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ABSTRACT OF THE DISSERTATION

Essays on Macroeconomic Crises

by

Nelson R. Lind

Doctor of Philosophy in Economics

University of California, San Diego, 2017

Professor Valerie Ramey, Chair

This dissertation examines economies that may occasionally enter periods of

crisis. I first develop a model of asset pricing in the presence of frictions to financial

intermediation. This model generates recurrent financial crises due to its strong non-

linear dynamics. Next, I develop methodological tools for analyzing these types of highly

non-linear dynamic equilibrium models. I then apply these tools to a theory of housing

boom-bust cycles driven by endogenous shifts in lending standards.

Chapter 1 introduces a model of asset pricing in the presence of agency frictions

between savers and financial intermediaries. This model can generate asymmetric price

movements where asset values suddenly collapse during a financial crisis. During normal

xi



times, intermediaries arbitrage away excess returns on assets and traditional asset pricing

conditions hold. During a financial crisis, the net worth of intermediaries limits their

ability to borrow from savers and they are unable to arbitrage away excess returns.

Since their net worth depends on realized asset values, collapsing prices further tighten

borrowing constraints leading to a large and sudden collapse in asset values.

In chapter 2, I introduce a local approach to solving highly non-linear models,

generalizing perturbation to handle the class of piecewise smooth rational expectations

models. First, I formalize the notion of an endogenous regime by introducing a regime-

switching equilibrium (RSE) concept. This framework uses non-linear model features

to explain macroeconomic regime changes, and makes the distribution of the regime an

equilibrium object instead of imposing an external regime-switching structure. Then,

I demonstrate how to apply perturbation within a slackened model, approximate the

policy functions associated with a given belief about the regime, and solve for the

equilibrium regime distribution using backwards induction. This approach (1) accounts

for expectational effects due to the probability of regime change; (2) provides a framework

for modeling regime-switching from first principles; and (3) connects macroeconomic

theory to reduced-form regime-switching econometric models.

Chapter 3 develops a theory of housing boom-bust cycles driven by endogenous

shifts in lending standards. The key friction is asymmetric information about default

risk, implying that the economy occasionally and endogenously switches between two

credit regimes. These regimes differ by whether or not lenders use income verifica-

tion to screen the marginal homebuyer. A switch from the “screening” regime to the

“pooling” regime leads to rapid home price appreciation, a collapse in down-payment

requirements, and a reduction in income documentation — consistent with the shift in

lending standards during the US housing boom. The episode ends in a foreclosure crisis

once fundamentals revert and the screening regime returns. The theory predicts patterns

xii



for debt accumulation and mortgage spreads consistent with existing micro evidence.
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Chapter 1

Asset Price Booms and Financial Crises

Financial crises often occur after boom-bust cycles in asset markets. This fact

begs the question, do good times set the stage for a crisis?

In this chapter, I present a model of asset pricing in which a productivity boom

can push the economy into a state of fragility where a deterioration in fundamentals

triggers a financial crisis. A rise in asset prices leads to increased leverage in the financial

sector. A crisis acts to resolve banker balance sheets, and — in the absence of government

intervention — necessarily follows after a sufficiently long boom.

In particular, I consider asset pricing in the environment of Bocola (2016) ex-

tended to incorporate Arrow securities. The key friction in this economy comes from an

agency problem between asset owners (intermediaries) and their creditors. Following

Gertler and Karadi (2011), there is a moral hazard problem where intermediaries may

divert assets and default on their debt. Usually, this agency problem has no bite, the

financial sector efficiently intermediates funds, and a traditional no-arbitrage condition

prices assets. In contrast, intermediaries will be unable to arbitrage away excess returns

1
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whenever the agency problem limits the flow of credit. In such a crisis, asset values will

be low because the net worth of intermediaries constrains their ability to borrow from

households, reducing the demand for assets.

The underlying fundamentals of the economy generate fluctuations in asset prices.

Due to frictions limiting banker re-capitalization, financial sector leverage increases

while asset prices are high. Over a short boom, leverage does not increase too much

and the economy does not risk entering a crisis once fundamentals revert. However,

a sufficiently long boom can push the economy into a fragile state where incentive

constraints for bankers will bind after a decline in productivity. The crisis persists until

re-capitalization of bankers reduces leverage and incentive constraints no longer bind.

In this way, financial crises are the private sector’s method of recapitalizing banks, and

necessarily occur over random business cycles.

This framework provides a baseline asset pricing model in the presence of oc-

casional endogenous financial crises1. It abstracts from feedback between the financial

sector to the real economy. Due to its simplicity, it is straightforward to solve for equi-

librium using global methods. The perturbation-based solution method developed in

Chapter 2 allows for more complicated models built on this framework which incorporate

macro-financial linkages.

1.1 Model

The economy consists of production firms and a representative household whose

members are either workers or bankers. Production firms use labor and land to produce

a homogenous final good. They need funds to finance their purchase of land and issue

contingent claims to bankers. Bankers have the ability to intermediate funds between

1Also see Prestipino (2014).
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workers and firms. Firms would not be able to raise funds without these intermediation

services because workers do not have direct access to financial markets.

The representative household is endowed with a unit of labor and supplies a

fraction Ht of their time in a competitive labor market. They save via risk-free banker

deposits Dt+1 with return of Rt , and consume the final good. Given flow utility from

consumption of u(Ct) and discount factor of β, they solve the following problem.

max
{Ct ,Ht ,Dt+1}∞

t=0

E0

∞

∑
t=0

βtu(Ct)

s.t. Ct +
1
Rt

Dt+1 ≤WtHt +Dt +Tt , Ht ≤ 1

Their budget constraint states that their expenditure on consumption and savings must

be covered by labor income, their beginning of period deposits, and net transfers of Tt

to and from household members who work as bankers. The key assumption is that the

household cannot freely choose these transfers and the only way to channel additional

funds to bankers is through deposits.

Given no disutility from working, the household supplies their full unit of labor

inelastically. Their inter-temporal decisions can be captured through the following

stochastic discount factor.

Λt,t+1 ≡ β
u′(Ct+1)

u′(Ct)

The household supplies funds to bankers up until the following pricing condition holds.

1
Rt

= EtΛt,t+1 (1.1)

The return on risk-free debt must equal the present value of an additional unit of income

next period.

Taking as given this stochastic discount factor, bankers accumulate wealth on
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behalf of the household. These bankers will transfer funds back to the household when

they lose access to the financial market. Exit and entry is stochastic with household

members randomly gaining and losing access to the intermediation technology. Between

periods, bankers exit with chance 1−ψ and become workers. An equal measure of

workers randomly gain access to the financial market so that the fraction of bankers in

the overall household stays constant. The household transfers a fraction ω of the assets

of exiting bankers to seed the activity of entering bankers.

Consider household member i with access to financial markets at time t and

accumulated net worth of nit . Access to the financial market allows this banker to invest

in Arrow securities. Let the pricing kernel associated with these securities be Qt,t+1 so

that the cost of purchasing a random return of ai,t+1 is EtQt,t+1ai,t+1.

Bankers finance the purchase of securities out of their net worth and may addition-

ally raise funds by taking in risk-free deposits. However, their ability to issue deposists is

limited by the following agency problem.

During each period, a banker can choose to liquidate a fraction η of their portfolio

and transfer the value of these assets to the representative household. In doing so, they

default on their deposits and exit the financial market. Total deposits of an individual

banker are publicly verifiable and so workers will be willing to make deposits only if

a banker has no incentive to divert funds. This agency problem implies the following

incentive constraint.

ηEtQt,t+1ai,t+1 ≤Vt(nit) (IC)

Here, the function Vt(n) is the state-t contingent value of being a banker with net worth

of n and not diverting assets. This incentive constraint states that the value of diverting

assets and exiting the market must be less than the value of continuing as a banker.

Bankers accumulate wealth in the financial market until they exogenously exit

and transfer their wealth to the household. The wealth accumulation problem of the



5

banker is:

Vt(nit) = max
ai,t+1,di,t+1

EtΛt,t+1[(1−ψ)ni,t+1 +ψVt+1(ni,t+1)]

s.t. ηEtQt,t+1ai,t+1 ≤Vt(nit) (IC)

EtQt,t+1ai,t+1 ≤ nit +
1
Rt

di,t+1 (BC)

ni,t+1 = ai,t+1−di,t+1

Bankers choose a state-contingent portfolio with return ai,t+1 and a level of deposits di,t+1

to maximize the present value of their future net worth. They value future net worth using

the stochastic discount factor of the household. The objective of this program follows

from the dynamics of entry and exit. With chance 1−ψ the banker will exit and transfer

funds of ni,t+1 to the household and with chance ψ they will continue having access to

the financial market. Continued financial market access has value of Vt+1(ni,t+1). In

addition to the IC constraint ensuring that they will not divert funds, the banker’s wealth

accumulation is subject to a budget constraint, BC. This budget constraint states that

expenditure on securities can be no greater than the sum of net worth and funds raised by

issuing deposits. The final constraint states that the banker’s future net worth is equal to

the payoff from their Arrow securities net of their outstanding deposits2.

As in Bocola (2016), the value function is linear in net worth due to the linearity

of this decision problem. This result enables a simple characterization of banker choices

and aggregation.

Proposition 1.1.1 The banker’s problem has the following solution. The value function

2Note that if bankers have limited liability then we must also impose that ai,t+1 ≥ di,t+1 in all possible
future states to ensure that the banker has no incentive to default ex-post.
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is linear, Vt(n) = vtn. The random coefficient vt satisfies

vt =
EtΛt,t+1[(1−ψ)+ψvt+1]Rt

1−µt

where µt is the multiplier on the IC constraint. The multiplier satisfies

µt = max
{

1− EtΛt,t+1[(1−ψ)+ψvt+1]RtNt

ηXt
,0
}

where

Nt ≡
∫ 1

0
nit1{i is a banker at time t }di

is aggregate banker net worth and

Xt ≡ EtQt,t+1At+1, At+1 ≡
∫ 1

0
ai,t+11{i is a banker at time t }di

is the market value of all Arrow securities held by bankers.

Proof. The proof follows identically to in Appendix A of Bocola (2016) with modified

notation to account for the full set of Arrow securities.

It is worth briefly discussing the coefficient vt . This variable represents the

marginal value of net worth to bankers — the value of additional internal funds. Since

the value of funds transferred to the households is 1, bankers will want to retain funds so

long as vt ≥ 1. Note that if vt+1 = 1 and the IC constraint is slack (so that µt = 0) we get

vt = EtΛt,t+1[(1−ψ)+ψvt+1]Rt =
EtΛt,t+1[(1−ψ)+ψ]

EtΛt,t+1
= 1

where I used the deposit supply condition (1.1) to eliminate Rt . Under these conditions,

the value of internal funds is the same as transferring funds to the household. In contrast,

if either µt > 0 or Pt [vt+1 > 1] > 0, then internal funds are more valuable than funds
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transferred to the household. In the presence of aggregate risk, the value of internal funds

will be larger than funds transferred to the household, and so bankers will accumulate

wealth until they are forced to exogenously exit.

Given this characterization of banker wealth accumulation, consider a banker’s

portfolio choice problem — their choice of state-contingent payoffs from Arrow securities.

In each possible future state, they must be indifferent between increasing or decreasing

their payoff. As a result the following indifference condition must hold in all future

states.

ηQt,t+1µt = Λt,t+1[(1−ψ)+ψvt+1](1−RtQt,t+1) (1.2)

The left hand side is the cost of tightening the IC constraint by increasing the payoff

ai,t+1 in a particular future state. The right hand side is the state-by-state excess return

on securities accounting for the marginal value of net worth across states.

This arbitrage condition pins down the pricing kernel, Qt,t+1.

Proposition 1.1.2 The equilibrium asset pricing kernel is

Qt,t+1 =
Λt,t+1[(1−ψ)+ψvt+1]

ηµt +Λt,t+1[(1−ψ)+ψvt+1]Rt
.

Proof. Re-arrange condition (1.2).

The pricing kernel is influenced by banker entry and exit dynamics and the agency

problem between workers and bankers. The term (1−ψ)+ψvt+1 captures the influence

of entry and exit, and the multiplier on the IC constraint captures the agency problem.

When financial intermediaries are not net-worth constrained so that IC constraint is slack

and µt = 0, we have Qt,t+1 = 1/Rt . All states of the world are discounted by the risk-free

rate. In contrast, when net worth constrains the borrowing of financial intermediaries

(µt > 0), the pricing kernel decreases across all states and Qt,t+1 < 1/Rt .

We can now use this pricing kernel to price risky assets backed by issuance of
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Arrow securities. In particular, firms issue Arrow securities at time t and use the proceeds

to finance the purchase of land. The purchase price of a unit of land is Pt . They use land

and labor to produce final goods in period t +1 before selling their land.

The profit maximization problem of firms is:

max
Lt ,Ht+1,At+1

EtQt,t+1At+1−PtLt

s.t. Yt+1 ≤ Zt+1Lα
t H1−α

t+1

At+1 ≤ Pt+1Lt +Yt+1−Wt+1Ht+1.

The firm’s time-t profits consists of revenue from arrow securities net of expenditure on

land. The first constraint is the firm’s production technology. The second constraint is a

collateral constraint. The firm can only issue securities whose payoffs are covered by its

land holdings and by production revenue net of labor costs.

The budget constraint and collateral constraint must both bind and so we can

reduce to the following problem in land and hours.

max
Lt ,Ht+1

EtQt,t+1[Pt+1Lt +Zt+1Lα
t H1−α

t+1 −Wt+1Ht+1]−PtLt

The first order conditions for this problem state that labor earns its marginal product

Wt+1 = (1−α)
Yt+1

Ht+1

and the price of land equals its expected discounted resale value plus marginal product

Pt = EtQt,t+1

[
Pt+1 +α

Yt+1

Lt

]
.

This last condition allows us to use the pricing kernel to price land.
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1.1.1 Equilibrium

First consider clearing in factor markets. Since labor supply is inelastic and equal

to 1, wages are a fraction of output

Wt = (1−α)Yt .

For simplicity, I normalize the supply of land in the economy to 1. The equilibrium price

of land is then

Pt = EtQt,t+1 [Pt+1 +αYt+1] .

Note that, all else equal, the price of land falls during a financial crisis because an

increase in µt depresses the pricing kernel. When agency problems limit the flow of

credit, intermediaries value the future less, which reduces the value of land.

Then, since labor and land are both in unit supply, productivity determines

production of final goods.

Yt = ZtLα
t H1−α

t = Zt

We effectively have an exogenous level of output given an exogenous process for produc-

tivity.

Next consider clearing in the final goods market. Since household consumption

is the only use for final goods, the market clearing condition is

Yt =Ct .

Total production of final goods must equal household consumption. As a result, the
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household stochastic discount factor is

Λt+1 = β
u′(Yt+1)

u′(Yt)

The household’s marginal rate of substitution between t and t+1 is effectively exogenous

due to the exogeneity of productivity.

Finally, clearing in the financial market requires that bankers hold all securities

issued by firms. As a result, the aggregate payoff from banker portfolios must equal

∫ 1

0
ai,t+11{i is a banker at time t}di=At+1 =Pt+1Lt +Yt+1−Wt+1Ht+1 =Pt+1+αYt+1.

The banker’s payoff equals the liquidation value of land plus land’s share of output. This

result implies that the aggregate initial value of banker portfolios is then

Vt = EtQt,t+1At+1 = EtQt,t+1 [Pt+1 +αYt+1] = Pt .

The financial sector’s assets have value equal to the land held by firms to be used in

production at time t +1. The amount of deposits they must raise to finance these assets is

Dt+1 = Rt(Pt−Nt).

Deposits equal the excess of the value of land over the banker’s net worth.

Net worth evolves as

Nt = ψ(Pt +αYt−Dt)+ω(Pt +αYt)

The total payoff from banker securities in t is Pt +αYt . Each banker pays back their

depositors giving net payoff of Pt +αYt−Dt . Then a fraction 1−ψ of these bankers exit
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delivering wealth to the household. In turn, the household delivers funds to new bankers

in amount ω(Pt +αYt). The total net worth of bankers operating in period t is then the

net worth of the surviving bankers and the funds used to seed entering bankers.

Note that the complementarity condition for the IC constraint is

µt ≥ 0 ⊥ ηPt ≤ vtNt .

When the IC constraint binds, the banker’s net worth will pin down the value of land.

Otherwise we have µt = 0, the pricing kernel reduces to 1/Rt , and the price of land

satisfies

Pt =
1
Rt
Et [Pt+1 +αYt+1].

This condition corresponds to a traditional asset pricing condition for an asset with

dividend of αYt+1 given a cost of funds of Rt . When agency problems do not limit the

flow of credit, intermediaries arbitrage away excess returns on risky assets. Otherwise,

intermediary net worth pins down the price of land.

1.2 Equilibrium Dynamics

I now examine the dynamics of land prices in this economy. The economy

occasionally experiences financial crises where the flow of credit from workers to bankers

stalls (the IC constraint binds) and the price of land collapses.

These asymmetric dynamics come from the non-linearity of the IC constraint.

Since the model has two state variables — productivity and debt — it can be easily solved

using global methods. I approximate policy functions via linear interpolation and then

solve the model using time iteration.
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1.2.1 Parameterization

For simplicity, I consider a model parameterization where productivity follows a

two state Markov chain. Times are either bad or good with productivity (equal to output)

either low or high:

ZB = 1− ε and ZG = 1+ ε

The parameter ε≥ 0 determines the volatility of the economy. For stochastic simulations

I set ε = 0.01.

The evoluation of productivity is is governed by the following transition matrix:

Γ =

 ρ 1−ρ

1−ρ ρ


The parameter ρ is the persistence of productivity, and I set ρ = 0.95.

For comparability to the literature, I choose the fraction of assets used to seed

bankers and the survival rate of bankers following Gertler and Karadi (2011). These

values are ω = 0.002 and ψ = 0.972.

I choose the fraction of assets that can be diverted to ensure that the economy

occasionally enters the crisis regime. Specifically, I choose η such that the economy

is in the normal regime in its deterministic steady state (with ε = 0), but close to the

boundary of regime change. This ensures that in the stochastic model (when ε = 0.01),

the economy will sometimes enter the crisis regime during bad times. Specifically, I set

η = 0.412 which is about 10% larger than the value of 0.381 using in Gertler and Karadi

(2011).

I set the discount factor to 0.99 to generate a quarterly risk-free rate of about 4%

in steady state. I set the risk aversion parameter to σ = 2. Without loss of generality, I set

the land share to 1.
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Figure 1.1: Policy functions across initial deposit levels in bad (orange) and good (blue)
times. Shaded region indicates when a crisis occurs in bad times.

1.2.2 Numerical Results

Figure 1.1 shows equilibrium outcomes as a function of the beginning-of-period

banker deposits (debt). Orange lines correspond to when productivity is low (bad times),
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and blue lines correspond to when productivity is high (good times). The top left diagram

depicts the IC constraint and the top right diagram depicts the IC constraint multiplier

(both µt and µ∗t ). Note that the constraint is

ηPt ≤ vtNt ⇔ Pt

Nt
≤ vt

η
.

The constraint puts an upper bound of vt/eta on the banker’s asset-to-net-worth ratio

of Pt/Nt . The dashed lines on the top left show the upper bound while the solid lines

show Pt/Nt . We can see that the IC constraint is slack and the multiplier is zero for all

levels of deposits when times are good. For high levels of deposits, the constraint binds

in the low productivity state of the world (depicted in orange). On the top right, we can

see that when IC constraint is slack, we have µ∗t < 0 and µt = 0. When it binds we have

µt = µ∗t ≥ 0. The shaded region of each diagram corresponds to when the IC constraint

binds in the low productivity state.

The next row shows the equilibrium land price and banker net worth. Both

outcomes are decreasing in banker initial deposits and decrease rapidly in deposits during

crises if times are bad and also in the absence of a crisis if times are good.

To interpret this result, it is useful to define a counterfactual frictionless land price

as the price implied by no arbitrage between land and deposits.

P∗t =
1
Rt
Et [P∗t+1 +αYt+1] =⇒ P∗t =

∞

∑
j=1

1
Rt,t+ j

αYt+ j

with Rt,t+ j ≡Π j−1
i=0 Rt+i. This price is the fundamental price of the flow of payoffs from

land given opportunity cost of finds captured by Rt+ j for j = 0,1, . . . . Note that this

price is complete a function of exogenous productivity, and does not depend on banker

deposits.

If financial crises never occurred, so that µt = 0, then the land price would equal
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this fundamental price. Departures from this level quantify the effect of potential crises

on the price of land. The dashed lines in the middle left diagram show P∗t .

Define the deviation of the frictionless price from the true price ∆t ≡ P∗t −Pt .

Combining the definition of P∗t with the land pricing condition implies that the deviation

satisfies

∆t =
1
Rt
Et∆t+1 +Et(R−1

t −Qt,t+1)[Pt+1 +αYt+1]

and so, letting Rt,t+ j ≡Π j−1
i=0 Rt+i,

∆t =
∞

∑
j=0

1
Rt,t+ j

Et(R−1
t+ j−Qt+ j,t+1+ j)[Pt+1+ j +αYt+1+ j].

Note that since µt+ j = 0 implies that R−1
t+ j = Qt+ j,t+1+ j and µt+ j > 0 implies that R−1

t+ j >

Qt+ j,t+1+ j, the terms in this series are zero in all future periods where there is not

financial crises, and positive whenever there is a crisis. As a result, the deviation of

frictionless land prices from true land prices depends on anticipation of future financial

crises. As the probability of future crises gets small, we must have ∆t → 0, and as future

crises become more likely ∆t will increase.

We can see this result in the middle left diagram. ∆t corresponds to the gap

between the dashed line (equal to P∗t ) and their corresponding solid line (equal to Pt). As

initial deposits gets larger the economy gets closer to the crisis region. In this region, the

economy will enter a crisis if productivity ends up being low. Therefore, the likelihood

of a crisis occurring in the future is increasing in deposits. As a result, the deviation of

the land price from the fundamental price is increasing in banker initial deposits because

of anticipation effects.

Note that this effect is active in all states of the world, not just if the economy

is currently in a crisis. As a result, the mere possibility of financial crises in the future

tends to depress land prices and make them dependent on the balance sheet of financial
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intermediaries. That said, if the economy is currently in a crisis, then the binding IC

constraint directly impacts land prices. Pt rapidly falls and ∆t rapidly increases if banker

debt is large — leading to a tight IC constraint.

The balance sheet of financial intermediaries depends on realized home prices

and their initial debt burden. At low land prices, interedmiaries have low net worth

(middle right diagram), which leads to binding incentive constraints. In those states of the

world where bankers have a high amount of debt, their internal funds are scarce because

they have low net worth. The bottom left diagram shows the value of inside funds.

Funds delivered to the household have value of 1, and inside funds are more valuable

than outside funds in all states of the world. Net worth relaxes incentive constraint by

alleviating the agency problem between workers and bankers. When a banker has a low

debt burden, they are more likely to have a high net worth in the future. The anticipation

of future states of the world where the banker has little access to borrowing makes

inside funds valuable today, and makes their value increase as the banker’s balance sheet

condition worsens (due to high liabilities in the form of outstanding deposits).

Finally, the bottom right diagram shows the growth rate of deposits, allowing us

to visualize the evolution of banker deposits. When deposits are low, bankers accumulate

additional deposits over time and do so at a faster rate when times are good. The two

deposit levels at which deposit growth equals zero are the long-run deposits levels for

each productivity state. Deposits converge to these levels over time while productivity

stays constant. While times remain good, banker deposits growth is high, and, absent

a deterioration in fundamentals, they end up with high leverage — a large stock of

outstanding deposits. Note that this long-run level is in the crisis region. After a long

period of high productivity, the economy converges to a fragile state where a decline in

productivity will trigger a financial crisis. Following a crisis, bankers begin a process of

deleveraging and will converge towards a lower level of deposits that is outside of the
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Figure 1.2: Short boom (dashed) versus long boom (solid). Shaded region indicates the
crisis following the long boom.

crisis region.

Figure 1.2 shows these dynamics. I start the economy at a low productivity level

at the associated long-run level of deposits. Then, in period 1, productivity increases.

This generates boom in the asset market which increases intermediary net worth. Since
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some bankers exit and deliver their net worth to the representative household each period,

the total net worth of the financial sector is steadily declining in the absence of new funds

from the household. New bankers are only seeded with a portion of the wealth of exit

bankers and so they must raise deposits to be able to invest in assets. Since land prices

are high, they must use a high level of deposits. The result is that the banking system

steadily accumulates debt while high productivity keeps land prices elevated.

As bankers accumulate additional liabilities, the economy moves towards the

crisis region. Anticipating of a future crisis then depresses current land prices since land

prices are expected to fall in a crisis.

The diagram shows two scenarios. The dashed line shows the dynamics of the

economy if the productivity boom is short (15 periods) while the solid line shows the case

of a long productivity boom (30 periods). In the first case, bankers do not accumulate

enough leverage to push the economy into the crisis regime. The collapse in productivity

pushes down the land price, which reduces banker net worth, but not by enough to

make the IC constraint bind and trigger a crisis. In contrast, a crisis does occur after a

long productivity boom. In a long boom, bankers accumulate enough debt to make the

economy fragile, pushing it into the crisis region.

By comparing the two scenarios we can visualize the amplification generated

by the binding IC constraint. The land price falls in both cases, but in the later case it

over shoots. The binding IC constraint makes bankers unable to raise additional funds

to purchase assets, reducing asset demand. This depresses land prices, which further

reduces banker net worth. This feedback generates amplification.

The crisis persists while banker debt remains high. They begin a deleveraging

process which moves the economy back out of the crises region over time. Low net worth

bankers exit and are replaced with new bankers with seed funds from the household. This

slow re-capitalization of the banking sector reduces leverage over time.
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In period 38, the crisis ends. At this point the land price has recovered significantly

and is almost back to its original level. However, note that throughout land prices are

uniformly below their fundamental value. The deviation of the land price (the gap

between the orange and blue lines in the middle left diagram) is a function of how far

the economy is from the crisis regime. The deviation is increases during the productivity

boom as bankers accumulate debt and then declines again once the crisis occurs and

bankers reduce their leverage through recapitalization.

Because a crisis only occurs after a sufficiently long boom in productivity, they

are relatively rare events. Figure 1.3 shows a simulation of the economy over 200 quarters

(50 years). In this simulation, four crises occur. The first is brief and comes after two

separate productivity booms. The first boom is long enough to significantly elevate banker

deposits but not long enough to push the economy into the crisis regime. The second

boom is brief, but further pushes up debt and brings the economy just into the crisis

regime. However, the crisis in brief because the combined effect of the two productivity

booms doesn’t lead to a very high level of deposits. The first financial crisis is minor and

the banking sector is quickly re-capitalized.

In contrast, the second crisis and third crises occur when banker debt is high after

a very long productivity boom. The second crisis is brief because productivity improves.

But this improvement in fundamentals is short, and the third crisis has a long period of

deleveraging. During this period, productivity does not improve and banker debt steadily

is reduced through re-capitalization. Once this long crisis ends, the land price recovers to

almost its long-run (low productivity) level. The fourth crisis similarly occurs following

a long-productivity boom, and involves a similar protracted period of banking sector

recapitalization.

What we see from this simulation is that the duration of a crisis depends on

whether or not productivity improves and how much debt bankers have accumulated.
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Note that an intermittent boom in productivity does end the crisis in the short term,

but does not re-capitalize the banks. Ultimately, the economy will go through a long
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deleveraging period if bankers have accumulated a large amount of debt. In this model, a

crisis is a necessary adjustment period after a long productivity boom during which the

financial sector become highly levered.

1.3 Conclusion

This chapter has outlined a baseline model of endogenous financial crises. They

key feature is an occasionally binding incentive constraint that represents an agency

problem between workers and bankers. In this model, anticipation of future crises

depresses land prices below their fundamental value, and the size of the discount depends

on the underlying balance sheets of bankers. When bankers have a high amount of debt,

they are likely to be net worth constrained in the near future. Since land prices fall

during a crisis, this elevated crisis risk puts downward pressure on the current land price.

However, since there is always some chance of a crisis in the long-run, land values are

always depressed relative to a frictionless world.

The dynamics of crises follow from the dynamics of banker balance sheets.

Bankers accumulate debt which land prices are large and so protracted productivity

booms lead to increased debt and an economy that is susceptible to crises. The high

leverage of the banking sector gets resolved through a process of recapitalization, and the

length of a crisis depends on how much debt bankers accumulated during the preceding

productivity boom. In this way, a crisis is an adjustment period that necessarily follows

after a long period of relative prosperity in the economy.

The lessons of this model came from a full global solution for equilibrium. The

dynamics surrounding endogenous financial crisis come from fully capturing the strong

non-linearity of the IC constraint. Global methods typically depend on having a few states

variables, and in this simple model we only needed to keep track of banking sector debt
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and an exogenous productivity shock. But to look at the macroeconomic implications

of credit crunches and asset price busts — say in a model with endogenous investment

that changes future labor productivity — we need to be able to solve larger models. The

next chapter introduces a perturbation method that can handle the non-linearity in the IC

constraint, and softens the curse of dimensionality so that we can solve extensions of the

model incorporating feedback between the financial and real sectors of the economy.
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Appendix

1.A Steady State

To solve for steady state we need to solve the following system of equations.

