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ABSTRACT OF THE DISSERTATION 

Projection, Search, and Optimality in Fractional Factorial Experiments 

by 

Zongpeng Zheng 

Doctor of Philosophy, Graduate Program in Applied Statistics 
University of California, Riverside, December 2014 

Dr. Subir Ghosh, Chairperson 
 
 

             	
  	
  We propose a general Up-Down method to search for efficient 2m  fractional 

factorial designs in fitting a class of models when the number of factors is m, and the 

number of runs is n. The orthogonal array designs exist for some specific values of n. The 

orthogonal array designs are optimal under the resolution assumptions. The proposed Up-

Down method searches for efficient designs having the number of runs in between two 

values of n for orthogonal array designs satisfying a resolution assumption. We present 

the efficient resolution III designs obtained by the Up-Down method for  and a 

range of practical values of n. While many of these designs are found to be the global 

optimal resolution III designs by exhaustive computer search, the other designs are near 

global optimal designs. For m=4 and 5, we compare our designs with the optimal 

resolution III+k (k=0,1,2,…) designs in Ghosh and Tian (2006). Moreover, we utilize the 

method to obtain unbalanced Up-Res V designs performing slightly better than the 

3≤m ≤10
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balanced optimal fractional factorial designs (BOFFD) given in Srivastava and Chopra 

(1971) with respect to A- and D-optimality criteria. For a given n, all our designs are 

isomorphic having same optimality properties. For general m and n, the conditions are 

derived for obtaining such isomorphic designs with respect to Trace and Determinant. 

              Several interesting projection properties are known in the literature for 

orthogonal arrays and in particular for the Plackett-Burman (PB) designs. In this 

dissertation, the projection properties are investigated for both orthogonal and non-

orthogonal array designs under different model assumptions. The structure of the 

variance-covariance matrix for the estimates of the model parameters is characterized. 

The optimality properties of these designs are also investigated. For m=5, we consider 

seven 12-run designs di ,i =1,...,7  and a collection of classes of models. The designs 

di ,i =1,...,5  are balanced arrays of full strength, d6  and d7  are orthogonal arrays of 

strength 2. The designs d6  and d7  are two non-isomorphic designs obtained from the PB 

design by projecting 11 factors onto 5 factors. Overall, our designs d1  and d3  are at the 

top of their performances. By projection, all possible t (≤m ) factors out of m factors are 

considered. As t increases from 2, to 3 and 4, the design d1  becomes better and better 

compared to the design d3 . When t=5, the design d3  is optimal under resolution III 

model. For fitting resolution III plus k (k=1,2,3) models, the design d1  again becomes 

better and better compared to the design d3  as k increases. 
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Chapter 1  

Introduction to Factorial Design 

 

1.1 Factorial Design (FD) 

              Many scientific investigations involve the study of effects of two or more factors 

on a response variable simultaneously. Factorial design is essential for experiments in 

such investigations. It allows us to take all level combinations of the factors into 

consideration simultaneously rather than one at a time.  

 A typical complete2m  factorial design is given by a design matrix that consists 

of 2m  rows and m columns. Each row is a level combination of the m factors representing 

a condition under which our response will be measured, simply called “run”. Each 

column represents a potential factor of interest, and takes value 0 at its low level and 1 at 

its high level. Table 1.1 shows a simple case of the complete 32  factorial design; Table 

1.2 shows another example of a complete 23  factorial design. A more general design is 

called a general factorial design or a mixed-level factorial design which is very similar to 

the 2m  factorial design except that it allows the factors to have different numbers of 

levels. A typical example of mixed-level factorial design is given in Table 1.3. 
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Table 1.1 Complete 32  factorial design 
 Factors  

Run(condition) A B C Observations 
1 1 1 1 y11…,y1n 
2 1 1 0 y21…,y2n 
3 1 0 1 y31…,y3n 
4 1 0 0 y41…,y4n 
5 0 1 1 y51…,y5n 
6 0 1 0 y61…,y6n 
7 0 0 1 y71…,y7n 
8 0 0 0 y81…,y8n 

 

 

Table 1.2  Complete 23  factorial design 
 Factors  

Run(condition) A B Observations 
1 0 0 y11…,y1n 
2 0 1 y21…,y2n 
3 0 2 y31…,y3n 
4 1 0 y41…,y4n 
5 1 1 y51…,y5n 
6 1 2 y61…,y6n 
7 2 0 y71…,y7n 
8 2 1 y81…,y8n 
9 2 2 y91…,y9n 
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Table 1.3 A mixed-level 1 12 3 factorial design 
 Factors  

Run(condition) A B Observations 
1 0 0 y11…,y1n 
2 1 1 y21…,y2n 
3 0 2 y31…,y3n 
4 1 0 y41…,y4n 
5 0 1 y51…,y5n 
6 1 2 y61…,y6n 

 

1.2 Fractional Factorial Design 

              The above designs are called complete factorial designs because they include all 

the level combinations of the factors. The complete 2m  factorial designs become 

prohibitively large because the number of treatment combinations grows by power of 2. 

For example, if m=10, the number of treatment combinations is 102 1024= . Fractional 

factorial designs are used to overcome this problem by choosing a fraction of the 

complete factorial experiments. Such a design is feasible based on the following three 

principles. 

I. Hierarchical Ordering Principle  

              The Hierarchical Ordering Principle states that higher order effects are often 

smaller in magnitude and hence less important than lower order effects, such as the main-

effects and two-factor interactions. According to the Hierarchical Ordering Principle, it is 

reasonable to assume that certain high-order interactions are negligible so we can obtain 

the information on the main effects and low-order interactions by running only a fraction 

of the complete factorial experiment.  



	
  
	
  

4	
  

II. Effects Sparsity Principle 

  The Effects Sparsity Principle states that a system or process that contains many 

factors is likely to be driven primarily by only a few of these factors and their lower 

interactions.  

III.  Effects Heredity Principle 

        The Effects Heredity Principle states that if a higher order effect is important, 

then at least one of the lower order effects also must be important. For example, if a two-

factor interaction is important, then at least one of the main effects also must be important. 

According to this principle, a model that contains higher order interactions but does not 

contain any of its parent factors is not appropriate.  

     A typical half fractional factorial design, 2m−1  design, can be obtained by 

choosing half runs from a 2m  complete factorial design. Likewise, a typical 22m−  

fractional factorial design can be obtained by choosing one fourth of the runs from a 2m 

complete factorial design. For example, if 5m = , we can construct a 5 12 −  fractional 

factorial design by taking all the runs that satisfy I=ABCDE. That is, the five-factor 

interaction ABCDE has its contrast coefficient 1 in all the chosen runs. Similarly, we can 

construct a 5 22 −  fractional factorial design by taking all the runs that satisfy 

I=ABC=ADE=BCDE. Here, I=ABC=ADE=BCDE is called defining relation. From the 

above defining relation, we know that the contrast coefficients are the same for the effect 
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A and BC, and hence their effects cannot be separated. In other words, the estimators of 

A and BC are identical, or A=BC. These two effects are said to be aliased with each other.  

               A good fractional factorial design should have a defining relation such that the 

lower effects will not be aliased with each other. Resolution was introduced by Box and 

Hunter (1961) for this purpose. The length of the lowest order interaction in the defining 

relation is called resolution. The properties of designs with resolution III, IV, V are 

shown in the following. 

Resolution III 

              In a resolution III design, main effects are aliased with second- and higher order 

interactions but not with each other. This allows us to estimate all the main effects, 

assuming all the second- and higher order effects are negligible. 

Resolution IV 

              In a resolution IV design, main effects are aliased with third- and higher order 

interactions, but second-order interactions may be aliased with each other. This allows us 

to estimate all the main effects and some second-order interactions assuming the 

remaining second- and higher order interactions are negligible.  

Resolution V 

              In a resolution V design, main effects are aliased with four-factor and higher 

order interactions, and two factor interactions are aliased with three-factor interactions 
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and higher order interactions. This allows us to estimate all the effects up to second-order 

interactions assuming all the third- and higher order interactions are negligible.  

         So far, the fractional factorial design has been obtained by purposely choosing 

runs which share a common defining relation. This type of fractional factorial design is 

called a regular design. A fractional factorial design that has no defining relation is called 

a non-regular design. Table 1.4 and Table 1.5 give two examples of regular fractional 

factorial design. Table 1.6 gives an example of a non-regular fractional factorial design. 

In a non-regular fractional factorial design, the aliasing structure is complex.  

 

Table 1.4 A one-half fractional of 42 factorial design which takes 
the runs from a complete 42 factorial design based on I=ABCD 

Run A B C D=ABC 
1 + + + + 
2 + + - - 
3 + - + - 
4 + - - + 
5 - + + - 
6 - + - + 
7 - - + + 
8 - - - - 
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Table 1.5 A one-fourth fractional of 52 factorial design which takes 
the runs from a complete 52 factorial design based on 
I=ABD=ACE=BCDE 

Run A B C D=AB E=AC 
1 - - - + + 
2 + - - - - 
3 - + - - + 
4 + + - + - 
5 - - + + - 
6 + - + - + 
7 - + + - - 
8 + + + + + 

 

 

Table 1.6 A non-regular design obtained by choosing half 
rows from a 42 complete factorial design based on I=ABCD 
combined by choosing a one-fourth rows from the same 42
complete factorial design but based on I=-ABCD. This 
design has no defining relation. 

Run A B C D 
1 + + + + 
2 + + - - 
3 + - + - 
4 + - - + 
5 - + + - 
6 - + - + 
7 - - + + 
8 - - - - 
9 + + - + 
10 + - + + 
11 - + - - 
12 - - + - 

 

 

I=ABCD 

I= -ABCD 
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1.3 Array for FD 

1.3.1 Orthogonal Array (OA) 

              In C. R. Rao (1947), an orthogonal array of size N , m  constraints, s  levels and 

strength t , denoted ( , , ),mOA N s t  is defined as a N m×  matrix X  of s  symbols such 

that all the ordered t-tuples of the symbols occur equally often as row vectors of any 

N t×  submatrix of X . Obviously, N  must be of the form tsλ , where λ  is usually 

called the index of the orthogonal array.  

