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Abstract

Minimum Angle Transformation Loss for Superresolution of Electron Microscope

Orientation Data

by

Joaquin Matias Giorgi

Electron backscatter diffraction (EBSD) is a scanning electron microscopy technique

used for collecting orientation properties of a material sample over space at the micro-

meter scale. Because collecting this data is known for being costly and time-consuming,

various methods have been proposed to upsample collected data, or generate new mi-

crostructures from a latent space. We propose a novel interpolation algorithm for quater-

nions that is imprevious to symmetry switching, named Minimum Angle Transformation

Spherical Linear Interpolation (Slerp-MAT). We also propose a new Physics-based loss

function based on on this algorithm, to obtain state-of-the-art results, in terms of the

angular difference of the superresolved data and the ground truth. The result is a 882%

reduction in mean angular distance of Superresolved versus Ground Truth data for the

collected Nickel dataset with respect to the previous state-of-the-art loss function, and a

321% reduction for the collected Titanium dataset.
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Chapter 1

Background

1.1 Computational Materials Science

Computational materials science sits at the intersection of optimization, materials sci-

ence, and engineering. The performance of materials studied by scientists and engineers

can have key societal impacts, leading to performance improvements in areas such as

battery degradation, engine degradation, solar panel efficiency, and mechanical joint sus-

tainability. These materials, such as various classes of Titanium and Nickel, have atoms

arranged into repeating structures, or unit cells. These patterns of unit cells are called

crystal structures, which are visible when observed with an optical instrument at the

micrometer scale. The data captured by these instruments are commonly referred to as

microstructures.

Due to the importance of new and improved materials, the exploration of how en-

gineering ideas can enter this optimization process is an area under investigation in

academia as well as industry. For the case of this thesis, we focus on how interpolation

and machine learning models can be used to superresolve electron backscatter diffraction

data.
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Background Chapter 1

1.2 Research Context

The research for this thesis focuses on addressing incorrect treatment of symmetry ob-

served in color maps when using both interpolation and machine learning based super-

resolution architectures. Despite seemingly accurate results in the color mapping for

Titanium data, according to common superresolution metrics (e.g. Peak Signal-to-Noise

Ratio), minor incorrect color mapping was still observed at the edges of some EBSD

colorized images for Titanium. Moreover, when training and testing the same model on

Nickel data, very apparent incorrect coloring was found during evaluation, as seen in

Figure 1.1. The primary objective was to identify the cause of these mapping errors, and

adapt the models to work effectively across various materials datasets. This investigation

revealed several underlying issues in interpolation and deep learning approaches, which

we present here. The findings provide valuable insights into implementing and testing

computer vision and machine learning algorithms for Electron Backscatter Diffraction

(EBSD) data.

Figure 1.1: Left-to-right: decimated EBSD Image (LR), Upsampled image of LR
using state-of-the-art physics-based rotational distance loss in [1] (SR), ground truth
undecimated image (HR). Rotational distance loss SR EBSD Images have areas of
aliasing, such as the green patterns in the otherwise blue center region.

As further explained in section 1.3.4, the color mapping for the discretized orientations

of crystal structures indicates the vector in the local frame that is parallel to a chosen
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Background Chapter 1

basis vector of the sample orientation. In Figure 1.1, we observe a superresolved version

(SR) of the low-resolution (LR) EBSD Image - obtained by decimating a high-resolution

(HR) ground truth image from the microscope. When comparing the SR to the HR, we

observe a green pattern in the blue center region of the SR, which is not present in the

HR, due to incorrect treatment of symmetrically equivalent orientations when calculating

angular distances.

1.3 Microstructures

1.3.1 Data Collection

Crystal structure data is obtained by placing a metal sample (a Nickel or Titanium vari-

ant, for instance) under what is known as an electron backscatter diffraction microscope

(abbreviated as EBSD), as in Figure 1.2. Once the sample is placed, the microscope

sends an electron beam towards the metal sample, producing electron orientation scat-

tering patterns known as Kikuchi patterns [2]. A commercial software (in this case,

Dream3D) [3], then translates the analog electron orientation patterns into discrete dig-

ital orientation patterns at each array element.

Figure 1.2: EBSD Microscope data collection. A focused electrom beam is incident to
a metal sample, resulting in Kikuchi diffraction patterns. Orientation data is inferred
from these patters, which is digitized for further processing.

3
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The orientation at each micro-meter scale element is obtained from a nano-meter

scale diffraction spot, and it is assumed that all atoms captured within the spatial size

represented by each output array element are packed into repeating unit cell structures

with identical orientation. Typically, array elements representing closely oriented unit

cells (angular difference of less than θ = 3◦) are adjacent to each other, and the group

made up by such pixels is known as a grain.

