UC Berkeley Archaeological X-ray Fluorescence Reports

Title

Source Provenance of Obsidian Artifacts from CA-SMA-113, West-Central California

Permalink https://escholarship.org/uc/item/5g0736p7

Author Shackley, M. Steven

Publication Date 2011-10-24

Supplemental Material https://escholarship.org/uc/item/5g0736p7#supplemental

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial License, available at <u>https://creativecommons.org/licenses/by-nc/4.0/</u>

Department of Anthropology 232 Kroeber Hall University of California Berkeley, CA 94720-3710

SOURCE PROVENANCE OF OBSIDIAN ARTIFACTS FROM CA-SMA-113, WEST-CENTRAL CALIFORNIA

CA-SMA-113 Arrowpoints produced from Napa Valley obsidian

by

M. Steven Shackley Professor and Director Emeritus Geoarchaeological XRF Laboratory University of California, Berkeley

Report Prepared for

Robert Cuthrell Department of Anthropology University of California, Berkeley

14 October 2011

INTRODUCTION

The analysis here of 74 obsidian artifacts indicates a dominant source provenance from the Sonoma Volcanic Field, mainly one or more chemical groups of Napa Valley obsidian approximately 150 linear km north of SMA-113. Four samples were produced from the Annadel source in Napa Valley. One biface thinning flake was produced from the Sawmill Ridge chemical group at the Casa Diablo obsidian source, Long Valley Caldera in the eastern Sierra Nevada, and one sample possibly from the Dodge Reservoir source in the South Warner Mountains, northeastern California.

LABORATORY SAMPLING, ANALYSIS AND INSTRUMENTATION

All archaeological samples are analyzed whole. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984; Shackley 2011).

All analyses for this study were conducted on a ThermoScientific *Quant'X* EDXRF spectrometer, located in the Archaeological XRF Laboratory, Albuquerque, New Mexico. It is equipped with a thermoelectrically Peltier cooled solid-state Si(Li) X-ray detector, with a 50 kV, 50 W, ultra-high-flux end window bremsstrahlung, Rh target X-ray tube and a 76 μ m (3 mil) beryllium (Be) window (air cooled), that runs on a power supply operating 4-50 kV/0.02-1.0 mA at 0.02 increments. The spectrometer is equipped with a 200 1 min⁻¹ Edwards vacuum pump, allowing for the analysis of lower-atomic-weight elements between sodium (Na) and titanium (Ti). Data acquisition is accomplished with a pulse processor and an analogue-to-digital converter. Elemental composition is identified with digital filter background removal, least

squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

The analysis for mid Zb condition elements Ti-Nb, Pb, Th, the x-ray tube is operated at 30 kV, using a 0.05 mm (medium) Pd primary beam filter in an air path at 200 seconds livetime to generate x-ray intensity Ka-line data for elements titanium (Ti), manganese (Mn), iron (as $Fe_2O_3^{T}$), cobalt (Co), nickel (Ni), copper, (Cu), zinc, (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), lead (Pb), and thorium (Th). Not all these elements are reported since their values in many volcanic rocks are very low. Trace element intensities were converted to concentration estimates by employing a least-squares calibration line ratioed to the Compton scatter established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology (NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Line fitting is linear (XML) for all elements but Fe where a derivative fitting is used to improve the fit for iron and thus for all the other elements. When barium (Ba) is analyzed in the High Zb condition, the Rh tube is operated at 50 kV and up to 1.0 mA, ratioed to the bremsstrahlung region (see Davis 2010; Shackley 2010a). Further details concerning the petrological choice of these elements in Southwest obsidians is available in Shackley (1988, 1995, 2005; also Mahood and Stimac 1991; and Hughes and Smith 1993). Nineteen specific pressed powder standards are used for the best fit regression calibration for elements Ti-Nb, Pb, Th, and Ba, include G-2 (basalt), AGV-2 (andesite), GSP-2 (granodiorite), SY-2 (syenite), BHVO-2 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), NOD-A-1 and NOD-P-1 (manganese) all US Geological Survey standards, NIST-278 (obsidian), U.S. National Institute

of Standards and Technology, BE-N (basalt) from the Centre de Recherches Pétrographiques et Géochimiques in France, and JR-1 and JR-2 (obsidian) from the Geological Survey of Japan (Govindaraju 1994). Due to the generally small size of the artifacts, a 3.5 mm tube collimator was used for all analyses to concentrate x-ray energy into a smaller (\approx 4 mm) spot size (see Davis et al. 2011; Shackley 2011).