              When applied to factorial designs, each ( , , )mOA N s t  defines a N-run factorial 

design for m -levels  factors, with the symbols representing factor levels, columns 

representing factors and rows representing factor-level combinations. An important class 

of orthogonal arrays is the so-called regular fractional factorial designs which are 

constructed by using defining relations. It is well known that a regular fractional factorial 

design of resolution 1t +  is an orthogonal array of strength t . An example of a regular 

4 12 −  fractional factorial design of resolution four given in Table 1.4 is an 4(8,2 ,3)OA . 

The other class of orthogonal arrays is the non-regular fractional factorial designs which 

are not constructed by defining relations. An example of an important non-regular 

11(12,2 ,2)OA  is given in Table 1.7. It is the well-known 12-run Plackett-Burman (PB) 

design (Plackett and Burman, 1946) which will be discussed in detail in later chapters. 
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Table 1.7 A non-regular fractional factorial design: 11(12,2 ,2)OA  

Run 1 2 3 4 5 6 7 8 9 10 11 
1 + + - + + + - - - + - 
2 - + + - + + + - - - + 
3 + - + + - + + + - - - 
4 - + - + + - + + + - - 
5 - - + - + + - + + + - 
6 - - - + - + + - + + + 
7 + - - - + - + + - + + 
8 + + - - - + - + + - + 
9 + + + - - - + - + + - 
10 - + + + - - - + - + + 
11 + - + + + - - - + - + 
12 - - - - - - - - - - - 

 

1.3.2 Balanced Array (BA) 

              In Chakravarti (1956), Srivastava and Chopra (1973), a balanced array of size N , 

m  constraints, s  levels and strength t , denoted ( , , , )BA N m s t , is defined as a N m×  

matrix X  of s  symbols (0,1,..., 1−s ) such that every N t×  submatrix of X contains the 

ordered t-tuples of the symbol vector 1 2( , ,... )tx x x , 
1 2 ...

λ
tx x x  times, where 0,1,..., 1= −ix s ; 

1,2,..., ;i t=  and 
1 2 ...

λ
tx x x  is invariant under any permutation of 1 2( , ,... )tx x x . When 

1 2 ...
λ λ=

tx x x 	
  
for all 1 2( , ,... ),tx x x  X  is called an orthogonal array with index  Balanced 

array is a generalization of balanced incomplete block (BIB) design. This is true because 

the incidence matrix of a BIB design is a balanced array of strength 2 with 2 symbols. 

.λ
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               In case of 2,=s  a matrix X  of size N m×  with elements -1 and 1 is said to be 

a balanced array of strength t , if for every N t×  submatrix 0X  of X  and for every (-1,1) 

vector v  of size (1× t ) we have 

0( , ) ,  0,1,... ,λ λ= =iv X i t 	
  

for all such matrices 0X , where 0( , )λ v X  denotes the frequency of v  appears as a row of 

0X , λi 	
  is a nonnegative integer, and where the vector v  is of weight .i  The weight of a 

vector is the number of ones in the vector. The vector ( 0 1, ,...,λ λ λt ) is called the index set 

of the array. 

               In this thesis, when s=2, we define Si ,i = 0,1,...,m  to be a set that contains all 

runs with i  factors observed at the high level (which is represented by +1) and −m i  

factors observed at the low level (which is represented by -1). The number of runs in Si  

is m
i

!

"
##

$

%
&&  and Si = −Sm−i  by this definition. For illustration purpose, the sets 

0 1 2,  ,  and S S S 	
  are shown below. 

S0 = −1,−1,...,−1( ),  S1 =

1 −1 −1 ! −1
−1 1 −1 ! −1
−1 −1 1 ! −1

!
−1 −1 −1 ! 1

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

,  S2 =

1 1 −1 −1 ! −1
1 −1 1 −1 ! −1
!

1 −1 −1 −1 ! 1
"

−1 −1 −1 −1 1 1

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

. 	
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  A balanced array can be composed of runs from complete sets of 'siS . An 

example of a balanced array with 4,  12m N= = , shown in Figure 1.1 contains runs from 

complete sets of 0 1 2 4,  ,  ,and S S S S . 

 

Figure 1.1 A BA(N = 12,m = 4,s = 2,t = 4)  with λ0 = λ1 = λ2 = 1,λ3 = 0,λ4 = 1   

− − − −

+ − − −

− + − −

− − + −

− − − +

+ + − −

+ − + −

+ − − +

− + + −

− + − +

− − + +

+ + + +

 

 

1.3.3 Box-Tyssedal Array (BT) 

               In Box and Tyssedal (1996), an array of size N , m  constraints, s  levels is said 

to be of projectivity p if it is a N m×  matrix X  of s  symbols such that all the ordered p-

tuples of the symbols occur at least once as row vector of any ×N p  submatrix of X . In 

factorial designs, a design is said to be of projectivity p if the projection onto every subset 
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of p factors contains a complete ps  factorial design, possibly with some runs replicated. 

Therefore, when there are no more than p important factors, no matter what these factors 

are, the projection of such design onto the important factors allows all the factorial effects 

to be estimated. A BT of projectivity 3 is given in Table 1.8. 

 

Table 1.8 A BT of projectivity 3 

Run A B C D 
1 + + + + 
2 + + - - 
3 + - + - 
4 + - - + 
5 - + + - 
6 - + - + 
7 - - + + 
8 - - - - 
9 + + + - 
10 - - - + 

 

 

1.4 Robust FD against Incomplete Data 

 A complete 2m  factorial design allows estimating the general mean, main 

effects, 2-factor interactions, …, up to m-factor interaction. However, in practice, only a 

small set of these parameters might be of interest. If so, can we use the 2m  factorial with 

missing any t runs to estimate them? Such a question raises the consideration on the 

robustness of factorial designs against incomplete data. 

D=ABC 

D= -ABC 
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Ghosh (1978, 1979) considered the above problem under the following ordinary 

linear model: 

E( y) = Xξ

V ( y) =σ 2IN                                                         (1.1)

Rank X = v

 

where y(N ×1)  is a vector of observations, X (N × v)  is a known matrix, ξ (v×1)  is a 

vector of fixed unknown parameters and σ 2
 is a constant which may or may not be 

known.  

Let T be the underlying design corresponding to y . Then, T is said to be robust 

against missing of any t runs if the (N-t × v)  matrix obtained from X by omitting any t 

rows has rank v. Obviously, N must at least be v+t. Suppose N=v+k, where ( )k t≥  is a 

positive integer. Since Rank X = v , there exist k linearly independent vectors 

Ci
T = (ci1,...,  ciN ), i=1,...,k,  with real elements satisfying  

Ci
TX=0  

Consider the ( )k N× matrix  

C =

c11 c12 ... c1t ... c1N
c21 c22 ... c2t ... c2N
ck1 ck2 ... ckt ... ckN

!

"

#
#
#
#

$

%

&
&
&
&

                                (1.2)  
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whose i-th row is Ci
T

 and furthermore, Rank C = k.  Ghosh (1979) defined that a matrix is 

said to have the property Pt  if any its t columns are linearly independent, based on which 

he characterized the robustness property in the following theorem. 

Theorem 1.1 (Ghosh, 1979) Let T be a design under (1.1) with N=v+k observations, 

where ( )k t≥  a positive integer. Then, T is robust against missing of any t observations if 

and only if the matrix C, defined in (1.2), has the property Pt .  

               Specifically, Ghosh (1979) provided the conditions for C to have property  

and  under general factorial experiments in Table 1.9. Moreover, we give equivalent 

conditions under two-level factorial experiments in Table 1.10. 

Table 1.9 Property  in general designs 

Property Conditions need to be satisfied 

  

 
	
  

 

 

Table 1.10 Property  under two-level factorial experiments 

Property Conditions need to be satisfied 

 No null vector as a column. 

 
a. ; 
b. Every submatrix with 2 columns must have 2 distinct rows  
which are not complement of each other. (easy to prove) 

   
(see Proof 1.1 in Appendix) 

1P

2P

Pt

1P c1 j ,c2 j ,...,ckj( ) ≠ 0,0,...,0( )  for ( j =1,...,N )

2P
c1 j ,c2 j ,...,ckj( ) ≠ 0,0,...,0( )  for ( j =1,...,N )

c1 j ,c2 j ,...,ckj( ) ≠w c1 j ' ,c2 j ' ,...,ckj '( )  where j ≠ j ',  ( j, j ' =1,...,N )

Pt

1P

2P
1P

3P 2P
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               In the rest of this section, we consider a full 32  factorial design T (as shown 

below) with factors A, B, and C under model (1.1), and use Theorem 1.1 to study its 

robustness property in different cases, depending on which parameters are of interests. 

    A    B    C 

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

T

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

− −⎜ ⎟= ⎜ ⎟−
⎜ ⎟
− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟⎜ ⎟− − −⎝ ⎠

 

               Case 1, Suppose we are interested in all the 2-factor interactions besides the 

main effects, then X in model (1.1) is a 8×7  matrix with columns corresponding to µ , A, 

B, C, AB, AC, BC, and Rank X = 7 . By Theorem 1.1, we conclude that design T is 

robust against missing of any t=1 observation, and C	
   ( )k N× =(1, -1, -1, 1, -1, 1, 1, -1) is 

the transpose of vector corresponding to the effect ABC and has the property 1P .  

               Case 2, Suppose we are only interested in the two 2-factor interactions (AB, 

AC), then X (8×6)  is a known matrix corresponding to µ , A, B, C, AB, AC and 

Rank X = 6.  By Theorem 1.1, we conclude that design T is robust against missing of any 

t=1 observation. The matrix 
(2 8)

1 1 1 1 1 1 1 1
( )

1 1 1 1 1 1 1 1
ABC

k N
BC

C
×

− − − −⎛ ⎞
× = ⎜ ⎟− − − −⎝ ⎠

 is 
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the transpose of vectors corresponding to effects ABC and BC. Matrix C has the property 

1P  but not 2P . 