Figure 1.3: Orientation of the metal sample versus Orientation of the microscopic unit
cell in a micro-meter scaled section of the sample. The EBSD microscope outputs a
quaternion array, where each quaternion q is the transformation from the sample
Orientation to the Orientation of the unit cell represented by that array element.

In its raw form, the collected and digitized data is a three-dimensional matrix, with

a quaternion stored at each array element. These quaternions represent the orienta-

tion transformation from the macroscopic sample orientation, to the orientation of the

microscopic unit cell of that element, as shown in Figure 1.3. The three-dimensional ori-

entation data is typically viewed graphically by materials scientists using a series of color

orientation maps, which can provide a visual intuition to different phenomena occurring

within grains, and at the boundary between them.

1.3.2 Crystal Poles

Each element in a microstructure data array contains the quaternion determining the

orientation of the unit cells in the spatial area represented by that element, with respect

to the orientation of the sample. In order to make this data more easily digestible in a

visual format, unit cell orientations are approximated by color orientation maps, which
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Background Chapter 1

Figure 1.4: Poles of the faces of a cube: [001], [010], [100], and the negative versions
of these, denoted with an overscore. For each pole, there are four symmetrically
equivalent orientations of the cube by rotating about the pole by a factor of 90◦.

allow material scientists to visually infer precise insights about the material - which can’t

be directly extracted through computation on the data.

Industry standard color orientation maps do not directly translate euler angles or

quaternion components to color, but instead denote the point of intersection of a crystal

direction vector to a unit radius sphere centered at its origin (the pole), which is parallel

to the reference sample direction for the mapping (one of the sample’s basis vectors: X1,

X2, or X3). The convention for a crystal direction vector of a unit cell is simply

[lmn] = le1 +me2 + ne3 (1.1)

where e1, e2, and e3 are the unit cell basis vectors as shown in Figure 1.3. This type

of color orientation mapping is known as an inverse pole figure (IPF), since we color

based on the unit cell crystal direction parallel to the sample reference direction while,

conversely, the EBSD output quaternion is a transformation from the sample orientation

to that of the unit cell.
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In Figure 1.4, we show the poles for the crystal directions normal to the six faces of

a cube. So, for instance, if we are plotting the inverse pole figure for the macroscopic

sample orientation X3 from Figure 1.3, an array element representing an orientation with

the [001] crystal direction pole as shown in Figure 1.4, would have it’s crystal direction

vector parallel to X1. As such, the element would be assigned the color mapped to the

[001] pole in an IPF-X1 mapping.

1.3.3 Fundamental Zone

To avoid different colors representing symmetrically equivalent orientations, color is

mapped to an area formed by a continuous set of poles that are limited by axes of

symmetry for the crystal symmetry group in question. We can observe this in Figure

1.5a, where the poles of the crystal direction vectors which act as a symmetry axis have

been stereographically projected to a circle. Because the area delineated by each of these

sectors is only made up of unique orientations (it’s symmetrically equivalent orientations

are located in other zones), they are defined as a fundamental zone.

The symbols at the intersection of lines in the stereographic projection represent the

number of symmetry operations at that boundary: two for an oval, three for a triangle,

and four for a square. For instance, a cubic unit cell can be rotated about it’s [001] crystal

direction vector, to obtain four symmetrically equivalent orientations, by rotating 0◦,

90◦, 180◦, or 270◦. Hence, it is marked with a square, as are the other stereographically

projected poles of the remaining cube faces. In total, for cubic crystal systems, any

orientation can be described by twenty four mathematically distinct transformations,

that map to equivalent orientations for a shape with unmarked faces. For this symmetry

group, the area bounded by the crystal direction poles [001], [101], and [111] is referred

to as the standard stereographic triangle. Color is continuously mapped to the this area,
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(a) Stereographic projection of symmetry axes
for cubic crystal system. The stereographic tri-
angle for color orientation mapping is shown
within the area bounded by crystal vector poles
001, 101, and 111. This figure is reproduced,
with permission from [4].

(b) Color assigned to the area bounded
by stereographic triangle, for cubic
symmetry.

as shown in Figure 1.5b. Finally, each element in the quaternion array can be mapped to

a color, according to the pole in the stereographic triangle which represents the inverse

transformation for the chosen sample direction. This produces an RGB EBSD image,

which is also referred to as an inverse pole figure.

1.3.4 Color Orientation Map

In summary, we are able to visualize EBSD data as color images with the following

convention. First, a reference sample direction is chosen, based on one of the axes of

the sample (X1, X2, or X3, as labelled in Figure 1.3). Then the raw quaternions, which

represent the orientation of the unit cells at an array element with respect to the sample

orientation, are reduced to the minimum angle equivalent symmetric transformation. It

is assumed that the orientations lie in a single fundamental zone, that of the standard

stereographic triangle in 1.5a. Finally, to form an EBSD Image, the pixels representing

each quaternions are assigned a color according to the inverse pole figure coloring mapping

7
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shown in Figure 1.5b.