R = 1/β

(1−ψR)N = [ω− (R−1)ψ]P+(ψ+ω)αY

D = R(P−N)

µ = max
{

1− [(1−ψ)+ψv]N
ηP

,0
}

P =
β[(1−ψ)+ψv]

ηµ+[(1−ψ)+ψv]
[P+αY ]

(1−µ)v = (1−ψ)+ψv.

If µ= 0 then v= 1 and P=αY/(1−β), N = [(ω−(R−1)ψ)P+(ψ+ω)αY ]/(1−

ψR). Then we must have

1≤ [(1−ψ)+ψv]N
ηP

Therefore we have an upper bound on values of η consistent with the IC constraint being

slack in steady state:

1≤ [(1−ψ)+ψv]N
P
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If this condition is violated then we must have µ > 0.

1.B Model Equations and Solution

The model’s control variables are: Rt ,Pt ,µt ,Nt ,vt . There is one endogenous state

of Dt and one exogenous state of Yt . The equations pinning down the controls and

endogenous state are

1
Rt

= Etβ
u′(Yt+1)

u′(Yt)

Nt = ψ(Pt +αYt−Dt)+ω(Pt +αYt)

Dt+1 = Rt(Pt−Nt)

µt = max

1−
Etβu′(Yt+1)

u′(Yt)
[(1−ψ)+ψvt+1]RtNt

ηPt
,0


Pt = Et

βu′(Yt+1)
u′(Yt)

[(1−ψ)+ψvt+1]

ηµt +βu′(Yt+1)
u′(Yt)

[(1−ψ)+ψvt+1]Rt
[Pt+1 +αYt+1]

vt =
Etβu′(Yt+1)

u′(Yt)
[(1−ψ)+ψvt+1]Rt

1−µt
.

Note that the first equation pins down Rt without needing to know any other equilibrium

outcomes. To solve for a temporary equilibrium at time t given future policy functions,

I guess a value for Pt . Then calculate Nt from the second equation and Dt+1 from the

third. Given Pt , Nt , and Dt+1 we can then calculate µt from the fourth equation. Finally,

calculate the residual in the fifth equation. This sequence of calculations implies a map

from Pt to a residual in the fifth equation. Use a non-linear solver to find Pt that set the

residual in the fifth equation to zero. Given this value of Pt , calculate vt . This procedure

solves for a temporary equilibrium for the control vector (Rt ,Pt ,µt ,Nt ,vt) given state

(Yt ,Dt) and policy functions governing next period outcomes.
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I solve the model using time iteration (recursively solving for temporary equi-

librium and updating policy functions), and approximate policy functions via linear

interpolation on a discrete grid. I assume that output follows a three state Markov process

and keep track of outcomes on an evenly space grid for debt.



Chapter 2

Regime Switching Perturbation for

Non-linear Equilibrium Models

2.1 Introduction

Many salient macroeconomic problems are inherently non-linear1. Quantitatively

realistic dynamic stochastic general equilibrium (DSGE) models often require many state

variables, and estimation based on global solution techniques is typically infeasible due

to the curse of dimensionality2. Instead, macroeconomists tend to rely on local methods

to study medium and large scale models since they are fast and standardizable3. But

since these methods linearize equilibrium conditions, they are invalid for studying highly

1For instance, highly non-linear features arise in models of sovereign default (Arellano (2008), Mendoza
and Yue (2012), Adam and Grill (2013)), the zero lower bound on interest rates (Fernandez-Villaverde et al.
(2012), Aruoba and Schorfheide (2012), and Nakata (2012)), sudden stops (Mendoza (2010),Bianchi and
Mendoza (2013),Korinek and Mendoza (2013)), and financial crises (Sannikov and Brunnermeier (2012),
He and Krishnamurthy (2013), Gertler and Kiyotaki (2013), and Boissay et al. (2013)).

2See Gust et al. (2012) for a successful application of a global method in a model with three endogenous
and three exogenous state variables.

3See Jin and Judd (2002) and Schmitt-Grohe and Uribe (2004) for standard perturbation methods.
Dynare (Adjemian et al. (2014)) provides a standardized solver. For recent local/perturbation methods
for solving models with occasionally binding constraints see Brzoza-Brzezina et al. (2013) for a penalty
function approach and Guerrieri and Iacoviello (2014) for a perfect foresight approach.

26
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non-linear models4.

Focusing on the class of piecewise smooth dynamic stochastic general equilibrium

models, I introduce a generalized perturbation technique to approximate regime-switching

representations of rational expectations equilibria. By overcoming the high cost of global

methods and the limited applicability of perturbation methods, this regime-switching

perturbation method enables the study of general equilibrium models that were previously

considered intractable.

This method solves dynamic stochastic general equilibrium models whose struc-

tural equations are piece-wise smooth5. This class includes business cycle models

incorporating policy constraints like the zero-lower-bound (Fernandez-Villaverde et al.

(2012); Aruoba and Schorfheide (2012); Nakata (2012); Gavin et al. (2013)), models

of crises based on collateral constraints (Mendoza and Smith (2006); Mendoza (2010);

Korinek and Mendoza (2013)), and models of crises due to market breakdown (Boissay

et al. (2013)). The solution method only relies on the piecewise smooth structure of

the model – which is known directly from its equations – and does not rely on any

information about how this non-linearity is reflected in equilibria.

A regime-switching characterization of rational expectations equilibrium under-

lies the solution method. This alternative regime-switching equilibrium (RSE) concept

uses regime-conditional solution functions and specifies the distribution of the regime con-

ditional on the state of the economy as an equilibrium object. I show that it is equivalent

to rational expectations equilibrium (REE) because both definitions of equilibrium make

identical in-equilibrium predictions. This result justifies using regime-switching repre-

sentations of equilibrium and provides a theoretical underpinning for regime-switching

perturbation.

4Braun et al. (2012) show that economic conclusions can be very incorrect if log-linearization techniques
are used inappropriately in models incorporating the zero lower bound.

5Throughout I describe a real analytic function as a smooth function.
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Introducing an endogenous regime is useful in models with strong non-linearities

because the regime variable can absorb non-smooth features. Once the model’s kinks

and discontinuities are captured by the regime, the model is everywhere smooth which

enables a perturbation based solution method. Global approaches for solving models in-

corporating the zero-lower-bound (ZLB) on interest rates (Gust et al. (2012); Aruoba and

Schorfheide (2012); Fernandez-Villaverde et al. (2012)) also benefit from conditioning

the solution function on whether or not the ZLB binds, and I formalize this technique via

an endogenous regime variable.

This idea is also central to the perfect foresight perturbation approach introduced

by Guerrieri and Iacoviello (2014). This important contribution demonstrates how local

methods when coupled with a regime structure can successfully approximate equilibria

in ZLB models. However, the perfect foresight approach means that the probability

of transitioning between regimes does not influence the ultimate solution. The RSE

concept introduced in this paper incorporates the distribution of the regime explicitly

as an equilibrium object, which allows a researcher to account for expectational effects

associated with regime changes when solving the model with perturbation.

Prior solution approaches for DSGE models incorporating regime change specify

the regime distribution externally either as an exogenous Markov-switching process (as

in Farmer et al. (2009); Bianchi (2012, 2013); Foerster (2013); Foerster et al. (2013)) or

as a switching process that depends on the economy’s state in a known way (as in Davig

and Leeper (2006) or Barthélemy and Marx (2013)). This paper builds on this literature

by showing how to allow the evolution of the regime to come endogenously from the

model structure.

Instead of specifying how regimes evolve ex-ante, economists can explain the

underlying reason for regime change using first principles. First, the RSE concept

formalizes how to incorporate a regime as an equilibrium outcome. Then, by tying the
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realization of the regime in an RSE to non-linearity in theoretical models, regime changes

can be explained as coming from shifts in the fundamental structure of the economy.

The regime depends on economic fundamentals, and the distribution governing regime

changes is an equilibrium object. Previous regime-switching approaches emerge as the

special case when evolution of the regime can be determined ex-ante to solving the

model6.

Incorporating an endogenous regime requires modifying typical perturbation

procedures. Calculating derivatives at a single steady state is no longer sufficient. Instead

I show how to approximate RSEs relative to regime dependent reference points. The

procedure uses an augmented model which nests the original model and a slack model

via a perturbation parameter. The reference points solve the slack model, enabling an

application of the implicit function theorem to approximate solutions to the original

model. This procedure is closely related to solution methods for Markov-switching

models. I show that solving for a first order RSE can be accomplished by adapting

techniques for Markov-switching rational expectations models such as those in Farmer

et al. (2011), Bianchi and Melosi (2012), Barthélemy and Marx (2013), Cho (2013), and

Foerster et al. (2013).

To solve for how the regime relates to the state of the economy, I use backwards

induction. The perturbation step of the solution procedure relies on a guess of the regime

distribution, but the distribution is itself an equilibrium outcome. Since the regime is

identified with the structure of the model – in particular in what region current outcomes

are realized – the distribution is restricted by the rational expectations requirement. I

show that a simple closed-form expression updates the distribution to be consistent with

solution function approximations.

The equilibrium representation and solution method provides a connection to

6See appendix 2.E.
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linear regime-switching models used routinely in time-series econometrics. In particular,

a first order approximation of a regime-switching equilibrium implies a linear state-space

system for observable data. This result suggests that macroeconomic processes which are

well characterized by Markov-switching econometric models can be modeled as resulting

from regime-switching equilibria of non-linear DSGE models. Due to this connection,

the method provides a step towards empirical studies based on highly non-linear models –

which are typically infeasible since estimation exacerbates the computational burden of

solving for equilibria.

Section 2 provides intuition for the technique by presenting a univariate model. I

solve a special case of the model directly, and show how the solution can be re-cast within

a regime-switching structure. Finally, regime-switching perturbation is applied to solve

the model exactly. Section 3 presents the general case. I introduce the class of piecewise

smooth rational expectations models, the notion of regime-switching equilibrium, and

the general solution procedure. This section also contains equivalence results justifying

the method. Section 4 returns to the example model and compares global solutions with

the solutions calculated using regime-switching perturbation. Section 5 concludes.

2.2 Example: A ZLB Model

This section works through a motivating example to fix ideas. The model incor-

porates the zero-lower-bound (ZLB) on interest rates into a simple Fisherian model of

inflation determination. A special case of the model has closed-form solutions which take

a piecewise linear form. I show how to re-express these equilibria in a regime-switching

linear form. In this representation, the regime variable indicates whether or not the ZLB

binds and the conditional distribution of the regime is an equilibrium object. Finally, I

show how to solve for the solution functions in this regime switching representation via
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perturbation.

The model consists of the Fisher equation relating nominal and real interest rates,

and a ZLB-constrained Taylor rule with interest rate persistence. This basic structure can

be derived from a standard neoclassical growth model with money and nominal bonds7.

rt = it−Etπt+1

rt = (1−ρr)r̄+ρrrt−1 + εt , εt
iid∼ N (0,σ2)

i∗t = (1−ρi)r̄+ρii∗t−1 +θπt

it = max{0, i∗t }

(2.1)

The fisher equation defines the real interest rate rt as the nominal interest rate it net of

expected inflation Etπt+1. The real rate evolves as an exogenous AR(1) process with

persistence of ρr. Monetary policy has a desired nominal interest rate i∗t and sets the

nominal interest rate it equal to this target whenever feasible. Due to the zero lower

bound, the central bank is constrained to setting the nominal rate at zero whenever the

desired rate is negative.

The desired rate is determined by a weighted average of all past deviations of

inflation from the central bank’s zero inflation target. As a result, i∗t can be interpreted as

the central bank’s accumulated commitment to make up for past deviations of inflation

from this target. For example, if inflation has been below target historically and the ZLB

is binding, i∗t represents commitments to keep the interest rate low for an extended period.

I assume that a Taylor-type principle holds and the reaction coefficient θ is

positive and greater than 1−ρi. Under this assumption, the model has two steady states.

The first corresponds to when policy achieves its zero inflation target. The second is the

Friedman steady state where the rate of deflation is equal to the average real interest rate.

Linear approximations based around either steady state are only valid if the process for rt

7See appendix 2.F.
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is sufficiently bounded to never push equilibrium outcomes across the kink generated by

the ZLB. Since the interesting case is precisely when the ZLB may occasionally bind,

standard perturbation is an inappropriate solution method.

2.2.1 Closed-Form Solution With ρr = 0

For the remainder of this section, I assume that the real interest rate has no

persistence: ρr = 0. Under this assumption, the model has a closed-form solution.

To solve the model, first reduce to a single equation in the desired rate by elimi-

nating the real rate, the realized nominal rate, and inflation. This reduction gives a single

non-linear expectational difference equation in the desired rate:

Et i∗t+1 = (1−ρi)r̄+max{ρii∗t ,(ρi +θ)i∗t }−θrt (2.2)

The max operator arises from the ZLB constraint. When the desired rate is below zero, the

ZLB binds, and the right hand side has a slope of ρi < 1. When policy is not constrained

by the ZLB, the slope is ρi +θ > 1. Figure 2.1 depicts this equation and shows the two

steady states of the model for comparison.

The only fundamental state variable in equation (2.2) is the exogenous shock, rt .

A minimum-state-variable equilibrium is a map rt 7→ g(rt) = i∗t to determine the desired

rate. Since rt is iid and the future desired rate is determined by the same function in-

equilibrium, the expected desired rate is constant over time: Et [g(rt+1)]≡ i∗e. Inverting

the right hand side of (2.2) gives a piecewise linear expression for the desired rate:

i∗t = g(rt) = min
{

i∗e− (1−ρi)r̄+θrt

ρi
,
i∗e− (1−ρi)r̄+θrt

ρi +θ

}
(2.3)

For any given level of i∗e, today’s desired rate is determined by one of two linear
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Figure 2.1: Depiction of The Fisherian Model: Equation (2.2)

functions. The first corresponds to when policy is constrained by the ZLB, and the

second corresponds to when policy is unconstrained. Regime-switching, whether or not

the ZLB binds, is then just between one or the other entry.

In turn, since i∗e = Et [g(rt+1)], rational expectations requires that the expected

desired rate must satisfy the fixed point condition:

i∗e =
∫

min
{

i∗e− (1−ρi)r̄+θrt+1

ρi
,
i∗e− (1−ρi)r̄+θrt+1

ρi +θ

}
1
σ

φ
(

rt+1− r̄
σ

)
drt+1

(2.4)

where φ denotes the standard normal pdf. Figure 2.2 illustrates this fixed point condition.

This equation has two solutions given the strict concavity of the min function and

the fact that the right hand side limits to a linear functional form as i∗e→±∞. These two

solutions are represented by the intersection of the right hand side of equation (2.4) with
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Figure 2.2: Fixed Point Condition For Rational Expectations: Equation (2.4)

the 45-degree line in figure 2.2. There are then precisely two equilibria corresponding

to each of the two values for i∗e which solve equation (2.4). Since the expected desired

rate converges to a steady state of the model as the volatility of the real rate shock is

shutdown, these two equilibria can be associated with the two steady states of the model.

2.2.2 A Regime-Switching Characterization of Equilibrium

Structural equation (2.2) and the solution function (2.3) both suggest organizing

our solution approach based on whether or not the desired rate is above or below zero. To

formalize this idea, I define a regime-switching equilibrium concept where the solution

is conditioned on whether or not the ZLB binds. Instead of representing equilibrium

with a single solution function, I use two. One function determines outcomes when

policy is constrained by the ZLB and the other determines outcomes when policy is not
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constrained by the ZLB. Note that distinguishing between these cases does not require

any knowledge of the equilibria of the model and only uses the information contained in

the model’s structural equations.

Define a regime variable st which either takes a value of c when policy is con-

strained or u when policy is unconstrained. Condition outcomes on this regime vari-

able by defining two function gc and gu which determine the desired rate depending

on the prevailing regime. Since the regime is an endogenous outcome, its probabil-

ity law is an equilibrium object. Denote the distribution of st conditional on rt by

Πs(r)≡ P [st = s | rt = r].

To ensure that the regime variable correctly indicates when the ZLB binds, this

conditional distribution must be consistent with the equilibrium process for the desired

rate. In particular, st = c can only occur when the desired rate is below zero and

st = u can only occur when the desired rate is above zero. This means that the events

{st = c and i∗t > 0} and {st = u and i∗t ≤ 0} must occur with probability zero and are

off-equilibrium path events.

In turn, if regime st = s does occur with positive probability given that rt = r, the

model equation must be satisfied:

∫
∑

s′=c,u
gs′(r

′)Πs′(r
′)σ−1φ(r′/σ)dr′

= (1−ρi)r̄+1{st = c}ρigs(r)+1{st = u}(ρi +θ)gs(r)−θr (2.5)

where I have used that i∗t ≤ 0 =⇒ st = c and i∗t > 0 =⇒ st = u. Note that this equation

only must hold for (st ,rt) pairs which occur in-equilibrium.

The regions of the solution functions which never occur in-equilibrium are unre-

stricted in principle. However, re-writing the model as the system (2.5) has implicitly



36

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

i∗t

r t

 

 

gC(r t)
gU (r t)
r ∗

Figure 2.3: Regime-Switching Equilibrium: Functions in (2.6) and Threshold in (2.7)

pinned down the solution functions:

gc(r) = θ
ρi
(r− r∗)

gu(r) = θ
ρi+θ(r− r∗)

(2.6)

where

r∗ ≡ (1−ρi)r̄
θ

−
∫

∑
s′=c,u

gs′(r′)
θ

Πs′(r
′)

1
σ

φ
(

r′− r̄
σ

)
dr′ (2.7)

These solution functions and the threshold r∗ are depicted in figure 2.3. In effect, off-

equilibrium path outcomes are pinned down via the linear extension of the entries of the

max operator in the solution given in equation (2.3).

The distribution of the regime must be consistent with these functions. Given the

form of gc and gu, the constrained regime can only occur when the real rate is below the
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threshold r∗ and the unconstrained regime can only occur when the real rate is above

r∗. Therefore, this switching threshold is a summary statistic for the equilibrium regime

distribution:

Πs(r) =

 1{r ≤ r∗} if s = c

1{r > r∗} if s = u
(2.8)

Using (2.8) in (2.7), implies that the switching threshold must be a fixed point of:

r∗ =
(1−ρi)r

θ
−

∫
max

{
1
ρi
(r− r∗),

1
ρi +θ

(r− r∗)
}

1
σ

φ
(

r′− r̄
σ

)
dr′ (2.9)

This condition is equivalent to the fixed point condition (2.4) with r∗ = θ−1[(1−ρi)r−

i∗e].

The regime-switching equilibrium concept represents the model solution using

a regime-switching linear structure. Instead of solving for a kinked function (equa-

tion (2.3)), it is sufficient to solve for two linear functions (equation (2.6)). Given these

functions, we then find a fixed point in the distribution Π via the summary statistic r∗.

Although this regime-switching equilibrium concept is a change of perspective, it

is equivalent to the usual notion of a rational expectations equilibrium. By construction,

it generates identical outcomes. The regime variable effectively absorbs all of the non-

differentiability in the model, enabling the use of linear solution functions. As the next

section shows, a perturbation method can solve for these well behaved functions.

2.2.3 Solution Using Regime-Switching Perturbation

The regime-switching perturbation method finds solution functions associated

with any given conditional distribution for the regime, and uses backwards induction to

solves for the equilibrium regime distribution.

The algorithm begins with a guess of the regime distribution: Π = Π̂(0). At
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iteration n, perturbation delivers the solution functions ĝ(n)c and ĝ(n)u associated with the

distribution Π̂(n−1). The collection {ĝ(n)c , ĝ(n)u ,Π̂(n−1)} implies conditional probabilities

for the events {i∗t ≤ 0} and {i∗t > 0}. These conditional probabilities imply a new estimate

Π̂(n). Iterating on these two steps can be interpreted as performing backward induction.

Proposition 2.2.2 shows that the resulting sequence of regime distributions converges to

an equilibrium distribution.

The central step to this procedure is the calculation of the solution function

estimates, ĝc and ĥu. In standard perturbation, solution functions are approximated by

applying the implicit function theorem at a steady state of the model. The steady state

provides a reference point central to solving the model.

In the current example, regime changes force the desired rate to switch between

lying above and below zero. The use of a single steady state as a reference point is

impossible. To resolve this issue, I use the support points of a stochastic process driven

by the regime variable as the necessary regime-specific reference points.

Choose points ĩ∗c < 0 and ĩ∗u > 0 to serve as regime conditional reference points

for the desired rate. Importantly these points must lie on either side of zero so that local

information is obtained from both sides of the kink arising from the ZLB. Also, choose

two reference points for the real rate: r̄c and r̄u
8. Given these points and a fixed regime

distribution, define a slackness term as:

∆s,s′ = ĩ∗s′− (1−ρi)r̄−max
{

ρiĩ∗s ,(ρi +θ)ĩ∗s
}
+θr̄s

The expected value of this slackness term is the residual in the model equation under

the assumption that outcomes are determined as (i∗t ,rt) = (ĩ∗st
, r̄st ) and st ∼

∫
Πs(r̄ +

ε′)dF(ε′).
8In this example, these points can be arbitrary. Generally, it is helpful to choose them based on estimates

of the regime-conditional means of the state variables of the model
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Next, augment the model with this slackness term using a nesting parameter

η ∈ [0,1]:

0 = Et
[
i∗t+1− (1−ρi)r̄−max{ρii∗t ,(ρi +θ)i∗t }+θrt− (1−η)∆st ,st+1

]
rt+1 = (1−η)r̄st+1 +η(r̄+ εt+1), εt+1 ∼N (0,σ2)

st+1 | εt+1 ∼ Πs(r̄+ εt+1)

(2.10)

The first equation arises from appending the slack term (1−η)∆s,s′ to equation (2.2).

The second equation specifies a distorted version of the real rate process. The evolution

of the real rate is now a convex combination of the reference point r̄s and the true process

of the shock. Now both the regime variable and the Gaussian innovation directly drive

the real rate. Finally, the last line specifies that the regime is driven by the true real rate

process and not the modified real rate process.

This augmented model reduces to our original model when η = 1 because the

residual term drops out and the future real rate shock is no longer distorted towards the

reference point r̄s′ . In the opposite case with η = 0, the continuous shock does not impact

the future value of the real rate which takes values of r̄c and r̄u. In this slack model, the

residual term enters fully and ensures that the reference points ĩ∗c and ĩ∗c solve the model

at the state-space points r̄c and r̄u. The slackened model distorts agent beliefs in such a

way to ensure that the chosen reference points solve the model.

Given fixed values for {Π, ĩ∗c , ĩ
∗
u, r̄c, r̄u}, a solution to this augmented model is a

pair of functions gc(r,η) and gu(r,η) such that model equation (2.10) is satisfied when

i∗t = gst (rt ,η) and i∗t+1 = gst+1(rt+1,η). Note that these solutions now depend on the

nesting parameter η.

Since the augmented model nests the original model, evaluating the solution

functions gc(r,η) and gu(r,η) at η = 1 gives the solution functions of the original model

for a given conditional distribution Π. On the other extreme, when η = 0 the augmented
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model reduces to the slack model. By construction, this slack model has the chosen

reference point as solution. The desired rate ĩ∗c solves the augmented model at the point

(r̄s,0):

ĩ∗c = gc(r̄c,0)

ĩ∗u = gu(r̄u,0)

Just as a deterministic steady state is the reference point for standard perturbation, the

stochastic process (ĩ∗st
, r̄st ) serves as a reference process. Now, an application of the

implicit function theorem based on the state-space points r̄c and r̄u (see appendix 2.A)

delivers the partial derivatives of the augmented model’s solution functions.

Calculating these derivatives leads to a first order approximation:

gs(r,η)≈ ĩ∗s +
∂
∂r

g(r̄s,0)(r− r̄s)+
∂

∂η
g(r̄s,0)η

Setting η = 1 gives an approximate solution to the original model:

gs(r,1)≈
[

ī∗s −
∂
∂r

g(r̄s,0)r̄s +
∂

∂η
gs(r̄s,0)

]
+

∂
∂r

gs(r̄s,0)r ≡ ĝs(r) (2.11)

Note that, the derivative with respect to η adjusts the constant term to account for the

level shift introduced by slackening the model.

In this example, the solution is linear so this approximation is in fact exact when

Π is an equilibrium conditional distribution. To arrive at this result, I use the following

lemma which specifies the constants in this approximation associated with any arbitrary

choice of Π.

Lemma 2.2.1 For a given conditional distribution Π, not necessarily an equilibrium

distribution, the constants in the linear approximation (2.11) associated with Π are
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(s = u,c)

[
ĩ∗s −

∂
∂r

g(r̄s,0)r̄s +
∂

∂η
gs(r̄s,0)

]
= as(Π) =−bsr∗(Π)

∂
∂r

gs(r̄s,0) = bs =


θ
ρi

s = c

θ
ρi+θ s = u

where

r∗(Π) =

1−ρi
θ r̄−Er′∼N (r̄,σ2)

[
Πc(r′) 1

ρi
r′+Πu(r′) 1

ρi+θr′
]

1−Er′∼N (r̄,σ2)

[
Πc(r′) 1

ρi
+Πu(r′) 1

ρi+θ

]
Proof. See appendix 2.A.

The slope constant bs is the same slope constant in the true solution function

given by equation (2.6). The constant term depends on the regime distribution through

the threshold r∗(Π). This threshold is the point in the state space where both ĝc and ĝu

equal zero9.

This lemma characterizes the solution delivered by using perturbation to approxi-

mate gc and gu holding Π fixed. However, if Π is an equilibrium regime distribution, then

the threshold r∗(Π) must be a threshold which satisfies the fixed point condition (2.9).

It immediately follows that this perturbation method delivers the exact solution, as

summarized in the following proposition:

Proposition 2.2.1 If Π is an equilibrium distribution in an RSE of model (2.1) (so

that it takes the form given in equation (2.8)), then for each regime the first order

approximation (2.11) is equal to the unique linear regime-conditional solution function

associated with Π.

Proof. See appendix 2.B.
9It is also a sufficient statistic for the conditional regime distribution implied by these functions
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This result implies that if we can solve for Π, we can solve the model. It begs

the question, using perturbation to calculate solution functions, can backwards induction

solve for an equilibrium value for Π? The answer to this question is yes.

To see this result, consider an update of the regime distribution to Π′ given a

previous guess of Π. If the regime is drawn according to Π and the desired rate is

determined by the associated approximation ĝst (rt), then the desired rate is below zero

if and only if rt ≤ −ast (Π)/bst = r∗(Π). This implies that the conditional probability

of the desired rate ending up below zero is ∑s=u,c Πs(rt)1{rt ≤ r∗(Π)}= 1{rt ≤ r∗(Π)}.

This probability is the true chance that policy is constrained. Similarly, the desired

rate is above zero if and only if rt > r∗(Π) so the probability of being unconstrained is

∑s=u,c Πs(rt)1{rt > r∗(Π)}= 1{rt > r∗(Π)}. Therefore, the only consistent belief is

Π′s(r) =

 1{r ≤ r∗(Π)} if s = c

1{r > r∗(Π)} if s = u
(2.12)

This equation specifies an updating equation for beliefs which takes as input a conditional

distribution Π and returns an updated conditional distribution Π′.

Backward induction based on this updating rule is guaranteed to generate a

sequence of conditional distributions which converges to an equilibrium conditional

distribution:

Proposition 2.2.2 For sufficiently small σ > 0 and for almost every initialization of the

conditional distribution Π(1), the sequence {Π(n)}∞
n=1 generated by recursion on the

backward induction rule (2.12) converges to a conditional distribution Π∗ associated

with a regime-switching equilibrium of model (2.1).

Proof. See appendix 2.C.

This backwards induction procedure solves the model to arbitrary precision. The
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regime-switching perturbation method combines backwards induction with perturbation

to solve jointly for regime-conditional solution functions and the distribution governing

the evolution of the regime.

This example demonstrates how regime-switching perturbation works within a

simple model. By introducing a slack term into the model structure, we can choose

regime-specific reference points at which to apply the implicit function theorem and

approximate the model solution. In fact, regime-switching perturbation solves the model

exactly because the true solution has a linear regime-switching representation.

2.3 The General Case

This section examines the concept of regime-switching equilibrium, and regime-

switching perturbation. The first sub-section specifies the general framework and the

central assumption defining the class of piecewise smooth rational expectations models.

The second sub-section provides equilibrium definitions and an equivalence result that

justifies focusing on regime-switching representations of rational expectations equilibria.

The third sub-section examines the details of the method, and the fourth sub-section

summarizes the algorithm.

2.3.1 General Framework

Suppose a macroeconomic theory implies a model for a control variable vector

Yt ∈ Y ⊂ RnY and state variable vector Xt ∈ X ⊂ RnX which takes the form

0 = Et f (Yt+1,Yt , X̃t ,Xt)

Xt+1 = X̃t +Σεt+1, εt+1
iid∼ F

(2.13)



44

The vector X̃t represents the pre-determined part of the state variables. The iid innovation,

εt+1, introduces a stochastic component to the state vector via the impact matrix Σ. Note

that Σ may be singular so that some state-variables are entirely pre-determined. I will

refer to X as the state space, Y as the control space, and Y ×X as the outcome space of

the model.