              Case 3, Suppose we are only interested in one 2-factor interaction (AB), then 

X (8×5)  is a known matrix corresponding to µ , A, B, C, AB and Rank X = 5.  By 

Theorem 1.1, we conclude that design T is robust against missing of any t=1 observation. 

The matrix 

(3 8)

1 1 1 1 1 1 1 1
( ) 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

ABC
k N BC

AC                         
C

×

− − − −⎛ ⎞
⎜ ⎟× = − − − −⎜ ⎟
⎜ ⎟− − − −⎝ ⎠

 is the transpose of 

vectors corresponding to effects ABC, BC, and AC. Matrix C has the property 1P  but not 

2P . 

               Case 4, Suppose we are not interested in any 2-factor interactions, then 

X (8×4)  is a known matrix corresponding to µ , A, B, C and Rank X = 4.  By Theorem 

1.1, we conclude that design T is robust against missing of any t=3 observations. The 

matrix C(k × N ) =

ABC
BC
AC
AB

1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1

#

$

%
%
%
%

&

'

(
(
(
(
(4×8)

 is the transpose of 

vectors corresponding to effects ABC, BC, AC, and AB. Matrix C has the property 1P , 2P ,

3P  but not 4P . 

               Case 5, Suppose we are only interested in two main effects (A, B), then 

X (8×3)  is a known matrix corresponding to µ , A, B and Rank X = 3.  By Theorem 1.1, 
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we conclude that design T is robust against missing of any t=3 observations. The matrix 

C(k × N ) =

ABC
BC
AC
AB
C

1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1
1  −1      1  −1  −1   1    −1     1
1     1   −1  −1  −1  −1    1      1
1  −1      1  −1   1    −1     1   −1

#

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(
(5×8)

 is the transpose of vectors 

corresponding to effects ABC, BC, AC, AB and C. Matrix C has the property 1P , 2P , 3P  

but not 4P . 

	
  

1.5 Search Linear Model in FD 

               The usefulness of fractional factorial experiments is based on the assumption 

that high order interactions are negligible. However, J.N. Srivastava (1975) questioned 

the validity of this assumption and pointed out there do exist some experiments 

containing a few non-negligible effects which are assumed negligible and are difficult to 

be pinpointed in advance. For this reason, he divided the factorial effects into three 

categories: (1) effects of interest, i.e., those we want to estimate anyway, (2) effects that 

are certainly negligible, and (3) the remaining effects most of which are actually 

negligible, but a few of which may be non-negligible.  

               In view of the above, he expressed a set of N  observations, given by the 1N ×  

vector y , in terms of the following linear model: 
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y = X1β1 + X2β2 + e (1.3)

E(e) = 0, var(e) =σ 2IN   (1.4)
 

where e is a 1N × vector of measurement error, X i (N × vi ) (i =1,2)  are the design 

matrices, β1  is a 1 1v ×  vector of unknown parameters consisting of the effects in category 

(1), β2  is a 2 1v ×  vector of unknown parameters consisting of the effects in category (3) 

among which at most k elements are assumed to be non-negligible. Let T  be the design 

that gives rise to the observations Y  in (1.3). If y  and hence X1  and X2  are such that we 

can estimate β1  and the k non-negligible effects of β2 , then T  is said to be a search 

design of resolving power {β1,β2 ,k}  and the model (1.3) is said to be a search linear 

model. When β2 = 0 , the search linear model becomes an ordinary linear model. A 

fundamental property of such design is characterized by Theorem 1.2. 

 

Theorem 1.2 (Srivastava, 1975)  

(i) Given model (1.3), a necessary condition for a design T  to be a search design of 

resolving power {β1,β2 ,k}  is that for every submatrix X20 (N ×2k)  of X2 , the 

augmented matrix (X1 : X20 )  is of full rank, that is, Rank(X1 : X20 ) = v1 + 2k . 

(ii) In the noiseless case, that is, for e=0 in (1.3) and (1.4), the condition is also sufficient. 

 

               To search for the k non-negligible effects, Srivastava (1975, 1977) suggested 

conducting model identification and model discrimination as follows.  
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Model identification 

            Consider the following class of 2vw
k

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 models from (1.3): 

M1:  E( y) = X1β1 + X21β21;
M 2 : E( y) = X1β1 + X22β22; (1.5)
! !
Mw : E( y) = X1β1 + X2wβ2w.

 

where β21, β22 ,..., β2w are all the 2vw
k

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 possible vectors when choosing k elements in 

β2 , and X21, X22 ,...,X2w 	
  are the corresponding submatrices in X2 . To fit model Mi ,  

rank(X1,X2i ) = v1 + k  should be satisfied for i =1,2,...,w.  When e=0 , the model Mi  fits 

the data best if and only if β2i  contains exactly the k non-negligible effects. 

Model discrimination 

               To do the model discrimination, we need to consider every pair of the models in 

(1.5). For each pair, we consider a bigger model by combining the two selected models 

together. Take the pair of 1M  and 2M  as an example, the combined model is: 

M1+M 2 : E( y) = X1β1 + X21β21 + X22
* β22

*

 

               If β21  and β22  do not have any common parameters, then β22
* = β22 ,X22

* = X22 ,

and the combined model becomes E( y) = X1β1 + X21β21 + X22β22.  To fit this model, 

rank(X1 : X21 : X22
* ) = rank(X1 : X21 : X22 ) = v1 + 2k  should be satisfied. 
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               If β21  and β22  have common parameters, then β22
*

 contains all the parameters 

in β22  but not in β21  and X22
*

 is the matrix corresponding to β22
* . To fit this model, 

rank(X1 : X21 : X22
* ) = v1 + k + k*,  should be satisfied, where  equals to the number of 

parameters in β22
* . 

               It deserves to point out that the rank conditions shown in Theorem 1.2 

guarantees that all the rank conditions for model identification and discrimination are 

satisfied. Therefore, the search designs introduced above are able to identify the models 

as well as discriminate the models and hence they are able to identify the “best” model. 

	
  

1.6 Thesis Outline 

               In Chapter 2, projection in factorial experiments will be introduced and existing 

literature about the projection property of some famous factorials will be reviewed. In 

Chapter 3, projection will be studied from the perspective of statistical modeling and the 

projection property will be characterized under linear models. In Chapter 4, we will study 

the projection of PB design as well as BA designs. The projection property between this 

two types of design will be compared. In Chapter 5, we exhaustively search for the 

optimal resolution V designs of  series for m=4 and a range of practical values of n. In 

Chapter 6, we propose a Up method to obtain unbalanced Up-Res V designs for m=5 

performing slightly better than the balanced optimal fractional factorial designs (BOFFD) 

given in Srivastava and Chopra (1971) with respect to A- and D-optimality criteria. For a 

*k

2m
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given n, all our designs are isomorphic having same optimality properties. For general m 

and n, the conditions are derived for obtaining such isomorphic designs with respect to 

Trace and Determinant in Chapter 7. In Chapter 8, we propose a general Up-Down 

method to search for efficient 2m  fractional factorial designs in fitting a class of models 

when the number of factors is m, and the number of runs is n. We present the efficient 

resolution III designs obtained by the Up-Down method for  and a range of 

practical values of n.  

 

 

 

 

 

 

 

 

 

 

3≤m ≤10
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Chapter 2  

Projection 

	
  

2.0 Main Results 

               In this chapter, we briefly review the major developments in projections. We 

discuss orthogonal projection and non-orthogonal projection separately. In the meantime, 

we present some existing results regarding projection, and our own results on projection 

from balanced arrays as well. 

	
  

2.1 Introduction 

                At the initial stage of an investigation, an experimenter may come up with a 

large number of potential factors with the goal for identifying a few important factors by 

screening out the unimportant factors. An experimental design to serve this purpose is 

known as a “screening design”. The projection of a screening design identifies the 

important factors and their possible interactions that can be estimated. Specifically, 

suppose there are m factors of interest, out of which t factors are important. A helpful 

screening design T (n×m)  is such that the m
t

!

"
##

$

%
&&  projections of T onto any of its t factors 

have good property to identify the t important factors as well as their interactions.  
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  The literature of the projection on screening design can be divided into two 

categories: (1) orthogonal projection (Rao, 1947) and (2) non-orthogonal projection 

(Cheng, 1995; Wang and Wu, 1995). 

 

2.2 Orthogonal Projection 

An orthogonal projection is made when the projected design is an orthogonal 

array. This is the case when we project from  onto any of its t factors. This 

projection has an important property, i.e., it allows estimating all the main effects and 

interactions of any t factors when the other m-t factors are ignored. 

Moreover, an  with t=2l allows estimating all the m main effects 

and interactions involving at most l factors when all the interactions involving more than 

l factors are negligible. And an  with t=2l-1 allows estimating all the m main 

effects and interactions involving at most l-1 factors when all the interactions involving 

more than l factors are negligible. For example, an OA(16,25,4)  allows estimating all the 

5 main effects as well as all the 2-factor interactions, and an OA(8,24,3)  allows 

estimating all the 4 main effects. 

 

 

	
  

( , , )mOA N s t

( , , )mOA N s t

( , , )mOA N s t
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2.3 Non-Orthogonal Projection 

 A non-orthogonal projection is made when the projected design is not an 

orthogonal array. This is the case when we project from  onto any of its 

more than t factors. Moreover, this is often the case when we project from balanced 

arrays or Box-Tyssedal arrays. 

               Cheng (1995) studied the projection of an ( ,2 , )mOA N t  onto any of its 1t +  

factors, and found out such a projection must be one of the following three types. 

Type I: one or more copies of the complete 12t+  factorial. 

Type II: one or more copies of a half-replicate of 12t+ . 

Type III: combination of type I and type II.  

Moreover, which type does the projection belong to depends on the value of N. If 

12tN +≥ , type I, II and III are all possible; if 12tN +< , only type II is possible. Take the 

11(12,2 ,2)OA  in Table 1.7 as an example, the projection onto its t+1=3 factor columns 3, 

4 and 5, labeled by factors A, B and C is as follows after rearranging the runs. 