The data from the WinTrace software were translated directly into Excel for Windows software for manipulation and on into SPSS for Windows for statistical analyses. In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run. RGM-1 a USGS obsidian standard is analyzed during each sample run for obsidian artifacts to check machine calibration (Table 1). Source assignments were made by reference to Hughes (1994) and Jackson (1986, 1989; see Table 2 and Figures 1 and 2 here), as well as source standard data at this lab.

RESULTS

Obsidian Sources in the Sonoma Volcanic Field

Before a discussion of the results, a brief outline of the major source group and geological context in the Sonoma Volcanic Field is helpful. The Sonoma Volcanic Field is a relatively complex and relatively recent field that produced mafic through silicic volcanics through a number of processes from phreatomagmatic ash flows to dome complex events (Fox 1983; Jackson 1986; Figure 3 here). Fox divides the field into two chronological units that grade from mafic to silicic, the latter including the obsidian relevant here (see Mankinen 1972). The lower member, in the southeastern portion of the field dates to 5.5 to 7.1 my, and the upper member exhibits dates as late as 1.4 my (Mankinen 1972; Figure 3 here). Both the early and later members produced rhyolite dome events that quenched rapidly enough to produce obsidian, and both are represented in the SMA-113 collection. Both Franz Valley and Annadel obsidian is

contained in the upper member, and both are ably described by Jackson in his dissertation (1986) and subsequent paper (1989). Annadel is a large dome complex near Santa Rosa that produced large quantities of artifact quality obsidian, but mainly in small nodule sizes. Nodules up to 30 cm have been recovered in Santa Rosa Creek by Jackson, but these are difficult to locate today (Jackson 1989:82-83). The quality is as good as any obsidian, and was frequently used throughout northern California.

Franz Valley is a very small dome complex that exhibits relatively high Sr concentrations for Sonoma Volcanic rhyolites (see Table 2). It is a high quality obsidian, but is only available in nodule sizes generally less than 9 cm in diameter based on my reconnaissance.

The elemental composition of Annadel and Franz Valley is very similar (Jackson 1989: Table 1). Only the mean is listed in Jackson's tables, so it is difficult to know whether the composition actually overlaps. Jackson does state that "Franz Valley obsidian is chemically differentiated from Napa Valley obsidians by barium element concentrations in excess of 600 ppm", but analyses at this lab indicate overlapping Ba values between the two sources (Jackson 1989:86; Table 2 here). Rb values are a bit higher for Annadel, so given the values here are classified as Annadel for this study. The numeric superiority of Annadel at the source also argues for this assignment.

The Upper Member contains the Napa Glass Mountain chemical group, called Napa Valley by Jackson, a very large dome complex on the east side of the Napa Valley (Fox et al. 1973; Jackson 1986, 1989). While Jackson split the various quarries into four parts, they are chemically indistinguishable and only extend about 5 km north-south, some of which are likely secondary deposits. Napa Glass Mountain is the largest exposure, likely a vent emptying the magma chamber, with a large volume of artifact quality obsidian exhibiting nodules up to 35 cm in diameter. Prehistoric reduction of obsidian at this dome is at least 100,000 cubic feet, in some

5

places nearly 2 meters deep (Heizer 1951; Jackson 1989). This is the densest concentration of the four exposures discussed by Jackson (1986, 1989).

It is important to mention that Napa Valley obsidian has been eroding into the Napa River all the way to the San Francisco Bay for more than 2 million years, and artifact quality obsidian is available in the Napa River delta at the bay. So, the Napa Valley obsidian is available throughout a large area in the eastern Napa Valley to the northern shores of San Francisco Bay. The route that prehistoric people transported the obsidian to SMA-113 is impossible to know, whether overland to the east, or by boat through the bay.

SOME THOUGHTS ON LITHIC TECHNOLOGY

Virtually all the artifacts here are debitage, most appear to be biface thinning flakes, likely from the production of projectile points. It is interesting that not more projectile points were recovered, but the thinning and probable rejuvenation flakes suggest a very active point production assemblage. It is also possible given the relatively tight elemental distribution of the Napa Valley obsidian, especially given the small debitage sizes, that all this obsidian could have come from just a few cores. The small debitage also suggests rather extreme conservation of this glass, probably in distinction to the Monterrey chert that is present in sediments in the region.

REFERENCES CITED

 Davis, K.D., T.L. Jackson, M.S. Shackley, T. Teague, and J.H. Hampel
2011 Factors Affecting the Energy-Dispersive X-Ray Fluorescence (EDXRF) Analysis of Archaeological Obsidian. In X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by M.S. Shackley, pp. 45-64. Springer, New York.