For instance, consider a real business cycle model with irreversible investment.

Letting Ct , It , Kt , Nt , zt denote consumption, investment, capital, labor, and log total

factor productivity respectively, the model’s equilibrium conditions are:

C−τ
t ≤ Λt ⊥ It ≥ 0

Λt = βEtC−τ
t+1

[
1−δ+αezt+1

(
Kt+1

Nt+1

)α−1
]

Cτ
t

1−Nt
= (1−α)ezt

(
Kt

Nt

)α

ezt Kα
t N1−α

t =Ct + It

Kt+1 = (1−δ)Kt + It

zt = ρzt−1 + εt

Here, Λt denotes the marginal utility from an increase in savings while εt is an exogenous

iid innovation to the log of total factor productivity.

The first equation defines a complementarity condition for whether or not invest-

ment is strictly positive or constrained to equal zero. Investment is constrained when the

marginal utility from savings is less than the marginal utility from consumption.
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The model fits into the form in (2.13) as

0 = Et



C−τ
t −min

{
Λt ,
(

ezt Kα
t N1−α

t

)−τ
}

Λt−βC−τ
t+1

[
1−δ+αezt+1

(
Kt+1
Nt+1

)α−1
]

X̃1,t− (1−δ)Kt− ezt Kα
t N1−α

t +Ct

X̃2,t−ρzt

X1,t−Kt

X2,t− zt


︸ ︷︷ ︸

f (Yt+1,Yt ,X̃t ,Xt)X1,t+1

X2,t+1

=

X̃1,t

X̃2,t

+
0

1

εt+1

Here, the control variable vector is taken to be the full vector of outcomes:

Yt = [Ct ,Λt ,Kt ,Nt ,zt ]
′

and definitions for Xt and X̃t are appended to the model. To get this formulation, re-write

the complementarity condition using a min operator, combine the resource constraint and

capital law of motion to eliminate It , append the equation X̃t = [(1−δ)Kt +ezt Kα
t N1−α

t −

Ct ,ρzt ]
′ to the model, and append the identity Xt = [Kt ,zt ]

′. The law of motion for the

state variables comes from replacing (1−δ)Kt + ezt Kα
t N1−α

t −Ct in the capital law of

motion with X̃1,t , and replacing ρzt in the law of motion for productivity with X̃2,t .

Since investment is constrained to be non-negative (irreversible investment), the

first model equation has a kink. Like in the previous ZLB example, this kink introduces a

strong non-linearity into the model. To allow for models with these types of non-smooth

features, I make the following assumption on f :

Assumption 2.3.1 The function y 7→ f (y′,y,x′,x) is piece-wise real analytic for each
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value of (y′,x′,x) ∈ Y ×X ×X .

Specifically, there is a partition of the control space10 into S regions, {Ys}S
s=1,

and a collection of real analytic functions { fs}S
s=1 so that

f (y′,y,x′,x) =
S

∑
s=1

fs(y′,y,x′,x)1{y ∈ Ys} (2.14)

This assumption defines a class of piecewise smooth dynamic stochastic general equilib-

rium models. The model equation f is smooth almost everywhere, and once the control

space is broken into the partition {Ys}S
s=1 it is smooth on each piece.

Note that in any given model, the function f is known. For instance, in the ZLB

model the desired rate must lie in R and the model is smooth after splitting into pieces

(−∞,0] and (0,∞), corresponding to when the ZLB does and does not bind, respectively.

In the irreversible investment RBC model, the control space is R4
+×R, and the partition

consists of the sets:

{[Ct ,Λt ,Kt ,Nt ,zt ]
′ ∈ R4

+×R | Λt >
(
ezt Kα

t N1−α
t
)−τ}

{[Ct ,Λt ,Kt ,Nt ,zt ]
′ ∈ R4

+×R | Λt ≤
(
ezt Kα

t N1−α
t
)−τ}

The partition can always be characterized using the known model structure.

Many highly non-linear general equilibrium models which arise in macroeco-

nomic theory satisfy assumption 2.3.1. The assumption includes business cycle models

incorporating the ZLB (Fernandez-Villaverde et al. (2012); Aruoba and Schorfheide

(2012); Nakata (2012)), models of sudden stop crises (Mendoza and Smith (2006); Men-

doza (2010); Korinek and Mendoza (2013))), and models of breakdown in financial
10Restricting to a piecewise smooth structure in the contemporaneous control variables is without loss

of generality because any non-differentiabilities in terms of state variables can be absorbed into the control
variables by augmentation. The augmentation requires a new control variable which replaces the state or
shock variable. Then an additional equation is introduced which imposes that the new control variable
equals the state or shock which it replaced.
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intermediation (Boissay et al. (2013); Gertler and Kiyotaki (2013)). Discrete time ver-

sions of continuous time macro-finance models (He and Krishnamurthy (2012); Sannikov

and Brunnermeier (2012); He and Krishnamurthy (2013); Sannikov and Brunnermeier

(2013)) also have a piecewise smooth structure and satisfy this assumption.

Note that typical everywhere differentiable DSGE models arise as the case when

S = 1. Additionally, the class of piecewise smooth models includes Markov-switching

rational expectations models, as in Foerster et al. (2013), and endogenous-switching

rational expectations models, as in Davig and Leeper (2006). Both these types of models

arise as special cases, and appendix 2.E shows this connection in detail. The class of

piecewise smooth models satisfying assumption 2.3.1 encompasses many discrete time

macroeconomic models.

2.3.2 A Regime-Switching Characterization of Equilibrium

Regime-switching perturbation solves for regime-switching representations of

rational expectations equilibria. These regime-switching equilibria use the partition

{Ys}S
s=1 in assumption 2.3.1 to define regimes such that the active piece of the partition

identifies the present regime. This construction re-interprets the a piece-wise smooth

model as an endogenous-regime model. Regime-switching equilibrium and the standard

concept of a rational expectations equilibrium are equivalent since they make identical

predictions. However, this representation is useful because it effectively absorbs all

non-smooth model features into the regime variable, which facilitates a perturbation

approach.

To formalize these ideas, I first fix equilibrium concepts:

Definition 2.3.1 A minimum-state-variable rational expectations equilibrium (REE) is

a pair of measurable functions g and h such that from any initial point X1 ∈ X the
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stochastic process generated recursively according to

Yt = g(Xt), X̃t = h(Xt)

Xt+1 = X̃t +Σεt+1, εt+1
iid∼ F

satisfies model (2.13). Namely, for each x ∈ X

0 =
∫

f (g(h(x)+Σε′),g(x),h(x),x)dF(ε′)

This definition of equilibrium is commonly used as the basis of global solution

methods for non-linear rational expectations models. The success of global methods in

approximating equilibrium functions depends both on the dimension of the state space

and how well the chosen numerical scheme can handle the non-linear structure of the

model11.

Next, I need an equilibrium concept that incorporates the notion of an endogenous

regime. Generally, I allow for an arbitrary regime variable rt which takes values of

1, . . . ,R and is not identified with the partition {Ys}S
s=1:

Definition 2.3.2 A minimum-state-variable order-R regime-switching equilibrium (RSE)

is a collection of measurable functions {gr,hr}R
r=1 and a conditional distribution function

Π such that

1. Rational Expectations: For any initial point X1 ∈ X the outcomes generated

11The first consideration limits the number of pre-determined and shock variables which can be incor-
porated into the model. Leveraging Taylor approximations reduces this computational bottle neck. The
second often requires clever partitioning of the model state space to account for kinks and discontinuities.
In contrast, I use the known partition of the control-space.
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recursively according to

rt | Xt ∼Πr(Xt)

Yt = grt (Xt), X̃t = hrt (Xt)

Xt+1 = X̃t +Σεt+1, εt+1
iid∼ F

satisfy model (2.13). Specifically, for each (r,x) ∈ {1, . . . ,R}×X , if Πr(x) > 0

then

0 =
∫ R

∑
r′=1

f (gr′(hr(x)+Σε′),gr(x),hr(x),x)Πr′(hr(x)+Σε′)dF(ε′)

2. Fundamental Volatility: Either Πr(x) = 0 or Πr(x) = 1.

The first requirement states that the self-fulfilling beliefs of agents in the model

can only put positive support on regimes which also satisfy the model equations. Regimes

whose solution functions do not satisfy the model at the value of the state variables must

occur with probability zero. The second condition requires that these self-fulfilling beliefs

only place support on a single regime at each point of the state space. This imposes that

the only source of volatility comes from fundamental shocks12.

The REE concept and the RSE concept are closely related because they make

identical predictions. This idea can be stated precisely by defining a notion of equivalence:

Definition 2.3.3 A REE (g,h) and an order-R RSE are equivalent equilibria if for each

x ∈ X and each r ∈ {1, . . . ,R} if Πr(x)> 0 then gr(x) = g(x) and hr(x) = h(x).

12More generally, I could consider equilibria where sunspot shocks select between regimes so that
multiple outcomes can occur in-equilibrium for a given point of the state space. From a solution strategy
point of view, sunspot equilibria simply condition on an additional state variable, which can be appended
to the model. For an example of this approach see Lubik and Schorfheide (2003) and Farmer and Khramov
(2013).
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An REE and an RSE are equivalent when they agree on contemporaneous outcomes

across all points of the state space.

The formal link between these equilibrium concepts is summarized in the follow-

ing proposition:

Proposition 2.3.1 The collection ({gr,hr}R
r=1,Π) is an order-R RSE if and only there

exists an equivalent REE.

The proof of this proposition is constructive and shows precisely how the two concepts

are related.

Proof. (⇒): We can construct an REE from a given RSE by splicing its solution

functions together. Given ({gr,hr}R
r=1,Π) choose g(x) = ∑R

r=1 gr(x)Πr(x) and h(x) =

∑R
r=1 hr(x)Πr(x). By construction, (g,h) is equivalent, provided that it is an REE. Due to

the fundamental volatility requirement, Π is a degenerate distribution and so

∫
f (g(h(x)+Σε′),g(x),h(x),x)dF(ε′)

=
∫

f (gr′(hr(x)+Σε′),gr(x),hr(x),x)Πr′(hr(x)+Σε′)Πr(x)dF(ε′)

When Πr(x) = 0 the last term must equal zero. However, if Πr(x)> 0 this term will also

equal zero due to the rational expectations requirement of an order-R RSE. Therefore

(g,h) is an REE.

(⇐): Necessity follows from realizing that for a given REE, (g,h), there are many

equivalent RSE, and they differ according to their specification for out-of-equilibrium

outcomes. Let Π be any conditional distribution over {1, . . . ,R} which is degenerate

(satisfies the fundamental volatility requirement). For each x ∈ X , if Πr(x) > 0 set

gr(x) = g(x) and hr(x) = h(x). If Πr(x) = 0, arbitrarily choose values for gr(x) and

hr(x). These values are the out-of-equilibrium segments of the solution functions and

may be chosen in any way without influencing equilibrium predictions. If the collection
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({gr,hr}R
r=1,Π) is an RSE, it is equivalent to (g,h) by construction.

Now, check the rational expectations requirement. For each in-equilibrium state-

regime pair (so that Πr(x)> 0) we have:

∫ R

∑
r′=1

f (gr′(hr(x)+Σε′),gr(x),hr(x),x)Πr′(hr(x)+Σε′)dF(ε′)

=
∫ R

∑
r′=1

f (g(h(x)+Σε′),g(x),h(x),x)Πr′(hr(x)+Σε′)dF(ε′)

=
∫

f (g(h(x)+Σε′),g(x),h(x),x)dF(ε′)

Since (g,h) is an REE, the last term is equal to zero, and so ({gr,hr}R
r=1,Π) is an order-R

RSE.

This proposition shows the relationship between the two equilibrium concepts.

The in-equilibrium parts of an RSE’s solution functions always match with the solution

functions of some REE. The out-of-equilibrium parts of the functions gr and hr can never

occur and do not influence equilibrium predictions. They are completely unrestricted

by the definition of an RSE, and we have many possible RSE’s simply by varying

out-of-equilibrium outcomes.

Since out-of-equilibrium events are unrestricted, we can focus attention on sub-

classes of RSE’s by placing restrictions on out-of-equilibrium outcomes. In the previous

section, we used this idea to work exclusively with linear solution functions. In the

general case, we can focus on smooth solution functions due to assumption 2.3.1.

This is accomplished by identifying each of the R regimes with a segment of the

piece-wise smooth model. This choice allows the regime variable to absorb all of the

non-differentiable features in the model, effectively converting it into a smooth model

with an endogenous regime variable.

This idea can be formalized by defining a concept of partition consistency:
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Definition 2.3.4 Given a control-space partition {Ys}S
s=1, an order-R RSE is partition

consistent if for each r ∈ {1, . . . ,R} there exists some s ∈ {1, . . . ,S} so that for every

x ∈ X if Πr(x)> 0 then gr(x) ∈ Ys.

Partition consistency implies that each regime is tied to a unique piece of the natural

partition arising from the model’s structural equations. The outcomes generated by each

regime must lie in a single piece of the model’s partition, and so knowing the current

regime implies knowing the active piece of the model partition.

But since the model is smooth on the interior of each piece Ys, this implies that

each solution function can be smoothly pinned down by the model structure while the

regime stays fixed. To see this, fix the regime at r and use assumption 2.3.1 and partition

consistency of the RSE to write:

Πr(x)> 0 =⇒ 0

=
∫ R

∑
r′=1

f (gr′(hr(x)+Σε′),gr(x),hr(x),x)Πr′(hr(x)+Σε′)dF(ε′)

=
∫ R

∑
r′=1

S

∑
s=1

fs(gr′(hr(x)+Σε′),gr(x),hr(x),x)1{gr(x) ∈ Ys}Πr′(hr(x)+Σε′)dF(ε′)

=
∫ R

∑
r′=1

fs(r)(gr′(hr(x)+Σε′),gr(x),hr(x),x)Πr′(hr(x)+Σε′)dF(ε′)

where s : {1, . . . ,r}→{1, . . . ,S} is the map from the current regime to the currently active

partition. This mapping is well-defined because of partition consistency. The model is

now entirely smooth, apart from any non-smoothness arising from a perfectly forecastable

jump in the future regime that could be enduced by varying x. Provided that future regime

changes are not extremely sensitive to current choices which determine the state, the

model is completely smooth, and it is reasonable to look for smooth regime-conditional

solution functions.

Remark 2.3.1 A partition consistent RSE implies a completely smooth regime-switching
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model of the form

0 =
∫ R

∑
r′=1

fs(r)(gr′(hr(x)+Σε′),gr(x),hr(x),x)Πr′(hr(x)+Σε′)dF(ε′)

Intuitively, if regimes are based on the pieces of the partition {Ys}S
s=1, then

the model equations are completely smooth once cast into a regime-switching form.

Focusing on smooth solution functions amounts to using analytic continuation to extend

how the smooth structure of the model determines in-equilibrium outcomes to pin down

out-of-equilibrium outcomes.

Because any RSE implies a unique equivalent REE, solving for RSE is without

loss of generality and completely equivalent to solving for REE. This result suggests that

we focus on solving for smooth solution functions in a regime-switching equilibrium,

provided the regime variable is consistent with the partition {Ys}S
s=1.

2.3.3 Regime-Switching Perturbation

The perturbation method approximates each regime specific solution function

with a polynomial generated by a Taylor expansion. This procedure requires points for

calculating derivatives of the structural equations. Traditionally, the deterministic steady

state is used, but here reference points must move with the regime variable.

Instead of using a single steady state, the method uses multiple reference points

which can be chosen a-priori. To apply the implicit function theorem, I setup an aug-

mented model which nests model (2.13) and a slack model whose solution involves the

chosen points. This procedure breaks perturbation’s dependence on the model’s steady

state.

The implicit function theorem, applied to the augment model, gives a second order

matrix equation in the derivatives of the model solution. Solving this matrix equation
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ends up being analogous to solving a Markov-switching model as in Foerster et al. (2013).

This result connects non-linear models with endogenous regimes (via the RSE concept)

to solution methods developed for Markov-switching rational expectations models.

Perturbation delivers the collection of approximate solution functions {ĝs, ĥs}S
s=1

associated with a fed regime distribution, Π. To solve for the regime distribution, I use a

backward induction approach based on the requirement that Π is a partition consistent

regime distribution. In order for Π to be partition consistent, the outcomes generated by

the system

Yt = ĝst (Xt)

Xt+1 = ĥst (Xt)+Σεt+1

εt+1
iid∼ F , st+1 | Xt+1 ∼Πs(Xt+1)

must satisfy P[Yt ∈Ys |Xt = x] =Πs(x). This requirement is a fixed point condition which

imposes rational expectations and implies that ({ĝs, ĥs}S
s=1,Π) is an approximate partition

consistent RSE. At each iteration of the algorithm, I update the regime distribution

based on the known partition {Ys}S
s=1 so that it is consistent with solution function

approximations. Using this distribution update step after each perturbation step, gives a

complete iteration of the solution algorithm.

This procedure amounts to performing backward induction on the conditional

distribution of the regime. Let an exponent of (n) denote an equilibrium object associated

with the n-th iteration of the algorithm. Then each iteration n consists of a perturbation

step to find estimates {ĝ(n)s , ĥ(n)s }S
s=1 given Π(n−1), and then a distribution update step

which calculates Π(n) given ({ĝ(n)s , ĥ(n)s }S
s=1,Π

(n−1)). This generates a sequence {Π(n)}.

If this sequence converges, then the limit is an approximate equilibrium distribution.
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The Perturbation Step

The augmented model which facilitates the perturbation step uses a nesting

parameter η ∈ [0,1] to combine model (2.13) with a slack model:

0 = Et
[

f (Yt+1,Yt , X̃t ,Xt)− (1−η)∆st+1,st

]
Xt+1 = X̃t +(1−η)(x̄st+1− x̃st )+ηΣεt+1

εt+1
iid∼ F , and st+1 | X̃t ,εt+1 ∼Πs(X̃t +Σεt+1)

(2.15)

where the residual term ∆s,s′ is given by:

∆s,s′ = f (ỹs′, ỹs, x̃s, x̄s)

and the points {ỹs, x̃s, x̄s}S
s=1 are any points such that each ỹs is in the interior of Ys. The

region of the outcome space which is well approximated via perturbation is controlled by

this collection of points.

The additive slack terms incorporated into this augmented model relax the original

model (2.13). Including these slack terms modifies the evolution of state variables and

adds a residual to the model equations. The distortion of the state variable evolution

shifts the beliefs of agents so that the future state is close to the reference points at which

the implicit function theorem is applied, while the residual term ensures that the slack

model (the case when η = 0) always has the outcome (ỹs, x̃s) as a solution when the

state is x̄s. Setting η = 1 reduces this augmented model to the original model given in

system (2.13).

An approximation of the underlying REE arises from using perturbation to solve

for an approximate RSE. Since the solution functions of the RSE must solve (2.15)

when η = 1, approximating a solution to the augmented model delivers a solution to the

original model.
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Holding the collection {Πs, ỹs, x̃s, x̄s}S
s=1 fixed, consider finding functions {gs,hs}S

s=1

with domain of X × [0,1] which solve (2.15). Then for every point (s,x,η)∈ {1, . . . ,S}×

X × [0,1] these solution functions must satisfy:

0 =
∫ S

∑
s′=1


f (gs′(hs(x,η)+(1−η)(x̄s′− x̃s)

+ηΣε′,η),gs(x,η),hs(x,η),x)

−(1−η)∆s,s′

Πs′(hs(x)+Σε′)dF(ε′) (2.16)

Due to the residual term ∆s,s′ , the solution functions associated with regime s must map

the point (x,η) = (x̄s,0) to the outcome (ỹs, x̃s):

ỹs = gs(x̄s,0)

x̃s = hs(x̄s,0)

Given this known solution point, we can use the implicit function theorem to calculate

the derivatives in the Taylor approximation:

gs(x,η) ≈ ỹs +
∂

∂x′
gs(x̄s,0)(x− x̄s)+

∂
∂η

gs(x̄s,0)η

hs(x,η) ≈ x̃s +
∂

∂x′
hs(x̄s,0)(x− x̄s)+

∂
∂η

hs(x̄s,0)η

Implicitly differentiate equation (2.16) in x and evaluate at (x,η) = (x̄s,0) to get

0 =
S

∑
s′=1

[
F(1,0,0,0)

s,s′ G(1,0)
s′ H(1,0)

s +F(0,1,0,0)
s,s′ G(1,0)

s +F(0,0,1,0)
s,s′ H(1,0)

s +F(0,0,0,1)
s,s′

]
Π̄s,s′

(2.17)
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where
F(i, j,k,l)

s,s′ ≡ ∂ f (y′,y,x′,x)
∂y′i∂y j∂x′k∂xl

∣∣∣
(y′,y,x′,x)=(ỹ′s,ỹs,x̃s,x̄s)

G(i, j)
s ≡ ∂gs(x,η)

∂xi∂η j

∣∣∣
(x,η)=(x̄s,0)

H(i, j)
s ≡ ∂hs(x,η)

∂xi∂η j

∣∣∣
(x,η)=(x̄s,0)

Π̄s,s′ ≡
∫

Πs′(x̃s +Σε′)dF(ε′)

denotes evaluated derivatives and average transition probabilities.

This second order matrix equation implicitly defines the collection of partial

derivative matrices {G(1,0)
s ,H(1,0)

s }S
s=1. Note that the regime distribution influences the

solution since the transition probabilities enter this condition. Foerster et al. (2013) arrive

at an analogous second order system when working with Markov-switching models and

use Groebner basis methods to calculate solutions to this problem. In this way, the first

order approximation of the model can be calculated using any algorithm designed to

solve Markov-switching rational expectations models13.

I focus on solutions whose eigenvalues are as small as possible. I use a Bernoulli

iteration method which is equivalent to Cho’s (2013) Markov-switching generalization

of the forward method introduced by Cho and Moreno (2008). This particular solution

method selects an equilibrium with a number of theoretically desirable properties, as

demonstrated by Cho (2013). It also can be understood as finding an equilibrium in

which beliefs comes from a process of backwards induction, which makes it conceptually

consistent with the backwards induction iteration that I use to solve for Π.

In particular, I iterate on the non-linear map M defined by solving for [G(1,0)
s ,H(1,0)

s ]′

13Linear or local approximation based solution approaches include Farmer et al. (2011), Bianchi and
Melosi (2012), Foerster et al. (2013), and Cho (2013). The numerical linear algebra techniques in Dreesen
et al. (2012) provide another alternative approach to solving this matrix equation.
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in equation (2.17) :

H(1,0)
s

G(1,0)
s

=−
(

S

∑
s′=1

[
F(1,0,0,0)

s,s′ G(1,0)
s′ +F(0,0,1,0)

s,s′ F(0,1,0,0)
s,s′

]
Π̄s,s′

)+( S

∑
s′=1

F(0,0,0,1)
s,s′ Π̄s,s′

)

≡Ms({G(1,0)
s′ }S

s′=1), ∀s

where + denotes the Moore-Penrose pseudo-inverse. This recursion is equivalent to the

Markov-switching forward method of Cho (2013). In practice, it converges quickly. If

convergence fails, the techniques in Foerster et al. (2013) can be used to calculate the full

set of solutions to see if any exist.

Given the matrices {G(1,0)
s ,H(1,0)

s }S
s=1, next implicitly differentiate in η and

evaluate at (x,η) = (x̄s,0) to get

0 =
S

∑
s′=1


F(1,0,0,0)

s,s′

[
G(1,0)

s′ (H(0,1)
s +µs,s′)+G(0,1)

s′

]
+F(0,1,0,0)

s,s′ G(0,1)
s +F(0,0,1,0)

s,s′ H(0,1)
s

Π̄s,s′

where µs,s′ ≡
∫
(Σε′−x̄s′+x̃s)Πs′(x̃s+Σε′)dF(ε′)∫

Πs′(x̃s+Σε′)dF(ε′) is a correction term to account for how the slack

model was constructed and the regime-conditional mean of the fundamental innovation.

Just like in Foerster et al. (2013), since the regime-conditional mean of εt doesn’t drop

out – as it does in standard perturbation – certainty equivalence does not hold14.

This equation is linear in the collection of matrices {G(0,1)
s ,H(0,1)

s }S
s=1 and is

straightforward to solve. As is the case in standard perturbation, from this point onwards,

any n-th order approximation (n ≥ 2) can be calculated using the (n− 1)-th order ap-

proximation by implicit differentiation in x and η and evaluation at (x,η) = (x̄s,0) to get

additional linear systems of equations15.

14In standard perturbation this term is exactly zero since there is a single regime and the model is solved
relative to the deterministic steady state (so that Π1 = 1 and x̄1 = x̃1).

15For instance, see Schmitt-Grohe and Uribe (2004) and Kim et al. (2008)
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Focusing on the first order approximation for simplicity, set η = 1 to get an

approximation to the original model’s solution functions:

ĝs(x) ≡
[
ỹs +G(0,1)

s

]
+G(1,0)

s (x̄s,0)(x− x̄s)

ĥs(x) ≡
[
x̃s +H(0,1)

s

]
+H(1,0)

s (x̄s,0)(x− x̄s)
(2.18)

Notice that the derivative in the nesting parameter η adjusts the constant term of the

solution to correct for the additive slack terms used to specify the augmented model (2.15).

Provided that Π is an equilibrium distribution, these functions provide approximations to

the solution functions in an RSE of model (2.13).

This procedure takes a choice of {Πs, ỹs, x̃s, x̄s}S
s=1 and returns the approximate

solution functions {ĝs, ĥs}S
s=1. Within the overall algorithm, this perturbation step is used

at each iteration to find approximate solution functions consistent with a given regime

distribution.

Updating the Regime Distribution

Together, the conditional distribution and its implied solution function approxi-

mations define a regime-switching state-space system:

Yt = ĝst (Xt)

Xt+1 = ĥst (Xt)+Σεt+1

εt+1
iid∼ F , st+1 | Xt+1 ∼Πs(Xt+1)

(2.19)

Solving for a partition consistent equilibrium requires finding a regime distribution that

is self-fulfilling. Specifically, Πs(x) must be the conditional law P[Yt ∈ Ys | Xt = x] of

the process {Yt ,Xt ,st} that is generated by this system.

I propose using backwards induction to solve for the regime distribution. Given

that outcomes evolve according to system (2.19), the probability that Yt lies in the region
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Ys given that Xt = x is precisely

Π′s(x) =
S

∑̃
s=1

1{ĝs̃(x) ∈ Ys}Πs̃(x) (2.20)

This updating equation can be calculated exactly at any point of the state space for given

({ĝs, ĥs}S
s=1,Π). Recall that the fundamental volatility condition of an RSE requires that

the regime distribution is degenerate. In this updating condition, if Π is a degenerate

distribution, then Π′ must also be a degenerate distribution. Therefore, by initializing the

algorithm with a guess which is degenerate, we can always ensure that the fundamental

volatility requirement is satisfied.

The Taylor approximation of the true solution functions is accurate only if regime-

conditional outcomes tend to be close to the associated regime-conditional reference point.

Therefore, updating the reference points {ỹs, x̃s, x̄s}S
s=1 improves accuracy. However, to

estimate the regime-conditional means generally requires simulation of the model, which

is costly. I propose simulating the model only occasionally to update these reference

points. I simulate data from system (2.19) to update the reference points with sample

averages:

ỹ′s = ∑T
t=1 Yt1{Yt∈Ys}

∑T
t=1 1{Yt∈Ys}

x̃′s = ∑T
t=1(Xt+1−Σεt+1)1{Yt∈Ys}

∑T
t=1 1{Yt∈Ys}

x̄′s = ∑T
t=1 Xt1{Yt∈Ys}
∑T

t=1 1{Yt∈Ys}

(2.21)

The simulated data can also be used to define the collection of points in the state space at

which the distribution update is calculated.

2.3.4 The Algorithm

The most general statement of the proposed solution approach is given as algo-

rithm 2.3.1. In practice, it is useful to initialize based on a first order solution from a
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linear approximation at a locally determinate steady state.

This is accomplished by solving for the steady state, solving for the first order

approximation, simulating the model based on this initial guess, and then using the cloud

of simulated data to form approximation nodes by averaging according to (2.21) and to

choose state-space points at which to track the regime distribution. The initial guess for

the regime distribution then follows from an initial updating step (as in equation (2.20))

based on the linear approximation.

Algorithm 2.3.1

1. Choose initial ({ỹ(0), x̃(0), x̄(0)}S
s=1,Π̂

(0)). And set n = 1.

2. Use implicit differentiation of the augmented model (2.15) with

({ỹs, x̃s, x̄s}S
s=1,Π) = ({ỹ(n−1)

s , x̃(n−1)
s , x̄(n−1)

s }S
s=1,Π̂

(n−1))

to calculate the solution function approximations {ĝ(n)s , ĥ(n)s }S
s=1 according to

equation (2.18).

3. Update to Π(n) using equation (2.20).

4. If updating reference points at this iteration, then simulate the state-space sys-

tem (2.19) to generate data {Yt ,Xt ,εt}T
t=1. Then update to {ỹ(n)s , x̃(n)s , x̄(n)s }S

s=1 ac-

cording to system (2.21). Otherwise, set {ỹ(n)s , x̃(n)s , x̄(n)s }S
s=1 = {ỹ

(n−1)
s , x̃(n−1)

s , x̄(n−1)
s }S

s=1.