 

 

 

 

 

( , , )mOA N s t
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Run 3 
A 

4 
B 

5 
C 

11 + + + 
3 + + - 
5 + - + 
9 + - - 
1 - + + 
6 - + - 
7 - - + 
8 - - - 
10 + + - 
2 + - + 
4 - + + 
12 - - - 

 

               From the above table, we see that this projection belongs to type III. In fact, this 

projection property holds for every 3 factor columns.  

               However, the projection of  onto more than t+1 factors does not 

have the above property. Take the  in Table 1.7 as an example, the 

projection onto its factor columns 3, 4, 5 and 6, after rearranging runs is 

 

 

 

 

 

( , , )mOA N s t

11(12,2 ,2)OA

A complete factorial 

A half replicate of  

with I= -ABC 
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Run 3 
A 

4 
B 

5 
C 

6 
D 

1 - + + + 
2 + - + + 
3 + + - + 
11 + + + - 
5 + - + + 
4 - + + - 
6 - + - + 
10 + + - - 
7 - - + - 
8 - - - + 
9 + - - - 
12 - - - - 

 

 From the above table, we see that this projection does not belong to any of the 

three types. It does not either yield a complete 42  factorial or have any defining relation 

among these four factors.  

 Wang and Wu (1995) went further to study the projection of 12-run PB design. 

Since the 12-run PB design is an  with strength t=2, the projection onto any 

t=2 factors is three copies of complete 22 factorial. This is an orthogonal projection as 

defined in the previous section. 

               The projections onto any 1 3t + =  factors, labeled by A, B and C, have the 

following properties:        

11(12,2 ,2)OA

One “-”, three “+” , runs 2 and 
5 are identical 

Two “-”, two “+” 

One “+”, three “-” 

Four “-” 
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               (1) Always consist of a complete 32  factorial plus a half-replicate of 32  with 

defining relation either I=ABC or I=-ABC. As aforementioned, these projections are type 

III projections in Cheng (1995). 

               (2) Among all the 
11

165
3

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 projections, 55 have a complete 32  factorial plus 

a half-replicate of 32  with defining relation I=ABC, whereas the other 110 have a 

complete 32  factorial plus a half-replicate of 32  with defining relation I=-ABC.  

               (3) The complete  factorial allows estimating all the 8 factorial effects. The 

half-replicate of 32  provides the capability of estimating all the 3 main effects, and so 

reinforcing the main effects estimates. 

               The projections onto any 2 4t + =  factors have the following properties: 

               (1) All the 11
4

!

"
##

$

%
&&= 330  projected designs are a resolution V plan that allows 

estimating the general mean, all the 4 main effects and 4
2

!

"
##

$

%
&&= 6  two-factor interactions if 

assuming that the third and higher-order interactions are negligible. This property is 

referred to as hidden projection property. For example, the projection onto columns 3, 4, 

5, 6 from PB design has a design matrix X with determinant 

det(X 'X ) = 77309411328> 0 . Therefore, the projected design is a resolution V plan. In 

fact, we checked that det(X 'X ) = 77309411328> 0  is true for all the 330
 
projections. 

 

32
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µ  

3 
A 

4 
B 

5 
C 

6 
D 

34 
AB 

35 
AC 

… 36 
CD 

1 -1 1 1 1 -1 -1 … 1 
1 1 -1 1 1 -1 1 … 1 
1 1 1 -1 1 1 -1 … -1 
1 1 1 1 -1 1 1 … -1 
1 1 -1 1 1 -1 1 … 1 
1 -1 1 1 -1 -1 -1 … -1 
1 -1 1 -1 1 -1 1 … -1 
1 1 1 -1 -1 1 -1 … 1 
1 -1 -1 1 -1 1 -1 … -1 
1 -1 -1 -1 1 1 1 … -1 
1 1 -1 -1 -1 -1 -1 … 1 
1 -1 -1 -1 -1 1 1 … 1 

 

  (2) All these 330 projections can be obtained from one to another by permuting 

runs and/or changing the signs of all the entries in the same factor. For example, the 

projection onto factor columns 3, 4, 5, 6, labeled by A, B, C and D can be obtained by 

permuting runs of the projection onto factor columns 1, 2, 3, 4, labeled by E, F, G, and H 

as follows. 
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Run 1 
E 

2 
F 

3 
G 

4 
H 

 
 
 
 
 
 
permuting 

runs 

Run 1 
E 

2 
F 

3 
G 

4 
H 

      Run 3 
A 

4 
B 

5 
C 

6 
D 

1 + + - + 10 - + + + 1 - + + + 
2 - + + - 11 + - + + 2 + - + + 
3 + - + + 1 + + - + 3 + + - + 
4 - + - + 9 + + + - 11 + + + - 
5 - - + - 3 + - + + 5 + - + + 
6 - - - + 2 - + + - 4 - + + - 
7 + - - - 4 - + - + 6 - + - + 
8 + + - - 8 + + - - 10 + + - - 
9 + + + - 5 - - + - 7 - - + - 
10 - + + + 6 - - - + 8 - - - + 
11 + - + + 7 + - - - 9 + - - - 
12 - - - - 12 - - - - 12 - - - - 

 

               (3) Every projection yields a design that consists of 11 distinct runs and 1 

replicated run. For example, the projection onto factor columns 3, 4, 5, 6 has two 

identical runs 2 and 5: (+ - + +). 

 (4) No defining relation exists among all the four factors as well as any three of 

them. 

Since PB design is of practical importance, we will study its projection property 

in details later in Chapter 4. 

 

2.4 Projection from Balanced Arrays 

  As aforementioned in Chapter 1, BA is a generalization to OA. However, unlike 

the OA, there is little literature available to study the projection on BA. Therefore, in this 
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section, we are going to focus on BA and study its projection property. Notice that Si  is 

the set of all distinct row vectors that contain i (+1)’s and (m-i) (-1)’s, in the following we 

will consider various BAs by combining S0 ,S1,S2  and Sm  in different ways. 

               (I) Considering the BAs of combining S1 	
  with S0  and/or Sm , we have the 

results in Table 2.1. 

Table 2.1 BAs of combining S1 , with S0 ,  Sm  

BA 
Number 
of runs 

Results 

S1∪S0  1+m 

can estimate (can): 
1, µ , m MEs 
can’t estimate (can’t): 
1, µ , (m-k) MEs, any 1 interaction of them (k =1,…, m-2) 

S1∪Sm  1+m 

can: 
1, µ , m MEs; 
2, µ , (m-1) MEs, any 1 interaction of them; 
can’t: 
1, µ , (m-k) MEs, any 2 interactions of them (k =1,…, m-3) 

S1∪Sm∪S0  2+m 

can: 
1, µ , m MEs, any 1 interaction of them 
can’t: 
1, µ , (m-k) MEs, any 2 interactions of them (k =1,…, m-3) 

 

From Table 2.1, we can see that: 

1. Design S1∪Sm  is preferred to S1∪S0 .  
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2. Design S1∪Sm∪S0  has its advantage by adding one treatment to design S1∪Sm  or 

S1∪S0  to make any one interaction estimable in addition to µ , m MEs.  

3. When k is big, the above three designs have bad projection properties since their 

projected designs have too many replications so that they cannot estimate more than one 

interaction. 

               (II) Considering the BA S2 , we have the results in Table 2.2. 

Table 2.2 The BA S2  

Design 
Number of 

runs 
Projected 

onto 
Results 

S2  m
2

!

"
##

$

%
&&  

m can’t: µ , m MEs  

m-1 

1, can: µ , (m-1) MEs, any 1 t-fi (t=2,…,m-2),  

but can’t: µ , (m-1) MEs, and the (m-1)-fi; 

2, can: µ , (m-1) MEs, any w 2-fi’s (w=1,…, 

m−1
2

"

#
$$

%

&
''−1 ),  

but can’t: µ , (m-1) MEs, all m−1
2

"

#
$$

%

&
''  2-fi’s 

m-2 can: µ , (m-2) MEs, all m− 2
2

"

#
$$

%

&
''  2-fi’s  

               

               Table 2.3 shows that by adding Sm  to the design S2 , the resulting design 

S2∪Sm  can solve the three “can’t” in Table 2.1. 
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Table 2.3 BA of S2∪Sm  

Design Number of runs Results 

S2∪Sm  1+ m
2

!

"
##

$

%
&&  

can: 

1, µ , m MEs  

2, µ , (m-1) MEs, the (m-1)-fi (m≥ 4) 

3, µ , (m-1) MEs, all m−1
2

"

#
$$

%

&
''  2-fi’s 

 

                (III) Notice that when projecting S2  onto (m-1) factors, the resulting design is 

S1∪S2 , we consider the BA of S1∪S2  and establish the results in Table 2.4. 

Table 2.4 BA of S1∪S2  

Design Number of runs Results 

S1∪S2  m
1

!

"
##

$

%
&&+

m
2

!

"
##

$

%
&&  

can:  

1, µ , m MEs, any m
2

!

"
##

$

%
&& -1 2-fi’s 

2, µ , (m-1) MEs, all m−1
2

"

#
$$

%

&
''
 
2-fi’s 

3, , m MEs, any q 3-fi’s. When 

m=3,4,5,6,7, then q=0,3,9,7,6, respectively. 

 

                (IV) Notice that when projecting design S2  onto fewer than (m-1) factors or 

when projecting design S1∪S2  onto (m-1) factors, the resulting design is S0∪S1∪S2  

(with replications), we consider the BA of S0∪S1∪S2  and establish the results in Table 

2.5. 

µ
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Table 2.5 BA of S0∪S1∪S2  

Design Number of runs Results 

S0∪S1∪S2  1+ m
1

!

"
##

$

%
&&+

m
2

!

"
##

$

%
&&  

can:  
1, µ , m MEs, all 2-fi’s 
2, , m MEs, any q 3-fi’s. When 

m=3,4,5,6,7, then q=1,4,10,7,7, respectively. 
	
  

	
  

	
  

	
  

µ
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Chapter 3  

Characterization of Projection Using Linear Models 

	
  

3.0 Main Results 

   In this chapter, we are going to study the projection of factorial design from the 

perspective of statistical modeling and characterize the projection property by using 

linear models. 

