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RESEARCH

Detecting cord blood cell type-specific 
epigenetic associations with gestational 
diabetes mellitus and early childhood growth
Tianyuan Lu1,2, Andres Cardenas3, Patrice Perron4,5, Marie‑France Hivert4,6,7, Luigi Bouchard5,8,9 and 
Celia M. T. Greenwood1,10,11,12*  

Abstract 

Background: Epigenome‑wide association studies (EWAS) have provided opportunities to understand the role of 
epigenetic mechanisms in development and pathophysiology of many chronic diseases. However, an important limi‑
tation of conventional EWAS is that profiles of epigenetic variability are often obtained in samples of mixed cell types. 
Here, we aim to assess whether changes in cord blood DNA methylation (DNAm) associated with gestational diabetes 
mellitus (GDM) exposure and early childhood growth markers occur in a cell type‑specific manner.

Results: We analyzed 275 cord blood samples collected at delivery from a prospective pre‑birth cohort with 
genome‑wide DNAm profiled by the Illumina MethylationEPIC array. We estimated proportions of seven common cell 
types in each sample using a cord blood‑specific DNAm reference panel. Leveraging a recently developed approach 
named CellDMC, we performed cell type‑specific EWAS to identify CpG loci significantly associated with GDM, or 
3‑year‑old body mass index (BMI) z‑score. A total of 1410 CpG loci displayed significant cell type‑specific differences in 
methylation level between 23 GDM cases and 252 controls with a false discovery rate < 0.05. Gene Ontology enrich‑
ment analysis indicated that LDL transportation emerged from CpG specifically identified from B‑cells DNAm analyses 
and the mitogen‑activated protein kinase pathway emerged from CpG specifically identified from natural killer cells 
DNAm analyses. In addition, we identified four and six loci associated with 3‑year‑old BMI z‑score that were specific to 
CD8+ T‑cells and monocytes, respectively. By performing genome‑wide permutation tests, we validated that most of 
our detected signals had low false positive rates.

Conclusion: Compared to conventional EWAS adjusting for the effects of cell type heterogeneity, the proposed 
approach based on cell type‑specific EWAS could provide additional biologically meaningful associations between 
CpG methylation, prenatal maternal GDM or 3‑year‑old BMI. With careful validation, these findings may provide new 
insights into the pathogenesis, programming, and consequences of related childhood metabolic dysregulation. 
Therefore, we propose that cell type‑specific analyses are worth cautious explorations.

Keywords: Epigenome‑wide association study, DNA methylation, Cell type specificity, Gestational diabetes mellitus, 
Early childhood growth
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Background
With the advent of technologies such as microarrays, 
profiling genome-wide DNA methylation (DNAm) and 
conducting epigenome-wide association studies (EWAS) 
have become common approaches to explore epigenetic 
mechanisms underpinning complex traits and biological 
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processes  [1]. Biological samples collected to quantify 
DNAm, e.g. blood samples and other bulk tissues, are 
usually mixtures of different cell types. It has been recog-
nized that cellular heterogeneity may strongly confound 
EWAS, because, in addition to cell type compositions 
possibly being associated with the phenotype of interest  
[2–4], DNAm also exhibits distinctive and substantial cell 
type-specific patterns in both healthy and diseased indi-
viduals  [3]. Though it is desirable to separate and analyze 
different cells respectively by fluorescence-activated cell 
sorting (FACS)  [5] or single-cell methylome sequencing  
[6, 7], such methods may not be easily generalizable to 
large epidemiological cohorts for complex traits due to 
potentially high cost and indispensable facilities.

Various statistical approaches have been proposed to 
infer cell type composition in samples and correct for cell 
type heterogeneity in EWAS  [8–12]. However, many of 
these approaches consider that the observed or estimated 
cell type proportions may be associated with the pheno-
type, but not with differences in DNAm (at most of the 
measured positions)  [8]. Therefore, these approaches to 
adjust for confounding by in-sample cell type proportions 
may have low power for identifying differentially methyl-
ated loci when such differences, which might not be evi-
dent, are specific to a subset of cell types, or demonstrate 
opposing directions in different cell types  [4]. Recently, 
a new algorithm called CellDMC was developed and 
validated by Zheng et al.  [4] to enable detection of cell 
type-specific differential DNA methylation by identifying 
interactions between the phenotype and cell type propor-
tions in samples. The benefits of this approach in human 
samples containing cell type mixtures may worth exten-
sive exploration.