5. If Π̂(n) ≈ Π̂(n−1) stop, else set n = n+1 and return to step 2.
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2.4 Simple ZLB Model: Numerical Results

This section presents numerical results for the simple Fisherian model of inflation

determination presented in section 2.2. Instead of assuming that the real interest rate

is iid in each period, I allow for persistence in the real interest rate. In this case, the

non-linearity introduced by the ZLB implies equilibria are no longer piece-wise linear.

Although the model has no closed-form solution in this case, policy function

iteration solves the model arbitrarily well. Using this global solution as a benchmark,

I examine the accuracy of regime-switching perturbation based solutions of the model.

I show that both first and second order regime-switching perturbation solutions of the

model match the global solution very well.

For this exercise, I calibrate the model so that persistence enters both through

the monetary policy rule and the real rate shock. I set the mean of the real rate shock

to r̄ = 0.03, its persistence to ρr = 0.5, and its standard deviation to σ = 0.01. The

persistence of the desired rate is set to ρi = 0.5 and the policy reaction coefficient is set

to θ = 0.75. These policy parameters correspond to an inflation reaction coefficient of

φ = 1.5 in a rule of the form

i∗t = ρii∗t−1 +(1−ρi)(r+φπt)

Figure 2.4 compares a first order regime-switching perturbation based solution to

the model with a solution using policy function iteration. The two solutions are very close

to each other apart for very negative values of the real rate. They differ for rt <−0.02.

Since the mean of the shock of the real rate is 0.03 and the standard deviation of its

innovation is 0.01 and persistence is 0.5, this region is visited very infrequently. In

particular the standard deviation of the real rate is approximately 0.012 so this region is

about 5 standard deviations away from the real rate’s mean.
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Figure 2.4: First Order Regime-Switching Perturbation Vs. Policy Function Iteration

Figure 2.5 shows the second order regime-switching perturbation solution of

the model. Going to second order very slightly changes the solution by adding a small

amount of curvature to the solution functions. This shows how the non-linearity in the

true solution of the model is almost entirely absorbed into the regime variable. Higher

orders of perturbation will do little to improve the accuracy of the solution.

This example model is not sufficiently complicated to demonstrate the compu-

tational gains from using perturbation. The model is solved in milliseconds. Further

numerical work will demonstrate the computational scaling properties of the method.
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Figure 2.5: Second Order Regime-Switching Perturbation Vs. Policy Function Iteration

2.5 Conclusion

This paper introduces a generalization of perturbation which can be applied to

highly non-linear equilibrium models. Using this method, economists can easily and

systematically solve DSGE models that incorporate highly non-linear structural features –

such as occasionally binding constraints and discontinuous equilibrium conditions. Previ-

ous solution methods either struggle to capture strong non-linearities without sacrificing

model size or struggle to capture expectational effects associated with regime changes.

Because the approach introduced in this paper uses perturbation but accounts for regime

transition probabilities during solution, it overcomes these limitations.

The regime-switching equilibrium concept which underlies the perturbation ap-

proach provides a formal framework for modeling economic regimes. This concept
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allows economists to model the underlying determinants of sudden and large shifts in

an economy. Markov-switching frameworks rely on assuming that these breaks occur

exogenously, and previous endogenous-switching approaches require a known relation-

ship between economic fundamentals and the regime. The regime-switching equilibrium

concept allows the notion of an endogenous regime to be defined rigorously, and allows

the relationship between fundamentals and the regime to be determined during solution.

This approach provides a framework for building theoretical models to explain crises,

policy changes, and other significant breaks in economic structure.

In addition, casting equilibria into a regime-switching form allows regime-

switching econometric models to have a direct link to economic theories. In particular,

the class of piecewise smooth rational expectations models can be identified equivalently

as the class of endogenous regime models. The equilibria in these models can be rep-

resented using linear regime-switching state-space systems, and this connects theory

to common empirical models. This connection opens the possibility of using two step

estimation approaches based on reduced-form regime-switching econometric models to

estimate highly non-linear DSGE models.
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Appendix

2.A Proof of Lemma 2.2.1:

Substituting the hypothesized solution functions into the model gives (for each

s = u,c):

0 = Er′∼N (r̄,σ2)


[
gc((1−η)r̄c +ηr′,η)− (1−η)∆s,c

]
Πc(r′)

+
[
gu((1−η)r̄u +ηr′,η)− (1−η)∆s,u

]
Πu(r′)


−(1−ρi)r̄−max{ρigs(r,η),(ρi +θ)gs(r,η)}+θr

Implicitly differentiate with respect to r at points (r,η) such that gs(r,η) 6= 0 to

get

0 =−[ρi +1{gs(r,η)> 0}θ] ∂
∂r

gs(r,η)+θ

Note that the higher-order derivatives of this equation are all zero, and so there are no

gains from higher order approximations. This is expected since the true solution is linear

in r. Evaluate at (r,η) = (r̄s,0) to get

∂
∂r

gs(r̄s,0) =
θ

ρi +1{s = u}θ ≡ bs

In this calculation I replace the term 1{gs(r̄s,0)> 0}with 1{s= u} by using gs(r̄s,0)= ī∗s ,

ī∗u > 0, and ī∗c < 0. This step reveals the importance of choosing the points ī∗s on both sides
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of the kink induced by the ZLB constraint. Choosing these points this way is necessary

to get local information for both regimes from which to construct the regime-conditional

solution functions.

The derivative with respect to η provides an adjustment term to the guess for the

intercept of ī∗s . Implicitly differentiating gives:

0 = Er′∼N (r̄,σ2)




∂
∂r

gc((1−η)r̄c +ηr′,η)(r′− r̄c)

+
∂

∂η
gc((1−η)r̄c +ηr′,η)+∆s,c

Πc(r′)

+


∂
∂r

gu((1−η)r̄u +ηr′,η)(r′− r̄u)

+
∂

∂η
gu((1−η)r̄u +ηr′,η)+∆s,u

Πu(r′)


−[ρi +1{gs(r,η)> 0}θ] ∂

∂η
gs(r,η)

Note that any higher order derivatives in η must be zero because ∂2

∂η∂r gs(r,η) = 0. Evalu-

ate at (r,η) = (r̄s,0) to get

0 = Er′∼N (r̄,σ2)

[(
bc(r′− r̄c)+

∂
∂η

gc(r̄c,0)+∆s,c

)
Πc(r′)

]
+Er′∼N (r̄,σ2)

[(
bu(r′− r̄u)+

∂
∂η

gu(r̄u,0)+∆s,u

)
Πu(r′)

]
−[ρi +1{s = u}θ] ∂

∂η
gs(r̄s,0)

where I have used 1{gs(r̄s,0) > 0} = 1{s = u} and ∂
∂r gs(r̄s,0) = bs. This expression

defines a system of two linear equations in the two unknown derivatives ∂
∂ηgc(r̄c,0) and

∂
∂ηgu(r̄u,0).

Rewrite the system as a linear system in the coefficient

as(Π)≡
[

ī∗s +
∂

∂η
gs(r̄s,0)−bsr̄s

]
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by using the definition of the slackness variable ∆s,s′ and the fact that θr̄s = [ρi +1{s =

u}θ]bsr̄s:

[ρi +1{s = u}θ]as(Π) = Er′∼N (r̄,σ2)

[(
ac(Π)+bcr′

)
Πc(r′)+

(
au(Π)+bur′

)
Πu(r′)

]
− (1−ρi)r̄

The right hand side of this equation does not depend on s and so ρiac(Π) = (ρi+θ)au(Π).

Now, re-write this equation for s = c as:

ρiac(Π) = Er′∼N (r̄,σ2)

[
ρiac(Π)+θr′

ρi
Πc(r′)+

ρiac(Π)+θr′

ρi +θ
Πu(r′)

]
− (1−ρi)r̄

which leads to

ρiac(Π) =
Er′∼N (r̄,σ2)

[
θ
ρi

r′Πc(r′)+ θ
ρi+θr′Πu(r′)

]
− (1−ρi)r

1−Er′∼N (r̄,σ2)

[
1
ρi

Πc(r′)+ 1
ρi+θΠu(r′)

] ≡−θr∗(Π)

and

ac(Π) =−bcr∗(Π) au(Π) =−bur∗(Π)

2.B Proof of Proposition 2.2.1:

Suppose that Π is an equilibrium distribution. Using lemma 2.2.1, the equilibrium

restrictions on Π are that ac(Π)+bcr > 0⇒Πc(r)= 0 and au(Π)+bur≤ 0⇒Πu(r)= 0.

But ac(Π)+bcr≤ 0⇔ r≤ r∗(Π) and au(Π)+bur > 0⇔ r > r∗(Π), so these conditions

imply that

Πs(r) =

 1{r ≤ r∗(Π)} if st = c

1{r > r∗(Π)} if st = u
(2.22)
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The threshold r∗(Π) is a summary statistic for the equilibrium distribution since it is the

threshold in the state space at which regime change occurs.

Define the quantity i∗E(Π) (not necessarily equal to i∗e) as

i∗E(Π) ≡ Er′∼N (r̄,σ2)

[(
ac(Π)+bcr′

)
Πc(r′)+

(
au(Π)+bur′

)
Πu(r′)

]
Then from the definition of r∗(Π), the constant term in the approximation is:

as(Π) =
i∗E(Π)− (1−ρi)r

ρi +1{s = u}θ

Substitute the terms ac(Π) and au(Π) into the definition of i∗E(Π) to get:

i∗E(Π) =
∫ [(

ac(Π)+bcr′
)

Πc(r′)+
(
au(Π)+bur′

)
Πu(r′)

] 1
σ

φ
(

r′− r̄
σ

)
dr′

=
∫ [ i∗E(Π)− (1−ρi)r̄+θr′

ρi
Πc(r′)+

i∗E(Π)− (1−ρi)r̄+θr′

ρi +θ
Πu(r′)

]
× 1

σ
φ
(

r′− r̄
σ

)
dr′

=
∫

max
{

i∗E(Π)− (1−ρi)r̄+θr′

ρi
,
i∗E(Π)− (1−ρi)r̄+θr′

ρi +θ

}
1
σ

φ
(

r′− r̄
σ

)
dr′

where the last line follows since Π is an equilibrium distribution and must be of the

form (2.22). This condition is the same fixed point condition in (2.4). Therefore i∗E(Π) =

i∗e where i∗e is some solution of condition (2.4). Therefore, the constant terms must be

identical to the constant terms in the true solution.



70

2.C Proof of Proposition 2.2.2:

The update equation (2.12) implies that after a single iteration of the algorithm,

the threshold r∗(Π̂(n−1)) is a sufficient statistic for the distribution Π̂(n). In particular:

Π̂(n)
s (r) =

 1
{

r ≤ r∗(Π̂(n−1))
}

if s = c

1
{

r > r∗(Π̂(n−1))
}

if s = u

This recursion can be re-expressed as a recursive condition on the threshold using the

definition of r∗:

r∗(Π̂(n)) =
(1−ρi)r̄−

∫ [
Π̂(n)

c
θ
ρi
(r′− r∗(Π̂(n)))+ Π̂(n)

u
θ

ρi+θ(r
′− r∗(Π̂(n)))

]
1
σφ
(

r′−r̄
σ

)
dr′

θ

=
(1−ρi)r̄

θ
−

∫
max

{
1
ρi
(r′− r∗(Π̂(n−1))),

1
ρi +θ

(r′− r∗(Π̂(n−1)))

}
1
σ

φ
(

r′− r̄
σ

)
dr′

−Φ

(
r∗(Π̂(n−1))− r̄

σ

)
1
ρi
[r∗(Π̂(n−1))− r∗(Π̂(n))]

−
[

1−Φ

(
r∗(Π̂(n−1))− r̄

σ

)]
1

ρi +θ
[r∗(Π̂(n−1))− r∗(Π̂(n))]

where Φ is the cdf of the standard normal distribution. Let r∗n ≡ r∗(Π(n)). This threshold

update equation can be written as:

r∗n = r∗n−1 +

(1−ρi)r̄
θ +

∫
max

{
1−ρi

ρi
r∗n−1− 1

ρi
r′, 1−ρi−θ

ρi+θ r∗n−1− 1
ρi+θr′

}
1
σφ
(

r′−r̄
σ

)
dr′

1−
{

Φ
(

r∗n−1−r̄
σ

)
1
ρi
+
[
1−Φ

(
r∗n−1−r̄

σ

)]
1

ρi+θ

}
≡ m(r∗n−1) (2.23)

The map m is continuously differentiable everywhere except for a single singularity

at the point σΦ−1
(

ρi(1−ρi−θ)
θ

)
. Moreover, it is strictly decreasing every except at this
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singularity. There are then precisely two points r∗ such that r∗ = m(r∗). For sufficiently

small σ, both of these points are dynamically stable. Therefore r∗n→ r∗ for one of these

two points.

It remains to show that any point r∗ such that r∗ = m(r∗) must be associated with

an equilibrium distribution. However, this result follows directly from the definition of

the map m. Indeed, the above equalities can be reversed to conclude that

Πs(r) =

 1{r ≤ r∗} if s = c

1{r > r∗} if s = u

is an equilibrium distribution for either solution r∗.

2.D RSP Solution of Model (2.1) with ρr > 0

With solution functions substituted in, the model reads:

0 =
∫

∑
s′=c,u



gs′((1−ρr)r̄+ρrr

+(1−η)(r̄s′− r̃s)

+ηε′,η)− (1−ρi)r̄

−max{ρigs(r,η),(ρi +θ)gs(r,η)}

+θr− (1−η)∆s,s′


Πs′((1−ρr)r̄+ρrr+ε′)

1
σ

φ
(

ε′

σ

)
dε′

(2.24)

where r̃s = (1−ρr)r̄+ρr r̄s. Note that

∆s,s′ ≡ ĩs′− (1−ρi)r̄−max
{

ρiĩs,(ρi +θ)ĩs
}
+θr̄s
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Differentiate with respect to r and η to get (suppressing function arguments):

0 =
∫

∑
s′=c,u


[

∂gs′

∂r′
ρr− (ρi +1{gs > 0}θ)∂gs

∂r
+θ
]

Πs′

+
[
gs′ − (1−ρi)r̄−max{ρigs,(ρi +θ)gs}+θr− (1−η)∆s,s′

] ∂Πs′

∂r′
ρr


1
σ

φ
(

ε′

σ

)
dε′

0 =
∫

∑
s′=c,u

{[
∂gs′

∂r′
(
ε′− r̄s′ + r̃s

)
+

∂gs′

∂η
− (ρi +1{gs > 0}θ) ∂gs

∂η
+∆s,s′

]
Πs′

}
1
σ

φ
(

ε′

σ

)
dε′

In this short hand notation:

gs = gs(r,η)

gs′ = gs′((1−ρr)r̄+ρrr+(1−η)(r̄s′− r̃s)+ηε′,η)

Πs′ = Πs′((1−ρr)r̄+ρrr+ ε′)

Note that the derivative of the distribution is the weak derivative.

Evaluate these equations at (r,η) = (r̄s,0) using the fact that ĩs = gs(r̄s,0) and

ĩc < 0 < ĩu to get a system of linear equations in the unknown derivatives:

0 = ∑
s′=c,u

G(1,0)
s′ ρrΠ̄s,s′+θ− (ρi +1{s = u}θ)G(1,0)

s

0 =
∫

∑
s′=c,u

[
G(1,0)

s′ µ(1)s,s′+G(0,1)
s′ +∆s,s′

]
Π̄s,s′− (ρi +1{s = u}θ)G(0,1)

s

with the notation:

G(i, j)
s ≡ ∂i+ jgs(r,η)

∂ri∂η j

∣∣∣∣
(r,η)=(r̄s,0)

µ(i)s,s′ ≡
∫
(ε′− r̄s′+ r̃s)

i Πs′(r̃s + ε′)σ−1φ(ε′/σ)dε′∫
Πs′(r̃s + ε′)σ−1φ(ε′/σ)dε′

Π̄s,s′ ≡
∫

Πs′(r̃s + ε′)σ−1φ(ε′/σ)dε′

To get this expression, note that the term gs′− (1−ρi)r̄−max{ρigs,(ρi +θ)gs}+θr−
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(1−η)∆s,s′ evaluates to zero by the construction of ∆s,s′ . The solution of this system

gives the first order approximation:

gs(r,η)≈ ĩs +G(1,0)
s (r− r̄s)+G(0,1)

s η

Next, take the second order derivatives of (2.24):

0 =
∫

∑
s′=c,u



[
∂2gs′

∂r′2
ρ2

r − (ρi +1{gs > 0}θ)∂2gs

∂r2

]
Πs′

+2
[

∂gs′

∂r′
ρr− (ρi +1{gs > 0}θ)∂gs

∂r
+θ
]

∂Πs′

∂r′
ρr

+
[
gs′ − (1−ρi)r̄−max{ρigs,(ρi +θ)gs}+θr− (1−η)∆s,s′

] ∂2Πs′

∂r′2
ρ2

r


1
σ

φ
(

ε′

σ

)
dε′

0 =
∫

∑
s′=c,u




∂2gs′

∂r′2
(
ε′− r̄s′ + r̃s

)2
+2

∂gs′

∂r′∂η
(
ε′− r̄s′ + r̃s

)
+

∂2gs′

∂η2

−(ρi +1{gs > 0}θ) ∂2gs

∂η2

Πs′


1
σ

φ
(

ε′

σ

)
dε′

0 =
∫

∑
s′=c,u


[

∂2gs′

∂r′2
ρr
(
ε′− r̄s′ + r̃s

)
+

∂2gs′

∂r′∂η
ρr− (ρi +1{gs > 0}θ) ∂2gs

∂r∂η

]
Πs′

+

[
∂gs′

∂r′
(
ε′− r̄s′ + r̃s

)
+

∂gs′

∂η
− (ρi +1{gs > 0}θ) ∂gs

∂η
+∆s,s′

]
∂Πs′

∂r′
ρr


1
σ

φ
(

ε′

σ

)
dε′

Evaluate at (r,η) = (r̄s,0) to get a another linear system of equations in the second order

derivatives given the first order derivatives

0 = ∑
s′=c,u


[
G(2,0)

s′ ρ2
r − (ρi +1{gs > 0}θ)G(2,0)

s

]
Π̄s,s′

+2
[
G(1,0)

s′ ρr− (ρi +1{gs > 0}θ)G(1,0)
s +θ

]
Π̄(1)

s,s′ρr


0 =

∫
∑

s′=c,u


G(2,0)

s′ µ(2)s,s′+2G(1,1)
s′ µ(1)s,s′+G(0,2)

s′

−(ρi +1{gs > 0}θ)G(0,2)
s

Π̄s,s′


0 =

∫
∑

s′=c,u


[
G(2,0)

s′ ρrµ
(1)
s,s′+G(1,1)

s′ ρr− (ρi +1{gs > 0}θ)G(1,1)
s

]
Π̄s,s′

+
[
G(1,0)

s′ µ(1/1)
s,s′ +G(0,1)

s′ − (ρi +1{gs > 0}θ)G(0,1)
s +∆s,s′

]
Π̄(1)

s,s′ρr


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where now

µ(i/ j)
s,s′ ≡

∫
(ε′− r̄s′+ r̃s)

i ∂ jΠs′(r̃s+ε′)
∂r′ j

σ−1φ(ε′/σ)dε′∫ ∂ jΠs′(r̃s+ε′)
∂r′ j

σ−1φ(ε′/σ)dε′

=

∫
(ε′− r̄s′+ r̃s)

i Πs′(r̃s + ε′)σ−1− jφ( j)(ε′/σ)dε′∫
Πs′(r̃s + ε′)σ−1− jφ( j)(ε′/σ)dε′

Π̄(i)
s,s′ ≡

∫
Πs′(r̃s + ε′)σ−1− jφ( j)(ε′/σ)dε′

where φ( j) denotes the j-th derivative of the standard normal pdf and the second equality

in both lines follows from the definition of the weak derivative.

Solving for these second order derivatives leads to the second order Taylor

approximation:

gs(r,η) ≈ ĩs +G(1,0)
s (r− r̄s)+G(0,1)

s η

+
1
2

G(2,0)
s (r− r̄s)

2 +G(1,1)
s (r− r̄s)η+

1
2

G(0,2)
s η2

2.E Exogenous and Threshold Regime-Switching as a

Special Case

To construct a Markov-switching model, factor the control vector as Yt = (Y 0
t ,Y

s
t )

where Y s
t = st denotes the present regime. Then let one of the state variables keep track

of the past regime, so factor the state vector in a similar way as Xt = (X0
t ,X

s
t ) and include

an equation which specifies that the next period value of this state variable is the current

value of the regime: X s
t+1 =Y s

t . Assume that there is a component of the exogenous shock

vector υt which (in-equilibrium) governs the regime given the past regime (which is equal

to the value of X s
t ). Partition the shocks as: εt = (ε0

t ,υt). Assume that υt = (υ1
t , . . . ,υS

t )

with υs
t an IID extreme value type 1 random variable. Let

{
βs,s′

}S
s,s′=1 be coefficients
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which will control the switching probabilities and specify the present regime as:

X s
t+1 = Y s

t = st =
S

∑
r=1

s1
{

s = argmax
s

[βs0,s1{X s
t ∈ Rs0}+υs

t ]
}

(2.25)

Here {Rs}NS
s=1 defines a partition of R so that for each s = 1, . . . ,S the integer s is in the

interior of Rs. As a result, the equation is well defined on the entire real line for any

X s
t ∈ R. Moreover, the equilibrium value of the regime variable is st ∈ {1, . . . ,S}. Since

this equation takes the form of a multinomial logit random utility model, the regime

transition probabilities are:

P
[
st+1 = s′ | st = s

]
= P

[
st+1 = s′ | xs

t ∈ Rs
]
=

exp
[
βs,s′

]
∑S

s′=1 exp
[
βs,s′

]
The matrix P with entries of Ps,s′ = exp

[
βs,s′

]
/∑S

s′=1 exp
[
βs,s′

]
is the regime transition

matrix. In this way, the present methodology generalizes Foerster et al. (2013). The

generalization to threshold-switching (called endogenous switching in Davig and Leeper

(2006)) arises from letting the coefficients in specification (2.25) depend on the state

vector (X0
t ). Then the transition probabilities become

P
[
st+1 = s′ | Xt+1 = (x0,s)

]
=

exp
[
βs,s′(x0)

]
∑S

s′=1 exp
[
βs,s′(x0)

]

2.F Derivation of Model (2.1)

A representative consumer has a stochastic endowment of Yt which follows an

AR(1) process in logs: lnYt = ρy lnYt−1 + εy
t where εy

t
iid∼ N (σ2/2,σ2). This consumer

has unlimited access to risk-free nominal bonds, and derives utility from consumption
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and real balances. Its inter-temporal optimization problem is:

max{Ct ,vt+1,Mt+1}∞
t=0

E0 ∑∞
t=0 βt [lnCt + v(Mt+1/Pt)]

s.t. PtCt +QtBt+1 +Mt+1 ≤ PtYt +Bt +Mt +Tt

where Pt is the nominal price of the consumption good, Qt denotes the price of a

one period risk-less nominal bond, Bt+1 denotes bond holdings, Mt+1 denotes end of

period cash-on-hand, and Tt denotes monetary transfers to the representative household

conducted by the central bank. The function v is differentiable, concave, increasing, and

has a satiation point µ such that v′(m) = 0 for all levels of real balances greater than µ.

Since output has no alternative use to consumption, the goods market clearing

condition states that Ct = Yt . Using this condition in the first order conditions of this

problem gives:

QtY−1
t = βEtY−1

t+1
Pt

Pt+1
= βY−ρy

t EtΠ−1
t+1

v′(Mt+1/Pt) = 1−Qt

where Πt+1 ≡ Pt+1/Pt is the gross inflation rate.

Due to the satiation point in the function v, any choice of money supply greater

than Ptµ will imply that the bond price is 1. For levels of money supply below this

satiation level, it must be the case that nominal bonds sell at a discount.

Assuming that monetary policy uses monetary transfers Tt to control the yield on

the nominal bond, we can abstract from the level of money supply and assume that the

bond price is set directly by the central bank, so long as the implied nominal interest rate

it ≡ lnQ−1
t satisfies it ≥ 0. That is, policy must respect the zero-lower-bound on interest

implied by to coexistence of cash and nominal bonds.

The policy rule used by the central bank is assumed to take a shadow-rate Taylor-
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rule form with smoothing:

it = max{0, i∗t }

i∗t = ρii∗t−1 +(1−ρi)r̄+θπt

where i∗t denotes the central bank’s desired (shadow) rate, πt ≡ ln(Pt/Pt−1) is the inflation

rate, and r̄≡ ln(β−1−σ2/2). These two equations are identical to the final two equations

of model (2.1). Note that this policy rule respects the zero-lower-bound by construction.

Finally, using the approximation that Πt+1 ≈ 1, and defining the real interest rate

as rt = lnβ−1− (1−ρy) lnYt we can write the household’s Euler equation and the law of

motion for the real interest rate as:

rt = it−Etπt+1

rt = ρrrt−1 +(1−ρr)r̄+ εt+1, εt+1
iid∼ N (r̄,σ2)

These two equations are identical to the first two equations of model (2.1).



Chapter 3

Credit Regimes and the Seeds of Crisis

Beginning in 2003, the US mortgage market underwent an unprecedented pivot

in lending standards — between 2003 and 2004, the share of non-prime mortgage

originations increased from 10% to 28%, peaking at 39% in 2006. Simultaneously,

the labor market began to recover from the recession of 2001 and the housing market

boomed. Employment growth jumped from 0% in 2003 to just below 2% in 2004, and

growth in national home price indices doubled from 6% to 12%. This boom ended in the

housing crisis of 2006-2007, the financial crisis of 2007-2008, and, ultimately, the Great

Recession. A large and growing literature points to the initial change in mortgage markets

as central to understanding this period. To assess policies meant to protect against similar

episodes, economists need a theory explaining this shift in lending standards.

This paper develops a theory of rational non-prime lending and housing boom-

bust cycles. In addition to matching existing microeconomic evidence, the theory allows

us to understand the role of changing lending standards in fueling a housing boom, and

how rising home prices influence the allocation of credit across different borrowers.

78
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The theory is built on rational and competitive behavior by lenders who face

asymmetric information about borrower income risk. Borrowers are either safe, having

stable income, or risky, with uncertain income. Lenders can only observe borrower

outcomes such as their credit history and employment status, and based on this limited

information they offer mortgage contracts to individual borrowers.

The market is endogenously split into a pooling segment and a screening segment.

Lenders pool together borrowers who appear unlikely to be risky, and offer them a low

interest rate. Safe borrowers in this segment have little gain from revealing their type.

In contrast, the screening segment consists of those borrowers who appear likely to be

risky. Safe borrowers differentiate themselves by either making a high downpayment or

undergoing income verification, and benefit from a low interest rate after revealing their

type. As a result, risky borrowers in the screening segment can only borrow at a high

interest rate.

The pooling segment can be interpreted as the market for Alt-A mortgages —

where loans require high credit scores but do not require income verification. In contrast,

the screening segment corresponds to prime and subprime mortgage markets. Prime

mortgages typically have low interest rates but require income documentation or a sizable

downpayment, while subprime mortgages have high interest rates and may have either

limited income documentation or a low downpayment. Together, the pooling segment

and the subprime portion of the screening segment represent non-prime mortgages. By

endogenizing the share of the overall mortgage market where pooling occurs, the theory

can speak to the rise of non-prime lending during the mid 2000’s.

In doing so, we also get a theory of housing boom-bust cycles driven by shifts

in lending standards. Due to how segmentation in the mortgage market changes with

economic fundamentals and home prices, the economy may operate in two different

credit regimes — a “pooling regime” and a “screening regime” — corresponding to to
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whether the marginal home owner is offered a pooling contract or is screened out of the

prime market.

When the marginal homeowner is screened, they only have access to a subprime

mortgage with a high interest rate. Given this elevated interest rate, they have a low

home valuation. Since the marginal home buyer must be indifferent between owning and

renting, home prices must be low in the screening regime.

However, if risky borrowers become less likely to default — say during an

economic expansion — then safe borrowers have less reason to differentiate themselves

and the pooling segment of the mortgage market expands. If lenders begin to offer a

pooling contract to the marginal home buyer, then this expansion triggers the pooling

regime.

During this regime change, interest rates discretely fall, home prices rapidly rise,

and lenders substitute away from using income verification toward using downpayment

requirements to ration credit. These results come from joint mortgage and housing market

clearing, and how the screening in the mortgage market varies with home prices. When

a fall in income risk increases the extent of pooling, it generates an excess demand for

housing. Risky borrowers gain access to low interest rate loans, which attracts former

renters into the housing market. They begin bidding up home prices. For the housing

market to clear, some of these former renters must be rationed back out of the mortgage

market as home prices rise.

The market clearing mechanism comes from how incentive constraints link

downpayment requirements to home prices. Rising home prices make the outside option

of renting more attractive, which relaxes incentive constraints. As a result, if lenders

are using high downpayments to screen out risky borrowers, then they can relax their

downpayment requirements. This change in lending standards make screening more

attractive, which reduces the size of the pooling segment. With less pooling and more
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screening, more risky borrowers get rationed out of the market, which dampens housing

demand.