 

3.1 Motivation 

               Let’s consider the linear model (3.1) under a 32  factorial experiment. The three 

factors are denoted by 1 2,x x 	
  and 3x , and each of them has two levels. When projecting 

onto factor 1x , model (3.1) can be written as (3.2).  

E(y) = β0 +β1x1 +β2x2 +β3x3 +β12x1x2 +β13x1x3 +β23x2x3 +β123x1x2x3                       (3.1)
        = (β0 +β2x2 +β3x3 +β23x2x3)+ (β1 +β12x2 +β13x3 +β123x2x3)x1                         

        = β0
(1) +β1

(1)x1                                                                                                     (3.2)

 

where 

β0
(1) = β0 +β2x2 +β3x3 +β23x2x3

β1
(1) = β1 +β12x2 +β13x3 +β123x2x3
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Then, for a fixed set of 2 3( , )x x , there are only two possible level combinations 

(conditions) of the three factors as shown in the following under which the response is 

measured.  

1 2 3( , , )x x x  1 2 3( ( , , ))E y x x x  

2 3(1, , )x x  (1) (1)
0 1β β+  

2 3( 1, , )x x−  (1) (1)
0 1β β−  

 

Therefore,  

(1) 2 3 2 3
0

(1, , ) ( 1, , )( )
2

y x x y x xEβ
+ −

= 	
  

and                                      (1) 2 3 2 3
1

(1, , ) ( 1, , )( )
2

y x x y x xEβ
− −

= . 

Notice that, in (1)
0 2 3 0 2 2 3 3 23 2 3( , )x x x x x xβ β β β β= + + + , since  can take four 

possible values,  can also take four possible values as shown in the following. 

2 3( , )x x  (1)
0 2 3( , )x xβ  

(1, 1) β0 +β2 +β3 +β23  

(1, -1) β0 +β2 −β3 −β23  

(-1, 1) β0 −β2 +β3 −β23  

(-1, -1) β0 −β2 −β3 +β23  
 

2 3( , )x x

(1)
0 2 3( , )x xβ
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Therefore,
(1) (1) (1) (1)
0 0 0 0

0
(1,1) (1, 1) ( 1,1) ( 1, 1)

4
β β β β

β
+ − + − + − −

= . If assuming 

2 3 23 0,β β β= = = then (1)
0 2 3 0( , ) .x xβ β=  Similar results can be obtained for

β1
(1) = β1 +β12x2 +β13x3 +β123x2x3 . 

 

3.2 Characterization of Projection Using Linear Models 

               Suppose the observation vector y(n×1)  can be expressed as the following 

linear model 

E( y) = Xβ = X1β1 + X2β2 	
  	
  

where X (n×(p1 + p2 )) is the design matrix and β(( p1 + p2 )×1)  is the corresponding 

vector of parameters, and p1 ≤ n ≤ p1 + p2 . Depending on what dimension (say 1p ) and 

what elements desired to be projected onto, X  can be partitioned into X1(n× p1)  and 

X2 (n× p2 ), 	
  and β  can be partitioned into β1( p1 ×1) 	
  and β2 ( p2 ×1) 	
  accordingly. 

Suppose the projected design matrix  is of full column rank, i.e., 

Rank(X1) = p1 , we can establish the following proposition. 

 

Proposition 3.1  

Case 1, when β2 = 0 , then E( y) = X1β1 .   

X1(n× p1)
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Case 2, when , :1n=p E( y) = X1β1 + X2β2=X1β1
*,  where β1

*=β1 + X1
−1X2β2.  

Case 3, when , 1n>p :E( y) = E
y1
y2

!

"

#
#

$

%

&
&
=

X11
X12

!

"

#
#

$

%

&
&
β1 +

X21
X22

!

"

#
#

$

%

&
&
β2 ,

 
where X11  is a 

1 1×p p  submatrix of X1,  and X21  is the corresponding submatrix of X2 . Since 

Rank(X1) = p1 , we can permute the runs appropriately to make X11  full rank. That is 

Rank(X11) = p1.   

Therefore, 

E( y1) = X11β1 + X21β2=X11[β1 + X11
−1X21β2 ]=X11β1

*,  

E( y2 ) = X12β1 + X22β2=X12β1
* +[X22 − X12X11

−1X21]β2 ,  

where 

β1
*=β1 + X11

−1X21β2.  

Equivalently,   

E( y) =
E( y1)
E( y2 )

!

"

#
#

$

%

&
&
=

X11
X12

!

"

#
#

$

%

&
&
β1
* +

0
X22 − X12X11

−1X21

!

"
#
#

$

%
&
&β2 = X1β1

* +
0

X22 − X12X11
−1X21

!

"
#
#

$

%
&
&β2 .  

As a result, we can establish the following theorem. 

β2 ≠ 0

β2 ≠ 0
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Theorem 3.1 Under Case 3 when Rank(X ) = p1 = Rank(X11) , then 

E y( ) =
X11
X12

!

"

#
#

$

%

&
&
β1
* = X1β1

* , where β1
*=β1 + X11

−1X21β2.   

          Proof: First, because Rank(X ) = p1 = Rank(X11) , each of (n− p1)  rows in 

(X12 , X22 )  is linear function of the 1p  rows in (X11, X21) , so there exist a matrix D such 

that (X12 , X22 ) = D(X11, X21).  

Second, since D = X12X11
−1

 is unique solution of X12 = DX11,  so D = X12X11
−1

 is also 

unique solution of (X12 , X22 ) = D(X11, X21).  

Third, from above, we can have X22 = DX21 = X12X11
−1X21, so X22 − X12X11

−1X21 = 0.  

Therefore, E
y1
y2

!

"

#
#

$

%

&
&
=

X11 0

X12 0

!

"

#
#

$

%

&
&

β1
*

β2

!

"

#
#

$

%

&
&

, E y( ) =
X11
X12

!

"

#
#

$

%

&
&
β1
* = X1β1

* , which completes 

the proof. 

 

3.3 Examples 

               So far, we have studied the projection of factorial designs under linear models 

and derived Proposition 3.1 and Theorem 3.1 to characterize the projection property. In 

this section, we give two examples to illustrate their usuage. 
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Example 3.1  

               Suppose in a two-level factorial experiment, we want to study the effects of six 

factors, say A, B, C, D, E and F, up to their two-factor interactions. And suppose we use 

the first six factor columns of 12-run PB design as the experimental design. Then, in the 

linear model E( y) = Xβ , y  is a 12×1 vector,  X  is a 12×22 	
  matrix whose columns are 

corresponding to the general mean, main effects, and two-factor interactions of these 6 

factors. It can be checked that Rank(X ) =12 , and so up to 12 effects are estimable. By 

Case 2 of Proposition 3.1, we can partition X  into X1  and X2 	
  appropriately so that 

E( y) = Xβ = X1β1 + X2β2=X1β1
*,  where β1

*=β1 + X1
−1X2β2 ,  and X1  is a submatrix of X  

with Rank(X1) =12 . Suppose we want to include the general mean, the 6 main effects 

and other 5 two-factor interactions in . Since there are 6
2

!

"
##

$

%
&&=15  two-factorial 

interactions in total, we have 15
5

!

"
##

$

%
&&= 3003  possible choices to obtain the 5 interactions. 

Therefore, there are 3003 possible choices for choosing . By computational checking, 

we find that 935 choices of  are such that . 

 

Example 3.2 

               With the same 6 factors and same design in Example 3.1, we consider a new 

linear model E( y) = Xβ = X1β1 + X2β2 ,  where all the effects associated with the 6 

X1

X1

X1 Rank(X1) =12
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factors are considered in β . Therefore, y  is a 12×1 vector,  and X  is a 12 64×  matrix. 

Furthermore, we set X1  as follows: Among the 6 factors, we choose 3 factors to form a 

full factorial and other 2 factors to form another full factorial. X1  is chosen to include all 

the effects associated with these two full factorials. Therefore, X1  a is 12 11×  matrix, and 

there are 6
3

!

"
##

$

%
&&
6−3
2

!

"
##

$

%
&&= 60  possible choices for it in total. For example, if we choose 

(A, B, C) to form the first factorial and (D, E) to form the second, X1  is the design matrix 

corresponding to effects µ,  A, B, C, AB, AC, BC, ABC, D, E, DE. For notational 

convenience, we can denote this case by (A, B, C)+(D, E). Out of the 60 choices of , 

we checked that 50 satisfy Rank(X1) =11 , which apply to Case 3 of Proposition 3.1 as 

n>p1  and Rank(X1) = p1 . The remaining 10 cases that do not satisfy are listed below. 

Cases Not Satisfy Which 5 factors 
1, (A,C,D)+(E,F) (A,C,D,E,F) 
2, (A,C,E)+(D,F) (A,C,D,E,F) 
3, (A,C,F)+(D,E) (A,C,D,E,F) 
4, (A,D,E)+(C,F) (A,C,D,E,F) 
5, (A,D,F)+(C,E) (A,C,D,E,F) 
6, (A,E,F)+(C,D) (A,C,D,E,F) 
7, (C,D,E)+(A,F) (A,C,D,E,F) 
8, (C,D,F)+(A,E) (A,C,D,E,F) 
9, (C,E,F)+(A,D) (A,C,D,E,F) 
10,(D,E,F)+(A,C) (A,C,D,E,F) 

 

               Interestingly, factor B turns out to appear in the 50 satisfied cases (i.e., 

(B,*,*)+(*,*) or (*,*,*)+(B,*)), but not appear in the 10 unsatisfied cases (i.e., 

X1
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(*,*,*)+(*,*)). The specialty of B (factor column 2) will be studied in the following 

chapter. 
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Chapter 4  

Projection Properties of PB Design and Related Designs 

 

4.0 Main Results 

               In this chapter, we investigate the projection properties of PB design when 

projecting onto its 4 factor columns and 5 factor columns. We examine the estimability of 

the projected designs when fitting various models, and give some helpful results that are 

not available in current literature. Moreover, we compare the projected PB design of 5 

columns with BAs and obtain some interesting results. 