Gestational diabetes mellitus (GDM) is a complex 
condition that has been associated with various adverse 
impacts on the development and growth of the offspring  
[13, 14]. Increasing evidence suggests crucial epigenetic 
mechanisms may be implicated in the varying conse-
quences of GDM  [15–17]. For instance, two regions, one 
in the autism spectrum disorder-related gene OR2L13 
and the other in the metabolic enzyme gene CYP2E1, had 
lower DNAm levels in cord blood of newborns exposed 
to GDM compared to controls  [13]. Placental DNAm 
profiles of adipokines genes (e.g. LEP and ADIPOQ) and 
inflammatory genes (e.g. PDE4B) were also found to be 
associated with exposure to maternal hyperglycemia  [18, 
19] and maternal glycemia response  [20], respectively. 
Nevertheless, it is still poorly understood whether such 
epigenetic variability is cell type-specific.

Therefore, to better survey the epigenetic mechanisms 
associated with gestational diabetes, we implemented 
CellDMC  [4] for detecting cell type-specific DNAm in 
EWAS on GDM, leveraging cord blood samples collected 

from 275 mother–child pairs in the Genetics of Glucose 
Regulation in Gestation and Growth (Gen3G) cohort  
[21]. Additionally, we attempted to identify cord blood 
cell type-specific DNAm associated with 3-year-old 
body mass index (BMI) z-scores, an important marker 
of fetal and early childhood growth associated with later-
life health outcomes  [22]. We assessed the benefits of 
employing cell-type specific analyses (CellDMC) through 
comparison with a conventional EWAS framework and 
an alternative interaction detection framework.

Methods
Study cohort
The Gen3G cohort  [21] is a prospective pre-birth cohort 
that was established between January 2010 and June 2013 
at the Centre Hospitalier Universitaire de Sherbrooke, in 
Sherbrooke, Canada. Expecting mothers aged ≥ 18 years 
with a singleton pregnancy, who did not have pre-preg-
nancy diabetes mellitus as determined by medical his-
tory and screening were eligible for enrollment. Data and 
samples were collected at three time points during preg-
nancy: the first research visit between 5 and 16  weeks 
of gestation, the second visit between 24 and 30  weeks 
of gestation, and at delivery  [21]. At the first trimes-
ter, trained research staff measured maternal height 
and weight using standardized protocols. Participating 
women reported age, current smoking status, and parity. 
Women subsequently underwent GDM screening during 
the second trimester of pregnancy using a 75 g oral glu-
cose tolerance test (OGTT), and were identified as having 
GDM if one of the following criteria was fulfilled: (1) fast-
ing glucose ≥ 5.1  mmol/L, (2) 1-h OGTT ≥ 10  mmol/L, 
or (3) 2-h OGTT ≥ 8.5 mmol/L, following the American 
Diabetes Association/International Association of Dia-
betes and Pregnancy Study Group (ADA/IADPSG) diag-
nostic criteria  [23]. These women who were diagnosed 
with GDM received treatment according to 2008 Cana-
dian Diabetes Association guidelines  [24] adopted at that 
time at the institution.

For the current study, we analyzed 275 mother–
child pairs of European ancestry with delivery that 
occurred ≥ 37  weeks of gestation, and had measured 
weight and height of children upon a return visit at the 
age of 3 when the offspring were aged 40.5 ± 3.0 months  
[25]. Weight was measured with a calibrated electronic 
scale with bare feet in light clothing. Height was meas-
ured with a wall stadiometer without shoes. Body mass 
index (BMI) was computed as z-scores using the World 
Health Organization (WHO) growth chart reference for 
boys and girls. Data from all 275 samples were used for 
DNAm-GDM association tests. Three children did not 
have age 3 BMI measures, thus only 272 samples were 
included in DNAm-age 3 BMI z-score association tests.
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Cord blood sample collection and measurement of DNAm
We collected whole blood samples of cord blood within 
30  min after delivery by research staff, as described pre-
viously  [21]. Samples were then aliquoted (300–500 µL/
aliquot) and stored at − 80  °C. Double strand DNA con-
centration was assessed using Quant-iT™ PicoGreen™ 
dsDNA Assay Kit (Qiagen, USA) after DNA extraction 
using the All Prep DNA/RNA/Protein Mini Kit (Qia-
gen, USA). Methylation levels at > 850,000 CpG loci were 
quantified using the Infinium MethylationEPIC BeadChip 
after sodium-bisulfite conversion  [21]. Preprocessing was 
preformed using the minfi R package  [26]. We removed 
non-CpG probes, probes that were annotated to sex chro-
mosomes, probes that showed non-significant detection 
(p value > 0.05) in ≥ 5% of the samples, probes with a single 
nucleotide polymorphism (SNP) with a minor allele fre-
quency ≥ 5% at the target CpG or at the single base exten-
sion, as well as cross-reactive probes reported in  [27]. We 
used the ComBat function in the sva R package to account 
for batch effects  [28]. We retained a total of 790,563 high 
quality probes for statistical analyses.