Fox, K.F., J.D. Sims, J.A. Bartlow, and E.J. Helley

1973 Preliminary Geologic Map of Eastern Sonoma County and western Napa County, California. San Francisco Bay Region Environment and Resources Planning Study, Basic Data Contribution 56. USGS, Menlo Park, California.

Govindaraju, K.

1994 1994 Compilation of Working Values and Sample Description for 383 Geostandards. *Geostandards Newsletter* 18 (special issue).

Hampel, Joachim H.

1984 Technical Considerations in X-ray Fluorescence Analysis of Obsidian. In *Obsidian Studies in the Great Basin*, edited by R.E. Hughes, pp. 21-25. Contributions of the University of California Archaeological Research Facility 45. Berkeley.

Hildreth, W.

1981 Gradients in Silicic Magma Chambers: Implications for Lithospheric Magmatism. Journal of Geophysical Research 86:10153-10192.

Hughes, R.E.

1994 Intrasource Chemical Variability of Artefact-Quality Obsidians from the Casa Diablo Area, California. *Journal of Archaeological Science* 21:263-271

Hughes, Richard E., and Robert L. Smith

1993 Archaeology, Geology, and Geochemistry in Obsidian Provenance Studies. *In Scale on Archaeological and Geoscientific Perspectives*, edited by J.K. Stein and A.R. Linse, pp. 79-91. Geological Society of America Special Paper 283.

Jackson, T.L.

- 1986 *Late Prehistoric Obsidian Exchange in Central California*. Unpublished Ph.D. dissertation, Department of Anthropology, Stanford University.
- 1989 Obsidian Production and Exchange in the North Coast Ranges, California. In *Current Directions in California Obsidian Studies*, edited by R.E. Hughes, pp. 79-94. Contributions of the University of California Archaeological Research Facilty 48, Berkeley.

Mahood, Gail A., and James A. Stimac

1990 Trace-Element Partitioning in Pantellerites and Trachytes. *Geochemica et Cosmochimica Acta* 54:2257-2276.

McCarthy, J.J., and F.H. Schamber

1981 Least-Squares Fit with Digital Filter: A Status Report. In *Energy Dispersive X-ray Spectrometry*, edited by K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust, and C.E. Fiori, pp. 273-296. National Bureau of Standards Special Publication 604, Washington, D.C.

Schamber, F.H.

1977 A Modification of the Linear Least-Squares Fitting Method which Provides Continuum Suppression. In *X-ray Fluorescence Analysis of Environmental Samples*, edited by T.G. Dzubay, pp. 241-257. Ann Arbor Science Publishers.

Shackley, M. Steven

1988 Sources of Archaeological Obsidian in the Southwest: An Archaeological, Petrological, and Geochemical Study. *American Antiquity* 53(4):752-772.

- 1990 Early Hunter-Gatherer Procurement Ranges in the Southwest: Evidence from Obsidian Geochemistry and Lithic Technology. Ph.D. dissertation, Arizona State University, University Microfilms, Ann Arbor.
- 1995 Sources of Archaeological Obsidian in the Greater American Southwest: An Update and Quantitative Analysis. *American Antiquity* 60(3):531-551.
- 2005 *Obsidian: Geology and Archaeology in the North American Southwest*. University of Arizona Press, Tucson.
- 2011 An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by M.S. Shackley, pp. 7-44. Springer, New York.

Table 1. Recommended values for USGS RGM-1 obsidian standard and the mean and central tendency analyses from this study. $\pm = 1^{st}$ standard deviation.

SAMPLE	Ti	Mn	Fe	Rb	Sr	Y	Zr	Nb	Ba
RGM-1 (Govindaraju 1994)	1600	279	12998	149	108	25	219	8.9	807
RGM-1 (USGS recommended) ¹	1619±12 0	279±5 0	13010±21 0	150± 8	110±1 0	25 ²	220±2 0	8.9±0. 6	810±4 6
RGM-1, pressed powder standard (this study, n=11)	1550±45	282±6	12922±19 4	146± 3	106±2	25± 3	216±3	9±2.6	818

¹ Ti, Mn, Fe calculated to ppm from wt. percent from USGS data.