However, if lenders do not use downpayment-based screening, then the housing

market cannot clear through this mechanism. For the housing market to clear, lenders

must first stop using income verification to screen borrowers. They will do so only if they

can attract safe borrowers by offering a small downpayment. A large enough appreciation

of home prices will relax downpayment requirements enough to incentivize a switch

away from income verification. As a result, joint equilibrium between housing and

mortgage markets implies a rapid home price appreciation, a relaxation of downpayment

requirements, and an abandonment of income verification. This general equilibrium

mechanism provides an explanation for the sudden fall in income documentation that

occurred during the housing boom (Jiang et al. (2014)).

The credit regime captures strong non-linear feedback between housing and

mortgage markets and leads to housing boom-bust cycles1. If the underlying fundamentals

of the economy are mean reverting, then a boom triggered by falling income risk must

eventually end. When the economy returns to the screening regime, credit tightens

for risky borrowers, demand for housing falls, and home values collapse. As home

prices fall, borrowers go underwater on their homes, which generates a foreclosure

crisis. Note that both safe and risky borrowers go into default, which lines up with

the microeconomic evidence on foreclosures during the housing crisis (Ferreira and

Gyourko (2015), Adelino et al. (2016)). In this theory, a foreclosure crisis is the ultimate

unwinding of a credit-fueled housing boom.

Non-linearity is central to this result. The regime summarizes a discontinuity in

equilibrium outcomes, which makes standard perturbation solution methods inappropriate.

1The mechanism in this theory operates through the terms of mortgage contracts and lets us match the
shift in lending standards during this period. Boom-bust cycles may arise through other mechanisms such
as adaptive or extrapolative expectations and speculative and social dynamics — see Lo (2004), Barberis
et al. (2015), DeFusco et al. (2017), and Burnside et al. (2016).
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To solve the infinite horizon economy, I apply the regime-switching perturbation method

in Chapter 2. This solution method leverages the speed of perturbation and absorbs

non-linearities into an endogenous regime variable. As a result, despite having a highly

non-linear mechanism and many state variables, we can study equilibrium dynamics

driven by endogenous credit regimes.

By highlighting the importance of state-dependent amplification in driving boom-

bust cycles2, this paper builds on and complements the results of Gorton and Ordoñez

(2012) and Gorton and Ordoñez (2016). In these papers, financial crises arise in short-

term collateralized debt markets when market participants have an ex-post incentive

to secretly produce information about collateral (mortgage-backed security) quality.

Similarly, my model is built on asymmetric information and generates highly non-linear

dynamics3. It differs in that I study the joint determination of mortgage contracts and

home prices, and the crisis does not come from an ex-post incentive problem. Rather,

the key mechanism comes from general equilibrium feedback between the mortgage

market and the housing market. Since the foreclosure crisis led investors to worry about

the quality of mortgage-backed securities, this paper complements the contributions of

Gorton and Ordoñez (2012) and Gorton and Ordoñez (2016). It endogenizes the housing

crisis that precipitated the financial crisis.

To diagnose the crisis, economists have turned to credit bureau data to ask whether

or not there was reallocation of credit towards risky borrowers during the boom. Different

studies use different measures of borrower riskiness and find seemingly conflicting results.

Mian and Sufi (2015) use a measure of historical riskiness based on fixed groups of

borrowers. They find that borrowers with low FICO scores in 1997 had a larger increase

2For recent work on non-linear dynamics that generate limit cycles see Beaudry et al. (2015).
3Guerrieri and Uhlig (2016) also examine how adverse selection in credit markets influences the

housing market. Their model generates housing cycles through switching between multiple equilibria. In
contrast, the theory in this paper focuses on a unique stable equilibrium and generates boom-bust cycles
in response to shocks to fundamentals through a non-linear feedback mechanism between housing and
mortgage markets.
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in debt than borrowers with high FICO scores in 1997. In contrast, Albanesi et al. (2016)

use a measure of observable riskiness. They examine the distribution of debt across

borrowers by FICO score two years before origination and show that debt by FICO score

grew more for high FICO score borrowers.

The theory proposed by this paper can simultaneously match the evidence from

both papers. The difference in their results highlights the importance of distinguishing

between fundamental borrower types (risky versus safe) and lender information about

borrower types. To the extent that types are persistent, I argue that the Mian and Sufi

(2015) approach is more likely to measure reallocation across borrower types. In my

model, the average loan-to-value ratio of safe borrowers falls during the boom, while risky

borrower loan-to-value ratios are stable — matching the evidence on loan-to-value ratios

in Mian and Sufi (2015). Given this difference in loan-to-value ratios, safe borrowers

accumulate less debt than risky borrowers during a housing boom.

However, these results reverse if we condition on lender beliefs about borrower

types rather than fundamental types. Those safe borrowers who appear risky to lenders

end up using high-downpayment mortgages to signal their type during the boom. Those

safe borrowers who are obviously safe do not signal their type and have stable loan-to-

value ratios in parallel to risky borrowers. As a result, loan-to-values are more stable

among borrowers who seem safe from the perspective of lenders at the time of origination.

Therefore, conditioning on lender information reverses the pattern of debt accumulation.

This predicted reversal is consistent with the evidence of Albanesi et al. (2016), who

study debt growth conditional on lender information close to the time of origination.

By matching both sets of results, the theory may help explain why these authors get

seemingly conflicting results from the same data — the measure of riskiness that each

study uses captures a distinct theoretical concept. Patterns of debt accumulation can differ

significantly depending on whether or not we condition on the information available to
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lenders at the time of mortgage origination.

The theory also provides an explanation for the mortgage rate conundrum of

Justiniano et al. (2016). These authors document that from mid-2003 to 2006 mortgage

rates were low relative to their historical relationship with US treasury yields. In the

summer of 2003 the yield curve began to rise following the Federal Reserve’s June 2003

announcement that it was ending its easing cycle. Following similar past annoucements,

mortgage rates rose with the yield curve. This time, they did not.

The theory explains this puzzle through a switch from the screening regime to

the pooling regime. The interest rates of risky borrowers fall when they get pooled with

safe borrowers — pooling dilutes their default risk. The interest rates of safe borrowers

also fall. Those safe borrowers who switch to high-downpayment based screening have

reduced loan-to-value ratios. With a larger equity cushion, they are less likely to default

and have a reduced risk premium. The switch away from income verification toward

downpayment-based rationing implies that mortgage rates fall for safe borrowers on

average. As a result, when a fall in income risk triggers a shift in the credit regime,

mortgage rates fall relative to the risk free rate for all borrowers. The endogenous

response of monetary policy to improving labor market conditions accounts for the rise

in the yield curve, and an endogenous shift in the credit regime accounts for the low level

of mortgages rates relative to treasury yields.

This paper also speaks to the macroeconomic literature on the housing boom by

endogenizing the shocks that explain the boom-bust cycle. Previous research points to

credit supply shocks as an explanation of the housing boom (for instance, Mian and Sufi

(2009), Justiniano et al. (2015a), and Mian and Sufi (2016)). The model can explain these

shocks through switches in the credit regime. Even a small change in income risk can

trigger a regime change, generating a large shift away from high documentation lending

and a rapid appreciation in home prices. When this occurs, credit rationing decreases and
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it is as-if a credit supply shock hit the economy.

Kaplan et al. (2016) replicate the boom-bust episode in a quantitative heteroge-

nous agent macroeconomic model calibrated to cross-sectional facts. They find that

three shocks are necessary to match the time series data: an income shock, a loan-to-

value shock, and a home price expectation shock4. The theory I propose explains the

loan-to-value ratio shock through the endogenous increase in loan-to-value ratios that

occurs when rising home prices relax incentive constraints. The shock to home price

expectations is explained through the shift in the credit regime. From the perspective of

a traditional asset pricing condition for homes, a discrete switch in the contract faced

by the marginal home owner appears as a wedge shock. With rational expectations and

some persistence in the credit regime, it generates an endogenous anticipation of high

home prices while lenders continue to offer pooling contracts to the marginal home buyer.

The mechanism developed in this paper may enable economists to reduce the number of

shocks that are required to explain the housing boom and bust.

Because the mechanism generates endogenous boom-bust cycles by amplifying

underlying business cycle fundamentals, this theory points to possible non-prime lending

booms during future macroeconomic expansions — indeed, the re-emergence of subprime

lending in both mortgages and car loans has made headlines recently5. This prediction is

consistent with the historical evidence, which suggests that credit-driven housing booms

and busts are rare but systemic events. For instance, Jordà et al. (2015) show that, across

countries, an expansion of credit during a housing boom predicts a subsequent bust. The

theory proposed in this paper formalizes this perspective.

More broadly, this model provides a framework for studying credit rationing in

business cycle analysis. One lesson is that the price of assets that serve as collateral can

4Similarly, Gelain et al. (2015) find that shocks to lending standards can explain the boom-bust episode
in a representative agent framework.

5For example, see “Subprime Bonds Are Back With Different Name Seven Years After U.S. Crisis”
Bloomberg News, January 27, 2015.
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change rapidly and even discontinuously in fundamentals when there is adverse selection

in credit markets6. This strong form of amplification is distinct from workhorse models

of collateralized debt used when studying business cycles — for example, Kiyotaki

and Moore (1997) and Bernanke et al. (1999). This theory provides a new approach to

modeling asset price booms and financial frictions in business cycle analysis.

The paper is organized as follows. Section 3.1 introduces a partial equilibrium

model of endogenous segmentation in the mortgage market. Section 3.2 examines joint

mortgage market and housing market equilibrium and shows how small changes to

income risk can sometimes generate big changes in mortgage contracts and home prices.

In Section 3.3, I extend the model to examine equilibrium dynamics. I show that the

accumulation of small shocks to income risk can trigger a housing boom which then

leads to a housing crisis. Section 3.4 shows that the theory can simultaneously match

the seemingly conflicting results in the empirical literature on debt reallocation and also

accounts for the mortgage rate conundrum. Finally, Section 3.5 concludes.

3.1 Endogenous Segmentation in the Mortgage Market

This section develops a model of the mortgage market where borrowers are

endogenously segmented by the type of equilibrium that prevails — either a screening,

separating, or pooling equilibrium. This segmentation arises from how lenders tailor

mortgage offers to individual borrowers based on their observable characteristics.

I first setup the economic environment, and then I examine equilibrium segmen-

tation. Note that for this partial equilibrium analysis home prices are exogenous. In

Section 3.2 I endogenize home prices.

6See Bigio (2015) for a model where adverse selection plays a key role in business cycles via the
market for liquidity.
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3.1.1 Setup

The economy consists of a unit mass of borrowers and at least two lenders. There

are two periods, t = 0,1, with mortgage contracts signed at t = 0 before uncertainty is

resolved at t = 1.

Each borrower i ∈ [0,1] has the same linear preferences:

u(Ci,0,Ci,1) =Ci,0 +βECi,1

where Ci,0 denotes period 0 consumption of numeraire, Ci,1 denotes period 1 consumption,

and β > 0. Borrowers come in two types, safe and risky. The variable τi indicates whether

or not individual i is risky.

τi =


0 if i is safe

1 if i is risky

Safe borrowers have income of Yi = Y for sure at t = 1, while risky borrowers have

income of Yi = Y with chance 1−φ and Yi = 0 with chance φ. The parameter

φ≡ P[Yi = 0 | τi = 1]

measures the income risk of risky borrowers. Since income risk falls in expansions and

increases in recessions7, φ captures the state of the business cycle.

Lenders are risk neutral and maximize expected profits given an opportunity cost

of funds of 1+ r < 1/β. Because lenders are patient relative to borrowers, there are

potential gains from trade.

Several frictions limit the scope for trade. First, limited liability and limited com-

mitment implies that borrowers may default either by choice or if they have insufficient

7See Busch et al. (2016).
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income to cover their debts. Second, borrower income realizations are private informa-

tion, which makes state-contingent contracting impossible. Third, there is asymmetric

information between borrowers and lenders about borrower types.

Lenders have access to a technology that reveals borrower types — which I will

refer to as income verification. This technology requires borrowers to supply income

documentation and requires lenders to pay a fixed cost. Denote the lender’s cost of

income verification by κ. I assume that providing income documentation imposes some

infinitesimal cost on borrowers. This cost will keep risky borrowers from applying when

they anticipate being rejected after their type is revealed.

If a lender does not verify a borrower’s income, then they must form a belief

based on freely available information (for example, a borrower’s credit history and

employment status). Let Xi be a vector of all variables that a lender can costlessly observe

related to individual i’s type. Denote the density of Xi conditional on borrower type by

fX(x | τi = τ).

Lenders care about an individual borrower’s likelihood of being the risky type.

By Bayes’ law, the share of risky borrowers among borrowers with Xi = x is

P[τi = 1 | Xi = x] =
fX(x | τi = 1)P[τi = 1]

fX(x | τi = 1)P[τi = 1]+ fX(x | τi = 0)P[τi = 0]
≡ ρ(x).

The function ρ maps borrower observables to lender beliefs about borrower types. Instead

of working directly with Xi, it will be convenient to work with the following risk index:

ρi ≡ ρ(Xi).

This index is the proportion of risky borrowers among borrowers with observables of Xi.

Individual borrowers with a large value of ρi are perceived by lenders as likely to be the

risky type.
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Given that there are no state-contingent contracts, mortgage contracts specify

period 0 and period 1 transfers. They also specify whether or not lenders require

borrowers to provide income documentation.

Definition 3.1.1 A mortgage contract is a triple, (T,L,Doc), where

1. T is a period 0 transfer from the lender to the borrower.

2. L is a period 1 transfer from the borrower to the lender.

3. Doc = 0 if income documentation is not required, and Doc = 1 if it is required.

I will refer to contracts with Doc = 0 as low-documentation contracts and contracts with

Doc = 1 as high-documentation contracts.

Each borrower lives in a single unit of housing which they either own or rent.

The purchase price of a house at t = 0 is P units of numeraire and the rental rate is R.

The ex-post value of individual i’s home (at t = 1) is idiosyncratic:

Period 1 home value = Zi
iid∼ F.

Zi is strictly positive, independent of borrower income, and continuously distributed with

density F ′.

Let h(z) ≡ F ′(z)/(1−F(z)) be the hazard rate of Zi. I assume that the hazard

rate satisfies the following monotonicity condition.

Assumption 3.1.1 (Monotone Scaled Hazard Rate) zh(z) is strictly increasing and

continuous in z.

This condition is a weak regularity condition that is common in the literature8 and is

satisfied by many standard distributions9.
8Bernanke et al. (1999) assume the same condition on the idiosyncratic return on capital.
9For example, any distribution with a monotone hazard rate, like the log-normal distribution, satisfies

this condition.
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Due to limited liability and limited commitment, unsecured borrowing is im-

possible. However, a foreclosure technology exists which enables lenders to recover

contracted debts through the liquidation of a borrower’s home following default at the

start of t = 1.

Foreclosure is costly10. When a lender initiates foreclosure, this reduces the sale

value of the home to (1−λ)Zi. The parameter λ captures losses from foreclosure11. The

foreclosure technology then transfers funds from the home sale to the lender to cover any

debt outstanding against the home. Given debt of L, the payoffs from foreclosure are

Borrower Foreclosure Payoff = max{(1−λ)Zi−L,0}

Lender Foreclosure Payoff = min{L,(1−λ)Zi}.

Figure 3.1 depicts these payoffs. This technology provides an ex-post incentive for

borrowers to re-pay contracted debts, allowing homes to serve as collateral for borrowing.

I make the following assumption to rule out contracts which imply certain default.

Assumption 3.1.2 (Certain Default is Inefficient) The scaled hazard rate gets suffi-

ciently large:

lim
z→∞

zh(z)>
1− (1+ r)β
(1−φ)λ

.

This condition implies that arbitrarily large loans — which all borrowers will default

on for sure — are inefficient. Borrowers will strategically default when underwater on

their mortgage and as their loan size increases their probability of default increases. This

condition states that at large loan sizes, the likelihood of strategic default increases too

much to be worth increasing any borrowers loan size. Together with Assumption 3.1.1,

10As a result, there are possible gains from ex-post renegotiation. I assume that there are sufficiently
large renegotiation costs that rule out ex-post renegotiation.

11For a discussion of foreclosure costs see Hayre and Saraf (2008). For empirical estimates of losses
due to forced sales of homes see Campbell et al. (2011).
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Figure 3.1: Foreclosure payoffs given debt level of L.
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Figure 3.2: Within-period timing.

this condition ensures that equilibrium contract offers are finite and unique.

Timing within the two periods is as follows (see Figure 3.2). During period 1,

lenders offer mortgages to individual borrowers. Then, borrowers apply to an individual

lender. Finally, lenders perform income verification, and accept or reject applicants. At
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the end of t = 0, transfers occur and borrowers consume numeraire, which is not storable.

Between period 0 and period 1, borrowers learn the value of their home and whether

or not they have income. They then choose to make their mortgage payment, or not,

and lenders initiate foreclosure. Finally, homes are liquidated and borrowers consume

numeraire at the end of t = 1.

3.1.2 Equilibrium

Models of asymmetric information typically have a large number of equilibria.

I focus on the unique efficient equilibrium. It is stable in the spirit of Kohlberg and

Mertens (1986) and satisfies a number of selection criteria used in the literature on

signaling games12. This selection is similar to the approach taken by Dell’Ariccia

and Marquez (2006), who examine how equilibrium in a credit market changes as the

composition of types in the market varies13.

Up to the identity of the lenders who make contract offers and the application

behavior of borrowers when indifferent, there is a unique stable Nash equilibrium.

Proposition 3.1.1 (Existence and Uniqueness) Let Assumption 3.1.1 and let Assump-

tion 3.1.2 hold. Suppose that risky borrowers do not apply for screening contracts

whenever they anticipate rejection. Then for almost every ρ ∈ [0,1], there exists a unique

stable Nash equilibrium up to deletion of non-traded mortgage offers and the identity

of the lender making each offer. In this equilibrium lenders make zero profits and safe

borrowers only use contracts that maximize their value.

Proof. See Appendix 3.A.

The assumption that risky borrowers do not apply for high-documentation con-

tracts can be formalized by a small cost to supply income documentation. This selects

12See also Cho and Kreps (1987), Banks and Sobel (1987), Cho and Sobel (1990), and Ramey (1996)
13Also see Wilson (1977), Stiglitz and Weiss (1981), Bester (1985), and Hellwig (1987).
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the equilibrium where risky borrowers do not apply for high-documentation contracts.

In Appendix 3.A I provide proofs and characterize equilibrium. The following

sub-sections summarize equilibrium outcomes.

Period 1: Foreclosure, and Default

Since homes have strictly positive value, initiating foreclosure following a bor-

rower default is a strictly dominant strategy. Borrowers then anticipate that foreclosure

will always occur following any default.

Borrowers prefer to default if the foreclosure value of max{(1−λ)Zi−L,0} is

greater than their equity of Zi−L. This condition holds if any only if they have negative

equity: Zi < L. Underwater borrowers strategically default on their mortgage.

Even if they are willing to repay, they may be unable to pay. Borrowers are unable

to make any payment which is larger than their potential income of Y . For simplicity, I

assume that Y is large enough that repayment is feasible whenever income is available14.

This assumption means that the model highlights the role of income risk in influencing

mortgage contract terms and abstracts from the level of borrower income15.

Given debt of L and ex-post home value of Zi = z, the ex-post default rate among

borrowers with risk index of ρ is

D(L,ρφ,z) = 1{z < L}+1{z≥ L}ρφ. (3.1)

If the borrower’s home is underwater, then they default for sure. Otherwise, they only

default if their income is unavailable, which occurs with chance of 0 for safe borrowers
14More generally, if a lender made a loan with Y < L, the loan will be defaulted on with probability 1.

In the presence of foreclosure costs, these loans are inefficient and will not be made. Lenders will then
impose a debt-to-income constraint: L≤ Y .

15See Greenwald (2016) for a model in which the level of borrower income and debt-to-income
constraints are key determinants of monetary transmission and macroeconomic dynamics.



94

Debt: L

L
en

de
rP

ay
of

f:
Π
(L
,ρ
)

ρ = 0
ρ = 1/2
ρ = 1

Debt: L

B
or

ro
w

er
Pa

yo
ff

:U
(L
,τ
)

τ = 0
τ = 1

Figure 3.3: Anticipated contract payoffs varying ρ and τ when φ = 1/2 and Z is
log-normal.

and chance of φ for risky borrowers. Among borrowers with ρi = ρ, a fraction ρ are risky,

and a fraction φ of these risky borrowers are forced into default.

Period 0: Anticipated Contract Payoffs

Lenders anticipate defaults when originating mortgages. Let Π(L,ρφ) denote a

lender’s expected payoff on a loan of size L to a borrower with risk index of ρ given

income risk of φ:

Π(L,ρφ) = E [D(L,ρφ,Zi)min{(1−λ)Zi,L}+(1−D(L,ρφ,Zi))L]

= L−
∫ ∞

0
D(L,ρφ,z)max{L− (1−λ)z,0}F ′(z)dz (3.2)

If default occurs, the lender gets their foreclosure payoff, and if the household doesn’t

default then the lender receives the face value of the debt. The second line expresses the

payoff as the loan’s face value net of anticipated losses from foreclosure. The left panel

of Figure 3.3 plots Π for ρ = 0,1/2,1 when φ = 1/2 and Zi is log-normal.

Let U(L,τφ) denote the expected payoffs of a borrower with type τ given income
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risk of φ:

U(L,τφ) = E [D(L,τφ,Zi)max{(1−λ)Zi−L,0}+(1−D(L,τφ,Zi))(Zi−L)]

= z̄−L+
∫ ∞

0
D(L,τφ,z)max{−λz,L− z}F ′(z)dz. (3.3)

where z̄ =
∫ ∞

0 zF ′(z)dz. If the borrower defaults, they get the payoff from foreclosure.

If they do not default, they keep their home equity. The second line expresses this

valuation in terms of expected home equity plus a term capturing the net benefit to the

household of forced and strategic defaults. Borrowers benefit from default whenever they

are underwater. Otherwise, default is costly. As a result, safe borrowers always benefit

from their default option, while risky borrowers occasionally default on positive equity.

The right panel of Figure 3.3 plots U for τ = 0,1 when φ = 1/2 and Zi is log-normal.

The following lemma establishes a single crossing condition which ensures that

safe borrowers can signal their type by making a large down payment.

Lemma 3.1.1 (Single Crossing Condition) For any debt level L such that P[(1−λ)Zi <

L < Zi]> 0, risky borrowers value a marginal increase in debt more than safe borrowers.

In particular:

∂
∂L

[U(L,φ)−U(L,0)] = φ
[

F
(

L
1−λ

)
−F (L)

]
.

Proof. See Appendix 3.A.

Although risky borrowers value mortgages less than safe borrowers (U is decreas-

ing in its second argument), they value debt more on the margin than safe households.

This occurs because of the difference in default behavior between the two types. Safe

borrowers only default strategically. They never face foreclosure costs because they only

default when they have negative equity, passing the costs onto their lender. Similarly,
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risky borrowers always default on negative equity, but will also default on positive eq-

uity with chance φ. Whenever P[(1−λ)Zi < L < Zi]> 0, there is a chance that a risky

borrower will default on positive equity but the cost of foreclosure destroys that equity

by reducing the value of the home. In this case, risky borrowers do not internalize the

cost of holding more debt, but safe borrowers do internalize this cost. As a result, risky

borrowers value increases in debt more than safe borrowers.

Period 1: Income Verification, Rejections, and Applications

Lenders will reject any application which they anticipate a loss on. For instance,

a high-documentation contract might be profitable only if the lender rejects all risky

applicants. Due to zero profits, lenders will have an ex-post incentive to verify income

and reject risky borrowers16.

Anticipating lender income verification and rejection choices, borrowers will

apply to whichever contract gives them the best payoff among all offers that are profitable

for the lender. Given an infinitesimal application cost, risky borrowers will not apply for

high-documentation contracts since they anticipate rejection.

Period 1: Offers

When making offers, lenders observe individual observables of Xi and infer that

individual i is risky with chance ρi = ρ(Xi). They then make an offer based on this belief.

To characterize equilibrium contracts, it is useful to first consider the full infor-

mation case where lenders can observe borrower types. With full information, the safe

16Note that there exist unstable equilibria where lenders randomly reject additional borrowers. These
equilibria arise because lenders make zero profits ex-post and therefore are indifferent between accepting
and rejecting applications of borrowers that remain after rejecting borrowers who are unprofitable to keep
in the pool. However, these equilibria are unstable because borrowers have a strong incentive to accept
slightly worse terms in order to give lenders a small positive profit and avoid these arbitrary rejections.
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borrower’s most preferred contract solves the following program.

V sa f e = max
T,L

T +βU(L,0)

s.t. −T +
1

1+ r
Π(L,0)≥ 0 (PC)

The constraint PC is the lender’s zero profit (participation) constraint. Competition

drives lender profits to zero so that this constraint binds. We can solve the problem by

substituting in the participation constraint, finding the optimal loan size, and then backing

out the initial transfer consistent with zero profits. Denote the loan size for this safe

contract by Lsa f e.

The full information contract for risky borrowers gives them value of

V risky = max
L

1
1+ r

Π(L,φ)+βU(L,φ).

Here, I have used the zero profit condition for lenders to eliminate the period 0 transfer

from the program.

Given these full information contracts, safe borrowers get more value from being

a homeowner than risky borrowers.

Remark 3.1.1 Safe borrowers value their full information contract more than risky

borrowers value their full information contract:

V sa f e >V risky.

Proof. Define V (x) = maxL
1

1+r Π(L,x)+βU(L,x). We have V (0) =V sa f e and V (φ) =

V risky. By the envelope theorem V ′ < 0 because Π and U are both decreasing in their

second arguments. Therefore, V (0)>V (φ) and V sa f e >V risky.

Relative to risky borrowers, safe borrowers are natural homeowners. Even for
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relatively high home values, safe borrowers will prefer to purchase a house. In contrast,

risky borrowers will only be willing to use their full information contract when home

values are relatively low.

Now consider a safe borrower’s most preferred low-documentation contract which

signals their type through a high downpayment — the competitive high-downpayment

contract. The outside option for a risky borrower is to either apply for their full informa-

tion contract, or to rent. The value of their full information contract net of the home price

is−P+V risky, and the value of renting is−R. Risky borrowers prefer their outside option

to a low-documentation contract (T,L,0) whenever the following incentive compatibility

constraint holds.

T −P+βU(L,φ)≤max{−R,−P+V risky}. (IC)

The competitive high-downpayment contract maximizes value for safe borrowers subject

to this incentive constraint.

V down(P−R) = max
L

1
1+ r

Π(L,0)+βU(L,0)

s.t.
1

1+ r
Π(L,0)+βU(L,φ)≤max{P−R,V risky} (IC)

Here, I used the zero profit condition to eliminate T , and simplified the IC constraint by

adding P to both sides. I call the quantity P−R the net home price. It captures how the

relative cost of owning versus renting influences this contract.

Note that the value of the high-downpayment contract does not depend on bor-

rower observables — in a separating equilibrium, risky borrowers and safe borrowers

reveal their types and so a lender’s initial information is irrelevant. However, this value

may depend on the net home price, P−R. Changes in home prices relative to rental rates

change the incentive for risky borrowers to enter the mortgage market. When home prices

are high, risky borrowers find owning less attractive, and it takes a smaller downpayment



99

for safe borrowers to signal their type (high P−R relaxes the IC constraint). As a result,

the value of separation for safe borrowers will vary with the net home price. Once we

consider joint housing and mortgage market equilibrium in Section 3.2, this link will

lead to general equilibrium feedback and amplification of shocks to income risk.

When is the IC constraint slack? When risky borrowers do not wish to use the

safe borrower’s full information contract. If a risky borrower were to gain access to this

contract, they’d get value of

V ∗ =
1

1+ r
Π(Lsa f e,0)+βU(Lsa f e,φ).

Whenever the net home price is above this threshold, risky borrowers prefer to rent over

using the loan intended for safe borrowers. As a result, the IC constraint will not bind if

P−R≥V ∗. In this case, there is no issue of adverse selection. Safe borrowers use their

full information contract and become homeowners, risky borrowers become renters, and

types are revealed in equilibrium.

But for lower home prices — when P−R <V ∗ — risky borrowers will enter the

market and introduce adverse selection (the IC constraint will bind). In this case, safe

borrowers may prefer the allocation under income-verification based screening or under

pooling.

Consider income verification. Since only safe borrowers apply, the value of a

high-documentation contract is constant across safe borrowers:

V doc = max
L

1
1+ r

Π(L,0)+βU(L,0)−κ =V sa f e−κ.

They get the value of their full information contract net of the income verification cost.

Note that, like with downpayment-based screening, the value of screening through

income verification is constant across borrowers. Income verification removes all risky
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borrowers from the pool of funded loans. The chance that a risky borrower has no income

is irrelevant for the terms a safe borrower receives on a high-documentation contract.

Define the overall value of screening as

V screen(P−R) = max{V down(P−R),V doc}.

