction between consecutive

vehicles traveling in the same lane by representing how a driver reacts to the changes in

the relative velocity or position of the leading vehicle. A microscopic traffic flow model

contains the flow dynamic properties such as the velocity and position of a single ve-

hicle. The provision of a car-following model extended from the time-gap-based traffic

model is meaningful owing to this fundamental diagram’s merits.

Now, we provide a car-following model, called the target time-gap-based veloc-

ity update model, which reflects the time-gap-based traffic model well proposed by Cho

et al. [37]. The target time-gap-based velocity update model considers a discrete-time

and continuous-space vehicular traffic network.

Let vi (kT ) denote the velocity of the ith vehicle at time kT for i ∈ N and for

k ∈ {0 ∪ N}, where N is a set of natural numbers and T is the update time interval.

That is, T is frequency of update in time to yield the new velocity and position of each

vehicle. Also, the index of (i− 1) represents the lead of the ith vehicle. The new

temporary velocity of the ith vehicle for next time step, which is determined from the
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target time-gap-based velocity update model, is given by

ṽi ((k + 1)T ) =
si (kT )

ĉ τi (kT )
, (5.2)

where si (kT ) is the car spacing between the ith vehicle and its leading (i− 1)st ve-

hicle, and τi (kT ) denotes the time gap of the ith vehicle to the vehicle immediately

ahead. This model shows that the newly calculated velocity of a vehicle is proportional

to its forward car spacing, but is in inverse proportion to its time gap. Our proposed

target time-gap-based velocity update model has the advantage that microscopic dy-

namic properties can be simply controlled by only two instantaneous variables of the

car spacing and given target time gap. However, we need to take into account the limit

of the new temporary velocity (5.2), since the acceleration and brake rates are practi-

cally bounded. Also, it is limited by both the zero velocity and the maximum free-flow

velocity. Therefore, the new velocity of the ith vehicle at time ((k + 1)T ) is given by

vi ((k + 1)T )

= max
{

0, vi (kT ) + a−max T,min
{
vf , vi (kT ) + a+

max T, ṽi ((k + 1)T )
}}

,(5.3)

where a+
max and a−max denote the maximum acceleration rate and maximum deceleration

rate, respectively. These rates, a+
max > 0 and a−max < 0, are finite bounded. This implies

that vi (kT ) + a+
max T is the maximum realizable velocity and vi (kT ) + a−max T is the

minimum feasible velocity at next time step, when the current velocity is vi (kT ). For

simplicity of our analysis and simulation, we suppose that each vehicle has the same

maximum acceleration rate and maximum deceleration rate. Hence, we can imagine

that every vehicle has a discontinuous acceleration rate at every time step but continuous

velocity with respect to time.

According to the target time-gap-based velocity update model (5.2), the only

requisite information needed to determine the next velocity is the forward car spacing.

The distance to the vehicle ahead can be reported by a measuring device such as radar

or lidar, or be derived by the positions of the vehicle itself and its leading vehicle.
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5.3 Vehicular Traffic Network

We need to investigate if our proposed model can perform the role of a car-

following model and whether its various induced outcomes match the empirical traffic

data. An investigation into the usability of the target time-gap-based velocity update

model will determine its effectiveness as a car-following model. A consideration of its

safety point of view is also needed; for example, what combinations of two key parame-

ters, such as car spacing and target time gap, defined in our proposed model brings about

incidents or guarantees collision-free movement. Furthermore, a comparison between

the system capacity obtained from the empirical traffic data and the throughput of the

vehicular traffic network where all vehicles apply our proposed car-following model is

necessary. We will discuss the issues related to the usability, safety, and capacity analy-

sis by microscopic traffic simulations using our proposed target time-gap-based velocity

update model.

5.3.1 Description of the simulation environment

We assume that a platoon of vehicles is traveling on a long corridor of a 2 km

looping road. In a looping road, the start and end points of the road are connected

not physically but virtually. That is to say, as soon as a vehicle passes the end point

of this roadway with some velocity, it appears at the start point at the same velocity.

For instance, when we suppose that the number of vehicles moving on our considered

roadway is M ∈ N, the immediate lead of the 1st vehicle (i.e., the lead-most vehicle

that is the closest vehicle to the end of a road) is the M th vehicle (i.e., the last-most

vehicle that is the closest vehicle to the start of a road) and the vehicle behind the M th

vehicle is the 1st vehicle. This implies that the velocity and position of the 1st vehicle

are influenced by its virtual leading vehicle, M .

The main reason why we prefer a looping road rather than a straight road for

computer simulation is because the given traffic density can be maintained constantly

until simulation terminates as well as the fact that it is not necessary to include boundary

conditions for the lead-most vehicle at every time step. In addition, Mason et al. [65]

suggested that identical simulation results about system stability and the propagation of
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disturbances can be observed irrespective of the type of road, when the simulation is

executed on a long corridor. In practice, hence, many studies have considered a long

corridor of a looping road for computer simulation.

We set the initial conditions for simulation that every vehicle starts to travel at

zero velocity and at a random location on the roadway. We suppose that our considered

vehicular traffic network is synchronous in time; that is, all vehicles on a given looping

system use the target time-gap-based velocity update model to simultaneously refresh

their dynamic properties, such as their velocity and position at every time step. We

assume that the average safety length of vehicles is L = 6.1 m (i.e., 20 feet) and the

maximum free-flow velocity is vf = 120.7 km/h (i.e., 75 m/h) in (5.1).

5.4 Usability Analysis

In practice, loop detectors are normally used to measure and report local traffic

data at their deployed spots every 30 s. The observed traffic data is converted to macro-

scopic traffic state representing the speed, flow, density, and so on, averaged over 30

s. Our simulation use an operation of a loop detector to obtain various results and thus

collects the measurement data at the start point of a looping road every 30 s.

We set the update time interval T to 0.05 s. A small value of the update time

interval implies a highly controlled vehicle enabling a high frequency communication

or a cautious driver having his eyes on forward traffic conditions continuously without

distraction. We assume that every vehicle uses a pre-defined same target time gap of

τ̌ = 1.8 s, which is similar to the mean value of the time gap in a congestion region

measured in San Diego, California, USA [37]. That is, τi (kT ) = τ̌ for all i ∈ N and for

all k ∈ {0 ∪ N}.
We change the values of traffic density for usability analysis simulation in which

the range is from 1 to 100 vehs/km. The simulation for each density value is terminated

once a vehicular traffic network reaches the steady-state in which all vehicles travel at

the same velocity with respect to time without collisions. The simulation results per lane

for all density values are combined together.

The relation between traffic density and average time gap is shown in Fig. 5.2.
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Figure 5.2: Average time gap with respect to traffic density under T = 0.05 s and
τi (kT ) = 1.8 s for all i and for all k.