 

4.1 Projection Properties of PB for m=4, 5 

m=4 

  Wang and Wu (1995) claimed that when projecting the 12-run PB design onto 

its four factors, the resulting projected 12×4  designs are all isomorphic to each other, 

and they are all Resolution V plans that can estimate the model of all the main effects as 

well as all the two-factor interactions. Now, we went further to study the estimability of 

this design by fitting another two factorial effects models. 
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  We first randomly select four factors from the 12-run PB design, and label them 

by A, B, C and D. Therefore, there are 24 =16  effects associated with the four factors in 

total. Then, we let the first factorial effects model include the effects of , A, B, C, AB, 

AC, BC, ABC, D as well as two more effects. Therefore, there are 16−9
2

"

#
$$

%

&
''= 21  

choices as shown in Table 4.1. We then present the estimability results by checking 

whether the design matrix X1  has rank 11 or not. We denote these models by (A, B, 

C)+(D).  

Table 4.1. The projection (onto 4 columns) properties of 12-run PB design; 
Estimability results: all possible sets of 11 effects among which 8 are full factorial 

effects 

Case First 8  
effects 3 other effects Rank(X1) = 11 ?  

(A,B,C)+(D) 
µ ,A,B,C,AB, 
AC,BC,ABC 

D,DA,DB YES 
D,DA,DC YES 
D,DB,DC YES 

D,DA,DAB YES 
D,DB,DAB YES 
D,DA,DAC YES 
D,DC,DAC YES 
D,DB,DBC YES 
D,DC,DBC YES 

D,DAB,DAC YES 
D,DAB,DBC YES 
D,DAC,DBC YES 
D,DA,DBC NO 
D,DB,DAC NO 
D,DC,DAB NO 

D,DA,DABC NO 
D,DB,DABC NO 
D,DC,DABC NO 

D,DAB,DABC NO 
D,DAC,DABC NO 
D,DBC,DABC NO 

µ
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Let the second factorial effects model include the effects of , A, B, C, D as 

well as k more effects, where k=4, 5 or 6. Therefore, there are 16−5
k

"

#
$$

%

&
''  choices for such 

model in total. We then present the estimability results in Table 4.2 by checking whether 

the design matrix X1  has rank k+5 or not.  

 

Table 4.2 The projection (onto 4 columns) properties of 12-run PB design;  
Estimability results: general mean, main effects with additional interactions 

First 5  
effects Any 4 other effects Rank(X1) = 9 ? 	
  

µ ,A,B,C,D	
    ways	
   ALL YES	
  

First 5  
effects Any 5 other effects Rank(X1) = 10 ? 	
  

µ ,A,B,C,D 

AB,AC,AD,BCD,ABCD NO 
BA,BC,BD,ACD,ABCD NO 
CA,CB,CD,ABD,ABCD NO 
DA,DB,DC,ABC,ABCD NO 

AB,CD,ABC,ABD,ABCD NO 
AB,CD,CDA,CDB,ABCD NO 
AC,BD,ACB,ACD,ABCD NO 
AC,BD,BDA,BDC,ABCD NO 
AD,BC,BCA,BCD,ABCD NO 
AD,BC,ADB,ADC,ABCD NO 
AB,AC,BC,ABC,ABCD NO 
AB,AD,BD,ABD,ABCD NO 
AC,AD,CD,ACD,ABCD NO 
BC,BD,CD,BCD,ABCD NO 

ABC,ABD,ACD,BCD,ABCD NO 

remaining ways YES 

First 5  
effects Any 6 other effects Rank(X1) = 11 ? 	
  

µ

11
330

4
⎛ ⎞

=⎜ ⎟
⎝ ⎠

11
15 462 15 447

5
⎛ ⎞

− = − =⎜ ⎟
⎝ ⎠
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µ ,A,B,C,D 

15 ways (from above “NO”)  ways;  

adding any interaction from remaining 11-5=6  
interactions to each of the above 15 models will  
NOT work and these 90 models are all distinct. 

NO 

AB,AC,AD,BC,ABC,BCD NO 
AB,AC,AD,BD,ABD,BCD NO 
AB,AC,AD,CD,ACD,BCD NO 
BA,BC,BD,AC,ABC,ACD NO 
BA,BC,BD,AD,ABD,ACD NO 
BA,BC,BD,CD,BCD,ACD NO 
CA,CB,CD,AB,ABC,ABD NO 
CA,CB,CD,AD,ACD,ABD NO 
CA,CB,CD,BD,BCD,ABD NO 
DA,DB,DC,AB,ABD,ABC NO 
DA,DB,DC,AC,ACD,ABC NO 
DA,DB,DC,BC,BCD,ABC NO 

AB,AC,BC,ABD,ACD,BCD NO 
AB,AD,BD,ABC,ACD,BCD NO 
AC,AD,CD,ABC,ABD,BCD NO 
BC,BD,CD,ABC,ABD,ACD NO 
AB,AC,BD,CD,ABC,BCD NO 
AB,AC,BD,CD,ABD,ACD NO 
AC,AD,BC,BD,ACD,BCD NO 
AC,AD,BC,BD,ABC,ABD NO 
AB,AD,CB,CD,ABD,BCD NO 
AB,AD,CB,CD,ABC,ACD NO 

AB,CD,ABC,ABD,ACD,BCD NO 
AC,BD,ABC,ABD,ACD,BCD NO 
AD,BC,ABC,ABD,ACD,BCD NO 

remaining ways YES 

 

m=5 

  Wang and Wu (1995) claimed that when projecting the 12-run PB design onto 

its five factors, the resulting projected 12×4  designs can be divided into two isomorphic 

groups. The projected designs in the first group contain two repeated runs such as the one 

6
90

1
⎛ ⎞

× =⎜ ⎟
⎝ ⎠

11
(90 25) 462 115 347

6
⎛ ⎞

− + = − =⎜ ⎟
⎝ ⎠
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includes the 1st, 2nd, 3rd, 4th and 10th factor columns, whereas the projected designs in 

the second group contain two mirror image runs such as the one includes the 1st, 2nd, 3rd, 

4th and 5th factor columns. Denote the design in the first group to be Design 5.1 and that 

in the second group to be Design 5.2. Now, we study the estimability of these two 

designs by fitting the following two factorial effects models. We randomly label the 5 

columns of the studied design by A, B, C, D and E. Therefore, there are 25 = 32  factorial 

effects in total. Then, we let the first model to include the effects of , A, B, C, AB, AC, 

BC, ABC, D, E as well as one more interactions. Therefore, there are 32−10
1

"

#
$$

%

&
''= 22  

choices as shown in Table 4.3 and Table 4.4. We then present the estimability of Design 

5.1 in Table 4.3 and Design 5.2 in Table 4.4 respectively by checking whether the 

projected design matrix X1  has rank 11 or not. We denote these models by (A, B, C)+(D, 

E).  

 

 

 

 

 

 

 

 

 

µ
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Table 4.3 The projection (onto 5 columns) properties of 12-run PB design. 
Estimability results: all possible sets of 11 effects among which 8 are full factorial 
effects 

Design 5.1 (with two repeated runs) 

Case First 8 effects 3 other effects Rank(X1) = 11 ?  

(A,B,C)+(D,E)	
  
µ ,A,B,C,AB, 
AC,BC,ABC	
  

D,E,DE NO 
D,E,DA NO 
D,E,EA NO 
D,E,DB NO 
D,E,EB NO 
D,E,DC NO 
D,E,EC NO 

D,E,DAB NO 
D,E,EAB NO 
D,E,DAC NO 
D,E,EAC NO 
D,E,DBC NO 
D,E,EBC NO 
D,E,DEA NO 
D,E,DEB NO 
D,E,DEC NO 

D,E,DEAB NO 
D,E,DEAC NO 
D,E,DEBC NO 
D,E,DABC NO 
D,E,EABC NO 

D,E,DEABC NO 
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Table 4.4 The projection (onto 5 columns) properties of 12-run PB design. 
Estimability results: all possible sets of 11 effects among which 8 are full factorial 
effects	
  

Under Design 5.2 (with two mirror image runs) 

Case First 8 effects 3 other effects Rank(X1) = 11 ?  

(A,B,C)+(D,E)	
  
µ ,A,B,C,AB, 
AC,BC,ABC	
  

D,E,DE YES 
D,E,DA YES 
D,E,EA YES 
D,E,DB YES 
D,E,EB YES 
D,E,DC YES 
D,E,EC YES 

D,E,DAB YES 
D,E,EAB YES 
D,E,DAC YES 
D,E,EAC YES 
D,E,DBC YES 
D,E,EBC YES 
D,E,DEA YES 
D,E,DEB YES 
D,E,DEC YES 

D,E,DEAB YES 
D,E,DEAC YES 
D,E,DEBC YES 
D,E,DABC NO 
D,E,EABC NO 

D,E,DEABC YES 
	
  
               Table 4.3 and Table 4.4 can be used to explain the specialty of factor B (factor 

column 2) in Example 3.2. In fact, the 5 factor columns corresponding to the 50 satisfied 

cases (i.e., (B,*,*)+(*,*) or (*,*,*)+(B,*)) are Design 5.2 and the 5 factor columns 

corresponding to the 10 unsatisfied cases (i.e., (*,*,*)+(*,*)) are Design 5.1. It’s noticed 

that the estimability results of first set of 11 parameters in Table 4.3 is NO and in Table 

4.4 is YES. 
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               Let the second model to include the effects of , A, B, C, D, E as well as k 

more interactions, where k=2, 3 or 4. Therefore, there are 32−6
k

"

#
$$

%

&
''  choices for the 

model in total. We then present the estimability of Design 5.1 in Table 4.5 and Design 5.2 

in Table 4.6 by checking whether the projected design matrix X1  has rank k+6 or not. 

 
Table 4.5 The projection (onto 5 columns) properties of 12-run PB 
design; Estimability results: general mean, main effects with 
additional interactions 
Under Design 5.1 (with two repeated runs) 

First 6 effects 2 other effects Rank(X1) = 8 ? 	
  

µ ,A,B,C,D,E	
  
145 ways NO 

 26
2

!

"
##

$

%
&&−145=180  ways	
   YES	
  

First 6 effects 3 other effects Rank(X1) = 9 ? 	
  