Estimation of cell type proportions
Cell type proportions for B-cells, CD4+ T-cells, 
CD8+ T-cells, granulocytes, monocytes, natural killer 
cells and nucleated red blood cells in each sample were 
estimated using the minfi R package with a cord blood-
specific DNAm reference panel including 700 CpG loci 
that are differentially methylated between these seven 
cell types  [29]. The accuracy of this reference panel has 
been previously verified in our study cohort  [30]. Esti-
mated cell type proportions were normalized such that 
they added up to 100% in each sample:

where fk ,i,raw and fk ,i represent the raw estimated cell 
type proportion and the normalized cell type proportion 
for the k-th cell type (of K = 7 in total) of the i-th sam-
ple, respectively.

Detecting cell type‑specific differential methylation
We performed two epigenome-wide analyses, looking for 
interactions between cell type proportions and two varia-
bles: (1) GDM, and (2) 3-year-old BMI z-score. Per-locus 
association was tested separately for each of the pheno-
type variables, using the CellDMC framework proposed 
in Zheng et al.  [4]:

Here, xc represents methylation M-value (logit-trans-
formed methylation proportion) at probe c , fk represents 

fk ,i =
fk ,i,raw∑K
k=1 fk ,i,raw

(1)xc =
∑

k
fkµkc +

∑
k
fkyβkc + zρ + e

cell type proportion of cell type k , y and z are the phe-
notype of interest and the additional covariates, respec-
tively, and e is random error. The estimated parameters 
are the cell type-specific means µkc , the covariate effects 
ρ , and interaction terms βkc , with the latter being of most 
interest in this study. For all analyses, we adjusted for 
maternal age, smoking status in early pregnancy (being 
a current smoker or not), parity, gestational age at birth, 
and child sex in the covariates, z.

In this framework, a significant interaction between the 
phenotype (y) and the corresponding cell type proportion 
will be observed if levels of methylation are correlated 
with y in different ways across the cell types. This interac-
tion effect may be significant even if the main effects of 
cell type proportion and the phenotype (y) are not signifi-
cant. Also, since cell type proportions sum up to 100%, 
no intercept was included.

Notably, we used M-value in model (1) since it has been 
shown to be more statistically valid for linear model-
based differential analysis of methylation levels than the 
β-value (methylation proportion)  [31]. However, for a 
more intuitive biological interpretation, we also repeated 
the analyses using β-values. For DNAm-GDM association 
tests, the coefficient for the interaction effect βkc based 
on β-value could be interpreted as change in methylation 
proportion in cell type k among individuals exposed to 
GDM compared to those not exposed to GDM, at probe 
c ; For DNAm-age 3 BMI z-score association tests, βkc 
could be interpreted as change in methylation propor-
tion in cell type k associated with one unit increase in the 
BMI z-score, at probe c . Conclusions regarding statistical 
significance were drawn from the M-value analyses, but 
magnitudes of effect were explored on the β-value scale.

We compared results obtained using this framework 
to those by performing standard EWAS, testing for asso-
ciation between each probe and the phenotype y, while 
adjusting for the effects of the same covariates as well as 
the estimated cell type proportions, but not including the 
interactions.