The (inverse) pole figure based mapping is not a perfect proxy for the orientation of

the unit cells. This is because a single inverse pole figure provides no information about

the rotation of unit cells about the crystal pole defining the color of the pixel. Hence a

color mapped EBSD Image is not invertible to the orientation quaternion array it was

derived from.

1.4 Quaternions

EBSD microscopes return an x-y-z spatial array of orientations represented as quater-

nions - a hyper-complex number used to store three-dimensional rotations. We describe

the definition, properties and intuition behind them in this section, to build up to the

improved interpolation and deep learning loss functions in subsequent chapters.

A quaternion q ∈ H is a four dimensional number, with the imaginary components i,

j, and k.

q = a+ bi+ cj+ dk (1.2)

The multiplication rules for the components i, j,k are:

i2 = j2 = k2 = ijk = −1 (1.3)

ij = k, ji = −k (1.4)

jk = i, kj = −i (1.5)

ki = j, ik = −j (1.6)

Quaternions are the natural extension of complex numbers, and are typically used
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in engineering applications such as EBSD to represent orientations and rotations in 3D,

similar to how complex numbers are used for 2D. Because the axis of rotation is not

explicitly defined for three dimensional rotations as it is for two dimensions (where it’s

by default the out of plane z-axis), a quaternion object encodes not just an angle, but

also the axis of rotation.

The full transformation encoded by a quaternion, is apparent when expressed in polar

form. To obtain the polar form, we first define

v = bi+ cj+ dk (1.7)

∥v∥ =
√
b2 + c2 + d2 (1.8)

v̂ =
1

∥v∥
v (1.9)

The component multiplication rules were designed such that v̂2 = −1. This means that

Euler’s formula can be applied. If q is a unit quaternion, we have

q = a+ ∥v∥v̂ (1.10)

q = ev̂
θ
2 = cos(

θ

2
) + v̂ sin(

θ

2
) (1.11)

More generally, for any (non-unit) quaternion:

q = ∥q∥ev̂
θ
2 = ∥q∥(cos(θ

2
) + v̂ sin(

θ

2
)) (1.12)

The transformation encoded by this quaternion q is thus a rotation by θ
2
radians

about the axis v̂, as well as a scaling factor ∥q∥. The angle in the exponential form

of quaternions is θ
2
, or in other words half of the angle of the represented orientation

transformation, because of quaternions’ double mapping of orientation, which is further

9
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discussed in Chapter 2.

It is also possible to string two quaternion transformations together. This is handled

by the Hamilton product, which defines how quaternions are multiplied and is non-

commutative:

q1 = a1 + v1 (1.13)

q2 = a2 + v2 (1.14)

q1q2 = a1a2 − v1 · v2 + a1v2 + a2v1 + v1 × v2 (1.15)

where · and × are the dot and cross product respectively (in fact, the definition of these

products stems from the Hamilton product).

As with complex numbers, the conjugate of a quaternion cancels the imaginary com-

ponents, and leaves us with the square magnitude.

q = a+ bi+ cj+ dk = ∥q∥ev̂
θ
2 (1.16)

q∗ = a− bi− cj− dk = ∥q∥ev̂
−θ
2 (1.17)

qq∗ = ∥q∥2, (1.18)

For unit quaternions, ∥q∥2 = 1, so the conjugate q∗ is equivalent to the multiplicative

inverse.

qq∗ = ∥q∥2 = 1 (1.19)

q−1 = q∗ (1.20)

The last property we introduce is that of a quaternion to a scalar power, which is used

for orientation interpolation; this operation affects both the scaling of the transformation,

10
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if it’s not a unit quaternion, and also parametrizes the angle we rotate about the axis:

from t = 0 for no rotation, to t = 1 for the full rotation angle.

q = ∥q∥ev̂
θ
2 (1.21)

qt = ∥q∥tev̂
θt
2 (1.22)

Finally, in order to find the orientation of one quaternion with respect to another, we

must find the transformation T between them.

T = q−1
1 q2 (1.23)

In this case, T is the transformation from the orientation represented by q1 to the orien-

tation represented by q2.

11



Chapter 2

Orientation and Symmetry

In this chapter, we lay the groundwork for the symmetry-reduced interpolation technique

and the neural network methods discussed in the subsequent chapter. We begin with an

overview of orientation space, explaining why interpolation is feasible within this space.

We then get into the treatment of symmetry minimization for both two-dimensional

(2D) and three-dimensional (3D) orientations. Given the intuitive nature of visualizing

2D orientations, we start with a detailed example of 2D symmetry. Following this, we

explore the nuances of 3D symmetry, highlighting the key differences and additional

complexities involved in its treatment.