µ ,A,B,C,D,E	
  
1640 ways	
   NO	
  

 26
3

!

"
##

$

%
&&−1640 = 960  ways YES 

First 6 effects 4 other effects Rank(X1) = 10 ? 	
  

µ ,A,B,C,D,E	
  
11830 ways	
   NO	
  

 26
4

!

"
##

$

%
&&−11830 = 3120  ways	
   YES 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

µ
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Table 4.6 The projection (onto 5 columns) properties of 12-run PB 
design;  Estimability results: general mean, main effects with 
additional interactions 
Under Design 5.2 (with two mirror image runs) 

First 6 effects 2 other effects Rank(X1) = 8 ? 	
  

µ ,A,B,C,D,E 26
2

!

"
##

$

%
&&= 325  ways	
   All YES	
  

First 6 effects 3 other effects Rank(X1) = 9 ? 	
  

µ ,A,B,C,D,E	
  
30 ways	
   NO	
  

 26
3

!

"
##

$

%
&&−30 = 2570 	
  ways YES 

First 6 effects 4 other effects Rank(X1) = 10 ? 	
  

µ ,A,B,C,D,E 
850 ways	
   NO	
  

26
4

!

"
##

$

%
&&−850 =14100  ways YES 

 

 

4.2 Comparison between BAs and PB for m=5 

               In a  fractional factorial experiment, the resolution plans Res III, Res III plus 

k, and Res V are commonly used in practice. Under Res III plus k models (Srivastava 

(1975)), the general mean, main effects and all possible 
m
2

!

"
##

$

%
&&

k

!

"

#
#
##

$

%

&
&
&&

 k two-factor 

interactions are estimated assuming the remaining two-factor and higher order 

interactions are negligible.  

               As mentioned in the previous section, there are two non-isomorphic designs 

when projecting the 12-run PB design onto its 5 factors. In this section, we compare their 

projection and optimality properties with other five balanced array designs constructed by 

ourselves under different resolution models. First, we introduce the seven designs 

2m
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. Second, we compare the seven designs for fitting Res III model and Res III 

plus k models with k=1, 2, 3, 4, 5 or 6 separately. Third, we project the seven designs 

onto their t factor columns, where t=2, 3 or 4, and compare the projected designs for 

fitting different resolution models.  

 

Designs 

         Recall that  is the set of all runs with i factors observed at the high level (+1) 

and the rest m-i factors observed at the low level (-1). We construct 5 balanced arrays of 

full strength:  by combining  in 5 different ways as shown in Table 4.7. 

We further denote the two projected designs from 12-run PB design to be d6  (Design 5.2) 

and d7 (Design 5.1). Designs  are OAs of strength 2. Interestingly, and  are 

isomorphic to each other .  

 In Table 4.7, we also provide the results (Yes/No) regarding the estimability of 

these seven designs for fitting different resolution models, where more results regarding 

the optimality properties will be provided in later Subsections.  

 

 

 

d j , j =1,...,7

Si

d j , j =1,...,5 Si

d6 ,d7 d7 d3

(d3 ≡ d7 )
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Table 4.7 Designs  and their estimabilities of models 

Design Runs Res 
III 

Res 
III+k 

(k=1,2,3) 

Res 
III+k 

(k=4,5) 

t=2, 
full 

factorial 

t=3, 
full 

factorial 

t=4, 
Res 
V 

  Yes Yes Yes Yes Yes Yes 
  Yes Yes No Yes No Yes 
  Yes Yes No Yes Yes Yes 
  Yes Yes No Yes Yes No 

  Yes Yes No Yes Yes No 

 from PB design Yes Yes No Yes Yes Yes 

 from PB design Yes Yes No Yes Yes Yes 
 

Comparison of  

        We take designs  to fit resolution III and resolution III plus k 

models. Under each model, we compare  with respect to Trace value (A-

optimality), Determinant value (D-optimality), and Maximum Eigenvalue (E-optimality). 

Let the abbreviation of Trace to be “Tr”, of Determinant to be “Det”, of Maximum 

Eigenvalue to be “MEV”.  

 

Res III model 

        Table 4.8 compares  under Res III model with respect to A-, D-, 

and E-optimality criteria.  

 

dj, j =1,..., 7

d1 S0 ∪ S2 ∪ S5
d2 2S0 ∪ S2
d3 S2 ∪ 2S5
d4 S0 ∪ S1∪ S4 ∪ S5
d5 2S0 ∪ S1∪ S4
d6
d7

d j , j = 1,...,7

d j , j =1,...,7

d j , j =1,...,7

d j , j =1,...,7
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Table 4.8 Comparison of  for Res III model 

Design 
 

Tr Det  MEV 
 0.53 3.89 0.13 
 0.71 7.54 0.33 

 0.5 3.35 0.08 

 0.62 7.27 0.13 

 0.63 7.73 0.13 
 

               Designs  perform the best having the minimum “Tr”, “Det”, and 

“MEV” values. 

 

Res III plus k models 

               The seven designs  not only can fit Res III model, but also Res III 

plus k (k=1,2,3) models. Next, we investigate how designs  perform when 

they fit the Res III plus k (=1,2,3) models. For a fixed k, there are  possible Res III 

plus k models. Each model is corresponding to a particular set of k two-factor 

interaction(s).  

 

 

 

d j , j = 1,...,7

(X 'X )6×6
−1

710×

d1
d2

d3 ≡ d7,d6
d4
d5

d3 ≡ d7,  and d6

d j , j =1,...,7

d j , j =1,...,7

10
k

!

"
##

$

%
&&
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k =1 

               For each design  we compute the “Tr”, “Det” and “MEV” values for those 

 
possible models and observe that the values are same from model to model. 

Table 4.9 compares  under Res III plus 1 models with respect to A-, D-, and 

E-optimality criteria. 

Table 4.9 Comparison of  for Res III plus 1 models 

Design 
 

Tr Det  MEV 
 0.64 3.76 0.14 
 0.94 9.42 0.45 

 0.67 4.19 0.20 

 0.72 6.81 0.13 

 0.73 7.48 0.13 
 

         Table 4.9 demonstrates that design  performs the best for all 10 models with 

respect to A- and D-optimality criteria while designs  and  perform the best with 

respect to E-optimality criterion. However, the “MEV” of  is very close to  and . 

It seems  is a very good design. 

 

 

 

d j ,

10
k

!

"
##

$

%
&&=10

d j , j =1,...,7

d j , j = 1,...,7

(X 'X )7×7
−1

810×
d1
d2

d3 ≡ d7,d6
d4
d5

d1

d4 d5

d1 d4 d5

d1
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k =2 

        For each design  we compute the arithmetic mean of “Tr” (AT optimality), 

“Det” (AD optimality), and “MEV” (AMEV optimality) values for those 45 models 

because the values may be not the same from model to model (Srivastava (1977)). Table 

4.10 compares  under Res III plus 2 models. 

Table 4.10 Overall comparison of  for Res III plus 2 models 

Design 
 

AT 
AD 

 AMEV 

 0.774 4.02 0.183 
 1.25 13.2 0.634 

 0.885 5.89 0.302 

 0.861 7.38 0.167 

 0.879 8.54 0.174 
 0.888 5.99 0.279 

   

        Table 4.10 demonstrates that design  performs the best with respect to AT 

and AD optimality criteria while design  performs the best with respect to AMEV 

optimality criterion.  

 

 

 

 

 

d j ,

d j , j =1,...,7

d j , j = 1,...,7

(X 'X )8×8
−1

910×
d1
d2

d3 ≡ d7
d4
d5
d6

d1

d4
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k =3 

               Similarly to k=2, the criteria values for k=3 can be computed as shown in Table 

4.11, from which we can conclude that design  performs the best with respect to AT, 

AD, and AMEV optimality criteria while  performs the second best. 

Table 4.11 Overall comparison of  for Res III plus 3 models 

Design 
 

AT 
AD 

 AMEV 

 0.959 4.91 0.272 
 1.746 22.35 0.963 

 1.219 9.93 0.485 

 1.062 9.76 0.277 

 1.102 12.13 0.305 
 1.198 10.06 0.449 

 

        As shown in Table 4.8, design  outperforms  for fitting Res III model. 

However, from Table 4.9 to Table 4.11, we can see that  outperforms  for 

fitting Res III plus k models. In the following table, we compute the percentage of 

reduction in AT, AD and AMEV from  to  for k=1, 2 and 3. Such percentages 

can be shown easily in Figure 4.13 as well. As we can see,  perform better and better 

compared to  across k.  

 

 

d1

d4

d j , j = 1,...,7

(X 'X )9×9
−1

1010×
d1
d2

d3 ≡ d7
d4
d5
d6

d3 ≡ d7 d1

d1 d3 ≡ d7

d3 ≡ d7 d1

d1

d3 ≡ d7
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Table 4.12 Percentage of Reduction 

 Percentage of Reduction in 
AT AD AMEV 

k=1 4.5 10.3 30.0 
k=2 12.5 31.7 39.4 
k=3 21.3* 50.6 43.9 

                                            *21.3=(AT of d3 -AT of d1 )/(AT of d3 ) 

 

Figure 4.1 Percentage of Reduction 

 

k =4, 5, 6 

        When k=4, 5, and 6, we find designs  may only successfully fit 

some Res III plus k models. Table 4.13 shows the number of estimable Res III plus k 

models for each design. Design  performs the best having the estimability for all the 

Res III plus 4 models, all the Res III plus 5 models, and 185 Res III plus 6 models. Note 

 is the optimal design D14 that is presented in Ghosh and Tian (2006) for m=5, n=12, 

d j , j =1,...,7

d1

d1
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Res III plus 5 models. They stated that D14 is optimal with respect to AT, AD, AMCR 

(i.e., AMER), GT, GD, and GMCR six optimality criteria. 