Alternative approaches for detection of interaction effects
The model presented in Eq. (1) is set up in a way that is 
statistically non-standard, because the phenotype, y , is 
on the independent-variable side of the model. We fol-
lowed Zheng et al.  [4] by using this model setup. Nev-
ertheless, for BMI at age 3, we performed additional 
analysis with the equation:

Here, different from the previous model (1), ν∗k  depicts 
the effect of cell type k on the phenotype, while γ ∗

kc rep-
resents the effect of interaction between DNAm in cell 

(2)y =
∑

k
fkν

∗

k +

∑
k
fkxcγ

∗

kc + zρ∗
+ e∗
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type c and the k-th cell type on the phenotype. We did 
not use Eq.  (2) for the GDM phenotype since this was 
measured, in the mothers, prior to collection of the 
cord blood at birth. This model differs from Eq.  (1) in 
that it assumes that the associations between cell type 
proportions and the phenotype y vary depending on 
the probe-of-interest’s (logit-transformed) methyla-
tion level, whereas the former assumes that y modu-
lates the association between cell type proportions and 
the probe-of-interest’s (logit-transformed) methylation 
level.

Verification of genome‑wide significance
One important consideration is whether the results from 
our analyses are likely to have occurred by chance. Given 
the number of tests being performed—genome-wide 
interaction tests with each of seven cell types—robust 
adjustments for multiple testing are necessary. We there-
fore performed permutation analyses to look at genome-
wide significance for these interaction tests. Designing 
appropriate permutation tests for interactions is chal-
lenging  [32]. We followed the recommendations of Buz-
kova et  al.  [33, 34] by first fitting a model without any 
interaction terms, and calculating residuals R = xc − x̂c 
for each probe. We then permuted the residuals across 
the samples while ensuring the order of re-assignment 
was consistent for all probes and computed the test sta-
tistics for the interaction terms by refitting Eq. (1) using 
the permuted residuals instead of the original meth-
ylation levels. We repeated this procedure 100 times for 
each phenotype and obtained epigenome-wide distribu-
tions of p values. This approach retains the correlation 
across different probes and provides genome-wide null 
distributions of the p values.

Functional annotation
For each cell type, we identified target genes if any 
cell type-specific differentially methylated CpG locus 
was located in a genic region, an upstream regulatory 
region (5′ untranslated region or up to 1,500 base-pairs 
upstream of the transcription start site), or a downstream 
regulatory region (3′ untranslated region). Gene Ontol-
ogy (GO)-enrichment analysis was performed for these 
genes, for each cell type separately, using the enrichGO 
function in the clusterProfiler R package  [35]. All known 
ontologies for biological processes, molecular func-
tions and cellular components were included for enrich-
ment analysis. Significantly enriched GO terms were 
defined as having a false discovery rate (FDR; p value 
adjusted for multiple testing by the Benjamini–Hochberg 
method) < 0.05.

Results
Cohort characteristics
Demographic and clinical characteristics of the 275 
mother–child pairs used in this study are summarized 
in Table 1. At enrollment, the mean (SD) age was 28.5 
(4.2) years and mean (SD) BMI was 25.5 (5.7) kg/m2. 
All mothers were Caucasian and 132 (48.0%) were pri-
miparous. Twenty-three (8.4%) mothers had GDM. 
Nine of these GDM mothers were treated with insulin 
and 14 received dietary interventions. Characteristics 
of the mothers and the children were largely consistent 
between those exposed to GDM and those not exposed 
to GDM, except that mothers with GDM were more 
likely to be current smokers (Additional file  1: Tables 
S1 and S2). At delivery, newborns had a mean (SD) 

Table 1 Demographic and clinical characteristics of 275 Gen3G 
mother–child pairs included in this study

* Three (1.1%) children had missing data and were not included in DNAm-age 3 
BMI z-score association tests
† Demographic and clinical characteristics with respect to maternal gestational 
diabetes mellitus are presented in Additional file 1: Supplementary Tables S1 
and S2

Mean (SD)/N (%)

Mother

 Age (year) 28.5 (4.2)

 Height (cm) 164.8 (6.4)

 Weight (kg) 69.3 (15.6)

 Body mass index (BMI; kg/m2) 25.5 (5.7)

Parity

 Being primiparous 132 (48.0)

 Gestational diabetes  mellitus† 23 (8.4)

 Insulin therapy 9 (3.3)

 Dietary intervention 14 (5.1)

 Smoking (at  1st trimester)

 Currently smoking 21 (7.6)

Child

 Gestational age at birth (week) 39.5 (1.0)

 Male 150 (54.5)

 Birthweight (kg) 3.4 (0.4)

 Height (cm) at age  3* 96.9 (4.4)

 Weight (kg) at age 3 15.2 (1.9)