² information value

Sample	Ti	Mn	Fe	Rb	Sr	Y	Zr	Ν	Ba	Source
Dobitago								b		
6-009-A	985	22	1150	20	14	48	24	10		Napa Vallev
		8	4	4			8			
9-007-A	100	22 1	1114 5	20	13	44	24 5	6		Napa Valley
9-007-B	108	23	1203	21	13	49	24	12		Napa Valley
00 007 4	8	2	5	0	40	50	3	0		New - Melle
20-007-A	111 1	22	1341 4	22	13	50	25 7	9		Napa valley
32-007-A	136	36	1700	15	59	48	28	9	722	Annadel
36-007-0	1 018	8 20	3 1034	2 18	12	30	6 23	Q		Nana Valley
30-007-A	910	20	1034	4	12	39	23	0		Napa Valley
42-007-A	894	19	9807	16	13	44	22	11		Napa Valley
74-007-A	119	4 26	1502	9 23	14	51	2 25	13		Napa Valley
	2	5	4	9		0.	3			
154-007-A	935	19	1017	18	14	40	21	10		Napa Valley
157-007-A	191	31	∠ 1888	23	18	41	9 21	7		Napa Valley
	9	4	6	9		10	4			
175-007-A	112 2	23 7	1375 5	22 7	14	49	25 6	13		Napa Valley
179-007-A	111	21	1220	21	15	47	23	11		Napa Valley
102 007 4	0	7	5	4	10	47	8	11		
103-007-A	109	∠⊺ 2	0	9	12	47	21 9	14		Napa valley
183-007-B	105	21	1227	23	12	46	23	14		Napa Valley
190-007-0	8 110	4 26	3 1/16	0 23	1/	46	6 24	11		Nana Vallev
150 001 A	4	6	7	1	14	40	2			
203-007-A	200	26	1343	20	12	41	22	10		Napa Valley
206-007-A	103	2 21	2 1116	2 19	15	48	23	11		Napa Vallev
	0	9	0	4			8			
207-007-A	986	22	1128	20	12	49	24	13		Napa Valley
215-007-A	955	20	1041	19	11	46	23	10		Napa Valley
047.007.4	407	6	2	0	40	50	3	40		Niewe Melle
217-007-A	107 1	24	1227	23	16	52	28	16		Napa Valley
217-007-B	119	23	1242	21	12	50	23	12		Napa Valley
225 007 A	100	6	8	7	11	50	9	11		
233-007-A	120	20 0	6	24 8	11	50	∠5 3	14		Napa valley
241-007-A	124	22	1224	20	15	47	24	14		Napa Valley
242-007-4	7 111	3 23	4 1206	4 20	12	<u>4</u> 0	4 26	12		Nana Valley
2-72-001-A	0	23 4	0	20 5	12	73	20	12		Napa Valley
242-007-B	144	23	1300	21	16	44	22	10		Napa Valley
	6	4	0	1			5			

Table 2. Elemental concentrations and source assignments for the archaeological specimens, and analyses of RGM-1 USGS obsidian standard. All measurements in parts per million (ppm).

247-007-A	172	42	1919	16	58	48	27	12	748	Annadel
247 007 A	8	2	6	1	50	40	- 27	12	740	Annader
255-007-A	167	38	1427	17	10	19	19	12	111	Sawmill Ridge (Casa Diablo)
	0	5	6	9	6		1		7	
255-007-B	107	24	1208	21	15	44	26	10	544	Napa Valley
	6	1	1	3			0			
261-007-A	123	23	1391	23	17	48	24	7	488	Napa Valley
	3	6	2	6			2			
262-007-A	104	23	1121	19	11	41	23	11		Napa Valley
-	2	3	1	2			6			
262-007-B	101	23	1279	22	12	53	25	10	674	Napa Valley
004 007 4	1	1	1	9	40	40	4			
264-007-A	949	21	1165	20	12	49	25	11		Napa valley
270 007 4	071	8	1002	4	44	47	3	4.4		
270-007-A	971	22	1092	19	11	47	23			Napa valley
271-007-0	107	22	9 117/	10	12	10	23	٥		Nana Valley
211-001-A	3	6	7	13	12	43	23	3		Napa Valley
277-007-A	115	23	1231	21	13	44	23	5	483	Nana Valley
211 001 A	9	5	5	9	10		20	0	400	Napa Valicy
295-007-A	173	36	2006	25	13	47	24	14	399	Napa Valley
200 001 //	1	4	4	5	10		2	• •	000	Napa Valoy
304-007-A	141	30	1728	24	12	49	23	11		Napa Vallev
	7	7	5	3			6			
324-007-A	991	18	1041	19	12	43	23	12		Napa Valley
		9	6	2			0			
343-007-A	102	24	1304	22	13	48	27	16		Napa Valley
	7	9	1	9			0			
350-007-A	972	21	1145	20	17	48	24	13		Napa Valley
		2	4	9			4			
350-007-B	103	23	1257	22	14	48	25	16		Napa Valley
	5	3	4	8			5			
352-007-A	119	29	1662	26	16	52	26	10		Napa Valley
055 007 4	7	5	9	3		40	1	40		
355-007-A	108	26	1320	24	14	46	25	12		Napa Valley
004 007 4	1	0	0	6		40	2	~		
361-007-A	111 E	20	1391	23	14	48	24	6		Napa valley
	5 109	С 24	0	24	44	40	8 07	0		
300-007-A	100	24 1	1404	24	11	49	21	0		Napa valley
380-007-1	128	20	9 1516	23	12	15	28	1		Nana Valley
303-007-A	120	29	2	23	12	45	20	4		Napa valley
393-007-0	890	21	1088	21	16	47	24	10		Nana Valley
000 001 //	000	4	4	4	10	77	2	10		Napa Valley
393-007-B	120	25	1332	22	15	49	26	16		Napa Valley
	7	2	7	7	10		-0			
399-007-A	103	21	1159	20	12	44	23	10		Napa Valley
	2	7	0	4			0			
< 8 mm										
samples ¹										
0058-107	243	56	2541	17	61	48	26	10		Annadel
	7	6	0	2			8			
0065-107	136	26	1446	23	12	46	24	11		Napa Valley
	1	5	4	6	-		3	_		
0085-107	220	32	1646	19	14	28	16	3		Napa Valley?
0077 407	0	0	2	2		_	8	_		
0377-107	289	48	9322	15	82	(65	(Dodge Reservoir, S Warner