Each point in the scatter plot gives traffic density and average time gap, which are av-

eraged over 30 s. The density scope obtained from the entire simulation is from 1 to

around 118 vehs/km, which is different from the real density range we set. This gap

exists because the density values calculated by the local observations at a loop detector

is various in spite of a fixed given value of traffic density. It is observed that the time

gap varies widely when traffic density is low. However, it converges to a pre-defined

target time gap of τ̌ = 1.8 s in a congested area where traffic density is larger than the

critical density of 17 vehs/km. This critical density value is similar to that measured

in San Diego, California, USA [37]. The dispersion of the average time gap relies on

the initial random position of vehicles in a free-flow regime, whereas a vehicular traffic

network reaches an equilibrium state to where every vehicle has the constant time gap

in a congested area. The pattern of this scatter plot is also similar to the empirical traffic

data as presented in [37].

Fig. 5.3 shows the traffic flow and density pairs obtained from a microscopic

traffic simulation and the time-gap-based traffic model drawn by (5.1). Each point in the

scatter plot provides the traffic flow and density averaged over 30 s. Since the detectors

deployed at the start point of our looping roadway count and report the number of ve-

hicles passing on them during 30 s in integer units, the estimated traffic flow in vehs/h
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Figure 5.3: Traffic flow with respect to traffic density under T = 0.05 s and τi (kT ) =
1.8 s for all i and for all k.

is 120 times as large as the measured number of vehicles over 30 s. Thus, the traffic

flow and density points in blue can be located only at the horizontal lines of 120 times

of integers. Since every vehicle travels at the maximum free-flow velocity, vf , when

traffic density is low, the average speed of all vehicles in a vehicular traffic network is

equal to vf . In a congested area, on the contrary, the velocity of an individual vehi-

cle is influenced by the forward traffic situation and traffic density, and it changes with

time. Hence, the traffic flow-density pairs are scattered more widely near the congested

branch. For reference, a red line in Fig. 5.3 represents the time-gap-based traffic model

drawn with the given parameters: vf = 120.7 km/h, L = 6.1 m, and τ = 1.8 s in (5.1).

By comparing the blue flow-density pairs and the red line in Fig. 5.3, we can

observe that the scatter points obtained from the simulation results of our proposed

car-following model almost on average correspond to the time-gap-based traffic model,

which is a good and simple fundamental diagram. In particular, the first argument of

the time-gap-based traffic model, which is dominant in congestion conditions, is exactly

identical to the simulation results. This implies that the target time-gap-based velocity

update model mimics typical driving behavior accurately, and thus the vehicular traffic

networks considering this model as an inter-vehicle velocity control produce the macro-

scopic results that tie in closely with the empirical traffic data.
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Moreover, these traffic flow-density pairs support a prominent feature of vehic-

ular traffic flow, which is the so-called capacity drop. The capacity drop is defined as

a discharge flow drop after a localized disruption of traffic becomes active [74, 75, 76].

Particularly, Koshi et al. [74] claimed that the traffic flow-density relationship resem-

bles a reversed λ shape and that the flow-density pairs disperse more widely near the

right branch of the reversed λ symbol, which accords with the scattered blue points in

Fig. 5.3. A reversed λ explains that the achievable maximum traffic flow in a free-flow

regime is considerably larger than that in a congested region, and the phenomenon of

this capacity drop happens by a difference of 1% to 18% [77, 78, 79, 80]. Fig. 5.3 also

supports this numerical outcome, since the maximum capacity drop by a gap of around

17% can be observed at a traffic density of 28 vehs/km.

We have two additional simulation results under the same conditions except the

values of the target time gap using τ̌ = 1 s and τ̌ = 2.5 s. The flow-density relationship,

which aggregates the results obtained from the three different target time gap values,

is shown in Fig. 5.4. No accident is observed during the execution of this simulation,

since all drivers are so cautious that they can control the velocity frequently with the

update time interval of 0.05 s to avoid collisions. The safety analysis to explain this

phenomenon will be discussed in detail in the next Section. Each point in the scatter plot

provides the traffic flow and density averaged over 30 s. The traffic flow-density pairs

look like the empirical traffic data irrespective of the measurement location presented in

a study by Cho et al. [37], and the shape of these fit, on average, the time-gap-based

traffic model. The traffic flow-density pairs generated when the target time gap is 1 s

locate above the scattered blue points presented in Fig. 5.3. In contrast, the flow-density

relationship located below those blue points is obtained when the target time gap is 2.5

s. This observation is coherent to the slope variation of the second argument defined in

the time-gap-based traffic model (5.1).

The microscopic simulation results, such as the time gap and traffic flow with re-

spect to density, of vehicular traffic networks based on the target time-gap-based velocity

update model accord closely with the empirical traffic measurements as well as support

strongly the previous research outcomes about the capacity drop. Therefore, our pro-

posed target time-gap-based velocity update model can be regarded as a car-following
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Figure 5.4: Traffic flow with respect to traffic density under T = 0.05 s and τi (kT ) = 1
s, τi (kT ) = 1.8 s, and τi (kT ) = 2.5 s for all i and for all k.

model for accurately mimicking the typical behavior of drivers.

5.5 Safety Analysis

In this Section, we adopt a traffic safety metric called an anterior safety marginal

value (SMV) to analyze the safety of the target time-gap-based velocity update model.

In a vehicular traffic network using our proposed car-following model, the selection of

the target time gap and the update time interval with respect to traffic density value is

critical in deciding collision-free movements of vehicles. Three different regions are

introduced depending on the ratio of incident occurrence under various combinations of

the following key parameters for the target time-gap-based velocity update model: the

target time gap, the update time interval, and traffic density.

5.5.1 Traffic safety metric: Anterior safety marginal value

The anterior SMV initially introduced in Chapter 4 is a traffic safety metric to

indicate the likelihood of a rear-end accident occurring. Unlike other studies about

safety indicators, such as the time headway and the Time-to-Collision (TTC) [59, 63,
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64], the anterior SMV provides a numerical value between 0 and 1, which indicates the

safety level of rear-end collision risk as well as applies identically, irrespective of various

traffic situations. In addition, it is verified as a strong and rigorous safety indicator, but

it has a simple mathematical form. Thus, we use the anterior SMV to analyze the safety

of the target time-gap-based velocity update model in our considered vehicular traffic

network.

The anterior SMV is defined as the minimum value from a set of the continuous

anterior collision avoidance likelihood function, representing the safety level of rear-end

collision risk with leading vehicles, predicted by the collision avoidance (CA) margin

time of a vehicle. The CA margin time is defined as the time required to stop completely

with full application of the brakes. A set of vehicle states, including the position, veloc-

ity, and lane index, of all vehicles in a vehicular traffic network is used to determine the

anterior SMV at every time step. A set of vehicle states at time kT for k ∈ {0 ∪ N} is

given by C (kT ) = {Ci (kT ) | for all i ∈ N}. Here, Ci (kT ) is the vehicle states of the

ith vehicle at time kT given by Ci (kT ) = {xi (kT ) , vi (kT ) , li (kT )}, where xi(kT ),

vi(kT ), and li(kT ) denote the position, velocity, and lane index of the ith vehicle at time

kT , respectively.