 BMI (kg/m2) at age  3* 16.2 (1.6)

Estimated cord blood cell type proportions (%)

 B‑cell 9.5 (3.0)

 CD4+ T‑cell 15.8 (5.3)

 CD8+ T‑cell 12.6 (3.4)

 Granulocyte 39.9 (9.2)

 Monocyte 9.0 (2.6)

 Natural killer cell 2.0 (2.6)

 Nucleated red blood cell 11.2 (5.9)
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gestational age of 39.5 (1.0) weeks and birthweight of 
3.4 (0.4) kg, and 150 (54.5%) were male. At the 3-year-
old visit, the  children had a mean (SD) BMI of 16.2 
(1.6) kg/m2. Most estimated cell type proportions in 
the samples were not significantly associated with 
the phenotypes of interest, except that the estimated 
monocyte proportion was weakly associated with Fen-
ton’s birthweight z-score  [36] (Pearson correlation 
r = 0.17, FDR = 0.03) and age 3 BMI z-score (r = 0.16, 
FDR = 0.04). (Additional file  7: Supplementary Figure 
S1).

Cell type‑specific CpG methylation is associated with GDM 
exposure
We report here significant epigenome-wide findings for 
association tests using the model of Eq. (1) above across 
all autosomal CpGs, determined by an FDR threshold 
(FDR < 0.05). Detailed results are summarized in Addi-
tional file 2: Supplementary Tables S3. In total, 1410 CpG 
loci were found to be significantly associated with GDM 
in a cell type-specific manner (FDR < 0.05; Fig.  1a–g; 
Additional file 2: Supplementary Table S3), 1174 of which 
were located in genic regions or potential upstream or 
downstream regulatory regions, involving 1282 genes. 

Fig. 1 Manhattan plots summarizing epigenome‑wide CpG methylation associated with gestational diabetes mellitus. (a–g) Cell type‑specific 
differentially methylated CpG loci are indicated for seven cell types. Results obtained from standard EWAS adjusting for estimated cell type 
proportions are summarized in (h). CpG loci are aligned on the x‑axis according to genomic coordinate and are colored by chromosome. The y‑axis 
represents −  log10 (p value). Red dashed lines denote Bonferroni‑corrected genome‑wide significance threshold (p value < 6.3 ×  10–8)
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Of these 1410 CpG loci, in the corresponding cell type, 
216 were estimated to be completely methylated among 
individuals exposed to GDM but unmethylated among 
those not exposed to GDM ( βkc estimated to be 1 in 
model (1) based on β-value), while 159 were estimated 
to be unmethylated among individuals not exposed to 
GDM but completely methylated among those exposed 
to GDM ( βkc estimated to be −1 in model (1) based on β
-value). Furthermore, 143 loci reached a more conserva-
tive Bonferroni-corrected genome-wide significance (p 
value < 0.05/790,563 = 6.3 ×  10–8). Of these 143 loci, 108 
had effects unique to one cell type while 35 had effects 
in two different cell types (Additional file  2: Supple-
mentary Table  S3). In contrast, no apparent association 
was observed in a cell type proportion-adjusted stand-
ard EWAS (Fig.  1h). Cell type-specific GO-enrichment 
analyses (Methods) on genes harboring these signifi-
cantly methylated CpG loci (FDR < 0.05) indicated that 
some diabetes mellitus-relevant pathways were prob-
ably involved in a cell type-specific manner, such as LDL 
transportation emerging from GDM-hypermethylated 
gene body CpG loci of LDLR, SCARF1 and SORL1, spe-
cifically identified from B-cells DNAm analyses, and 
the mitogen-activated protein kinase pathway emerg-
ing from CpG loci involving 18 genes, including GDM-
hypermethylated upstream regulatory region CpG loci of 
MAPK11, MAP3K10, and MAP3K12, specifically identi-
fied from natural killer cells DNAm analyses (Additional 
file 3: Supplementary Table S4).