Lenders will use whichever method of screening is most preferred by safe borrowers. If

they didn’t another lender could offer a contract using the alternative form of screening

and capture the market. The implication is that whether or not the value of screening

changes with the net home price depends on whether or not lenders are actively using

income verification or high downpayment requirements to ration credit. When they

use income verification, the value of screening does not depend on home prices. At

high enough home prices, lenders will substitute away from income verification toward

downpayment requirements and the value of screening will vary with the net home price.

Finally, consider pooling. In a pooling equilibrium, lenders offer a single contract

and accept all applicants. Due to zero profits, the value of the mortgage to safe borrowers

depends on how many risky borrowers there are in the pool. In the group of borrowers

with risk index of ρ, a fraction ρ are risky and a fraction 1−ρ are safe. The value of the

contract to safe borrowers will depend on how many of these risky borrowers apply for

the contract.

In equilibrium, risky borrowers will always apply whenever they are offered a

contract that leads to pooling. This outcome comes from the fact that whenever risky

borrowers are willing to opt out of a pooling contract, lenders have an incentive to

offer the high-downpayment contract. Intuitively, a contract which fails to attract risky

borrowers away from renting effectively acts like a separating contract. Any contract

other than the high-downpayment contract is relatively inefficient at inducing separation.
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Because of this result, we can focus on a pooling equilibrium in which all

risky borrowers apply. In this case, the lender zero profit condition implies a transfer of

T = 1
1+r Π(L,ρφ). A safe borrower with risk-index of ρ then prefers a low-documentation

contract that solves

V pool(ρ) = max
L

1
1+ r

Π(L,ρφ)+βU(L,0).

Note that the value of pooling across ρ-values will change as income risk varies. In

particular, a fall in income risk will increase the value of pooling across all borrowers:

∂
∂φ

V pool(ρ) =
1

1+ r
Π2(Lpool(ρ),ρφ)ρ =−ρ

∫ Lpool (ρ)
1−λ

Lpool(ρ)
(Lpool(ρ)− (1−λ)z)F ′(z)dz < 0.

Intuitively, safe borrowers face a higher interest rate when they are pooled with risky

borrowers, but as risky borrowers become less likely to default, loan terms improve. As a

result, the pooling value function for safe borrowers will increase when the income risk

of risky borrowers falls.
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In equilibrium, lenders will make offers that maximize value for safe borrowers.

We can determine the pattern of segmentation by comparing the pooling and screening

value functions. The following proposition characterizes the pattern of market segmenta-

tion.

Proposition 3.1.2 (Equilibrium Segmentation) Let Assumption 3.1.1 and let Assump-

tion 3.1.2 hold. When P−R ≥ V ∗ there is no segmentation. Lenders offer the full

information safe contract to all borrowers. Safe borrowers apply and are accepted to this

contract. Risky borrowers do not apply and instead rent their home. When P−R <V ∗,

the market is divided into a pooling segment and a screening segment. Let ρ∗ satisfy

V screen(P−R) = V pool(ρ∗). Borrowers with ρ < ρ∗ are in a pooling equilibrium and

those with ρ > ρ∗ are in a screening equilibrium. Lenders use downpayment require-

ments to screen borrowers when V doc <V down(P−R) and use income verification when

V doc >V down(P−R).

Proof. See Appendix 3.A.

Lenders offer contracts that maximize value for safe borrowers, as otherwise

another a competing lender could attract away safe borrowers. As a result, lenders offer

those borrowers with ρi = ρ whichever contract gives the most value to safe borrowers

and the pattern of equilibrium segmentation corresponds to the upper envelope of the

pooling, high-documentation, and high-downpayment value functions.

Note that the screening segment consists of the borrowers who are likely to be

risky from the perspective of lenders. The value of screening is constant in ρ, while the

value of pooling is decreasing in ρ. In high risk parts of the market, safe borrowers face

high interest rates when using pooling contracts, and find it worthwhile to differentiate

themselves by either undergoing income verification or making a large downpayment.

There are two key comparative statics for the pattern of market segmentation

which lead to the key general equilibrium results in Section 3.2. First, as income risk in
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the economy falls (increases), the pooling segment expands (contracts). The boundary

ρ-value between the pooling and screening segments, ρ∗, quantifies the size of the pooling

segment. Formally, if P−R <V ∗ so that ρ∗ > 0 then the pooling segment is decreasing

in income risk:
∂ρ∗

∂φ
< 0.

Intuitively, as risky borrowers become more likely to default safe borrowers are less

willing to be pooled and a smaller fraction of the market is in a pooling equilibrium.

Second, so long as lenders use downpayment requirement to ration credit, then

the pooling segment is decreasing in the net home price. If lenders instead use income

verification, then the size of the pooling segment is constant in P−R. Formally, if

P−R <V ∗ and V down(P−R)>V doc then the pooling segment is decreasing in the net

home price:
∂ρ∗

∂(P−R)
< 0,

while if V down(P−R)<V doc then it is constant:

∂ρ∗

∂(P−R)
= 0.

Figure 3.4 depicts these comparative statics. The left diagram shows a fall in

income risk which expands the pooling segment. The right diagram then shows an

increase in the net home price that offsets the expansion by reducing the size of the

pooling segment. Note that a smaller increase in the net home price — which didn’t shift

the value of downpayment-based screening above the value of income-verification based

screening — would not reduce the size of the pooling segment.

Note that the homeownership rate in the economy is the number of borrowers who

gain access to credit and purchase a home. Since credit access varies with the net home
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price through the incentive constraint channel, the comparative static for the net home

price implies a housing demand curve and the shape of this housing demand curve will

depend on the nature of screening — whether lenders use downpayment requirements or

income verification to ration credit.

Also, for a given home price, changes in the mortgage market due to variation in

income risk will change credit access to risky borrowers and influence homeownership.

For example, if income risk falls, then a portion of the market that previously was in a

screening equilibrium shifts to pooling, this expands credit access to risky borrowers,

and increases housing demand.

Together, these two observations suggest an important interaction between mort-

gage markets and housing markets. An analysis of joint housing and mortgage market

equilibrium is necessary to fully characterize how the share of non-prime loans varies

with economic fundamentals.

3.2 Joint Mortgage and Housing Market Equilibrium

This section examines joint housing market and mortgage market equilibrium. I

show that general equilibrium feedback between mortgage and housing markets leads

to a strong form of state-dependent amplification. In particular, small shocks to income

risk can sometimes lead to sudden and large changes in equilibrium outcomes. We can

interpret this result as coming from endogenous switching between two distinct credit

regimes: a screening regime where the marginal home buyer is credit rationed, and a

pooling regime where they instead are pooled with safe borrowers. The key result is that,

during a transition from screening to pooling, home prices boom and lenders both rapidly

relax down-payment requirements and stop verifying borrower incomes.
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3.2.1 Housing Demand

Housing demand equals the number of borrowers in the economy who choose to

enter the mortgage market and become homeowners. We can trace out a housing demand

curve by considering how equilibrium in the mortgage market changes as home prices

vary.

First, consider when home prices are sufficiently high so that all risky borrowers

prefer to rent — which occurs when P−R >V ∗. In this case, lenders are able to offer

safe borrowers their full information contract without worrying about risky borrowers

applying. So long as the home price is not too high, safe borrowers will become

homeowners. They are indifferent between owning and renting when P−R = V sa f e.

They prefer to rent when P−R >V sa f e and prefer to own when P−R <V sa f e.

Once P−R ≤ V ∗, risky borrowers begin to enter the mortgage market. Their

entry leads to adverse selection and the introduction of rationing. The market is split into

a pooling segment, where risky borrowers gain access to credit, and a screening segment,

where they are rationed out of the prime market.

First consider when the home price is high enough that high-documentation

contracts are not introduced. By Proposition 3.1.2, this outcome occurs when V doc <

V down(P−R). In this case, lenders use downpayment requirements to ration credit in

the screening segment of the market. As the net home price falls, the size of the pooling

segment increases, more risky borrowers become homeowners, and we have a downward

sloping housing demand curve. Note that in this case — which I refer to as the pooling

regime — the marginal home buyer is a risky borrower who has access to a pooling

contract.

Once home prices are low enough, the market enters the alternative screening

regime. This occurs once lenders begin requiring income documentation and verifying

borrower incomes — once V doc > V down(P−R). Now, further reductions in the net
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home price no longer increase credit access to risky borrowers and the size of the pooling

segment does not change with the net home price.

As a result, the homeownership rate becomes inelastic. Expansion in homeown-

ership requires more risky borrowers to become homeowners, but the introduction of

income verification rations the marginal borrower out of the market. Additional risky

borrowers will become homeowners only if they find it worthwhile to use their full

information contract, which occurs once P−R≤V risky.

Figure 3.5 shows this housing demand curve as income risk varies. Housing

demand is 0 when P−R is above V sa f e. Once P−R <V sa f e all safe borrowers become

homeowners. Then, if P−R <V ∗, the mortgage market enters the pooling regime and

housing demand increases as P−R falls. For a sufficiently low home price, the mortgage

market enters the screening regime, and housing demand becomes is inelastic. Once
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P−R =V risky, risky borrowers are willing to use their full information contract to buy a

home, and if P−R < V risky then all risky borrowers become homeowners. The shape

of the housing demand curve summarizes how adverse selection and changes in credit

rationing impact homeownership.

This demand curve shifts with income risk. A fall in income risk increases V risky

(because risky borrowers value homes more when they are less likely to default), and

also makes pooling relatively attractive for safe borrowers. The expansion in the pooling

segment of the mortgage market increases credit access to risky borrowers, which shifts

the inelastic portion of the housing demand curve rightward.

3.2.2 General Equilibrium

I now consider joint housing market and mortgage market equilibrium. For

simplicity, I focus on the case of a fixed stock of housing. The intuition developed

here will carry forward once I consider dynamics and the accumulation of housing in

Section 3.3.

With an inelastic supply of housing, if a fall in income risk expands the pooling

segment of the mortgage market enough (if the inelastic portion of housing demand shifts

far enough to the right), then it will trigger a rapid increase in home prices, a full shift

away from income verification (a switch to the pooling regime), and a rapid relaxation of

down-payment requirements.

Let Hs denote the stock of homes. As income risk falls, housing demand increases,

as in Figure 3.5. If the level of housing demand attributable to risky borrowers gaining

access to pooling contracts remains below Hs, then for the housing market to clear

some risky borrowers must be willing to use their full information contract and become

homeowners. Their participation in the market requires that P−R ≤ V risky. All risky

borrowers would want to become homeowners if P−R <V risky and the market would
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Figure 3.6: Joint equilibrium in the mortgage market (top) and housing market (bottom)
when the screening regime occurs (high income risk).

not clear. We must have P−R =V risky. The marginal homeowner is a risky borrower

using a high interest rate loan who is indifferent between owning and renting. Note that

in this case, lenders must use income verification to ration credit access, so the screening

regime prevails.
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during a shift from the screening regime to the pooling regime (fall in income risk).

Figure 3.6 depicts this outcome. The top panel corresponds to the mortgage

market (as in Figure 3.4), depicting the pattern of segmentation across risk indices. The

bottom panel corresponds to the housing market, with a demand curve as in Figure 3.5

and an inelastic housing supply.
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Now consider a fall in income risk and suppose that the inelastic portion of the

housing demand curve surpasses Hs. This increase beyond Hs represents risky borrowers

who previously rented gaining access to pooling loans. Because these risky borrowers

are pooled with safe borrowers, they face a relatively low interest rate, get more value

from the pooling contract than they get from their full information contract, and therefore

strictly prefer to enter the housing market. Given the fixed housing stock, this increase in

demand cannot be met. Since all market participants value homeownership more than

the prevailing home price of P−R =V risky, borrowers begin to bid up home prices.

As home prices rise, homeownership becomes less attractive relative to renting,

which reduces downpayment requirements (the IC constraint relaxes). Figure 3.7 depicts

this outcome. The net home price rises from P0−R to P1−R, relaxing the IC constraint,

and reducing downpayment requirements. This improvement in loan terms increases the

value of the downpayment contract for safe borrowers from V down
0 to V down

1 , and shifts

the mortgage market toward using downpayment requirements to ration credit instead of

using income verification.

It is through the switch to downpayment-based credit rationing and the incen-

tive constraint channel that we get housing market clearing. Home prices must in-

crease enough to generate a shift away from income-verification based screening toward

downpayment-based screening. With the incentive constraint channel active, further

increases in the net home price will reduce the size of the pooling segment, reducing

credit access to risky borrowers, and dampening housing demand.

Before the shock to income risk, the marginal home buyer was a risky borrower

who was screened out of the market and was indifferent between owning and renting.

Now, that same marginal home buyer (because the homeownership rate has not changed)

instead has access to a pooling contract. The economy has switched from the original

screening regime to the pooling regime.



111

Note that outcomes change discontinuously during the regime change. Joint

housing and mortgage market equilibrium implies that a small fall in income risk can

generate a sudden collapse in income documentation requirements, a rapid appreciation

in home prices, and a relaxation of down-payment requirements.

We can interpret the rise in the home price as coming from a switch in the

indifference condition pricing homes. In the screening regime, risky borrowers had to

be indifferent between owning and renting so that they would be willing to purchase

homes. But in the pooling regime, risky borrowers gain access to low interest rate loans

and now strictly prefer to become homeowners. Instead of through their indifference

condition, homes are now priced implicitly through the indifference condition of those

safe borrowers who are on the margin between using a pooling contract and a high-

downpayment contract. It is their indifference between contract types which determines

the extent of credit access to risky borrowers and the level of housing demand. In effect,

homes are priced implicitly through the IC constraint.

This result has two interpretations which tie to previous results in the literature

on the origins of the housing boom. Justiniano et al. (2015b) show that shocks to an

exogenous limit on credit supply can generate a housing boom and bust. In this model,

the screening regime captures such a credit supply constraint, and the shift to the pooling

regime is an endogenous relaxation of this constraint. While income risk is high, adverse

selection in the mortgage market leads to credit rationing through income documentation

requirements. When the credit regime switches from screening to pooling, it is as-if a

credit limit ceases to bind.

The results can also be interpreted as endogenizing the shock to loan-to-value

ratios that Kaplan et al. (2016) find are necessary to explain the boom and bust. This

interpretation comes from how the regime shift changes the role of the IC constraint.

This constraint can be interpreted as a loan-to-value constraint because it specifies (given
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prevailing home prices), how large of a down payment a safe borrower must make to

signal their type. When home prices rise, this constraint relaxes, allowing safe borrowers

who use high-downpayment contracts to increase their leverage as home prices appreciate.

This mechanism generates a shift in loan-to-value ratios as-if there were a shock to a

loan-to-value constraint.

Note that the mechanism works both to generate booms and busts. Starting

from the pooling regime, an increase in income risk can lead to a tightening of lending

standards and a collapse in home prices. This result implies that mean reversion in

income risk can explain a bust following a housing boom. The next section extends the

model to a dynamic setting and formalizes this intuition.

3.3 Housing Boom-Bust Cycles

To examine the dynamics of home prices, I extend the model to an infinite horizon

setting and introduce simple house production and rental unit sectors. The resulting

rational expectations equilibrium is characterized by housing cycles due to shifts in the

credit regime. These cycles are driven by small underlying shocks to borrower income

risk which get amplified through the general equilibrium mechanism from Section 3.2.

The non-linear mechanism at the heart of this theory generates boom-bust cycles.

When there is a switch to pooling followed by a return to screening, it is as-if a large

positive credit supply shock hits the economy and then a large negative credit supply shock

follows up to generate a housing crisis. Rather than relying on a series of negatively

correlated shocks, the theory generates the entire episode through joint housing and

mortgage market clearing. As income risk falls, the economy reaches the threshold

triggering the pooling regime and an endogenous credit-boom occurs. Then, as income

risk smoothly returns to steady state, the economy reverts to the screening regime. Credit
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contracts and a housing crisis occurs. In this model, a housing crisis is the ultimate

unwinding of the initial credit-fueled boom.

3.3.1 Dynamic Extension

Time is indexed by t ∈ {0,1, . . .}. I re-interpret period 0 of the previous static

model as the end of each time period t, and period 1 as the beginning of t+1. All notation

carries forward, but with a time subscript t appended.

For instance, I denote income risk by φt , which I assume evolves as a second

order autoregressive process in logs:

lnφt = (1−ρφ
1−ρφ

2)µ
φ +ρφ

1 lnφt−1 +ρφ
2 lnφt−2 +σφεφ

t .

This setup generates momentum, which will lead to persistent rather than transitory shifts

in the credit regime. I view this specification for income risk as a reduced form for a

model of the labor market in which individuals have a higher risk of losing income during

an economic downturn17. For expositional simplicity, I take income risk as exogenous.

This exogeneity assumption shuts down potential general equilibrium feedback from

home prices to the state of the business cycle which may be important for understanding

the housing boom and bust (Mian and Sufi (2011) Berger et al. (2015)). However,

abstracting from this additional source of amplification helps to clarify the mechanism

introduced in this paper.

I assume that the resale value of a home purchased in t−1 is proportional to the

equilibrium price at time t, so that PtZit is the value of individual i’s home18. The value

17Appendix 3.C presents a model of labor market search where fundamental shocks to firm productivity
generate fluctuations in employment risk and therefore generate fluctuations in income risk.

18This assumption can be formalized by a setup where homeowners have idiosyncratic home maintenance
and investment opportunities. The amount of effective housing that they own after maintenance and
investment is Zit .
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of the home in foreclosure is then Pt(1−λ)Zit .

Given this proportionality, anticipated contract payoffs in t +1 for loan of size

Lit to borrower i at time t are

EtΠ
(

Lit

Pt+1
,ρitφt+1

)
Pt+1, and EtU

(
Lit

Pt+1
,τiφt+1

)
Pt+1.

Ex-post payoffs are homogenous of degree one in the realized home price and the face

value of debt, and so we can re-use the functions Π and U after normalizing by the next

period home price.

I assume that borrower observables take three values: ρit ∈ {0,ρL,ρH} where

0 < ρL < ρH < 1. Borrowers with ρit = 0 are known safe borrowers. In this segment

of the market, there is no problem of adverse selection. All borrowers will receive the

full information contract intended for safe borrowers and so they face neither an income

documentation requirement or a high downpayment requirement. We can interpret this

segment of the market as representing the traditional Alt-A segment of the mortgage

market — low documentation loans to borrowers with very high credit scores.

In contrast, adverse selection bites in the other two portions of of the market.

Borrowers with ρit = ρL are low risk borrowers while those with ρit = ρH are high risk

borrowers. These two portions of the market both represent borrowers with less-than-

perfect credit. A portion ρL of low risk borrowers are risky and a portion ρH of high risk

borrowers are risky. Let nL denote the fraction of the population with ρit = ρL and nH

denote the fraction with ρit = ρH . The remaining 1−nL−nH borrowers are known safe

borrowers with ρit = 0.

Because I no longer assume a continuous distribution for ρit , equilibrium now

requires that lenders occasionally use mixed strategies. In particular, in the parame-

terization I will consider, it is the middle segment of the market which will determine
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the prevailing credit regime. The segment of known safe borrowers always receives

their full information contract and the high risk segment will always be in a screening

equilibrium. The middle segment will either be in a screening equilibrium where all

risky borrowers have their type revealed, or lenders will randomly mix between offering

pooling contracts and high-downpayment contracts. Those risky borrowers who are

offered the pooling contract will gain access to credit, while those risky borrowers who

are offered the high-downpayment contract will opt to rent their home.

The homeownership rate in the pooling regime equals the number of risky bor-

rowers who gain access to pooling contracts (since they strictly prefer pooling), plus the

number of safe borrowers (who all become homeowners). Housing market clearing then

pins down the fraction of risky borrowers in segment ρit = ρL who are offered pooling

contracts. Safe borrowers in this group are happy to receive a random offer so long

as they are indifferent between pooling and high-downpayment contracts — which is

precisely the indifference condition pricing housing in the pooling regime.

Let Ht denote the homeownership rate and let µt denote the probability that a

lender offers the pooling contract to low risk borrowers in the pooling regime. Housing

market clearing requires that

Ht = (1−nL−nH)︸ ︷︷ ︸
Known Safe

+ nL(1−ρL)︸ ︷︷ ︸
Safe Among Low Risk

+ nLρL︸︷︷︸
Risky Among Low Risk

µt + nH(1−ρH)︸ ︷︷ ︸
Safe Among High Risk

.

The equilibrium homeownership rate must equal the demand for housing. All safe

borrowers own a home — captured by the first, second, and fourth terms on the right

hand side. The third term is the number of risky borrowers who become homeowners.

These borrowers only come from the low risk segment because the high risk segment is

in a screening equilibrium. A fraction µt of risky borrowers in the low risk segment get

offered a pooling contract.
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Solving for µt gives an expression for the chance that a low risk borrower is

offered a pooling contract.

µt =
Ht− (1−nLρL−nHρH)

nLρL
.

The numerator is the portion of homeowners who are risky borrowers. The number of

safe borrowers in the whole population is 1−nLρL−nHρH and any housing that is not

purchased by a safe borrower must be purchased by a risky borrower. The denominator

is the portion of borrowers in the low risk segment who are risky.

Together, mortgages that neither require income documentation nor a high down-

payment, and mortgages intended for risky borrowers are non-prime. The non-prime

share is

Non-Prime Sharet =


(1−nL−nH)+Ht−(1−ρLnL−ρHnH)

Ht
if St = Screening

(1−nL−nH)+nLµt
Ht

if St = Pooling.

The non-prime share suddenly increased between 2003 and 2004, and then collapsed

in the housing crisis. In the screening regime, non-prime lending consists of mortgages

to known safe borrowers and mortgages to risky borrowers. In the pooling regime, it

consists of mortgages to known safe borrowers and pooling contracts in the low risk

segment.

The credit regime depends on which kind of contract safe borrowers in the low

risk segment prefer. The high-documentation contract has a loan size satisfying

0 =
1

1+ r
EtΠ1

(
Ldoc

t
Pt+1

,0
)
+βEtU1

(
Ldoc

t
Pt+1

,0
)
.
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The value of this contract to a safe borrower in the low risk segment is

V doc
t =

1
1+ r

EtΠ
(

Ldoc
t

Pt+1
,0
)

Pt+1 +βEtU
(

Ldoc
t

Pt+1
,0
)

Pt+1−κ.

The pooling contract in the low risk segment has a loan size satisfying

0 =
1

1+ r
EtΠ1

(
Lpool

t

Pt+1
,ρLφt+1

)
+βEtU1

(
Lpool

t

Pt+1
,0

)
.

Safe borrowers get value of

V pool
t =

1
1+ r

EtΠ

(
Lpool

t

Pt+1
,ρLφt+1

)
Pt+1 +βEtU

(
Lpool

t

Pt+1
,0

)
Pt+1

from this contract.

The prevailing credit regime, indicated by St , is determined by these two values.

St =


Screening if V doc

t ≥V pool
t

Pooling if V doc
t <V pool

t

If V doc
t ≥ V pool

t then safe borrowers in the low risk segment prefer screening, and

otherwise they prefer pooling.

In the screening regime, risky borrowers are indifferent between their full infor-

mation contract and renting. The first order condition determining the loan size of their

full information contract, Lrisky
t , is

0 =
1

1+ r
EtΠ1

(
Lrisky

t

Pt+1
,φt+1

)
+βEtU1

(
Lrisky

t

Pt+1
,φt+1

)
.
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They get value of

V risky
t =

1
1+ r

EtΠ

(
Lrisky

t

Pt+1
,φt+1

)
Pt+1 +βEtU

(
Lrisky

t

Pt+1
,φt+1

)
Pt+1

from this contract. The pricing condition in the screening regime is then

Pt = Rt +V risky
t if St = Screening.

In the pooling regime, safe borrower indifference between pooling and high-

downpayment contracts pins down the home price. The binding IC constraint implies

that the high-downpayment contract’s loan size must satisfy

1
1+ r

EtΠ
(

Ldown
t

Pt+1
,0
)

Pt+1 +βEtU
(

Ldown
t

Pt+1
,φt+1

)
Pt+1 = Pt−Rt

giving safe borrowers value of

V down
t =

1
1+ r

EtΠ
(

Ldown
t

Pt+1
,0
)

Pt+1 +βEtU
(

Ldown
t

Pt+1
,0
)

Pt+1.

Their indifference condition pricing the home is then

V pool
t =V down

t if St = Pooling.

The last contract we need is the full information safe contract. It has loan size

satisfying

0 =
1

1+ r
EtΠ1

(
Lsa f e

t

Pt+1
,0

)
+βEtU1

(
Lsa f e

t

Pt+1
,0

)
.
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Safe borrowers get value of

V sa f e
t =

1
1+ r

EtΠ

(
Lsa f e

t

Pt+1
,0

)
Pt+1 +βEtU

(
Lsa f e

t

Pt+1
,0

)
Pt+1.

from this contract.

Given these contracts, we can calculate the ex-post depreciation of the housing

stock due to foreclosure losses. On a contract with loan size of L, the ex-post loan-to-value

ratio is L/Pt and the ex-post default rate among borrowers with type τ is D(L/Pt ,τφt ,z).

As a result, the average home quality after foreclosure losses given loan size of L and

type τ is

Γ(L/Pt ,τφt) =
∫ ∞

0
[1−λD(L/Pt ,τφt ,z)]zF ′(z)dz

We can then calculate the stock of housing after idiosyncratic value shocks and foreclosure

losses. This value depends on the allocation of contracts from the prior period, and

therefore depends on the prior credit regime. Let H̃t denote this remaining stock of

housing.

If the screening regime prevailed in the previous period, then this quantity satisfies

H̃t = Γ

(
Lsa f e

t−1

Pt
,0

)
(1−nL−nH)+Γ

(
Ldoc

t−1

Pt
,0

)
[nL(1−ρL)+nH(1−ρH)]

+Γ

(
Lrisky

t−1

Pt
,φt

)
(Ht−1− (1−nLρL−nHρH) if St−1 = Screening

Known safe borrowers used the safe contract. The remaining safe borrowers used the

high-documentation contract. All remaining housing demand must come from risky

borrowers who opted to use the risky contract.

On the other hand, if the pooling regime prevailed in the prior period, then the
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remaining stock of housing is

H̃t = Γ

(
Lsa f e

t−1

Pt
,0

)
(1−nL−nH)+Γ

(
Lpool

t−1

Pt
,0

)
nL(1−ρL)µt−1

+Γ

(
Ldown

t−1

Pt
,0

)
nL(1−ρL)(1−µt−1)+Γ

(
Lpool

t−1

Pt
,φt

)
nLρLµt−1

+Γ

(
Ldown

t−1

Pt
,0

)
nH(1−ρH) if St−1 = Pooling.

This expression differs from the previous because risky borrowers no longer use the

risky contract, safe borrowers in the low risk segment use both the pooling and high-

downpayment contracts, safe borrowers in the high risk segment use high-downpayment

contracts, and risky borrowers in the low risk segment use the pooling contract.

3.3.2 Rental and Housing Supply

I assume that absentee landlords supply rental units using apartment buildings.

Apartment buildings are produced from numeraire using a constant returns to scale

technology. Given the cost of funds of r faced by landlords, the rental rate is equal to the

user cost of apartments:

Rt = Ξ− 1−δA

1+ r
Ξ

where Ξ is the landlord’s conversion rate between apartments and numeraire and δA is

the depreciation rate on apartments. Under this assumption, the supply of rental units is

perfectly elastic. This setup simplifies the analysis and lets the model match the stability

of rental rates over the housing boom. Although a stark simplification, the main results

go through if landlords can produce rental services by combining housing and apartments

— see Appendix 3.B for an example extension.

Housing units are produced by a competitive housing sector. New homes are built
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using a Cobb-Douglas production technology in land and numeraire. In each period, a

quantity ` > 0 of new land is auctioned to home builders by the government. The supply

of new housing then solves:

max
Hnew

t ,IH
t

PtHnew
t − IH

t

s.t. Hnew
t ≤ `α

(
IH
t

1−α

)1−α

where IH
t denotes investment in new housing. Since land is purchased from the govern-

ment and the production of housing has constant returns to scale, developers make zero

profits and the government receives land rents. The implied stock of new housing is

Hnew
t = P

1−α
α

t `.

The quantity (1−α)/α is the elasticity of new home construction to the home price.

The supply of housing is then the amount of housing from the prior period after

depreciation and foreclosure costs, plus new housing. This quantity is

Ht = H̃t +Hnew
t

Note that both H̃t and Hnew
t are increasing in the home price so housing supply is upward

sloping. It is no longer inelastic, as in Section 3.2.

3.3.3 Numerical Example: Parameterization

I parameterize the model to benchmark values from the macroeconomic literature

on housing. For the new parameters, I target historical mortgage rates and spreads, as

well as the historical foreclosure rate. For the exogenous process for income risk, I
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choose parameter values that generate momentum. The qualitative results only require

that income risk exhibits hump-shaped impulse responses. Table 3.1 summarizes the

model parameterization.