2.1 Two Dimensional Orientations on C Unit Circle

A complex number, z ∈ C on the Unit Circle represents two dimensional orientation. z

encodes a positive or negative angle about the out-of-plane z-axis, which can be super-

imposed with other complex numbers through multiplication. For instance, as shown in

the polar form below and in Figure 2.1:

z = ejθ (2.1)

12
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Figure 2.1: Two-dimensional orientation encoded by the angle θ of a complex number
on the Unit Circle. As per convention, a positive angle corresponds to counter-clock-
wise rotation, with respect to the positive x-axis.

If complex numbers are used to represent the orientations, two squares are identically

oriented if the rotational distance between them is a multiple of 90◦.

By convention, we make the orientation angles lie in the range θ ∈ [0, 2π], and the

symmetry operator angles from [−2π, 0]. The permutation symmetry operator for a

square, Osymm, without reflections is as follows:

Osymm = {1, e−90◦j, e−180◦j, e−270◦j} (2.2)

For instance if we consider a scenario where our microscope is working with two-

dimensional orientation data, and one of the recorded data points is z = e300
◦k, after

multiplying with our square symmetry operator, Osymm, we obtain

Osymmz = Osymme
300◦j = {e300◦j, e210◦j, e120◦j, e30◦j} (2.3)

All the complex numbers in the set above represent symmetrically equivalent squares,

where orientation angle is counter-clockwise with respect to the positive x-axis, and the

rotation is about the out of plane z-axis. In this case, of the symmetrically equivalent

options within the set, we choose the one with the smallest magnitude angle, which in

13
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this case is e30
◦j. We can state this as:

Min|θ|{Osymme
300◦j} = e30

◦j (2.4)

2.2 Orientation Space

An Orientation Space is a continuous set of all possible orientations, typically in reference

to a 2D or 3D object. Orientations in this space are represented by a complex number z

or quaternion q, each defined relative to a physical orientation reference. The orientation

of the reference for that mathematical object is implicitly assigned to z = 1 or q = 1.

Complex numbers and hypercomplex numbers do not encode complete information about

the relationship between orientations. Instead, they describe a single transformation with

respect to a reference, which can be combined with other transformations through the

established rules for complex multiplication for z ∈ C, or the Hamilton product for q ∈ H.

To obtain the transformation between two orientations represented by unit quater-

nions, we can use the Hamilton product to multiply the inverse of a quaternion q1 by

another quaternion q2, where q1 and q2 have the same physical orientation reference for

q = 1. For the resulting quaterion, T = q−1
1 q2, the reference orientation q = 1 is now the

orientation of the object represented by q1.

For EBSD data collection, the reference orientation, q = 1 is assigned to the orien-

tation of the sample. The quaternions in the array elements store the transformation

from the orientation of the sample to the orientation of the unit cell in the spatial area

covered by that array element. Since the EBSD unit cells are symmetrical in nature (no

markings are assigned to each face), there is more than one way to transform between the

orientations of these two (or any) unit cells. In this field the equivalent transformation

with the smallest angle is called the misorientation, which as will be discussed further in

14
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Figure 2.2: An Orientation Space, illustrating a quaternion T which transforms be-
tween two orientations described by quaternions with respect to common reference q1
and q2.

this chapter, is obtained by looping through all the equivalent symmetry permutations

and selecting the minimum angle equivalent transformation.

When represented by quaternions, the orientation space for 3D objects is simply

connected, which means interpolation between orientations is always possible. The simply

connected property is linked to the double cover of quaternions (q and −q are equivalent

transformations). This results in the angles stored by a quaternion transformation being

double that of the angles of the equivalent transformation in R3 that they represent.

2.3 Angle Minimization over Shape Group Symme-

try

For the two dimensional case, the transformation between two unit complex numbers z1

and z2 in an orientation space is T = z−1
1 z2.

Now we would like to frame the minimum angle transformation between z1 and z2.

Because all transformations for two-dimensional orientations are positive or negative ro-

tations about the out-of-plane z-axis, it is equivalent to find the minimum angle symmetry

equivalent of both orientations separately, or find the minimum angle equivalent of the

15
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transformation itself.

θ(Tmin) = Min|θ|{Osymmz
−1
1 }Min|θ|{Osymmz2} ≡ Minθ{Osymmz

−1
1 z2} (2.5)

Figure 2.3: Transformations between orientations in 2D, represented by complex num-
bers on the Unit Circle. z−1

1 transforms from orientation 1, to the reference z = 1,
and z2 transforms from this reference to orientation 2. T = z−1

1 z2 transforms from
orientation 1 to orientation 2.

16
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2.4 Angle Minimization over Crystal Group Symme-

try

For the three dimensional case, the transformation between two unit quaternions q1 and

q2 in an orientation space is T = q−1
1 q2.