Cell type‑specific CpG methylation possibly associated 
with early childhood growth
When we investigated the offspring 3-year-old BMI 
z-score, we observed four gene body CpG loci associated 
with 3-year-old BMI z-score in CD8 + T-cells (first two 
were significant after Bonferroni correction): cg02702424 
(TGFBR2, β-value decreased 0.25 per unit increase in 
BMI z-score), cg12586150 (SERPINB1, β-value increased 
0.30 per unit increase in BMI z-score), cg18813020 
(PRDM6, β-value decreased 0.09 per unit increase in BMI 
z-score), and cg25821794 (VGLL2, β-value decreased 
0.10 per unit increase in BMI z-score); as well as six loci 
associated with 3-year-old BMI in monocytes (first two 
were Bonferroni significant; Fig.  2a–g; Additional file  4: 
Supplementary Table  S5): gene body locus cg12586150 
(SERPINB1, β-value decreased 0.48 per unit increase 
in BMI z-score), upstream regulatory region locus 
cg00974033 (BMPR1A, β-value decreased 0.60 per unit 
increase in BMI z-score), gene body locus cg06166187 
(MPDZ, β-value decreased 0.32 per unit increase in BMI 
z-score), gene body locus cg19418629 (ANKRD55, β-
value decreased 0.34 per unit increase in BMI z-score), 
cg10950644 (intergenic region, β-value decreased 0.54 

per unit increase in BMI z-score), and cg02213440 (inter-
genic region, β-value decreased 0.54 per unit increase in 
BMI z-score). Again, no significant association was iden-
tified using standard cell type proportion adjusted epig-
enome-wide association test for 3-year-old BMI z-score 
(Fig. 2h).

Validation by permutation
Figure 3a and b illustrate Quantile–Quantile (QQ)-plots 
of genome-wide interaction p values obtained from tests 
performed using the original data and in 100 permuta-
tions. We observed that many probes demonstrated evi-
dence of interactions for GDM; and these interactions 
occurred in various cell types. In contrast, there were 
only a handful of probes where p values were smaller than 
chance for BMI at age 3, with one apparent outlier. This 
top probe was cg12586150 residing in the gene body of 
SERPINB1, with an outstanding monocyte-specific effect 
and suggestive CD8+ T-cell-specific effect. Figure  3c 
illustrates interaction at this locus. When the proportion 
of monocyte is low (e.g. 3.9%, corresponding to the low-
est 5% of the population), a high 3-year-old BMI z-score 
is associated with a higher methylation level, whereas this 
association attenuates when the proportion of monocyte 
becomes higher, and eventually reverses, e.g. when the 
proportion of monocyte is over 14.1% (corresponding to 
the highest 5% of the population).

Alternative interaction detection
When we used the model of Eq. (2) instead, we found 37 
interaction effects between monocyte proportion and 
methylation level on age 3 BMI z-score (FDR < 0.05; Addi-
tional file 5:  Supplementary Table S6), among which only 
one probe, cg14571620 (C12orf65), reached Bonferroni-
corrected genome-wide significance. Two of these 37 
probes, cg10950644 (intergenic region) and cg06166187 
(MPDZ), also demonstrated monocyte-specific effects 
in Eq.  (1), suggesting potentially complicated associa-
tions at these loci. Additionally, we identified one inter-
action effect between methylation level and granulocyte 
proportion reaching Bonferroni-corrected genome-wide 
significance at cg27648960 in an uncharacterized gene 
LOC100130093. Using Eq. (2), we did not find association 
with the SERPINB1 probe that stood out in Fig. 3c.

Discussion
In this study, leveraging a recently developed method 
to detect differential methylation in a cell type-specific 
manner, we have performed correlative analyses to 
investigate the associations between cord blood CpG 
methylation, GDM and child BMI at age 3 in a cohort of 
moderate sample size (N = 275).



Page 7 of 11Lu et al. Clin Epigenet          (2021) 13:131  

Compared to a conventional EWAS framework, our 
study yielded substantially more insights by explicitly 
modelling cell type-specific effects, though having not 
been validated externally. Our most interesting find-
ings arise for GDM, and in this case the gestational dia-
betes status of the mother during the first trimester was 
ascertained prior to measuring the methylation levels at 
birth, facilitating interpretation of results. As expected, 
we identified cell type-specific differential DNAm in 
genes vital to carbohydrate and lipid metabolism, includ-
ing ADIPOR2 (gene body locus cg12568001, β-value 
decreased 0.68 among individuals exposed to GDM in 
CD4+ T-cell, and increased 0.89 in B-cell)  [37], GNAS 