For the derivation of the anterior SMV, it is assumed that every vehicle has the

same maximum acceleration rate a+
max and deceleration rate a−max. It is also assumed

that every vehicle knows the vehicle states of all other vehicles on a roadway at every

discrete time step. Hence, each vehicle can accurately draw the maximum and minimum

trajectories of other vehicles for some future time at every time step kT . The minimum

trajectory is the trajectory of a traveling vehicle with the maximum brake rate a−max,

whereas the maximum trajectory is that of a vehicle moving with the maximum acceler-

ation rate a+
max. Here, we note that when a vehicle travels with the maximum brake rate,

once it stops completely, its minimum trajectory stays stationary. Let di,max (kT + ∆t)

and di,min (kT + ∆t) denote the maximum and minimum trajectories of the ith vehi-

cle at time (kT + ∆t) for all ∆t ≥ 0, which are calculated from the vehicle states

Ci (kT ) of the ith vehicle at time kT , respectively. Let hi (kT ) denote the CA margin

time of the ith vehicle calculated at time kT . By the definition of the CA margin time,

hi (kT ) = −vi (kT ) /a−max.



97

In particular, by the definition of the anterior SMV, the ith vehicle for i ∈ N
needs a subset of vehicle states, {C1 (kT ) , C2 (kT ) , . . . , Ci (kT )}, to determine its an-

terior SMV at time kT . Hence, the anterior SMV for the ith vehicle at time kT is

SMV A
i ({C1 (kT ) , C2 (kT ) , . . . , Ci (kT )}) ∈ [0, 1]

for every i ∈ N and for every k ∈ {0 ∪ N}. SMV A
i (kT ) = 1 implies that the ith

vehicle will not collide with vehicles ahead of it by its CA margin time hi (kT ). That

is, the ith vehicle is absolutely safe from collision risk by its CA margin time. On the

contrary, SMV A
i (kT ) = 0 implies that the ith vehicle will absolutely crash into other

leading vehicles before its CA margin time. SMV A
i (kT ) ∈ (0, 1) means that the ith

vehicle is likely to crash into other leading vehicles by its CA margin time. The larger

the anterior SMV, the safer the vehicle is; that is, the lower the likelihood of a crash.

The computational complexity in determining the anterior SMV described in

Chapter 4 grows dramatically, particularly when the number of leading vehicles in-

creases. Hence, they also introduced a finite anterior space horizon for the anterior SMV

to substantially prune the computational complexity. The anterior space horizon is de-

fined as the number of leading vehicles to affect non-unity anterior SMV. The statement

that the ith vehicle has non-unity anterior SMV at time kT means SMV A
i (kT ) ∈ [0, 1).

This implies that there exists a positive possibility of rear-end collision risk with the

number of leading vehicles defined by the anterior space horizon.

The following Theorem 5.1 is the finite anterior space horizon and the corre-

sponding anterior SMV presented in Chapter 4, which is used for analyzing the safety

of our proposed target time-gap-based velocity update model.

Theorem 5.1. Finite anterior space horizon and anterior SMV

Suppose that there exists ji = maxJi (kT ) for every i ≥ 2 and for every k ∈ {0 ∪ N}
such that

Ji (kT ) = argmin
l∈[1,i]

{dl,max (kT + hi (kT ))} . (5.4)

Then, the finite anterior space horizon of the ith vehicle at time kT is given by

SHA
i (kT ) = (i− ji) (5.5)
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and its corresponding anterior SMV is

SMV A
i (kT )

= min
∆t∈(0,hi(kT )]


 min

l∈[ji,(i−1)]
{dl,max (kT + ∆t)} − di,min (kT + ∆t)

min
l∈[ji,(i−1)]

{dl,max (kT + ∆t)} − min
l∈[ji,(i−1)]

{dl,min (kT + ∆t)}


P

 .

(5.6)

5.5.2 Adoption of the anterior SMV for a target time-gap-based ve-

locity update model

We showed that the target time-gap-based velocity update model can be used

as a representative car-following model, since it mimics the typical behavior of drivers

accurately. However, the safety assurance of our proposed car-following model does

not follow its usability. Hence, we use the anterior SMV to investigate its safety in a

vehicular traffic network.

We set traffic density, ρ, to around 93 vehs/km (i.e., 150 vehs/mile) for the con-

sidered vehicular traffic network. Fig. 5.5 represents the anterior SMV evolution in

simulation time under the different target time gaps and update time intervals, when all

vehicles use the target time-gap-based velocity update model to refresh their dynamic

properties. The minimum anterior SMV of all vehicles at every time step is depicted

with a red line. If this minimum anterior SMV evolution is equal to 1, then every vehi-

cle in a vehicular traffic system has a safety indicator of 1 and thus ensures collision-free

trajectory at that moment. Once a vehicular traffic network reaches the steady-state in

which all vehicles move at the same velocity with respect to time without crashes and

the minimum value of the anterior SMVs of all vehicles indicates perfect safety, this

implies the guarantee of permanent collision-free movements. The simulation for each

experiment is terminated when either everlasting collision-free movements of all vehi-

cles are confident or rear-end incidents occur. A red line shown in Fig. 5.5 represents

the minimum anterior SMV evolution for each experiment, and the blue circle refers to

the time of collision occurrence.

We consider four scenarios: (1) the target time gap of 1.8 s, which is similar to

the mean value of the time gap in a congestion regime measured in San Diego, Califor-
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nia, USA [37], and the small value of the update time interval of 0.05 s, (2) the target

time gap of 0.6 s, which is less than its empirical mean value in San Diego, USA, and the

same update time interval as the first experiment, (3) the target time gap of 0.1 s, which

is much less than its average value observed in San Diego, USA, and the same update

time interval as the first experiment, and (4) the same target time gap as the first exper-

iment, but with the update time interval of 1 s, which is much larger compared to the

other three experiments. The results of these four experiments are shown in Figs. 5.5(a),

5.5(b), 5.5(c), and 5.5(d), respectively. As the target time gap gets smaller, drivers can be

considered as tailgaters closely following frontward vehicles. In addition, a small value

of the update time interval implies a highly controlled vehicle enabling a high frequency

operation or a cautious driver having his eyes on forward traffic situations consistently

without distraction.

The anterior SMV of every vehicle keeps being identical to 1 for the first experi-

ment, since all vehicles travel with enough car spacing and steadily update their velocity

in order to prevent incidents. This result helps explain why drivers unconsciously main-

tain a typical time gap of around 1.8 s for frontward safety, which is the essential point of

the empirical traffic data about the time gap measured in San Diego, California, USA.