Figure 2.4: Symmetry Minimization of Two-Dimensional Orientation

In this case, separately minimizing the quaternions which map transformations from

the reference is not equivalent to minimizing the transformation between them, i.e.,

θ(Tmin) = Min|θ|{Osymmq
−1
1 q2} ̸≡ Min|θ|{Osymmq

−1
1 }Min|θ|{Osymmq2} (2.6)

This is because for three-dimensional orientations, the full transformation between

two orientations cannot be encoded in a single quaternion. Instead, it involves the con-

junction of two quaternions and the definition of the Hamilton product between one and

the inverse of the other. This means that symmetry reduction must be considered within

this specific context.

To further understand this, consider the concept of symmetry switching. The mini-

mum angle transformation from a sample orientation to Orientation 1 might correspond

17
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to a different symmetrically equivalent orientation for Orientation 1 compared to the one

required for the minimum angle transformation between Orientation 1 and Orientation 2.

In this scenario, the symmetry of the quaternion transformation changes, or ”switches.”

To illustrate this, imagine each face of a cube is marked with a different color, making

them distinguishable. If the faces are distinguishable, symmetry switching is not possible

because you cannot rotate to a different visually identical orientation. In other words,

the transformation is unique, and the concept of symmetry switching does not apply.

In summary, for 3D orientations, the minimum angle transformation relation does not

hold consistently due to the necessity of involving multiple quaternions and the potential

for symmetry switching between different equivalent orientations.

So, the minimization over crystal group symmetry for q−1
1 and q2 separately, is not

equivalent to the minimization over crystal group symmetry for the transformation be-

tween Orientation 1 and Orientation 2, as stated earlier in Equation 2.6:

In summary, these two minimization problems are different for 3D and will not neces-

sarily result in the same θmin = θ(Tmin). Understanding this 2D vs 3D distinction clearly

is essential for symmetry-reduced interpolation and to optimize the loss function for the

neural network based approaches.

Symmetry reduction Cumulative Symmetry Equivalent Orientations
Shape Symmetry 24 (fcc), 12 (hcp)

Switching Symmetry 48 (fcc), 24 (hcp)
+Q, -Q Equivalence 96 (fcc), 48 (hcp)

Table 2.1: Osymm number of permutations for face-centered-cubic (fcc) and hexagonal
closed pack (hcp) symmetries

In Table 2.1, we provide a cumulative tally of the number of quaternions representing

symmetrically equivalent orientations for Face-Centered Cubic (FCC), and Hexogonal

Closed Pack (HCP) crystal groups. Shape symmetry is dependant on the crystal group,

18



Orientation and Symmetry Chapter 2

and hence the number of equivalents varies, as indicated in Table 2.1. Switching sym-

metry accounts for both possible directions for a transformation between orientations,

resulting in twice as many symmetry equivalents, as does the +q,−q equivalence.

19



Chapter 3

EBSD Image Superresolution

Superresolution is the process of algorithmically increasing the resolution of a lower

resolution (LR) image by a specified scaling factor and, in doing so, recovering higher

frequency information present in an equivalent high resolution (HR) image. The super-

resolved image (SR) will have the dimensions of the desired HR image, and should be as

close as possible to it’s respective HR in terms of pixel by pixel comparison. The classical

method for superresolution is to fill in the missing pixels introduced by the scaling factor

with interpolation between pixels in the LR image. Some of the most common methods

for this approach are bilinear interpolation, cubic interpolation, and nearest neighbor.

More recently, deep neural networks have been used to learn complex non-linear mapping

between LR and HR pixels, and recapture spatial frequencies at higher than the Nyquist

threshold.

For Superresolution of EBSD data specifically, interpolation and neural network im-

plementations are conducted using the raw experimental quaternion data, before convert-

ing the superresolved quaternion array into an SR Image. This is preferred over using the

color data resulting from Color Orientation Mapping, since the orientation data inher-

ently captures more information, and because the color maps are not directly invertible
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to orientation for the purpose of calculating misorientation accuracy.

Since we are interpolating between orientations, spherical linear interpolation is a

more accurate method than the bilinear, cubic, and nearest neighbor interpolations.

However, when applying Slerp to superresolve EBSD data, the SR Images tend to exhbit

very similar aliasing in its color orientation map to the state-of-the-art EBSD superresolu-

tion model. To remedy this issue, we propose the use of a minimum angle transformation,

which replaces the standard transformation between two quaternions in the Slerp algo-

rithm, and thus avoids the issue of symmetry switching. This is the first known attempt

to introduce Slerp, accounting for symmetry switching, for EBSD Superresolution.

Next, we develop a Superresolution framework, based on [1], with an updated loss

function, which computes the rotational distance for the minimum angle transformation

between HR and SR pixels during the training phase.

3.1 Spherical Linear Interpolation (Slerp) Interpola-

tion for EBSD Data

Slerp [5] is the standard method for interpolating between two orientations expressed as

quaternions q1 and q2, as it interpolates along the minimum great circle path connecting

the orientations in that space.