(upstream regulatory region locus cg03908391, unmeth-
ylated among individuals exposed to GDM but com-
pletely methylated among those not exposed to GDM 
in CD8+ T-cell)  [38], GRB10 (upstream regulatory 
region locus cg00228281, β-value increased 0.12 among 
individuals exposed to GDM in CD4+ T-cell)  [39], 
etc. Moreover, we also identified differentially methyl-
ated genes known to be associated with maternal insu-
lin sensitivity during pregnancy, such as DLGAP2 (gene 
body loci cg20257821, cg02641770, and cg18540249, β
-value decreased 0.24, 0.92 and 0.57 respectively among 
individuals exposed to GDM in CD8+ T-cell), H19/
MIR675 (gene body/upstream regulatory region locus 

Fig. 2 Manhattan plots summarizing epigenome‑wide CpG methylation associated with 3‑year‑old BMI z‑score. (a–g) Cell type‑specific 
differentially methylated CpG loci are indicated for seven cell types. Results obtained from standard EWAS adjusting for estimated cell type 
proportions are summarized in (h). CpG loci are aligned on the x‑axis according to genomic coordinate and are colored by chromosome. The y‑axis 
represents −  log10 (p value). Red dashed lines denote Bonferroni‑corrected genome‑wide significance threshold (p value < 6.3 ×  10–8)
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cg16153294, β-value increased 0.46 among individu-
als exposed to GDM in natural killer cell), and KCNQ1 
(gene body locus cg06719391, completely methylated 
among individuals exposed to GDM but unmethylated 
among those not exposed to GDM in natural killer cell, 
and gene body locus cg21752270, β-value decreased 
0.97 among individuals exposed to GDM in B-cell)  [40]. 
Notably, existing studies suggest that many of these genes 
are subject to genomic imprinting, including in placenta  
[40, 41]. It has been proposed that the parental origin 
of imprinted regions in placenta may have a profound 
influence on nutrient transfer during pregnancy, in par-
ticular, contributing to the “maternal–fetal conflict” in 
regulating nutrient allocation  [42]. Specifically, pater-
nally imprinted genes (that express the maternal alleles) 
tend to prioritize maintenance of maternal resources, 
whereas maternally imprinted genes (that express the 
paternal alleles) may increase supply to the fetus  [42, 43]. 
Given that the estimated cell type-specific methylation 
proportion changes were strong and may be of biological 

relevance, our findings imply that the underlying regula-
tory mechanisms might have cell type-specific activities 
which warrant future research.

Various diabetes-relevant pathways were identified in 
immune cells in enrichment analyses of the genes har-
boring cell type-specific DNAm significantly associ-
ated with GDM. Lipid dysfunction in diabetes has been 
widely characterized  [44–46]. Previously, mononuclear 
cell surface expression of LDL receptor was found to 
decrease in type 2 diabetic patients  [47]. Maternal total 
cholesterol level variations throughout pregnancy have 
been associated with placental DNAm in the LDLR and 
LRP1 genes  [48], where DNAm in LRP1 may mediate 
the effect of changes in maternal blood lipid levels on 
cord blood leptin levels  [48], a biomarker of adiposity. 
Here, we found that multiple lipid receptor-related path-
ways associated with lipid transportation and signaling 
might be influenced in a B-cell-specific manner, involv-
ing LDLR (cg16647139), SORL1 (cg26556630), SCARF1 
(cg17028259), etc. In B-cells, these gene body CpG loci 

Fig. 3 Quantile–Quantile plots of p values in epigenome‑wide permutation tests. Ten permutations for association tests for (a) gestational diabetes 
mellitus and (b) 3‑year‑old BMI z‑score were performed respectively. Distributions of p values obtained in these permutations are compared to 
those (red dots) obtained in the original analysis of cell type‑specific differential methylation. All significant CpG loci associated with gestational 
diabetes mellitus (FDR < 0.05) reside on the right side of the curve after inflexion. (c) Association between 3‑year‑old BMI z‑score and methylation 
level at cg12586150 in SERPINB1. Solid lines indicate predicted effects; Dotted lines delineate 95% confidence intervals. For visualization, predictions 
were based on median maternal age, non‑smoker, no parity, median gestational age, and child being female. Cell type proportions of other six cell 
types were set to 1−Proportion of Monocytes