Figs. 5.5(b) and 5.5(c) show decreases in the target time gap and the consequential

variations in the minimum anterior SMV, but retaining the same update time interval.

When the target time gap is 0.6 s, there exist vehicles with non-unity anterior SMV

from around 3 s in simulation time. However, since this given target time gap does not

induce the severe tailgating phenomenon, the vehicles with positive collision risk can

escape gradually from a dangerous accident zone. Finally, it is observed that a vehicular

traffic network can be assured of collision-free movements of all vehicles from about 6

s in simulation time. To top it off, when all vehicles in a vehicular traffic system use the

given target time gap of 0.1 s, the vehicles appear with non-unity anterior SMV. Unlike

the second experiment, the vehicles adhere to aggressive driving to leading vehicles and

thus make collisions in simulation time of 11 s. Now, the minimum anterior SMV evo-

lution, where only frequency of update for new velocity in time is larger compared to

the first experiment, is shown in Fig. 5.5(d). Even though the vehicles in a vehicular

traffic network try to move with enough distance to leading vehicles, since they update
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Figure 5.5: Minimum anterior SMV evolution according to the target time gap and the
update time interval under 93 vehs/km (i.e., 150 vehs/mile). (a) τ̌ = 1.8 s and T = 0.05
s. (b) τ̌ = 0.6 s and T = 0.05 s. (c) τ̌ = 0.1 s and T = 0.05 s. (d) τ̌ = 1.8 s and T = 1
s.

their dynamic properties with one second old car spacing information, there exists the

positive likelihood of a rear-end collision among vehicles. The abrupt fluctuation of the

minimum anterior SMV eventually culminates with incidents in a time of 15 s.

An investigation of the target time-gap-based velocity update model with the

help of the anterior SMV gives the conjecture that either a small value of the target

time gap or a large value of the update time interval can cause a rear-end collision

in a vehicular traffic network using our proposed car-following model. Therefore, the

detailed safety analysis for the target time-gap-based velocity update model is necessary

depending on its three key parameters: the target time gap, the update time interval, and

traffic density.
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5.5.3 Traffic safety relationship among three parameters

The target time gap, update time interval, and traffic density for our proposed

car-following model are the primary parameters determining collision-free movements

of vehicles in a vehicular traffic network. Hence, the collision ratio according to a

combination of these primary variables needs to be examined. The collision ratio is

defined as the ratio of the number of simulations that experience rear-end incidents

over the total number of simulations to run. The total number of simulations is 200

times for each case. The simulation for each case is terminated when either permanent

collision-free trajectories of all vehicles are confident or rear-end collisions occur as

was done in earlier simulation for the usability analysis. The values of traffic density to

be examined are around ρ = 12 vehs/km (i.e., 20 vehs/mile), ρ = 31 vehs/km (i.e., 50

vehs/mile), and ρ = 93 vehs/km (i.e., 150 vehs/mile). We note that these traffic densities

are representative density values for describing a free-flow regime, a low-congestion

regime, and a high-congestion regime, respectively. The range of the target time gap is

from 0.1 to 3.0 s at an interval of 0.1 s. Also, the scope of the update time interval is

from 0.05 to 4.0 s with 0.05-seconds intervals additionally including 0.01 s. Thus, the

total number of simulation cases for each traffic density value is 2430.

We introduce three different regions depending on the frequency of collision

occurrence with respect to the key parameters for the target time-gap-based velocity

update model, which are a collision-free region, a transition region, and a catastrophe

region. A collision-free region is defined as the sub domain of the target time gap and

the update time interval under the given traffic density, which is always assured the

collision-free movements of all traveling vehicles in a vehicular traffic network unless an

abrupt perturbation exists. On the contrary, a catastrophe region is the sub domain that

will result in rear-end accidents before a vehicular traffic system reaches a steady-state.

A transition region is the area between a collision-free region and a catastrophe region

with a positive ratio of collision occurrence. The entire domain constructed by the target

time gap and the update time interval consists of these three non-overlapping regions: a

collision-free region with collision ratio of 0, a catastrophe region with collision ratio of

1, and a transition region with the lower and upper open bounds of collision ratio range

between 0 and 1.
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Figs. 5.6(a), 5.6(b), and 5.6(c) depict the collision ratio according to a com-

bination of the target time gap and the update time interval under the different traffic

densities of 12, 31, and 93 vehs/km, respectively. The surface in red with the collision

ratio of 1 describes a catastrophe region, whereas that in blue having the collision ratio

of 0 is a collision-free region. Three different regions are obviously observed irrespec-

tive of traffic density. However, as traffic density increases, the catastrophe region gets

wider, whereas both the collision-free region and the transition region become narrower.

In addition, a transition region under high density has a steeper slope between catastro-

phe and collision-free regions compared to low density. This is because the small value

of average car spacing of vehicles caused by high density augments rear-end collision

risk. This reason also explains that a platoon of vehicles in high traffic density is more

vulnerable to crashing into other vehicles compared to those in low density.

The large value of the update time interval implies that vehicles in our considered

vehicular traffic network use old car spacing data to update their dynamic properties; that

is, there is a long interval before they intermittently refresh their velocities and positions.

In this case, the cause of a rear-end incident can be explained as follows: if the newly

calculated velocity of a vehicle is much higher than that of its leading vehicle and a

long time is needed to update the velocities of two consecutive vehicles owing to the

large update time interval, a vehicle can collide into the vehicle in front of it. In general,

hence, the collision ratio will grow irrespective of traffic density, as the update time

interval increases.

Under the highest traffic density of around 93 vehs/km, the collision ratio is com-

monly inversely proportional to the target time gap. Unfortunately, a vehicular traffic

system stays a catastrophe region when the target time gap is set to 0.2 s over the entire

given range of the update time interval. We define the abysmal target time gap set as the

values of the target time gap that have the longest range of the update time interval and

result in a catastrophe region. The abysmal target time gap set exists for each traffic den-

sity. For instance, the abysmal target time gap set is 0.2 s in the highest traffic density.