3.1.1 Slerp Algorithm

The Slerp algorithm exponentiates a quaternion to a scalar value (the interpolation para-

mater t), which is computed as follows:

qt = ∥q∥tev̂
θ
2
t (3.1)
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Suppose we have two three-dimensional orientations encoded by q1 ∈ H and q2 ∈ H,

with respect to the same physical reference. Slerp allows us to interpolate through the

path by toggling the interpolation parameter t from 0 to 1. In our area of application, q1

represents the orientation of a unit cell 1 with respect to the orientation of the sample,

while q2 represents the orientation of a unit cell 2, with respect to the orientation of the

sample.

T = q−1
1 q2 (3.2)

Slerp(q1, q2, t) = q1(q
−1
1 q2)

t (3.3)

Slerp(q1, q2, t) = q1T
t (3.4)

When t = 0.5, Slerp reaches the point halfway along the minimum great circle connecting

the quaternions. We can also trivially note that if t = 0, the expression reduces to q1,

and if t = 1, q1 and q−1
1 cancel, leaving us with q2.

The direction of transformations, and relationship between them is illustrated in

Figure 3.1

Figure 3.1: All transformations between the orientations q = 1 (reference), Orienta-
tion 1, and Orientation 2. Slerp interpolates between Orientation 1 and Orientation
2 by stringing together transformation q1 with a parametrized transformation T , ex-
ponentiated to the interpolation factor t.
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3.1.2 Minimum Angle Transformation Spherical Linear Inter-

polation (Slerp-MAT)

The Slerp algorithm (3.4) does not account for objects with group symmetry, so we

propose a novel interpolation algorithm that adds symmetry minimization to the trans-

formation between orientations represented by quaternions q1 and q2, T = q−1
1 q2. In

order to reduce computations, since in our EBSD application both objects have the same

symmetry, we apply the symmetry operator to the transformation quaternion, and mini-

mize for θ. We obtain a quaternion Tmin (3.6), whose versor v̂min is the axis of minimum

rotation between the two orientations, for two shapes with the same group symmetry.

T = q−1
1 q2 (3.5)

Tmin = Minθ{OsymmT} = a+ vmin = a+ ∥vmin∥v̂min = ev̂min
θ
2 (3.6)

T t
min = ev̂min

θ
2
t (3.7)

Plugging the minimum angle transformation into the Slerp formula, we obtain:

Slerp−MAT (q1, q2, t) = q1T
t
min (3.8)

Slerp-MAT is a distinct algorithm with respect to traditional SLERP, as there is no way

to pre-process or post-process the inputs our outputs to obtain the same result (hence,

why Slerp had not been applicable in this field). The use cases of Slerp-MAT could go

beyond the scope of the superresolution problem formulation, as it unlocks the potential

to create a probability distribution function, in order to noise synthetic microstructures.

Further than the scope of EBSD, it can also be used to interpolate between orientations

of objects with symmetry, which can have use cases in the more general fields of graphics,
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computer vision, and virtual reality.

3.1.3 Parallelized Interpolation Method

In order to efficiently superresolve a large amount of EBSD data utilizing Slerp-MAT,

we propose a parallel computational framework. If the collected two dimensional plane

is of resolution M ×N , and we wish to superresolve by a scale S, we will end up with a

superresolved image of dimensions MS×NS. In the example below we consider a trivial

example, where the low resolution image which we wish to superresolve is of size 2 × 2

pixels (storing four quaternions in total), and a scale factor S = 4, resulting in an output

of dimensions 8× 8.

We start by placing the low resolution values S positions apart, so we may then first

interpolate column-wise with parameter t, up to column (N − 1)S + 1.

Figure 3.2: Dark circles denote elements from original array placed with equal spacing
in a new array with the desired output dimensions, as per the defined scaling factor.

Figure 3.3: Column-wise interpolation using the known array elements. Green high-
lighted array elements denote areas that have been superresolved with EBSD-Slerp–
MAT.
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We may then compute in parallel all the interpolations row-wise, down to the row

(M − 1)S + 1.

Figure 3.4: Row-wise interpolation using the known array elements. Green highlighted
array elements denote areas that have been superresolved with EBSD-Slerp-MAT.

For the remaining pixels, we simply select a nearest neighbor, as we don’t have two

distinct points to interpolate between. This allows us to maintain the desired dimensions

for the superresolved output, MS ×NS.

Figure 3.5: We utilize nearest neighbor interpolation for the last M−1 rows and N−1
columns. Green highlighted array elements denote that the parallelized Slerp-based
superresolution algorithm is complete.