6
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were estimated to be completely methylated among indi-
viduals exposed to GDM but were completely unmeth-
ylated among those not exposed to GDM. Natural killer 
cell-specific differential methylation was found to occur 
in LRP1 (gene body locus cg20668447, β-value increased 
0.23 among those exposed to GDM). Besides, pathways 
informative of other immune cell-specific functions also 
had strong enrichment of genes harboring differentially 
methylated CpGs, such as lytic functions of natural killer 
cells, involving mitogen-activated protein kinase activi-
ties and lysosome structures  [49–51]. These identified 
targets did not overlap with an alternative framework in 
which cell type-specific effects are assumed to be depend-
ent on the cell type proportions. While it is important to 
note that identification of differentially methylated CpG 
loci does not directly quantify changes in the amount 
of gene products, gene functions or pathway activities, 
particularly when DNAm in gene body may have a non-
monotonic effect  [52], we posit that these findings may 
implicate further investigations into the role of immune 
cell DNAm in GDM and its potential impacts on fetal 
development.

For 3-year-old BMI z-score, only one probe really stood 
out in our interaction analyses using the novel frame-
work: a monocyte-specific association with cg12586150 
in SERPINB1, which codes for the monocyte / neu-
trophil-derived elastase inhibitor and has been found 
associated with BMI z-score at age 5 in a genome-wide 
association study  [53]. Plasma levels of serpinB1 have 
also been associated with insulin sensitivity in non-dia-
betic adults  [54]. Therefore, further investigations with a 
focus on the role of specific cell types may be implicated, 
though these investigations should be undertaken know-
ing that the estimated monocyte proportion was itself 
moderately associated with age 3 BMI in our study.

We realize that in Eq.  (1), methylation levels at spe-
cific probes are used as dependent variables, while 
simultaneously cell type proportions—estimated from 
the methylation levels in the same samples at hundreds 
of probes—are used as independent variables. A small 
set of only 700 probes was used for estimation of cell 
type convolution, and we posit that this is unlikely 
to have a substantial impact on our analysis. None of 
the significant probes we identified were among these 
700 probes, and they displayed, at most, only moder-
ate correlation with these reference probes (Addi-
tional file 6: Supplementary Table S7). Perhaps of more 
concern, if there are technical factors associated with 
genome-wide methylation levels that were not ade-
quately removed during normalization, then there will 
be spurious correlations between the dependent and 
independent variables. Arguing against this hypoth-
esis, our QQ-plots show little evidence of generalized 

inflation. Despite these reassurances, we recommend 
cautious interpretation of our results, particularly when 
these findings have not been validated in other cohort 
studies or experimentally.

In our modelling of these complex associations, the 
underlying assumptions should be carefully considered. 
First of all, linear models for methylation-phenotype 
associations, such as Eq.  (1) but without the interac-
tions, implicitly assume that the phenotype exerts a 
constant-sized effect on the logit-transformed meth-
ylation proportions (M-values), which corresponds to 
constant multipliers on the original proportion scale. 
In contrast, although the interaction models allow 
these multipliers to vary by cell type, there are still 
inherent assumptions on the relationship between the 
covariates and the mean methylation levels through 
the logit transformation. Furthermore, for a pheno-
type or covariate that exerts a strong influence on cell 
type proportions (e.g. an infection), spurious asso-
ciations can be expected between probes known to 
have cell type-specific profiles and the proportions fk . 
This must be considered when speculating on poten-
tial interpretations of our results. Also, importantly, 
our study does not attempt to make statements about 
causal relationships which would need to be addressed 
through a formal causal modelling framework. For BMI 
z-score at age 3 in particular, the dependent variables, 
i.e. methylation levels, were profiled three years earlier 
than the independent variable, in Eq.  (1), thereby cre-
ating an incompatible model if causal effect interpreta-
tions are desired. However, our study has provided an 
exploratory overview of epigenome-wide associations 
with gestational metabolism and with early childhood 
growth specific to seven cell types in cord blood. We 
anticipate future studies, including larger cohort stud-
ies with sufficient power to relax strong assumptions, 
and experimental studies on directly purified cell types 
by FACS  [5] or single-cell sequencing  [6], should be 
able to detect and validate more complicated non-
homogeneous associations or causal effects.

Conclusions
Gestational diabetes mellitus and early childhood growth 
may be associated with DNAm variations specific to cer-
tain cell types in cord blood. By implementing a novel 
discovery framework for interaction effects and genome-
wide permutation tests, we demonstrate that these 
cell type-specific associations may be robustly identi-
fied. Such cell type-specific analyses are worth cautious 
explorations.
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