Unlike the general relationship between the target time gap and the collision ratio, as the

former decreases, particularly where it is less than the abysmal target time gap set, the

latter also drops off. The abysmal target time gap set contains the values of the target
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Figure 5.6: Collision ratio with respect to the target time gap and the update time inter-
val for various traffic densities, ρ. (a) ρ = 12 vehs/km (i.e., 20 vehs/mile). (b)ρ = 31
vehs/km (i.e., 50 vehs/mile). (c) ρ = 93 vehs/km (i.e., 150 vehs/mile).
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time gap from 1.0 s to 1.3 s, when traffic density is 31 vehs/km. Since our considered

upper bound of the target time gap is 3.0 s, the corresponding exact abysmal target time

gap set can not be examined for the density of 12 vehs/km. In this case, however, the

abysmal target time gap set might be 3.0 s with the limited simulation results. Hence, it

is observed that the abysmal target time gap set diminishes, whereas the relevant update

time interval range belonging to a catastrophe region becomes wider as traffic density

increases. This observation is consistent with a proportional connection between the

size of a catastrophe region and traffic density in a vehicular traffic network. The reason

why the collision ratio is a non-increasing curve at which the target time gap is less

than the abysmal target time gap set under the fixed values of traffic density and update

time interval can be explained as follows: even though the given target time gap value

is small, if all vehicles on a roadway have enough car spacing, such as even car spacing,

at the initial time step, then their practical time gaps are larger than the given target time

gap, and thus they do not apply sudden full brakes. In this case, several strings of vehi-

cles in which some vehicles travel close together in packs can be observed. This enables

a vehicular traffic network to reach a steady-state without incidents.

In conclusion, the larger target time gap and the shorter update time interval are

necessary to achieve collision-free movements in a vehicular traffic network using the

target time-gap-based velocity update model. For safety, however, if vehicles are con-

trolled with the shorter target time gap, they need to frequently measure their frontward

car spacings and to update their dynamic properties. That is, the vehicles require high

bandwidth operation. Although the vehicles travel in a collision-free region, even small

adverse changes in either the target time gap or the update time interval can make a

vehicular traffic system unexpectedly fall into a catastrophe region, in particular when

traffic density is high.

Boundaries of collision-free regions and catastrophe regions for three different

traffic densities are shown in Fig. 5.7. The dotted lines represent collision-free region

boundaries for every traffic density, whereas the solid lines describe catastrophe region

boundaries for each density value. The blue, red-circled, and green-squared lines refer to

boundaries for traffic densities of 12, 31, and 93 vehs/km, respectively. As traffic density

decreases, the area between a catastrophe region and a collision-free region, called a
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Figure 5.7: Boundaries of collision-free regions and catastrophe regions for various
traffic densities, ρ = 12, ρ = 31, and ρ = 93 vehs/km.

transition region, becomes narrow as discussed in Fig. 5.6. The fact that more attention

in collision-free driving is necessary in high density conditions is also easily supported

by Fig. 5.7. A catastrophe region obtained when traffic density is high contains that in

low density. On the contrary, a collision-free region under high traffic density is a subset

of that when density is low. The abysmal target time gap set can be easily observed

in Fig. 5.7 by finding the target time gap that has the longest range of the update time

interval that results in a catastrophe region; the abysmal target time gap sets are 3.0 s,

from 1.0 s to 1.3 s, and 0.2 s in an ascending order of traffic density.

An investigation of a collision-free region guaranteeing perfect traffic safety with

respect to three key parameters, such as the target time gap, the update time interval, and

traffic density, for the target time-gap-based velocity update model is a basic essential

for analyzing the capacity of our proposed car-following model.

5.6 Capacity Analysis

In this Section, an analysis of average practical time gap and average system

velocity under a steady-state for our considered vehicular traffic networks is performed.
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We regard a steady-state as the state where all vehicles in a vehicular traffic network

travel at the same time-invariant velocity without collisions. Also, a comparison be-

tween the empirical capacity obtained from traffic measurement data and the numerical

capacity of a vehicular traffic network using the target time-gap-based velocity update

model is drawn. The achievable system capacity ensuring safety and capacity enhance-

ments is then provided.

5.6.1 Numerical analysis under a steady-state

We assume that our considered system reaches a steady-state. Then, vi (kT ) =

v∗ for all i ∈ N and for all k ≥ K in a steady-state, where K ∈ {0 ∪ N}. Let s̄∗ and

τ̄ ∗ denote the average car spacing (in m) and the average practical time gap in a steady-

state, respectively. Even though every vehicle refreshes its velocity with the given target

time gap of τ̌ , the practical time gap averaged over all vehicles can be different from the

target time gap according to traffic density and the upper bound of the velocity limited

by the maximum free-flow velocity of vf . The average car spacing in a steady-state is

given by

s̄∗ =
1000

ρ
− L. (5.7)

In addition, the average system velocity, v̄∗, is equal to v∗ in a steady-state. By substi-

tuting (5.7) into (5.1), the relationship between the average practical time gap and the

average system velocity in a steady-state is given by

τ̄ ∗ =

1000
ρ
− L

ĉ v̄∗
. (5.8)

Fig. 5.8 shows the average practical time gap with respect to the given target

time gap under various traffic densities. The red solid, green dotted, and blue dash-

dotted lines represent the average practical time gap for various traffic densities, such as

ρ = 12, ρ = 31, and ρ = 93 vehs/km, respectively. When steady-state traffic flow is

in a free-flow regime, all vehicles travel at the same velocity of the maximum free-flow

velocity, vf . The corresponding average measured time gap is denoted by τ̄ ∗f , which

is easily calculated by substituting v̄∗ = vf into (5.8). That is, the average practical

time gap keeps being identical to τ̄ ∗f , which depends on traffic density, in a steady-state
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Figure 5.8: Average practical time gap with respect to the target time gap for traffic
densities, such as ρ = 12, ρ = 31, and ρ = 93 vehs/km.

free-flow situation. However, if vehicles in a vehicular traffic network use the given

target time gap of τ̌ being larger than τ̄ ∗f , then the given target time gap overrides as a

mean value of the practical time gap. We define the critical target time gap as the largest

value of the target time gaps to make the average system velocity attain the maximum

free-flow velocity; that is, the critical target time gap is τ̌ = τ̄ ∗f . The red square, green

circle, and blue triangle depict the critical target time gap under traffic densities, ρ = 12,

ρ = 31, and ρ = 93 vehs/km, respectively. These critical target time gaps are around

0.12, 0.78, and 2.26 s in a descending order of the considered traffic density. We observe

that if the given target time gap is less than or equal to the critical target time gap in

which a vehicular traffic network stays in a free-flow regime, the average measured time

gap is equal to τ̄ ∗f , but otherwise it is the same as the given target time gap. In other

words, we have

τ̄ ∗= max{τ̌ , τ̄ ∗f }. (5.9)

The average system velocity according to the target time gap for each traffic

density is shown in Fig. 5.9. All vehicles travel at the maximum free-flow velocity of

around 117.5 km/h when the given target time gap is less than or equal to the critical

time gap as explained in Fig. 5.8. On the contrary, the average system velocity in a

congestion regime is directly obtained from (5.8). Hence, the average system velocity
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Figure 5.9: Average system velocity with respect to the given target time gap for various
traffic densities, ρ = 12, ρ = 31, and ρ = 93 (vehs/km).

of all vehicles in a steady-state is

v̄∗=

v̄∗f if τ̌ ≤ τ̄ ∗f ,
1000
ρ
−L

ĉ τ̄∗
if τ̌ > τ̄ ∗f .