This parallelized approach to Slerp Superresolution allows us to interpolate a large

amount of EBSD data in an order of minutes rather than hours. These can be further

processed by a pre-trained Deep Learning Network, without the need for the resolution

increase in the deep learning approach to rely on Pixel Shuffle [6], which struggles to

produce high frequency spatial information on globally simple but locally textured data,

such as EBSD. It is by parallelizing the interpolation process that we are able to reduce

the computation to minutes as opposed to hours, by running the algorithm on GPU

hardware - in this case, on an NVIDIA A100 GPU.
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3.1.4 Superresolution Results with Slerp versus Slerp-MAT

Slerp interpolation of an EBSD quaternion array results in symmetry switching aliasing,

as shown in Figure 3.6. Replacing Slerp with Slerp-MAT resolves the symmetry switching.

We can see incorrect color orientation mapping is observed at the grain boundaries, and

this is because they have large angular differences and are hence not fit for a smooth

interpolation function. To remedy this, we interpolate the array with Slerp-MAT, but

with an edge preservation threshold. To introduce edge preservation, we default to nearest

neighbor interpolation, if the angle between the interpolating quaternions is θ > 3◦.

This occurs because the angle minimization across symmetry operators gets computed

separately for q1 and q2 instead of for the transformation between them. In the case

of Nickel, which has cubic symmetry, the results are more apparent, since its symmetry

group is twice as large.

Figure 3.6: Results of Superresolving to original dimensions a Low Resolution (LR) 4x
Decimated EBSD quaternion array, illustrated with color orientation mapping. Left–
to-right: Slerp interpolation function, Slerp-MAT interpolation function, Slerp-MAT
interpolation function with nearest neighbor (NN) if θ > 3◦. Slerp-MAT is impervious
to symmetry switching, and Slerp-MAT with edge preservation replaces Slerp-MAT
with a discontinous interpolating function (NN) for grain boundaries.
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3.2 Deep Learning Superresolution for EBSD Data

Slerp-MAT with edge preservation provides more accurate results on Nickel data than the

previous state-of-the-art superresolution networks, as it avoids incorrect color mapping.

However, a deterministic interpolation method is not able to reconstruct grain shapes

that were sufficiently deconstructed by decimation, which happens at a 4x Decimation

scale for materials with smaller grain sizes. This is the case for the Titanium dataset,

that the state-of-the-art network architecture [1] was trained and evaluated on. We can

improve the representational power of superresolution, in comparison to a deterministic

interpolation like Slerp-MAT, by creating a more complex, non-linear map, between LR

and HR images using a deep learning feature extraction approach.

In Figure 3.7 we adapt the loss function of the state-of-the-art Physics-based Loss

presented in [1] to avoid symmetry switching, by calculating the rotational distance with

the Minimum Angle Transformation employed in Slerp-MAT.

Figure 3.7: Network Architecture and Loss Function
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3.2.1 Network Architecture

The network architecture proposed in [1] comprises of two feature extractors - a shallow

feature extractor, and a deep feature extractor. The shallow feature extractor employs a

single convolution layer to extract shallow features, which are passed on the deep feature

extractor.

F0 = HSF (ILR) (3.9)

where F0 are the shallow features generated by the trained mapping HSF applied to a

low resolution EBSD quaternion array, ILR. The shallow features are then hierarchically

passed on to the deep feature extractor

FDF = HDF (F0) (3.10)

Finally, the deep features extracted are passed to an Upscale and Reconstruction Module.

This module upscales the features using a Pixel Shuffle operation [6], and then maps the

feature onto an SR EBSD Image, with the use of convolution layers.

F↑ = H↑(FDF ) (3.11)

ISR = HR(F↑) (3.12)

The subsequent deep feature extractor comprises of a state-of-the-art single image

superresolution architecture: Enhanced Deep Residual Network (EDSR), or a Holistic

Attention Network (HAN).

FDF = HDF (F0) (3.13)
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In this section, we describe how the Minimum Angle Transformation was used to

train industry standard superresolution networks used for images, based on those used

in [1]

3.2.2 Loss Function

For the state-of-the-art EBSD Superresolution approach proposed in [1], the loss function

computes a rotational distance between the superresolved and respective high-resolution

quaternions.

θ = 2arccos(R{q−1
1 q2}) (3.14)

= 2 arccos(1− 1

2
∥q1 − q2∥22) (3.15)

= 4 arcsin(
1

2
∥q1 − q2∥2) (3.16)

= 4 arcsin(
deuclid
2

) (3.17)

A linear approximation is calculated at deuclid = 1.9, and used for points where

deuclid > 1.9, in order to avoid gradients tending to ∞.