Mortgage contract payoffs depend on the foreclosure loss parameter, λ, and

the distribution of Zit . I choose λ = .27 to match the estimate of the sale discount on

a foreclosed homes from Campbell et al. (2011). I assume that Zit has a log-normal

distribution with mean equal to 1−δo and with standard deviation parameter of σz. The

parameter δo can be interpreted as the depreciation rate on owner-occupied housing. I

choose this depreciation rate and the standard deviation parameter based on Piazzesi and

Schneider (2016). Specifically, I choose δo equal to the lower bound of the range that

they suggest, and use the standard deviation parameter to match idiosyncratic volatility

in home prices.

In order to be consistent with the literature, I set the discount factor for borrowers

to match the discount factor for impatient households in Iacoviello (2005). Similarly,

I choose the lender cost of funds parameter, r, equal to the discount rate for patient

households in Iacoviello (2005).

I parameterize land supply to match homeownership — given the steady state

home price, we can use ` to match a 65% homeownership rate — the average homeown-

ership rate in the three decades prior to 2003. I choose the expenditure share on land, α,

to imply an housing supply elasticity, 1−α
α , equal to the median of 1.5 in Saiz (2010).

In steady state, the full information contract for risky borrowers depends crucially

on the income risk parameter µφ. Since this contract represents a high interest rate loan

used by borrowers who are known to have elevated default risk, I choose this parameter

to imply a 6% spread of the contract’s interest rate above the cost of funds for lenders.

This choice implies a steady state mortgage rate of about 10% faced by risky borrowers

in the subprime market, which is in the typical range for interest rates faced by subprime
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Table 3.1: Baseline parameterization (quarterly)

Parameter Value Target/Source
λ 0.27 Campbell et al. (2011)
δo .0038 1.5% ann. depreciation (Piazzesi and Schneider (2016))
σz .07 .14 ann. s.d. of home prices (Piazzesi and Schneider (2016))
β .95 Iacoviello (2005)
r ln(1/.99) Iacoviello (2005)
R 1 normalize rental rate to 1
` 3.52×10−5 65% s.s. homeownership rate

1−α
α 1.5 median supply elasticity in Saiz (2010)

exp(µφ) 11.1% 6% s.s. spread on risky contract
κ 0.0119 0.75% s.s. spread on high-doc contract in segment L
ρL 8.35% 0.75% s.s. spread on pooling contract in segment L
ρH 47.4% 0.36% foreclosure rate in steady state (Corbae and Quintin (2013))

nL,nH 29.3%,70.1% 1% s.s. share pooling and 1% s.s. share risky borrowers
ρφ

1 1.6
ρφ

2 −.63
σφ .05

borrowers prior to the housing boom.

Next, I choose values for ρL and κ to imply that both the pooling contract in

the low risk segment and high-documentation contracts have a 0.75% spread over the

lender’s cost of funds. In the model, when these two contracts have the same interest

rate, safe borrowers in the low risk segment will prefer the high-documentation contract

because it gives them their optimal loan size. However, keeping the spread on the two

contracts close to each other ensures that there is some chance that shocks to income risk

can trigger a switch to the pooling regime. Since the high-documentation contract interest

rate depends on both parameters, I first choose ρL to imply a 0.75% spread on the pooling

contract, and then choose κ (given ρL) to get a 0.75% spread on the screening contract.

This parameterization implies that the mortgage rate for the high-documentation contract

is about 4.5%, in line with levels of prime mortgage rates (after accounting for inflation)

during the early 2000’s (see Justiniano et al. (2016)).

Finally, we can jointly pin down the share of risky borrowers in the high risk

segment, the size of the low risk segment, and the size of the high risky segment to target
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the share of pooling contracts, the share of contracts going to borrowers who are revealed

to be risky (subprime mortgages), and the steady state foreclosure rate. I set the former

two targets to 1% to reflect that both forms of non-prime lending were rare prior to the

housing boom. For the later moment, I match a 0.36% foreclosure rate following Corbae

and Quintin (2013).

Finally, I choose parameter values for the exogenous income risk process to imply

that income risk has some momentum. The exact parameter values are not important for

the qualitative results. A hump-shaped response is necessary to get persistent changes

in the credit regime from slightly different paths for income risk. I choose the standard

deviation parameter σφ to be just large enough so that the solution algorithm (see Ap-

pendix 3.D) converges to an equilibrium where credit regime changes occasionally arise.

If this parameter is too small, then equilibrium remains in a small enough neighborhood

of the steady state that the algorithm converges to the usual local linear approximation

coming from traditional perturbation methods. For a sufficiently large standard deviation,

the algorithm will instead converge to a regime-switching linear approximation, capturing

the non-linear equilibrium dynamics arising in this model.

3.3.4 Numerical Example: Simulations

Figure 3.8 shows equilibrium outcomes from two simulations of the model. In

the first simulation (dashed lines), I start the economy at its stochastic steady state19,

and then shock the economy for three periods with a series of −0.5 standard deviation

income risk shocks. These shocks push the economy to the brink of regime change, but

do not quite trigger the pooling regime. In the second simulation, I perform the same

exercise, but add a fourth −0.5 standard deviation shock, which pushes the economy past

19The stochastic steady state is the long-run outcome in the absence of shocks and is not necessarily
equal to the deterministic steady state.
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Figure 3.8: Response to 3 (dashed) and 4 (solid) -1/2 standard deviation shocks to
income risk. Shaded region indicates pooling regime in second simulation.

the tipping point and triggers the pooling regime. The difference between the dashed and

solid impulse responses lets us visualize the effect of the regime change.

The top left panel shows the implied paths for income risk in the two scenarios.

Both have a smooth hump-shaped response to the shocks. The responses are identical for
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the first three periods, but then diverge in the fourth period. For both simulations, income

risk steadily and smoothly reverts to steady state after peaking.

These two slightly different paths for income risk lead to very different equi-

librium outcomes. The top right panel shows the equilibrium credit regime. In the

three-shock simulation, the economy stays in the screening regime throughout and ex-

hibits a smooth impulse response. In the four-shock simulation, the additional shock in

period 4 triggers the pooling regime which persists until period 14.

The regime change leads to a sudden and rapid shift in equilibrium outcomes.

Home prices rapidly appreciate (middle left panel), the share of non-prime lending in

the economy jumps up and begins to grow (middle right panel), the growth rate of

homeownership increases (bottom left panel), and the foreclosure rate slightly falls and

then begins to grow (bottom right panel).

As income risk reverts smoothly toward steady state, the economy eventually

reaches the regime-change threshold again. The resulting shift back to the screening

regime leads to a credit contraction (collapse in non-prime share) and a sudden collapse in

home prices. The collapse in home prices pushes homeowners underwater and generates

a foreclosure crisis — which appears as a spike in the foreclosure rate in period 14.

Again, note that no shock hits the economy to generate the bust — the only

driving force underlying these responses is the smoothly varying path of income risk.

From the accumulated effect of shocks in the early periods of the simulation, we get a

rich boom-bust pattern through the model’s state-dependent amplification mechanism.

Although it appears as-if a series of highly correlated shocks hit the economy in periods

4 and then again in period 14, the true underlying income risk shocks all occurred within

the first 4 periods of the simulation. The turning points of the cycle can be entirely

attributed to the propagation and amplification of these initial shocks.

It took a number of these initial shocks to push the economy to the tipping point



127

— specifically four -0.5 standard deviation shocks — so this housing boom-bust episode

is a relatively rare event. The conditions that trigger the housing cycle develop steadily

through the cumulative effect of small shocks to the aggregate state of the economy.

This result formalizes the idea that developing conditions in an economy may lead up

to a boom. This model provides micro-foundations to study how evolving economic

conditions might signal an imminent credit boom.

This theory provides a framework for modeling credit-driven housing booms

which end in housing crises. The predictions of the model line up with the historical

evidence of Jordà et al. (2015), who show that a simultaneous boom in credit and

home prices predicts a subsequent bust. This theory proposes adverse selection in the

mortgage market and general equilibrium between housing and the mortgage market as

an explanation for this type of boom-bust pattern. Because of the non-linear mechanism

underlying this result, the model does not rely on shocks to drive the turning points in the

cycle. Rather, small shocks accumulate into the state of the economy to trigger the boom,

then mean reversion in fundamentals triggers the bust.

3.4 Discussion of Empirical Evidence

This section examines the theory’s predictions for the evolution of debt across

borrowers, and for mortgage rates. I argue that the model matches existing empirical

evidence from individual-level mortgage outcomes during the housing boom and bust.

3.4.1 The Allocation of Debt During the Boom

The microeconomic literature has recently turned to credit bureau data to examine

how mortgage markets allocated debt during the housing boom. Mian and Sufi (2015)

examine the growth in debt of individuals borrowers, binned according to their FICO
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score in 1997. They find that debt grew more for borrowers with low FICO scores in 1997

than for borrowers with high FICO scores in 1997 and show that the difference across the

credit score distribution comes from the dynamics of loan-to-value ratios. High FICO

score borrowers reduces their loan-to-value ratios during the boom while low FICO score

borrowers did not. In contrast, Albanesi et al. (2016) look at the allocation of debt within

each year by FICO score. They find that the percent difference in debt between low FICO

score borrowers in 2005 and low FICO score borrowers in 2000 was smaller than the

percent difference in debt between high FICO score borrowers in 2005 and high FICO

score borrowers in 2000. Based on different conditional moments calculated from similar

data, these authors come to different conclusions20.

I argue that the theory presented in this paper may help to reconcile these results.

When comparing the theory to this empirical evidence, it is crucial to distinguish between

borrower time-invariant characteristics (captured by τi), and borrower observable charac-

teristics relevant for credit decisions (captured by ρi). A switch from the screening regime

to the pooling regime leads to a change in how lenders ration credit. They substitute

down-payment based rationing for income-verification based rationing. The implication

is that safe borrowers in the prime market will reduce their loan-to-value ratios after the

regime change. In contrast, risky borrower loan-to-value ratios are relatively stable since

they find high-downpayment loans undesirable. As a result, risky borrowers have debt

which moves in proportion to home prices while safe borrower debt moves less than

one-for-one with home prices. This pattern of loan-to-value ratios over time by borrower

type implies that debt grows more for risky borrowers during the boom.

However, fundamental types are not directly measurable. The variable, ρi, mea-

sures lender initial beliefs about the riskiness of borrowers before they make mortgage

offers — which is likely to be correlated with a borrowers credit score close to the time of

20Albanesi et al. (2016) replicate the result of Mian and Sufi (2015) so the difference is unlikely due to a
discrepancy in their samples.
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mortgage origination. Since the mortgage market is segmented according to this variable,

the pattern of debt growth will vary by ρi. Average debt growth in each market segment

depends on both the composition of funded loans (related to the share of risky borrowers

in the segment) and the terms of those loans. In low risk parts of the market, lenders pool

borrowers which leads to a relatively stable loan-to-value ratio regardless of the credit

regime. In contrast, lenders screen in the high risk segment, and loan-to-value ratios will

change depending on whether or not they use downpayment requirements or income

verification to ration credit. The implication is that loan-to-value ratios will fall during a

switch to the pooling regime because lenders begin to rely on downpayment requirements

to separate out borrowers. As a result, debt growth will be larger for borrowers that are

observably low risk (low ρi) because they have more stable loan-to-value ratios.

As a result, the distinction between fundamental types and lender beliefs about

fundamental types can reverse the pattern of debt growth predicted by the theory. Whether

a given measure of borrower riskiness is more related to borrower types or lender

information about types changes how it relates to the theory.

To the extent that the measure used by Mian and Sufi (2015) captures time-

invariant dimensions of borrower riskiness, I argue that the theory is consistent with their

evidence. They track fixed groups of individuals based on their FICO scores in 1997 and

report how debt changed for each group during the boom. If borrower fundamental types

are persistent, we would expect the share of risky borrowers to be larger among those

borrowers with low FICO scores in 1997 relative to those borrowers with high FICO

scores in 1997. As a result, I argue that their measure of borrower riskiness relates to

τi in the theory. Under this interpretation, the model’s predictions for debt growth and

loan-to-value ratios are consistent with the evidence of Mian and Sufi (2015).

Simultaneously, I argue that the model also matches the evidence of Albanesi

et al. (2016). Their measure of borrower riskiness reflects observables close to the time
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Figure 3.9: Debt accumulation by fundamental borrower types (left) and borrower
observables at origination (right). Response to 3 (dashed) and 4 (solid) -1/2 standard
deviation income risk shocks. Shaded region indicates pooling regime in second
simulation.

of mortgage origination, which relates to the risk index, ρi. Along this dimension, the

model predicts that borrowers that appeared risky at the time or mortgage origination had

less debt growth during the boom — consistent with their findings.

Figure 3.9 shows the model’s predictions for debt growth by borrower fundamen-

tal types (τi) and by borrower observables (ρi). I show the cumulative change in debt in

the two simulations considered in Section 3.3. In the first simulation (dashed lines) three

-1/2 standard deviation shocks hit the economy. In the second (solid lines), an additional

fourth shock hits the economy and triggers the pooling regime.

In the three-shock simulation, debt grows symmetrically across fundamental

borrower types and across borrower observables. In the absence of a change in the credit

regime, lenders use income verification to screen risky borrowers which leads to stable

loan-to-value ratios within individual borrowers. As a result, debt moves in proportion to

home prices and the pattern of debt accumulation reflects the response of home prices to

the fall in income risk. There are no differential patterns of debt growth.

In contrast, we do get differences in debt growth by borrower type and borrower
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observables when a fourth shock triggers the pooling regime. First consider the right panel

— debt growth by borrower observables (ρi). In the zero-risk segment all borrowers are

known to be safe and are offered pooling contracts in both regimes. They have relatively

stable loan-to-value ratios and so their cumulative debt growth (blue line) moves one-

for-one with home prices. On the other extreme, the high risk segment of the market

consists entirely of safe borrowers who switch from income-verification based screening

to downpayment based screening. These borrowers see a fall in their loan-to-value ratios

because of this shift in the nature of credit rationing. As a result, their cumulative debt

growth (orange line) moves less than one-for-one with the home price during the boom.

In the low risk segment of the market, safe borrowers are indifferent between pooling and

making a large downpayment. Lenders mix between offering the two types of contracts.

As a result, a portion of borrowers switches from income-verification based screening to

pooling while the remaining portion switches from income verification based screening

to downpayment-based screening. As a mixture of the two kinds of contracts, their

response for debt accumulation is between the extremes of the zero risk and the high risk

segments. This pattern — with more debt growth among observably safe borrowers — is

qualitatively consistent with the findings of Albanesi et al. (2016) if we assume that their

measure of borrower riskiness captures ρi in the theory.

Moving to the left graph, we get a reverse pattern that I argue is consistent with

the evidence of Mian and Sufi (2015). The debt growth of risky borrowers (orange line)

follows the path of home prices because they have relatively stable loan-to-value ratios.

In the screening regime they use their full information contract and in the pooling regime

they use a pooling contract. Neither require a particularly large downpayment, and so their

debt moves in proportion to the home price. Safe borrowers use a mixture of contracts

because they get loans from multiple segments of the overall market. However, because a

large portion of safe borrowers in the prime market switch from income-verification based
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screening to downpayment based screening, there is a fall in the average loan-to-value

ratio among safe borrowers. The shift in the nature of credit rationing implies that safe

borrower debt moves less than one-for-one with home prices. In contrast, risky borrowers

use their full information contract in the screening regime and switch to using pooling

contracts in the pooling regime. Neither has a large downpayment requirement, and

so loan-to-value ratios do not change very much for risky borrowers. Their pattern for

debt growth reflects the movement of home prices. As a result, risky borrower debt

grows more than safe borrower debt during the boom. These patterns for debt growth

and loan-to-value ratios are consistent with Mian and Sufi (2015) if we assume that their

measure of borrower riskiness proxies for borrower fundamental types. This assumption

is reasonable so long as borrower fundamental types are relatively persistent.

Note that the above discussion abstracts from possible compositional effects from

more risky borrowers entering the market. In the theory, the homeownership rate is

relatively constant over the simulation (increasing by two percentage points). If home

prices didn’t rise, then more risky borrowers would enter the market and drive up the

homeownership rate. But, in general equilibrium, rising home prices lead to relaxed

incentive constraints, and a shift to downpayment based credit rationing. The rationing

effect of higher home prices keeps risky borrowers from driving up the homeownership

rate and ensures that the housing market clears. Consistent with this result, Foote et al.

(2016) show that, indeed, the boom was a bad time to become a new homeowner.

In summary, I argue that the theory is consistent with both the evidence in

Mian and Sufi (2015) and the evidence in Albanesi et al. (2016). Rather than being

conflicting, I argue that these studies complement each other by giving two distinct

sets of moments which any theory of the boom ought to match. By following fixed

individuals over time, Mian and Sufi (2015) let us think about reallocation of debt by

persistent borrower characteristics. By examining how debt was allocated in each year
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across borrower observables, Albanesi et al. (2016) show how the market responded to

available information. Each approach captures a distinct theoretical concept — borrower

fundamental types versus observable characteristics. The theory offered by this paper is

consistent with these moments, and highlights the importance of distinguishing between

borrower types and borrower observables.

3.4.2 The Mortgage Rate Conundrum

Justiniano et al. (2016) examine individual level loan data and document a puzzle

— during the boom, mortgage rates were low relative to the level we would expect given

prevailing treasury yields. In particular, they show that after composition adjusting the

sample of loans, average mortgage rates fell relative to treasury yields by about 50 basis

points during the later half of 2003, and this persisted for the duration of the housing

boom.

Figures 3.10 and 3.11 show a stylized replication of their findings using aggregate

data. Figure 3.10 shows the average spread on 15 year and 30 year fixed rate mortgages

over the ten year treasury yield from January of 2000 to January of 2008. Between the

middle of 2003 and the end of 2005, mortgage rate spreads were low relative to the

overall sample.

We should expect these spreads to move endogenously with various aggregate

factors. I follow Justiniano et al. (2016) and calculate a measure of residual variation in

mortgage rates that is unexplained by the historical relationship of mortgage rates to the

yield curve and macroeconomic factors.

Specifically, on a sample from January of 1990 to January of 2008 I run the

regression

it = αm +β′Xt +ut (3.4)
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Figure 3.10: Average spread on fixed rate mortgages over ten year treasuries

where it is either the average interest rate on 15 or 30 year fixed rate mortgages, αm is a

dummy for the month in the year, and Xt is a vector containing the contemporaneous and

lagged 1, 5 ,and 10 year treasury yields, the lagged unemployment rate, lagged growth in
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Figure 3.11: Residual variation in fixed rate mortgages (OLS residuals from (3.4)).

industrial production, and lagged inflation. The residuals from this regression represent

movements in mortgage rates that are not explained by historical co-movement with these

aggregate factors. Figure 3.11 shows these residuals from January of 2000 to January of
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Figure 3.12: Mortgage rates by fundamental borrower types (left) and borrower observ-
ables at origination (right). Response to 3 (dashed) and 4 (solid) -1/2 standard deviation
income risk shocks. Shaded region indicates pooling regime in second simulation.

2008.

The residual variation in mortgage rates moves closely together for both series.

Moreover, the pattern follows precisely the results of Justiniano et al. (2016). In the

later half of 2003, both series show a sudden and rapid fall in mortgage rates relative to

what we would expect given historical co-movements with aggregate factors. This effect

persists during the housing boom, reverting to zero around 2005-2006.

The theory offered by this paper can explain the mortgage rate conundrum

documented by Justiniano et al. (2016) as coming from a compression of risk spreads on

mortgages, and as well as a reduction in screening costs that get priced into contracts. In

particular, it explains how a sudden fall in mortgage rates relative to aggregate factors

can occur — through a shift from a screening regime to a pooling regime in the mortgage

market.

Figure 3.12 shows the paths for mortgage rates in a simulation where three -1/2

standard deviation shocks to income risk hit the economy and a simulation where four

-1/2 standard deviation shocks hit the economy. It shows responses of mortgage rates

disaggregated by borrower type and by borrower observables at origination. In the first
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simulation the economy remains in the screening regime throughout, while the economy

enters and exits the pooling regime in the second simulation. The grey shaded region

shows when the pooling regime occurs.

A switch to the pooling leads to a collapse in mortgage rates — especially for

risky borrowers and borrowers in the low risk and high risk market segments. This result

is consistent with the findings of Justiniano et al. (2016).

Why do mortgage rates fall? Consider a risky borrower who gains access to a

pooling contract. Initially, they used a full information contract which fully priced in

their elevated default risk. When they gain access to a pooling contract, this default risk

gets diluted through pooling with safe borrowers. As a result, they see a fall in the risk

premium on their mortgage due to an implicit subsidy from safe borrowers.

For safe borrowers who switch from high-documentation to high-downpayment

contracts, the fall in the interest rate comes from reduced screening costs for lenders.

When screening, lenders sink resources into producing information about individual

borrowers and the screening contract prices these costs into the interest rate. When a safe

borrower moves from a high-documentation contract to a high-downpayment contract,

these cost are no longer paid by lenders. A high down payment additionally reduces risk

of strategic default. As a result, these contracts have relatively low interest rates and the

shift implies a fall in mortgage spreads.

The non-linear mechanism in this theory, where small shocks to income risk can

trigger large changes in equilibrium outcomes, provides an explanation for the mortgage

rate conundrum as an endogenous outcome driven by macroeconomic fundamentals. As

emphasized by Justiniano et al. (2016), the timing of the relative fall in mortgage rates

coincided with the end of the Federal Reserve’s easing cycle. Specifically, in the summer

of 2003, the Fed signaled that, due to improving conditions in labor markets, they would

no longer continue to lower their policy rate. At this point, long-term yields began to rise
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in anticipation of a higher future policy rate, yet mortgage rates didn’t rise with treasury

yields. I argue that we can understand the mortgage rate puzzle as coming from the

simultaneous endogenous response of both the mortgage market and policy makers to

improvements in the macroeconomy.

Justiniano et al. (2016) also show that the size of the mortgage origination industry

didn’t follow its historical pattern of shrinking at the end of a Fed easing cycle. Similar

to past business cycles, there was a mortgage refinance boom as monetary policy lowered

interest rates after the recession of 2001. During this period, employment in the mortgage

industry grew steadily. But this time it continued to grow when the Fed signaled higher

future interest rates, likely due to the boom in non-prime lending that began at the end of

2003. The theory of this paper explains the non-prime lending boom as the rational profit

maximizing response of lenders to falling income risk, and therefore can rationalize the

continued expansion of the mortgage industry at the end of the Fed’s policy cycle.

The expansion in non-prime lending explains both low mortgage rates relative

to the yield curve, and the continued expansion of the mortgage industry. This pattern

was at odds with the historical pattern for precisely the same reasons that the emergence

of non-prime lending was at odds with historical patterns. This narrative explains the

mortgage rate conundrum by explaining the simultaneity of the non-prime lending boom,

the housing boom, rising yields, and improving labor market conditions.

3.5 Conclusion

In this paper, I develop a theory of mortgage credit which provides an explanation

for the rise of non-prime lending during the early 2000’s, the associated housing boom,

and the subsequent housing crisis. This theory is built on the assumption that competitive

lenders face asymmetric information about borrower income risk during mortgage orig-
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ination, which leads to endogenous segmentation of the mortgage market. As a result,

the model makes rich predictions for the allocation of credit and mortgage rates across

borrowers. I show that it can match and may to help reconcile the existing microeco-

nomic evidence on debt allocation during the boom, as well as explain the mortgage rate

conundrum. The dynamics in the theory rely solely on variation in income risk over the

business cycle, and the model generates boom-bust cycles through the endogenous and

state-dependent amplification of these fundamentals. This theory allows us to explain

housing boom-bust episodes without appealing to either new or large shocks.

The key non-linear mechanism operates through general equilibrium feedback

between housing and mortgage markets. During an expansion, income risk falls, which

increases the share of borrowers offered pooling mortgage contracts. If this expansion

in credit access attracts former renters into the housing market, then housing demand

increases. This increase in demand triggers a regime change — lenders stop offering

mortgages with high documentation requirements, loan-to-value ratios suddenly increase,

and home prices rapidly appreciate. As the cycle peaks and income risk begins to revert,

there is a reversal in the credit regime. Credit access falls, home prices collapse, and, as a

result, there is a foreclosure crisis as borrowers go underwater on their homes. Through

the non-linear mechanism implied by joint housing and mortgage market clearing, we can

explain housing boom-bust cycles resulting from small shocks to economic fundamentals.

The dynamic model has a structure that can be embedded into standard business

cycle models. An important next step is to introduce the mechanism into a production

economy that includes frictions in financial intermediation. Feedback from home prices

to consumption and output may amplify housing boom-bust episodes and influence

business cycle dynamics generally. Also, because the housing crisis precipitated a

financial panic in markets that relied on mortgage-backed securities as collateral, frictions

in the intermediation of funds between lenders and savers may be particularly important
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for understanding recessions which follow after housing crises. This theory provides a

novel mechanism for understanding the origins of housing crises and provides micro-

foundations for studying policies intended to reduce the likelihood of future crises and

recessions.
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Appendix

3.A Equilibrium Characterization and Proofs

Lemma 3.A.1 (Sub-game Perfect Period 1 Expected Payoffs) Consider expected pay-

offs from the sub-game beginning in period 1. Suppose that an individual borrower i has

type τi and has been accepted into a contract with transfer of Ti and loan size of Li > 0.

Then the expected payoff from the contract for the borrower is Ti +βU(Li,τiφ) and the

expected payoff to the lender is −Ti +
1

1+r Π(Li,ρiφ) where ρi is the lender’s subjective

belief that i is the risky type.

Proof. The result follows from backward induction in period 1. At the end of period 1,

lenders choose whether or not to initiate foreclosure following a borrower default. Their

payoff from initiating foreclosure is −Ti +
1

1+r min{Li,(1−λ)Zi}. If they do not initiate

foreclosure, their payoff is −Ti. As a result, since P[Zi > 0] > 0, they have a strictly

dominant strategy to initiate foreclosure.

Borrowers anticipate that foreclosure will occur following any default. If Yi = 0,

then they cannot make their payment of Li, and must default. If they have income and do

not default, they get−Ti+β(Yi+Zi−Li). If they default they get−Ti+β(Yi+max{(1−

λ)Zi−Li,0}). The gain from default is βmax{−λZi,Li−Zi}. The gain is strictly positive

when Li > Zi, is zero when Li = Zi, and is strictly negative when Li < Zi. Since Zi is

continuously distributed, the borrower has a strictly dominant strategy with probability 1.
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Therefore, the payoffs from this sub-game are

1{Zi < Li or Yi = 0} [Ti +β(Yi +max{(1−λ)Zi−Li,0})]

+1{Zi ≥ Li and Yi = Y} [Yi +Zi−Li]

for the borrower, and

1{Zi < Li or Yi = 0}
[
−Ti +

1
1+ r

min{Li,(1−λ)Zi}
]

+1{Zi ≥ Li and Yi = Y}
[
−Ti +

1
1+ r

Li

]

for the lender. Given type τi and the lender’s belief about i’s type of ρi, the result follows

from calculating expected values of these payoffs.

These payoff functions are the continuation payoffs for the sub-game following

the borrower’s application decision and the lender’s screening and accept/reject decision.

For any finite set of contracts that are offered to an individual borrower, this sub-game is

a finite signaling game. The message space of the borrower (sender) is the set of contracts

and the action space of the lender (receiver) is the choice of screening (if the contract

applied to is a screening contract) and the choice of whether to accepting or reject the

contract. Note that because this sub-game is a standard signaling game, there can be

many equilibria.

However, competition among lenders over contract offers will select among these

possible continuation outcomes, and I can show that, up to the application behavior of

risky borrowers when offered screening contracts, the sub-game perfect equilibrium of

the overall game is unique, despite there existing many equilibria of the sub-game that

begins with the borrower application decision.

To do so, I define competitive contracts that may emerge as equilibrium offers,
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and show that the contracts satisfying these definitions are unique.

First, I calculate the derivatives of Π and U in L. We have

Π(L,φ) = L−
∫ ∞

0
D(L,ρφ,z)max{L− (1−λ)z,0}F ′(z)dz

= L−
∫ L

0
[L− (1−λ)z]F ′(z)dz−φ

∫ L
1−λ

L
[L− (1−λ)z]F ′(z)dz

and so, by Leibniz’s rule,

Π1(L,φ) = 1−λLF ′(L)−F(L)−φ
[
−λLF ′(L)+F

(
L

1−λ

)
−F(L)

]
= 1− (1−φ)(λLF ′(L)+F(L))−φF

(
L

1−λ

)
.

Similarly,

U(L,φ) = z̄−L+
∫ ∞

0
D(L,τφ,z)max{−λz,L− z}F ′(z)dz

= z̄−L+
∫ L

0
(L− z)F ′(z)dz+φ

∫ L
1−λ

L
(L− z)F ′(z)dz+φ

∫ ∞

L
1−λ

(−λz)F ′(z)dz

and

U1(L,φ) =−1+F(L)+φ
1

1−λ

(
L− L

1−λ

)
F ′
(

L
1−λ

)
+φ
[

F
(

L
1−λ

)
−F(L)

]
+φ

λ
1−λ

L
1−λ

F ′
(

L
1−λ

)
=−1+(1−φ)F(L)+φF

(
L

1−λ

)
.

From this result, we can prove Lemma 3.1.1.



144

Proof of Lemma 3.1.1. We have

∂
∂L

[U(L,φ)−U(L,0)] =U1(L,φ)−U1(L,0) = φ
[

F
(

L
1−λ

)
−F(L)

]
.