(5.10)

In general, the average system velocity is a non-increasing curve with respect to traf-

fic density under the same target time gap. A similar phenomenon also occurs in the

increasing target time gap under the same traffic density.

We note that Figs. 5.8 and 5.9, represented by the numerical analysis of a

steady-state for the target time-gap-based velocity update model, are exactly identical

to the simulation results obtained when our considered vehicular traffic system reaches

a steady-state without collisions.

Fig. 5.10 shows the average system velocity with respect to traffic density and

the target time gap, which is a simulation result of our proposed car-following model

only when no collision is observed. As we discussed in the previous Section on safety

analysis, a small value of the update time interval, T = 0.01 s, is used to guarantee

collision-free movements of all vehicles during simulation. As traffic density value or

the target time gap increases, the average system velocity decreases in principle. A plain

of the maximum free-flow velocity, which is the average system velocity in a free-flow
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Figure 5.10: Average system velocity with respect to traffic density and the given target
time gap.

regime, can be observed when either of them is small. However, once the target time gap

increases beyond the critical target time gap for each traffic density, the average system

velocity plummets like a waterfall.

5.6.2 Comparative results for capacity

Table 5.1 shows the empirical capacity per lane based on the measurement data

in San Diego, California, USA, which was provided by Cho et al. [37]. When traffic is

in a free-flow regime, such as a low density of 12 vehs/km, since vehicles in a vehicular

traffic network travel at the maximum free-flow velocity, the corresponding empirical

capacity is 1460 vehs/h. As traffic density increases to 31 vehs/km, slightly congested

traffic can be observed and thus the empirical capacity of 2650 vehs/h is less than the

maximal throughput achieved at the critical density. In situations where vehicles are in a

high-congestion regime caused by a high density of 93 vehs/km, the empirical capacity

dramatically decreases to 450 vehs/h.

A comparison between the numerical capacity and the empirical capacity is

drawn in Fig. 5.11. The numerical capacity, which is the maximum achievable traf-

fic flow per lane in a steady-state, is calculated by (5.10) and by the relation among

traffic flow, density, and velocity satisfying with q = ρ v. The numerical capacity is also
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Table 5.1: Empirical capacity based on the measurement data in San Diego, California,
USA.

Traffic density (vehs/km) Traffic condition Empirical capacity (vehs/h)

12 A free-flow regime 1460

31 A low-congestion regime 2650

93 A high-congestion regime 450

identically supported by the simulation results. These numerical capacities for various

traffic densities, such as ρ = 93, ρ = 31, and ρ = 12 vehs/km, are represented by the

red solid, green dotted, and blue dash-dotted lines, respectively. The empirical capacity

for each traffic density presented in Table 5.1 is depicted by a diamond in relevant color.

When traffic is in a seriously congested situation caused by a high density of

93 vehs/km, applying the target time-gap-based velocity update model to all vehicles

improves the system throughput compared to the empirical capacity no matter what

target time gap value is used. As traffic density decreases to 31 vehs/km, a lightly

congested condition can be observed. In this situation, the use of a less than or equal to

1.0 s small target time gap value is recommended so as to enhance system throughput.

However, in situations where vehicles are in a free-flow regime, such as a density of

12 vehs/km, letting drivers have power over the vehicles gives better performance than

controlling vehicles with any value of the target time gap.

The achievable system capacity of a vehicular traffic network in which all vehi-

cles use the target time-gap-based velocity update model needs to be considered. The

achievable system capacity means the maximum traffic flow between the numerical ca-

pacity in using the target time-gap-based velocity update model and the empirical capac-

ity, in particular while guaranteeing collision-free trajectories of all traveling vehicles.

The range of the target time gap is from 0.1 to 3.0 s, and the scope of the update time

interval is from 0.01 to 4.0 s, which we use, in order to examine the collision ratio as

shown in Fig. 5.6. Even though the entire range of the target time gap for the high

density of 93 vehs/km provides better performance in throughput, since its sub-range

from 0.1 to 0.6 s makes vehicles reach a catastrophe region or a transition region, its

sub-range is considered the domain that brings the zero capacity. When traffic density

is 31 vehs/km, the small values of the target time gap, such as 0.1 to 1.0 s, induces the
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Figure 5.11: A comparison between the numerical capacity and the empirical capacity.

system throughput enhancement compared to the empirical traffic data. However, the

achievable system capacity is dominated by the empirical capacity over the range of the

target time gap from 1.1 to 3.0 s. This implies that only its sub-range from 0.1 to 1.0

s is preferred to use for system throughput improvement. The numerical capacity for

a low traffic density of 12 vehs/km is more dominant than the empirical capacity over

the target time gaps from 0.1 to 2.2 s, whereas the empirical capacity is the attainable

system throughput over the rest of the target time gap range. Since the above provided

sub-ranges, which are from 0.1 to 1.0 s for traffic density of 31 vehs/km and from 0.1

to 2.2 s for 12 vehs/km, have the corresponding update time interval values to have a

vehicular traffic network stay in a collision-free region, the numerical capacity derived

from these sub-ranges can be considered as the achievable system throughput.

As a result, we present the effective domain of the target time gap and the update

time interval for each traffic density in Table 5.2. This effective domain guarantees both

collision-free movements of all vehicles and system capacity improvement compared to

the empirical capacity. When traffic density is 12 vehs/km, there exists the effective do-

main consisting of the target time gap of 0.1 to 2.2 s and the relevant update time interval

of 0.01 to 0.55. The safety and system throughput enhancements for this effective do-

main are verified by Fig. 5.6(a). As traffic density increases, traffic becomes congested

and the size of the effective domain gets narrower. The sub-range of the target time gap
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Table 5.2: Effective domain of the target time gap and the update time interval for
ensuring perfect safety and capacity enhancement.

Traffic density (vehs/km) Target time gap (s) Update time interval (s)

12 0.1 ∼ 2.2 0.01 ∼ 0.55

31 0.1 ∼ 1.0 0.01 ∼ 0.10

93 0.7 ∼ 3.0 0.01 ∼ 0.05

from 0.1 to 1.0 s shows an improvement in system capacity when traffic density is of 31

vehs/km. In addition, the update time interval should be from 0.01 to 0.10 s under its

sub-range for collision-free movements in a vehicular traffic network as shown in Fig.

5.6(b). An increase in traffic density in a congestion regime widens the range of the

target time gap, which induces system throughput enhancement; for instance, if traffic

density increases to 93 vehs/km, the relevant range of the target time gap is from 0.1 to

3.0 s. However, since no value of the update time interval corresponding to the target

time gap of 0.1 to 0.6 s makes a vehicular traffic system reach a collision-free region,

the sub-range of the target time gap constituting the effective domain is from 0.7 to 3.0

s. Extremely small values of the update time interval, such as 0.01 to 0.05 s, are needed

for perfect safety, particularly under the target time gap of 0.7 to 3.0 s.