However, q1 and q2 are the symmetry reduced quaterion transformations between

the sample orientation, and that of the HR and SR orientations respectively. In other

words, the symmetry choice has been minimized in the frame of reference of the sample

orientation, instead of that of the respective HR and SR element orientations, leaving

this approach vulnerable to symmetry switching, as explained in chapter 2.

q1 = qSR−fz = Minθ{qSR} (3.18)

q2 = qHR−fz = Minθ{qHR} (3.19)
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We adapt the original loss function to account for the minimum angle transformation

between respective SR and HR orientations, by making q1 the bidirectional MAT between

them, and making q2 the zero rotation unit quaternion.

q1 = Tmin = Min|θ|{Osymm(q
−1
SRqHR) ∪Osymm(q

−1
HRqSR)} (3.20)

q2 = 1 (3.21)

The minimization accounts for both transformation directions, by minimizing over the

union of symmetry equivalent transformations from SR to HR orientations, and HR to

SR orientations.
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3.2.3 Results for Titanium Data

A Misorientation probability density function, is generated through random sampling of

10,000 elements out of the 1,689,660 elements in the entire dataset. The area under the

probability density functions in Figure 3.8 indicate the probability of a randomly sampled

pair of array elements in the same respective position of the HR and SR arrays having

a misorientation angle falling in that range. The output array based on minimum angle

transformation loss has most of its area surrounding a notable peak at 0◦, while the array

based on rotational distance has its area much more spread out on the horizontal axis,

from 0◦ to 120◦ (maximum possible rotation angle for a minimum angle transformation

between two hexagonal closed pack unit cells [7]). It does have a peak close to 0◦, but also

another approximately equal area peak close to 60◦. The mean misorientation for the

MAT loss versus HR is 11.16◦, a 321% improvement compared to 47.05◦ for the previous

state-of-the-art. The results for the color orientation mapping of a single 2D plane of the

3D output array is shown in Figure 3.9.
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Figure 3.8: Probability density function of Titanium element-wise minimum angular
distance between output quaternion array, superresolved from a 4x decimated Ground
Truth quaternion array, with EDSR as the deep feature extractor.
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Figure 3.9: Color orientation mapping for two arbitrary 2D planar slices of the Ti-
tanium quaternion arrays. Bottom to top: Ground truth experimental array. Su-
perresolved quaternion array of the 4x decimated array using minimum angle trans-
formation based loss during neural network training, with EDSR as the deep feature
extractor. State-of-the-art network rotational distance loss, with EDSR as the deep
feature extractor.
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3.2.4 Results for Nickel Data

The probability density functions for the Nickel dataset in Figure 3.10 are generated

through random sampling of 10,000 elements out of the total 22,421,490 elements in the

dataset. The probablity density function based on the minimum angle transformation

loss exhibits a peak close to 0◦, with most of the area distributed in that region of the

horizontal axis. On the other hand, the state-of-the-art loss has a much higher peak

at 30◦ than at 0◦, and its area is more spread out on the horizontal axis. The mean

misorientation for the MAT loss versus HR is 3.52◦, a 882% improvement compared to

34.60◦ for the previous state-of-the-art. Two arbitrary results for the color orientation

mapping of single 2D planes of the 3D output array are shown in Figure 3.2.4 and Figure

Figure 3.11.

Figure 3.10: Probability density function of element-wise minimum angular distance
between Nickel output quaternion array, superresolved from a 4x decimated Ground
Truth quaternion array, with EDSR as the deep feature extractor.
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Figure 3.11: Color orientation mapping for two arbitrary 2D planar slices of the
Nickel quaternion arrays. Bottom to top: Ground truth experimental array. Super-
resolved quaternion array of the 4x decimated array using minimum angle transfor-
mation based loss during neural network training, with EDSR as the deep feature
extractor. State-of-the-art network rotational distance loss, with EDSR as the deep
feature extractor.

35



Chapter 4

Discussion

In this thesis we have demonstrated how to correctly apply crystal group symmetry - with

a minimum angle transformation - to interpolate through the shortest great circle path

connecting two orientations represented by quaternions in an S3 sphere orientation space.

We also explain how this transformation can be used as a basis for a neural network loss

function, which is tested on a deep residual superresolution network (EDSR), and an

attention network (HAN). Both of these results have applications outside of just EBSD,

to any computer vision or graphics application that involves an interpolation between

the orientations of three-dimensional objects that have no individual markings on each

face (hence the existence of symmetry equivalents).

In terms of short-term further research, the area for improvement we see in the ML

output with minimum angle transformation is that the super-resolved color orientation

maps seems to have course spatial features, which looks quite close to that of Slerp-MAT-

based output. Because we’re using an attention network for Superresolution, we expect

model to synethsize higher frequency spatial information, which seems to be missing.

In fact, there seems to be a trade-off between creating smoother boundaries, using for

instance a simple l1 loss, with producing accurate misorientation superresolved output.
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Adding transformers to the network architecture might be useful for coupling accurate

angular distance with higher frequency spatial information, which is what will actually

improve metrics such as PSNR that are tracked for resolution increases for RGB images.

For the longer term and bigger picture, the key areas to explore are experimenting

with generative adversarial and diffusion networks on the orientation data, to generate

textured synthetic microstructures directly in a three-dimensional volume.
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