	9	1		3					Mts,CA?
0090-107	162	26	1400	19	14	37	19	6	Napa Valley
	1	3	9	4			5		
0072-107	131	27	1406	21	12	43	22	12	Napa Valley
Droinatile Dointe	7	0	1	1			3		
Projectile Points	400	~~	4400		4.0		~ 4	4.0	
0002-013A	100	22	1189	20	13	50	24	10	Napa Valley
0034-0134	4 058	20	U 1138	18	15	15	23	11	Nana Valley
0034-013A	900	20	6	G IO	15	45	23 4		Napa valley
0220-013A	959	22	1087	19	13	44	22	9	Napa Vallev
		1	8	4			7	-	
0226-013A	145	36	1701	14	60	51	29	10	Annadel
	4	4	3	5			4		
0235-013A	990	21	1116	18	13	44	23	12	Napa Valley
D 4000 0 4	400	9	1	9	40	45	0		NI
P1332-0-1	100	22	1163	19	13	45	23	11	Napa valley
P1332-0-2	4 127	0 27	0 1/3/	2 22	15	10	0 24	12	Nana Valley
1 1002-0-2	0	6	1404	22	10	43	24	12	Napa valley
P1332-1-4	947	20	1113	18	14	47	23	13	Napa Vallev
	-	5	8	9			8	-	
P1332-5-2	129	22	1188	19	15	41	19	8	Napa Valley
	4	8	6	2			9		
P1332-6-2	124	23	1279	19	13	42	22	8	Napa Valley
D4000 0 05	2	5	6	9		45	9	7	News Malley
P1332-6-25	952	22	1132	19	14	45	23	1	Napa valley
P1332-7-6	0/3	9 21	9 1125	10	13	/1	23 23	12	Nana Valley
1100270	540	- 9	2	1	10	71	7	12	Napa Valicy
P1332-10-12	123	24	1263	20	13	45	23	9	Napa Valley
	6	2	3	8			7		
P1332-10-24	100	21	1125	19	14	45	24	8	Napa Valley
_	7	3	3	4			7		
P1332-12-30	102	22	1103	18	12	48	22	12	Napa Valley
D4000 40 4	2	8	3	2	4.4		1	4.4	Nene Valley
P1332-13-4	120	23	1188	19	14	44	22	11	Napa valley
P1332-32-28	101	21	1180	20	15	46	25	٩	Nana Vallev
1 1002-02-20	6	4	5	20	10	40	23	3	Napa valley
P1332-35-1	111	22	1136	18	14	45	22	6	Napa Valley
	7	2	0	1		-	1	-	
P1332-36-5	981	19	1068	17	13	45	21	11	Napa Valley
		4	6	6			3		

¹ Barium acquired for those samples where source assignment was difficult.

Figure 1. Zr versus Sr bivariate plot of the elemental concentrations for all the archaeological specimens.

Figure 2. Sr versus Rb bivariate plot of the elemental concentrations for the artifacts. Variability in Rb due to variable sample sizes (see Davis et al. 2011).

Figure 3. The Sonoma Volcanics and location of relevant rhyolite glass sources (from Jackson 1989:80). FV-1 and 2 indicate Franz Valley locations.