5.7 Summary

We proposed the target time-gap-based velocity update model, which is an exten-

sion of the time-gap-based traffic model considered as a simple triangular fundamental

diagram. Every vehicle in a vehicular traffic network updates its velocity and position

for the next time step with the time-gap-based velocity update model. A simulation

analysis for the proposed car-following model was conducted by a microscopic traffic

simulator. In addition, the simulation results matched well with empirical traffic data.

Hence, the target time-gap-based velocity update model is considered to be a represen-

tative car-following model that mimics the typical behavior of drivers. Since typical

driving behavior is itself a creative and superior algorithm, the proposed car-following

model describing it specifically and accurately deserves a similarly outstanding model.

A safety analysis of the target time-gap-based velocity update model was conducted
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through the anterior safety marginal value (SMV). Three different regions were intro-

duced depending on the frequency of collision occurrence with respect to traffic density,

the given constant target time gap applied for all vehicles in vehicular traffic networks,

and the update time interval needed to refresh the velocity and position of vehicles.

These regions include a collision-free region, a transition region, and a catastrophe re-

gion. A collision-free region is defined as the sub domain of the target time gap and

the update time interval under the given traffic density, which is always assured the

collision-free movement of vehicles, if there is no perturbation. In contrast, a catastro-

phe region is the sub domain that will result in incidents before reaching a steady-state.

A transition region is the area between a collision-free region and a catastrophe region

with a positive ratio of collision occurring. The average practical time gap and the aver-

age system velocity in a steady-state of the target time-gap-based velocity update model

was analyzed mathematically and verified by the identicalness with the corresponding

simulation results. Moreover, when the proposed car-following model is used as a ba-

sis for inter-vehicle control, the effective reachable domain of the target time gap and

the update time interval was presented, which guarantees both collision-free movements

and system capacity enhancement compared to the empirical traffic data.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

The presented research works provided various approaches described in Chap-

ter 1 to enhance traffic safety and improve system capacity for vehicular traffic networks.

In order to build a solid foundation for this interdisciplinary work, first the understanding

phase of vehicular traffic flow was fulfilled by analyzing the empirical traffic data. As a

result, a time-gap-based traffic model that is a triangular fundamental diagram was pro-

posed in Chapter 2. Three different strategies were provided to reach the traffic safety

and capacity enhancement goals of this dissertation. Two coordinated ramp-metering

optimization problems were suggested with the objective function that attains the max-

imum average system throughput in Chapter 3. The comparative results showing better

performance of these optimization problems were conducted by a macroscopic traf-

fic simulator based on the proposed time-gap-based traffic model. In particular, the

time-variant ramp-metering algorithm that also supports on-ramp queue control showed

increases in the system-level capacity and prevention of on-ramp queue spillover onto

neighboring arterial streets. A new and rigorous traffic safety metric called the ante-

rior safety marginal value (SMV), which indicates the safety level of collision risk with

other leading vehicles, was derived in Chapter 4. The anterior SMV has the strength of

providing a numerical value between 0 and 1, which shows the likelihood of accident

occurrence and applies identically for various traffic conditions, whereas it does not in-

clude the practical weakness of the existing safety indicators, which have recommended

114
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safety limits that are not only various for different traffic situations, but also ambiguous

for presenting the safety level of collision risk. The anterior SMV was qualified as a

remarkable safety indicator to predict and prevent a rear-end collision through a safety

analysis of the Gipps car-following model. In Chapter 5, the time-gap-based velocity

update model that is a car-following model was provided. The proposed car-following

model is an extended version of a microscopic traffic flow model from the time-gap-

based traffic model. Its verification was carried out by a microscopic traffic simulator

based on the time-gap-based velocity update model. A comparison between its simula-

tion results and the empirical traffic data showed that it is a representative car-following

model that can mimic typical driving behavior accurately. Moreover, the reachable do-

mains of the time gap and the update time interval in vehicular traffic networks using

the time-gap-based velocity update model were provided, which effect the simultane-

ous improvement of traffic safety and capacity. Therefore, a combination of the various

compoundable strategies suggested in this dissertation creates a synergistic effect to im-

prove safety and throughput for vehicular traffic networks.

When traveling, a driver generally maintains a positive safe distance between his

vehicle and the vehicle immediately in front of it in order to prevent collisions. Because

of this safe distance, there exists a time gap that is defined as the time required to travel

the distance between the front end of a vehicle to the back end of its leading vehicle. In

Chapter 2, we provided the time-gap-based traffic model for describing vehicular traffic

flow. The proposed model explains the widely known triangular flow-density funda-

mental diagram introduced by Newell, in particular by using three primary parameters:

the maximum free-flow velocity, a typical safety length of vehicles, and a mean value

of the time gap calculated from the traffic data in congested conditions. In addition, we

suggested two different analysis methods to estimate the time gap from empirical traffic

data measured by single-loop and double-loop detector systems. It was observed that

the average and standard deviation of the time gap vary widely when traffic density is

low, whereas its average keeps nearly constant and its standard deviation is small in a

congestion regime. The proposed time-gap-based traffic model was well validated by

traffic measurement data using least squares matching and by previous research out-

comes about driver reaction times as well as propagation velocity. This emphatically
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declares that a mean value of the time gap is a critical factor to characterize vehicular

traffic flow, particularly where the traffic is congested. Therefore, the proposed time-

gap-based traffic model is a good and simple representative fundamental diagram for

mimicking driving pattern and describing vehicular traffic flow specifically. Moreover,

the time-gap-based traffic model can be used as a macroscopic traffic flow model in

implementing optimal ramp-metering control or a macroscopic traffic simulator as ex-

ploited in this dissertation.

Numerous ramp-metering algorithms have been examined to relieve highway

congestion. Unlike previous research, in Chapter 3, we provided two optimal coordi-

nated ramp-metering controls for achieving the maximum average system throughput

of vehicular traffic networks. The proposed ramp-metering strategies, the steady-state

optimization problem and the time-variant optimization problem, use real-time mea-

surement data along a system-wide highway corridor to regulate the metered rates at

all entrance ramps. Also, both strategies are realistically implementable and reasonable

algorithms, since they exploit only the limited traffic measurements collectable from

existing field facilities and the time-gap-based traffic model introduced in Chapter 2.

The steady-state ramp-metering programming problem regulates on-ramp flows so as to

keep traffic densities of all homogeneous sections along a system-wide highway corri-

dor below their critical densities. However, this strategy has the side effect of increased

traffic jams from the highway mainline to its adjacent streets. Hence, the time-variant

linear programming problem was provided with consideration of on-ramp queue con-

trol to prevent on-ramp queue spillover that is an adverse effect of most ramp-metering

algorithms like the steady-state ramp-metering control. The time-gap-based fundamen-

tal diagram was used to demonstrate the constraints of the two proposed optimization

problems as well as to estimate traffic flow. As a result of the comparative analysis

through a macroscopic traffic simulation based on the time-gap-based traffic model, the

time-variant optimization problem for maximizing the average system throughput was

proven as an effective coordinated ramp-metering algorithm to provide higher system

capacity, to increase the average system speed, particularly in congested traffic, and to

mitigate on-ramp queue spillover onto neighboring arterial streets.