Since φ > 0, this quantity is strictly positive if and only if P[L < Z < L/(1− λ)] =

P[(1−λ)Z < L < Z]> 0.

The following lemma establishes an intermediate result for proving the uniqueness

of equilibrium contracts.

Lemma 3.A.2 Let Assumption 3.1.1 and Assumption 3.1.2 hold. Fix some ρ ∈ [0,1] and

τ ∈ [0,ρ]. Then the program

max
T,L

T +βU(L,τφ)

s.t. T ≤ 1
1+ r

Π(L,ρφ) (PC)

has a unique and finite solution.

Proof. Since the objective is strictly increasing in T , the lender’s zero profit (participation)

constraint must bind, pinning down T for any given L. The first order necessary condition

for the loan size is then

0 =
1

1+ r
Π1(L,ρφ)+βU1(L,τφ)

=
1

1+ r

[
1− (1−ρφ)(λLF ′(L)+F(L))−ρφF

(
L

1−λ

)]
+β
[
−1+(1− τφ)F(L)+ τφF

(
L

1−λ

)]
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Re-arrange to get

(1− (1+ r)β)(1−F(L)) = (1−ρφ)λLF ′(L)+(ρ− (1+ r)βτ)φ
[

F
(

L
1−λ

)
−F(L)

]
= (1−ρφ)λLF ′(L)+(ρ− (1+ r)βτ)φ

∫ 1
1−λ

1
LF ′(Lx)dx

For any L such that F(L/(1−λ)) = 0, this condition cannot hold because the left-hand-

side is strictly positive, while the right hand side must equal zero. For any L such that

F(L) = 1, the condition will hold — this case corresponds to when all borrowers default

for sure on the loan. To see if such a large loan is optimal, we need to compare to the

case where F(L)< 1.

In this case, we can re-write in terms of the hazard function h(z) = F ′(z)/(1−

F(z)).

1− (1+ r)β = (1−ρφ)λL
F ′(L)

1−F(L)
+(ρ− (1+ r)βτ)φ

∫ 1
1−λ

1
L

F ′(Lx)
1−F(L)

dx

= (1−ρφ)λLh(L)+(ρ− (1+ r)βτ)φ
∫ 1

1−λ

1
Lh(Lx)

1−F(Lx)
1−F(L)

dx (3.5)

Note that because zh(z) is strictly increasing in z

∂
∂L

ln
1−F(Lx)
1−F(L)

=
xF ′(Lx)

1−F(Lx)
− F ′(L)

1−F(L)
=

1
L

Lxh(Lx)− F ′(L)
1−F(L)

>
1
L

h(L)− F ′(L)
1−F(L)

=
1
L

LF ′(L)
1−F(L)

− F ′(L)
1−F(L)

= 0

which implies Lh(Lx)1−F(Lx)
1−F(L) is increasing and continuous in L for each x. As a result,

the right-hand side of Equation (3.5) is strictly increasing and continuous in L. Since the

left-hand side is constant in L, there can be at most one L solving this equation.

The right-hand side is equal to 0 at L = 0. The limit of the left-hand side of



146

Equation (3.5) as L→ ∞ is

Limit≡ lim
L→∞

(1−ρφ)λLh(L)+(ρ− (1+ r)βτ)φ
∫ 1

1−λ

1
Lh(Lx)

1−F(Lx)
1−F(L)

dx

= (1−ρφ)λ lim
L→∞

Lh(L)+(ρ− (1+ r)βτ)φ
∫ 1

1−λ

1
lim
L→∞

Lh(Lx)
1−F(Lx)
1−F(L)

dx

= (1−ρφ)λ lim
L→∞

Lh(L)+(ρ− (1+ r)βτ)φ
∫ 1

1−λ

1

1
x

lim
L→∞

Lh(L)dx

= (1−ρφ)λ lim
L→∞

Lh(L)+(ρ− (1+ r)βτ)φ ln
1

1−λ
lim
L→∞

Lh(L)

=

[
(1−ρφ)λ+(ρ− (1+ r)βτ)φ ln

1
1−λ

]
lim
L→∞

Lh(L)

We then have

Limit =
[
(1−ρφ)λ+(ρ− (1+ r)βτ)φ ln

1
1−λ

]
lim
L→∞

Lh(L)

>

[
(1−ρφ)λ+(ρ− τ)φ ln

1
1−λ

]
lim
L→∞

Lh(L)

> (1−ρφ)λ lim
L→∞

Lh(L)

> (1−φ)λ lim
L→∞

Lh(L)> 1− (1+ r)β

where the final inequality follows from Assumption 3.1.2. Since the last expression is

equal to the left-hand side of Equation (3.5), a solution to Equation (3.5) exists. Finally,

since the objective is decreasing in L as L→ ∞, we can rule out the case that F(L) = 1.

Therefore, the program has a unique and finite solution.

We can apply this result to establish the uniqueness of contracts satisfying various

requirements. For example, consider full information contracts:

Definition 3.A.1 (Competitive Full Information Contracts) A competitive safe con-
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tract is a non-screening contract (T,L,0) whose transfer and loan size solve

V sa f e = max
T,L

T +βU(L,0)

s.t. T ≤ 1
1+ r

Π(L,0) (PC)

Similarly, a competitive risky contract is a non-screening contract (T,L,0) whose transfer

and loan size solve

V risky = max
T,L

T +βU(L,φ)

s.t. T ≤ 1
1+ r

Π(L,φ) (PC)

Corollary 3.A.1 (Unique Competitive Full Information Contracts) Let both of Assump-

tion 3.1.1 and Assumption 3.1.2 hold. Then each full information contract is unique.

Denote the competitive safe contract by (T sa f e,Lsa f e,0) and the competitive risky con-

tract by (T risky,Lrisky,0).

Proof. The result follows from Lemma 3.A.2 for the case where ρ = 0 and τ = 0, and

the case where ρ = 1 and τ = 1.

Similarly, there are unique competitive pooling contracts across risk indices.

Definition 3.A.2 (Competitive Pooling Contract) A competitive pooling contract among

borrowers with risk index of ρ is a non-screening contract (T,L,0) whose transfer and

loan size solve

V pool(ρ) = max
T,L

T +βU(L,0)

s.t. T ≤ 1
1+ r

Π(L,ρφ) (PC)

Corollary 3.A.2 (Unique Competitive Pooling Contract) Let Assumption 3.1.1 and
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Assumption 3.1.2 hold. Then there is a unique competitive pooling contract for each

ρ ∈ [0,1]. Denote its transfer by T pool(ρ) and its loan size by Lpool(ρ). Moreover,

T pool(0) = T sa f e, Lpool(0) = Lsa f e, and V pool(ρ) is strictly decreasing, continuous, and

convex in ρ.

Proof. For each ρ, there is a unique competitive pooling contract due to Lemma 3.A.2 for

the case where τ = 0. The pooling contract for ρ = 0 is identical to the full information

competitive safe contract because both contracts correspond to the case when ρ = 0 and

τ = 0. Finally, note that

V pool(ρ) = max
L

1
1+ r

Π(L,ρφ)+βU(L,0)

and Π is affine in its second argument. As a result, by the envelope theorem V pool(ρ) is

continuous and differentiable in ρ with

∂
∂ρ

V pool(ρ) =
1

1+ r
Π2(Lpool(ρ),ρφ)φ =−φ

∫ Lpool (ρ)
1−λ

Lpool(ρ)
(Lpool(ρ)− (1−λ)z)F ′(z)dz < 0.

Finally, as the maximum of a collection of affine functions, V pool(ρ) is convex. Specifi-

cally, for any x ∈ [0,1] and ρ,ρ′ ∈ [0,1] we have

xV pool(ρ′)+(1− x)V pool(ρ)

= xmax
L

{
1

1+ r
Π(L,ρ′φ)+βU(L,0)

}
+(1− x)max

L

{
1

1+ r
Π(L,ρφ)+βU(L,0)

}
≥max

L
x

1
1+ r

Π(L,ρ′φ)+(1− x)
1

1+ r
Π(L,ρφ)+βU(L,0)

= max
L

1
1+ r

Π(L,(xρ′+(1− x)ρ)φ)+βU(L,0)

=V pool(xρ′+(1− x)ρ).
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The competitive screening contracts for each screening technology are also

unique.

Definition 3.A.3 (Competitive High-Documentation Contract) A high-documentation

contract (T,L,1) whose transfer and loan size solve

V doc = max
T,L

T +βU(L,0)

s.t. T ≤ 1
1+ r

Π(L,0)−κm (PC)

is a competitive high-documentation contract.

Corollary 3.A.3 (Unique Competitive Screening Contract) Let Assumption 3.1.1 and

Assumption 3.1.2 hold. Then there is a unique competitive high-documentation contract.

Denote this contracts by (T doc,T doc,1). These quantities are

T doc = T sa f e−κ, and Ldoc) = Lsa f e.

Proof. Fix ρ ∈ [0,1]. Let T̃ = T +κ. The program is equivalent to solving

max
T̃ ,L

T̃ +βU(L,0)

s.t. T̃ ≤ 1
1+ r

Π(L,0) (PC)

We can therefore apply Lemma 3.A.2 for the case where ρ = 0 and τ = 0, implying

that the unique solution to this program must have T̃ = T sa f e and L = Lsa f e. Therefore,

T = T̃ −κ = T sa f e−κ.

Definition 3.A.4 (Competitive High-Downpayment Contract) Given net home price

of P−R, a competitive high-downpayment contract is a low-documentation contract
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whose transfer and loan size solve the following program

V down(P−R) = max
T,L

T +βU(L,0)

s.t. T +βU(L,φ)≤max{P−R,V risky} (IC)

T ≤ 1
1+ r

Π(L,0) (PC)

Lemma 3.A.3 (Unique Competitive Separating Contracts) Let Assumption 3.1.1 and

Assumption 3.1.2 hold. Then there is a unique high-downpayment contract. Denote its

transfer by T down(P−R) and its loan size by Ldown(P−R).

Proof. The PC constraint must bind at any solution. Suppose that the IC constraint is

slack. Then L must solve

max
L

1
1+ r

Π(L,0)+βU(L,0)

this program has a unique solution by Lemma 3.A.2 for the case where ρ = 0 and

τ = 0. Denote it by Lsa f e. Define V ∗ = 1
1+r Π(Lsa f e,0)+βU(Lsa f e,φ). We can see that

if V ∗ < P−R, then we must indeed have a slack IC constraint in the original program,

and if V ∗ = P−R, then Lsa f e remains feasible in the original program. In either case

Lsa f e must solve the original program. Otherwise, when V ∗ > P−R, Lsa f e is not in the

feasible set of the original program. In this case, the IC constraint must bind and the

program reduces to

max
L∈{L| 1

1+r Π(L,0)+βU(L,φ)=P−R}
max{P−R,V risky}+βU(L,0)−βU(L,φ)

Due to Lemma 3.1.1, the objective of this program is strictly decreasing in L. The
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solution must be the smallest value of L such that the IC constraint binds. Note that

1
1+ r

Π1(L,0)+βU1(L,φ) =
1

1+ r

[
1−λLF ′(L)−F(L)

]
+β
[
−1+(1−φ)F(L)+φF

(
L

1−λ

)]
>

1
1+ r

[
1−λLF ′(L)−F(L)

]
+β [−1+F(L)]

=
1

1+ r
Π1(L,0)+βU1(L,0)

and we have 1
1+r Π1(L,0)+βU1(L,φ)> 0 for L < Lsa f e. Since 1

1+r Π(0,0)+βU(0,φ)<

max{P− R,V risky} and 1
1+r Π(Lsa f e,0) + βU(Lsa f e,φ) > max{P− R,V risky}, there is

then a unique solution for L < Lsa f e. Therefore, there is a unique solution to the

original program. Denote this solution by Ldown(P−R) and define T down(P−R) =

1
1+r Π(Ldown(P−R),0).

We can now use these definitions and results to simultaneously prove Propo-

sition 3.1.1 and Proposition 3.1.2. The proof proceeds by showing that only these

competitive contracts can be offered in any equilibrium, and any equilibrium where

lenders randomly reject borrowers must be unstable.

Proof of Proposition 3.1.1 and Proposition 3.1.2.

Let Assumption 3.1.1 and Assumption 3.1.2 hold. Consider when P−R >V sa f e.

Since V sa f e is an upper bound on both safe borrower and risky borrower valuations

for any contract which gives lenders non-negative profits, all borrowers have a strictly

dominant strategy to become renters for any set of contract offers. As a result, the set of

contracts offered is indeterminate, and all borrowers become renters.

Now suppose that P−R ≤ V sa f e. I first show that there is a unique strictly

dominant competitive contract for almost all risk indices, and characterize the sets of ρ-

values where each competitive contract strictly dominates. Then, I show that equilibrium
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is unique for ρ-values in each of these sets.

Consider whether or not the IC constraint for the competitive high-downpayment

contract binds.

1. Suppose that V ∗ ≤ P−R <V sa f e. In this case the IC constraint for the competitive

separating contract doesn’t bind and so T down(P−R) = T sa f e, Ldown(P−R) =

Lsa f e, and V down(P−R) = V sa f e. Since V sa f e > V pool(ρ) for all ρ ∈ (0,1] and

V sa f e >V doc, the competitive high-downpayment contract strictly dominates both

the competitive pooling and competitive high-documentation contracts for almost

all borrowers.

2. Suppose that P−R < V ∗. Now, the IC constraint binds and so V down(P−R) <

V sa f e. Let V screen(P−R) = max{V down(P−R),V doc} ≤V sa f e. Since V pool(0) =

V sa f e, we may have a ρ > 0 such that V pool(ρ) = V screen(P−R). If V pool(1) <

V screen(P−R) then there is a unique solution for ρ ∈ (0,1). Otherwise, we have

V pool(ρ)>V screen(P−R) for ρ ∈ [0,1). Take ρ∗ to be the solution in the former

case, and otherwise take ρ∗ = 1. We then have that the competitive pooling

contract strictly dominates for ρ ∈ [0,ρ∗). For ρ ∈ (ρ∗,1] either the competitive

high-downpayment contract or the competitive high-documentation contract will

dominate depending on whether V down(P−R) > V doc, V down(P−R) = V doc, or

V down(P−R)<V doc.

These results establish that for almost all ρ-values from 0 to 1, one of the competitive

contracts strictly dominates. I next show that within each region where a specific type of

competitive contract dominates, that contract must be offered in equilibrium.

First consider ρ such that the competitive high-downpayment contract dominates.

Consider the sub-game beginning with a borrower’s decision to apply for contracts. Let

Ci denote the set of contract offers made to individual i. Suppose Ci does not include the
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competitive high-downpayment contract. I will show that lenders can make a profitable

deviation by introducing a contract of the form (T down(P−R)− ε,T down(P−R),0) for

ε > 0 sufficiently small along side the full information contract for risky borrowers.

Let ε > 0 and consider equilibrium in the sub-game starting with borrower

application choices when the contract offer set is

{(T down(P−R)− ε,T down(P−R),0),(T risky,Lrisky,0)}∪Ci.

There exist two types of equilibrium. In one type, enough risky borrowers apply for the

new contract that it becomes unprofitable, and lenders reject all applications. I show that

these equilibria are unstable. In the second type of equilibrium, risky borrowers never

apply for the new contract, and lenders make a strictly positive profit on the new contract.

This equilibrium is unique and stable. Selecting this stable equilibrium to the sub-game,

we conclude that lenders can make a profitable deviation by introducing the new contract.

Let θ denote the anticipated rejection rate when i applies to the new contract. If

τi = 1, then their expected value from applying to contract (T down(P−R)−ε,T down(P−

R),0) is

(1−θ)(T down(P−R)− ε+βU(T down(P−R),φ))+θ(P−R)

= (1−θ)(max{V risky,P−R}− ε)+θ(P−R)

The left hand side is strictly less than max{V risky,P−R} whenever θ < 1 or θ = 1

and V risky > P−R. In either case, we have that applying for contract (T down(P−R)−

ε,T down(P−R),0) is strictly dominated. If θ= 1 and P−R≥V risky, then risky borrowers

may apply. However, any equilibrium with θ = 1 is unstable because a small reduction

of θ will imply that applying is strictly dominated. We can therefore focus on the case

where θ < 1.
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In this case, risky borrowers will never apply, and any applicants must be safe

borrowers. Lenders then have expected profit of

−(T down(P−R)− ε)+
1

1+ r
Π(T down(P−R),0) = ε > 0

on any accepted application. Since they have a strictly positive profit, they must accept

all applications so that θ = 0. Anticipating this acceptance, borrowers with τi = 0 get

value from applying of

T down(P−R)− ε+βU(T down(P−R),0)) =V down(P−R)− ε

Since V down(P−R) is strictly larger than V pool(ρ) and V doc, and both these values repre-

sent the best case for pooling and high-documentation contracts, by taking ε sufficiently

small, we can conclude that the new contract strictly dominates any contract in Ci. As a

result, we can conclude that after introducing the new contract, there is a unique stable

equilibrium in the following sub-game and in this new equilibrium, risky borrowers do

apply for the new contract while all safe borrowers do apply for the new contract, all

applications are accepted, and lenders make a strictly positive expected profit. Given this

profitable deviation, we can conclude that whenever P−R≤V sa f e, and ρ is in the region

where the competitive high-downpayment contract dominates, the competitive separating

contract must be offered.

Now, suppose that the competitive high-downpayment contract is in Ci. Zero

profits requires that no risky borrowers apply for the contract, but also implies that lenders

are indifferent between accepting and rejecting applicants. This indifference might lead

to multiple equilibria because lenders may randomly reject applications. Suppose that

they reject a fraction θ > 0. I show that another lender could introduce a contract of

the form (T down(P−R)− ε,Ldown(P−R),0), capture the market for safe borrowers, and
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make a strictly positive profit. Safe borrowers get expected value from the competitive

high-downpayment contract of

(1−θ)V down(P−R)+θ(P−R)<V sa f e

We can then choose an ε > 0 such that ε < V sa f e− [(1−θ)V down(P−R)+θ(P−R)].

Given that risky borrowers previously didn’t use the high-downpayment contract, the new

contract must be strictly dominated from their perspective since it has value reduced by

ε. As a result, in the equilibrium following the introduction of the new contract, lenders

must believe that only safe borrowers apply. They then get expected profit of

−(T down(P−R)− ε)+
1

1+ r
Π(Ldown(P−R),0) = ε > 0

and so safe borrowers anticipate that they will be accepted if they apply for the new

contract. Although they get a lower transfer, they no longer face a chance of rejection

and strictly prefer the new contract because

V down(P−R)− ε > (1−θ)V down(P−R)+θ(P−R).

Therefore, all safe borrowers apply for the new contract, get accepted with probability

1, and lenders make a strictly positive profit. Therefore, we can conclude that in any

equilibrium, lenders must accept all applicants for the competitive high-downpayment

contract (so that θ = 0).

Using the same line of reasoning for high-documentation and pooling contracts,

we get that for almost all ρ-values and in any stable equilibrium, the strictly dominating

competitive contract must be offered and used by all safe borrowers. Risky borrowers

use either pooling contracts or their full-information contract. Since the identity of the
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lender offering specific contracts is irrelevant, this stable equilibrium is unique up to the

identity of which lender makes each contract offer. It is also unique up to the deletion of

un-traded contracts.

3.B Extension: Conversion of Housing to Rental Units

To capture conversion of housing into rental units, I extend the absentee landlord’s

production of rental services to incorporate both houses as well as apartment buildings.

I assume that the production of rental services uses both housing and apartments. The

production function is

SR
t = µAγ

t−1(H
R
t )

1−γ.

where SR
t denotes rental services, At−1 denotes the stock of apartments from the previous

period, and HR
t denotes the current stock of homes owned by landlords. These stocks

evolve as

HR
t = (1−δH)HR

t−1 + IR
t , and At = (1−δA)At−1 + IA

t

where IA
t is investment in new apartments. This specification implies that landlords

produce apartment buildings one-for-one from numeraire, which normalizes the units of

the stock of apartments.

Given an opportunity cost of funds of 1+ r, the landlord’s first order condition

for investment in housing is

Pt = Rt(1− γ)µ
(

At−1

HR
t

)γ
+

1−δH

1+ r
EtPt+1.

This condition states that the converted-house-to-apartment ratio is an increasing function
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of the rental rate relative to the user cost of housing:

HR
t = At−1

(
(1− γ)µ

Rt

Pt− 1
1+rEtPt+1

) 1
γ

Their first order condition for investment in apartments is

r+δA = EtRt+1γµ

(
HR

t+1

At

)1−γ

where δA is the depreciation rate on apartment buildings. This condition states that

landlords equate the expected marginal revenue product of apartment investment to their

cost of funds plus depreciation.

3.C Relating Income Risk to Labor Market

Fundamentals

This appendix presents a simple extension of the baseline model in 3.3 in which

borrower income risk comes from employment risk due to search in the labor market.

There is a large family of workers who are either employed or unemployed in

each period. This family provides imperfect income insurance to its members. When an

individual worker is unemployed, the family will help them to cover their debt payments

with chance 1− φ̄. As a result, an individual worker who is unemployed will be forced

into default with chance φ̄. When they are employed, they are never forced to default on

their mortgage.

Employed workers separate from their current employer with chance s at the end

of each period. Individual workers learn whether or not they will keep their job between

t and t +1 prior to signing mortgage contracts at time t. Lenders cannot observe their
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separation, and so there is asymmetric information between workers and lenders about

individual worker’s labor search status.

Both recently separated workers and currently unemployed workers search for a

new jobs between periods, while workers who retain their job between periods do not

need to search for work. The former have some risk of having no income, while the later

have income for sure. As a result, we can interpret the group of workers searching for

work as the risky borrowers in the baseline model, and the group with stable employment

as the safe borrowers.

I assume that current employment status is observable to lenders. As a result,

the population is split into a group of potentially risky borrowers — those who were

employed today and might have separated from their current employer — and a group of

known risky borrowers — those who didn’t have work this period and therefore must

be searching for work. Among borrowers with current employment, a fraction s are

searching for work, and so we have ρit = s among workers with current employment.

The fraction searching among workers without current employment is 1, so ρit = 1.

This models maps precisely into the setup in section 3.3 when we set ρ = s, and let the

proportion of potentially risky borrowers in baseline model, n, be time varying and equal

to the employment rate in this model, Nt .

The ex-post chance of having no income among workers searching for work is

φt+1 = φ̄Pt+1[Ei,t+1 = 0 | Searchit ] = φ̄(1− ft+1)

where ft+1 is the ex-post job-finding rate. Borrowers who do not need to search for work

have income for sure.

I assume that competitive firms post job vacancies and are randomly matched to
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workers. Define θt as labor market tightness

θt =
Vt

1− (1− s)Nt−1

where Vt is total vacancies posted at time t and Nt−1 is the employment rate in the prior

period.

Let M denote the matching function, mapping total vacancy postings and total

number of searching workers to a total number of matched workers to vacancies. Assume

it is homogenous of degree one, so we can write the job-finding rate and hiring rate by

ft = M(θt ,1), and ht = M(1,1/θt).

Assume that posting a vacancy costs a firm κv units of numeraire. Firms operate a

constant returns to scale production function in labor. Let At denote the marginal product

of labor in this technology, and let Wt denote the wage paid by firms. Then the job

creation condition for firms is

κv

ht
= At−Wt +

1− s
1+ r

Et
κv

ht+1

where I assume that firms face the same exogenous opportunity cost of funds as lenders.

The quantity κv/ht represents the effective cost of adding a worker to the labor force.

Following Haefke et al. (2013) and Michaillat (2012), I assume that wages are

rigid and linked to the marginal product of labor as

Wt = Aγ
t

where γ < 1. As a result, we can solve for the current hiring rate as a function of
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expectations of future productivity

κv

ht
=

∞

∑
j=0

(1− s) j
(

1
1+ r

) j

(At+ j−Aγ
t+ j)

Since hiring rates pin down labor market tightness and therefore job finding rates, we get

that the job finding rate depends on expectations of the path of productivity. In turn, the

income risk of workers who are searching for work depends on the ex-post job-finding

rate. Since productivity and the opportunity cost of funds are exogenous, the job finding

rate and income risk are both effectively exogenous.

3.D Sketch of Solution Algorithm

The model of Section 3.3 is a infinite horizon rational expectations model with

endogenous regime-switching. In particular, the distribution of the credit regime, condi-

tional on the state of the economy, is an equilibrium object. I apply a solution algorithm

based on the approach in Chapter 2 to jointly solve for this conditional regime distribution

and the associated regime-conditional policy functions.

In general the approach applies to models whose equilibrium conditions can be

expressed as

0 = Et fSt+1,St ,St−1(Yt+1,Yt ,Xt+1,Xt)

Xt+1 = hSt ,St−1(Xt ,Yt)+Σεt+1

St = σSt−1(Yt ,Xt)

where Yt is an endogenous vector of control variables, Xt is an endogenous vector of

state variables, St is an endogenous regime variable taking values in {1, . . . ,NS}, εt is

an exogenous vector of iid shocks, and Σ is a matrix mapping shocks into future states.
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The function f captures the forward looking equilibrium condition of the model, the

function h captures the endogenous evolution of the state variables, and the function σ

assigns a regime to a particular equilibrium outcome at time t. Note that Yt and St are

simultaneously determined because St and expectations of St+1 can influence Yt through

the forward looking equilibrium conditions and realizations of Yt are linked to St through

the regime assignment equation.

I focus on a minimum-state variable equilibrium concept that accounts for this

simultaneity between the regime and contemporaneous outcomes.

Definition 3.D.1 A regime-switching equilibrium is a collection of measurable functions

{gs,s−(x)}NS
s=1 and a conditional regime distribution Qs′,s(x) (measurable in x) such that

1. (Rational Expectations) For each (s,s−) and x

0 =
∫ NS

∑
s+=1

fs+,s,s−(gs+,s(hs,s−(x,gs,s−(x))+Σε),gs,s−(x),hs,s−(x,gs,s−(x))+Σε,x)

×Qs+,s(hs,s−(x,gs,s−(x))+Σε) fε(ε)dε

2. (Regime Consistency) For each (s,s−) and x, if Qs,s−(x)> 0 then s=σ(gs,s−(x),x).

3. (Fundamental Volatility) For each (s,s−) and x, Qs,s−(x) ∈ {0,1}.

The first condition requires that the policy functions solve the model given rational

expectations. Implicitly, this definition requires that out-of-equilibrium outcomes (in

regimes that never occur given St−1 = s− and Xt = x) also solve the model equations,

though a more general definition need not make this particular equilibrium selection. In

this context, the selection is inconsequential. The second condition requires that regimes

can only occur if outcomes in that regime are consistent with the regime assignment

equation. The third condition requires that all randomness in outcomes can be attributed
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to variation in the state variables (say due to fundamental shocks) — a requirement which

rules out sunspots.

The solution algorithm uses backwards induction and perturbation based approxi-

mation to approximate such an equilibrium. At iteration n, let g(n−1)
s,s− (x) and Q(n−1)

s,s− (x)

denote the policy functions and regime distribution from the previous iteration. Consider

finding an updated policy function, g(n)s,s− , solving

0 =
∫ NS

∑
s+=1

fs+,s,s−(g
(n−1)
s+,s (hs,s−(x,g

(n)
s,s−(x))+Σε),g(n)s,s−(x),hs,s−(x,g

(n)
s,s−(x))+Σε,x)

×Q(n−1)
s+,s (hs,s−(x,g

(n)
s,s−(x))+Σε) fε(ε)dε.

Introduce a perturbation parameter of η ∈ [0,1] as

0 =
∫ NS

∑
s+=1

fs+,s,s−(g
(n−1)
s+,s (hs,s−(x,g

(n)
s,s−(x,η),1)+ηΣε+(1−η)v̄(n−1)

s+,s,s−),

g(n)s,s−(x,η),hs,s−(x,g
(n)
s,s−(x,η))+ηΣε+(1−η)v̄(n−1)

s+,s,s−,x)

×Q(n−1)
s+,s (hs,s−(x,g

(n)
s,s−(x))+Σε) fε(ε)dε.

where v̄(n−1)
s+,s,s− is a regime-transition conditional approximation node.

We can approximate the policy function g(n)s,s− in two steps. First, consider the case

with η = 0, and solve for a nodes ȳ(n)s,s− such that the equation is satisfied for a given point

in the state space of x = x̄(n)s,s− . Then, since the model is solved for y = ȳ(n)s,s− for x = x̄(n)s,s−

and η = 0, we can apply the implicit function theorem to get a first order approximation

of g(n)s,s− .

Next we can update the conditional distribution of the regime to Q(n) such that it

is consistent with the assignment of regimes implied by the approximation to g(n)s,s− and

the regime function σs,s− . I do so by keeping track of conditional regime transitions on a
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grid of ε-values (transitions to s+ conditional on St = s and St−1 = s−). Also, I update

the shock approximation nodes, v̄(n)s+,s,s− , to equal the expected value of Σε′ condition on

the regime transition. Finally, I allow the approximation nodes x̄(n)s,s− to slowly adjust

based on the average predicted outcomes for the state at each step of the algorithm. I

iterate on these approximation and update steps until the algorithm converges.
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