Current car-following models for collision avoidance describe the interactive
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characteristics of vehicles such as velocity, acceleration rate, and time headway. How-

ever, they have the weak point that they cannot predict unexpected and risky driver

behavior, as they were developed under unrealistic assumptions about driver behavior.

In Chapter 4, therefore, we formulated the anterior SMV to be utilized as a safety in-

dicator to prevent even unexpected vehicle-to-vehicle collisions on roadways. The an-

terior SMV is defined as the minimum value from a set of the continuous safety level

of collision risk with other leading vehicles predicted by the collision avoidance (CA)

margin time of each vehicle. Every vehicle in a vehicular traffic network uses a set

of vehicle states, including the position, velocity, and lane index of all traveling ve-

hicles, to determine the anterior SMV. The general, simple form of the anterior SMV

needs dramatically growing computational complexity, particularly when the number of

leading vehicles increases. Hence, the finite space horizon for the anterior SMV was

defined in order to substantially reduce computational complexity. The space horizon

for the anterior SMV is defined as the finite number of leading vehicles to be consid-

ered in determining non-unity anterior SMV. The usability for the anterior SMV was

validated through a safety analysis of the Gipps car-following model, which is one of

the best-known models. Three states were introduced according to the different vari-

ables defined in the Gipps car-following model: a global steady-state that guarantees

collision-free movements of all vehicles with the same time-invariant velocity and car

spacing along the entire traffic system, a local steady-state in which every vehicle trav-

els on a collision-free trajectory with the same time-invariant velocity but with different

constant car spacing, and a catastrophe state that results in collisions. The anterior SMV

enables a vehicular traffic system to stay in either a global steady-state or a local steady-

state by warning of relevant vehicles of non-unity anterior SMV and helping them by

the collision avoidance to escape gradually from a dangerous accident zone. Hence, the

anterior SMV can be used as a safety criterion to indicate the level of safety for a car-

following model or as a main parameter of an objective function to maximize safety or

minimize traffic congestion for vehicular traffic networks.

Existing car-following models specify the movement of vehicles traveling on

a highway corridor, particularly by presenting the driver’s response to the behavior of

the vehicle in front. Unlike existing car-following models, in Chapter 5, we proposed
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the target time-gap-based velocity update model, which is an extension of the time-

gap-based traffic model considered as a simple triangular fundamental diagram, as de-

scribed in Chapter 2. Every vehicle in vehicular traffic networks updates its velocity

and position for the next time step with the time-gap-based velocity update model. A

simulation analysis for the proposed car-following model was conducted by a micro-

scopic traffic simulator. In addition, the simulation results matched well with empirical

traffic data. Hence, the target time-gap-based velocity update model is considered to

be a representative car-following model that mimics the typical behavior of drivers.

Since typical driving behavior is itself a creative and superior algorithm, the proposed

car-following model describing it specifically and accurately deserves an outstanding

algorithm. A safety analysis of the target time-gap-based velocity update model was

conducted through the anterior SMV proposed in Chapter 4. Three different regions

were introduced depending on the frequency of collision occurrence with respect to the

traffic density, the given constant target time gap applied for all vehicles in vehicular

traffic networks, and the update time interval needed to refresh the velocity and posi-

tion of vehicles. These regions include a collision-free region, a transition region, and

a catastrophe region. A collision-free region is defined as the sub domain of the tar-

get time gap and the update time interval under the given traffic density, which always

assures the collision-free movement of vehicles unless an abrupt perturbation exists.

In contrast, a catastrophe region is the sub domain that will result in incidents before

reaching a steady-state. A transition region is the area between a collision-free region

and a catastrophe region with a positive ratio of collision occurring. A global steady-

state of the target time-gap-based velocity update model was analyzed mathematically.

Moreover, when the proposed car-following model is used as a basis for inter-vehicle

control, the effective reachable domain of the target time gap and the update time inter-

val was presented, which guarantee both collision-free movements and system capacity

enhancement compared to the empirical traffic data.

In conclusion, this dissertation offered the following multilevel solutions to im-

prove traffic safety and enhance the capacity of vehicular traffic networks: (1) a time-

gap-based traffic model as a foundation for a simple representative macroscopic traffic

flow model inferred from an understanding of traffic flow. (2) an optimal coordinated
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ramp-metering control to achieve the maximum average system capacity. (3) an ante-

rior SMV to indicate the safety level of rear-end collision risk with leading vehicles. (4)

a target time-gap-based velocity update model as a representative car-following model

that mimics typical driving behavior for the traffic safety and throughput enhancements.

6.2 Future Works

Diverse control strategies presented in this dissertation can be extended to the

aspect of road safety for enabling perfect collision-free movement in vehicular traffic

networks. To make this dissertation short, an optimal coordinated ramp-metering con-

trol was proposed in Chapter 3 in order to maximize the average system-level capacity

and to prevent on-ramp queue spillover onto neighboring arterial streets. In Chapter 4,

an effective and rigorous traffic safety metric called the anterior SMV was provided,

which indicates the safety level of collision risk with other leading vehicles. Also, the

target time-gap-based velocity update model proposed in Chapter 5 was verified as a

representative car-following model to mimic typical driving behavior accurately.

As an extended research of Chapters 4 and 5, a hypothesis can be formulated

that every vehicle using the target time-gap-based velocity update model always trav-

els along a collision-free trajectory. To support this hypothesis, the derivation of the

numerical bounds of the time gap and velocity for the next time step is meaningful,

which guarantees collision-free movement. That is, its purpose is to control all traveling

vehicles so as to maintain their calculated anterior SMV with a value of 1. Moreover,

the system throughput can be presented when this perfect inter-vehicle safety control

is applied to a vehicular traffic network, and it can be compared with the field capacity

analyzed from the empirical traffic data.

The concept of the posterior SMV was introduced in Chapter 4 and is used as

a collision indicator to show the likelihood of accident occurrence with following vehi-

cles. By the characteristics of the posterior SMV, it is helpful to a vehicle in performing

lane changing models. As a future work, however, the mathematical derivation of the

posterior SMV will be necessary. In addition, the simultaneous application of the ante-

rior SMV and posterior SMV potentializes autonomous driving without accidents.
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In conclusion, conducting research about how to constitute a combination of the

diverse control strategies presented in this dissertation to attain the high utilization of

vehicular traffic networks and guarantee collision-free movement is a significant and

remarkable work.
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