Table 4.13 Number of estimable Res III plus k models  

for  when k=4, 5, 6 

Design 
k=4 k=5 k=6 
210 

models 
252 

models 
210 

models 
 210 252 185 
 195 162 0 

 195 162 0 
 195 162 0 
 195 162 0 
 200 192 80 

 

Comparison of designs  for t =2, 3, and 4  

               For each design , projecting 5 columns onto their t columns yields 

one isomorphic design 	
  from 	
  possible projections. For a fixed t, we 

assume a model so that its parameters can be estimated with the seven  designs. Some 

of them may fail to fit the model due to poor projection property. For those that are 

capable of fitting the model, we further examine their optimality property.  

 

 

 

d j , j = 1,...,7

d1
d2

d3 ≡ d7
d4
d5
d6

d1
( t ) ,...,d7

( t )

d j , j =1,...,7

d j
(t ) ,t = 2,3,4 5

t

!

"
##

$

%
&&

d j
(t )
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t =2 

               Each  could be considered as a design for a  factorial experiment. These 

designs permit the estimation of the general mean, main effects and the two-factor 

interaction. The  designs are identical and consist of all four possible 

treatment combinations that being replicated three times. Table 4.14 demonstrates that 

design 	
  performs the best fitting this full factorial model. When 

projecting onto 2 factors, we denote treatment combinations (-1,-1) as 0, (1,-1) as 1, (-1,1) 

as 2, and (1,1) as 12. 

Table 4.14 Comparison of , j=1,…,7 for full factorial model 

Design 
Frequency  

0,1,2,12 Tr 
Det 

 MEV 

 4,3,3,2 0.354 5.43 0.125 

 5,3,3,1 0.467 8.68 0.25 

 3,3,3,3 0.333 4.82 0.083 

 4,2,2,4 0.375 6.10 0.125 

 5,2,2,3 0.383 6.51 0.125 
 

        The designs  are all BTAs of projectivity 2, as their projection onto 

every subset of 2 factors contain a complete  factorial design. But their projection 

doesn’t necessarily contain equal replication of all the  treatment combinations. 

 

d j
(2) 22

d3
(2) ,d6

(2) ,  and d7
(2)

d3
(2) = d6

(2) = d7
(2)

d j
(2)

(X 'X )4×4
−1

510×
d1
(2)

d2
(2)

d3
(2) = d6

(2) = d7
(2)

d4
(2)

d5
(2)

d j , j =1,...,7

22

22
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t =3 

Each  could be considered as a design for a  factorial experiment. These 

designs, except , permit the estimation of the general mean, main effects, two-factor 

interactions and the three-factor interaction. Note that design  is not applicable since 

it doesn’t contain a complete  factorial. The designs are isomorphic 

and one representative design 	
  consists of a complete  factorial plus a 

half-replicate of  with defining relation I=ABC (Cheng (1995)). Also note that design 

 consists of a complete  factorial plus a half-replicate of  with no defining 

relation exists. Designs  and  contain a complete  factorial but the remaining 

four runs is not a half-replicate of . Table 4.15 demonstrates designs 

	
  perform the best. When projecting onto 3 factors, we denote 

treatment combinations (-1,-1,  -1) as 0, (1,-1,-1) as 1, (-1,1,-1) as 2, (-1,-1,1) as 3, (1,1,-1) 

as 12, (1,-1,1) as 13, (-1,1,1) as 23, (1,1,1) as 123. The designs  are all 

BTAs of projectivity 3. 

 

 

 

 

d j
(3) 23

d2
(3)

d2
(3)

32 d3
(3) ,d6

(3) ,  and d7
(3)

d3
(3) ≡ d6

(3) ≡ d7
(3) 32

32

d1
(3) 32 32

d4
(3) d5

(3) 32

32

d1
(3) ,d3

(3) ≡ d6
(3) ≡ d7

(3)

d j , j =1,3,...,7
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Table 4.15 Comparison of , j=1,3,…,7 for full factorial model 

Design 
Frequency  

0,1,2,3,12,13,23,123 Tr 
Det 

 MEV 

 2,2,2,2,1,1,1,1 0.75 3.73 0.125 

 1,2,2,2,1,1,1,2 0.75 3.73 0.125 

 3,1,1,1,1,1,1,3 0.833 6.62 0.125 

 4,1,1,1,1,1,1,2 0.844 7.45 0.125 
 

t =4 

        Each  could be considered as a design for a  factorial experiment. These 

designs, except , permit the estimation of parameters in a Res V model. 

Note that designs  are not applicable since they only contain 10 distinct runs, 

which is not enough to estimate 11 parameters. The designs  obtained from 

	
  are all isomorphic so we denote one representative design as

. Table 4.16 demonstrates that design 	
  performs the best for fitting 

Res V model. 

 

 

 

d j
(3)

(X 'X )8×8
−1

910×
d1
(3)

d3
(3) ≡ d6

(3) ≡ d7
(3)

d4
(3)

d5
(3)

d j
(4) 24

d4
(4)  and d5

(4)

d4
(4)  and d5

(4)

d j
(4)

d3,d6  and d7

d3
(4) ≡ d6

(4) ≡ d7
(4) d1

(4)
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Table 4.16 Comparison of , j=1,2,3,6,7 for Res V model 

Design 
 

Tr 
Det 

 MEV 

 1.31 0.73 0.25 

 3.94 11.6 2.76 

 1.44 1.29 0.25 
 

        Note that  is the optimal balanced fractional factorial design in Srivastava 

and Chopra (1971) for m=4, n=12, Res V model with respect to A-optimality criterion.  

 

Conclusions 

        Table 4.7 shows that design  is the only design that could fit all the models. 

Design  has ability to fit the Res III, all Res III plus k (k=1,2,3) models and it even has 

ability to fit all Res III plus k (k=4,5) models. Moreover, its performances for fitting these 

models are very good. In terms of projection,  is the second best for t=2, is the best 

with  for t=3, becomes even better than  for t=4.  

 

 

 

  

d j
(4)

(X 'X )11×11
−1

1110×
d1
(4)

d2
(4)

d3
(4) ≡ d6

(4) ≡ d7
(4)

d1
(4)

d1

d1

d1

d j , j = 3,6,7 d j , j = 3,6,7
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Chapter 5  

Optimal Resolution V Designs for m=4 

 

5.0 Main Results 

                In this chapter, we exhaustively search for optimal resolution V designs of 2m  

series for m=4 and n=11, 12, 13, 14, 15, and 16. Our designs outperform the designs 

given by Srivastava and Chopra (1971). For each value of n, the optimal designs will be 

presented with their A-, D- and E-optimality criteria values. It is observed that these 

designs are equally optimal.  Therefore, we go further to study the relations among them 

and obtain some insightful results.  

	
  

5.1 Optimal Resolution V Designs for n=11 

 As we know, a  full factorial design, denoted by , contains 16 distinct runs 

as shown in Table 5.1. In order to fit a resolution V model for the factorial, a minimum 

11 runs are required. Therefore, there are  possible choices of runs in total. 

A very nature question is which choice will provide the smallest A-, D- and E-optimality 

criteria. 

               Specially, we randomly select 11 runs and eliminate the rest 5 runs from  to 

construct the 11-run design. Among all the 4368 designs, we identify all the resolution V 

24 T0

16
11

!

"
##

$

%
&&= 4368

T0
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plans and compute their corresponding A-, D- and E-optimality criteria values, 

accordingly to which all the resolution V plans are divided into several classes as shown 

in Table 5.2. We show the number of designs included, a representative design and the 

optimality criteria values in each class. We denote : the run which has -1 in all 

positions; : the run of  which has 1 in the positions ; : the run of  which 

has 1 in the positions  and ; : the run of  which has 1 in the positions 

 

Table 5.1 Full  factorial design  

S0 1 - - - - 

S1 

2 + - - - 
3 - + - - 
4 - - + - 
5 - - - + 

S2 

6 + + - - 
7 - - + + 
8 + - + - 
9 - + - + 

10 + - - + 
11 - + + - 

S3 

12 - + + + 
13 + - + + 
14 + + - + 
15 + + + - 

S4 16 + + + + 
 

 

 

 

S0

S1
(u) S1 u S2

(u,v ) S2

u v S3
(u,v ,z ) S3

u,v and z.

42 T0
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Table 5.2 All possible 11-run designs when fit parameters in res V model 

Classes Number A design Res 
Det 

1110×  Tr MEV 

T1  16 1 2 4S S SU U  V 2.59 1.49 0.25 

2T  320 1

(u) (u,v)
2 3 4S S S SU U U  

u 1;(u, v) (2,3), (2,4), (3,4)≠ ≠  
V 5.82 2.13 1.00 

3T  192 1

(u) (u,v)
2 3 4S S S SU U U  

{ }u 1,2 ;(u,v) (1,3),(2,4)≠ ≠  
V 23.3 2.88 1.00 

4T  960 1

(4) (u,v)
2 3 4S S S SU U U  

(u, v) (3,4)≠  
V 23.3 3.38 1.74 

5T  960 1

(u) (u,v)
2 3 4S S S SU U U  

{ }u 1,2 ;(u,v) (1,3),(3,4)≠ ≠  
V 23.3 3.88 2.43 

6T  80 2 3 4S S SU U  V 23.3 4.38 3.17 

7T  480 1 3

(u) (u,v) (u,v,z)
2 4S S S SU U U  

{ }u 1,2 ;(u,v) (3,4);(u,v,z) (1,2,4)≠ ≠ ≠  
V 23.3 5.38 4.25 

8T  1360 1

(4) (u,v)
2 3 4S S S SU U U  

(u, v) (1,2)≠  
IV - - - 

Total 4368 - - - - - 
 

               From Table 5.2, we can see that among all the 4368 designs, 1360 are not 

resolution V plans. The remaining 3008 designs can be divided into seven classes where 

the optimal class T1  consists of 16 designs shown in Table 5.3. It deserves to point out 

that the projected designs when projecting the 12-run PB design onto any of its 4 factors, 

after eliminating the replicated run, belong to T1 . Further, it is observed that given any 

one design from T1 , the other 15 designs can be obtained by multiplying (-1) to its any 
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one or two or three or four factor columns. Therefore, these 16 designs are isomorphic to 

each other. 

 

Table 5.3 The 16 optimal designs in T1  

Design 
Run # delete 

from T0  
Design 

Run # delete 

from T0  
Design 

Run # delete 

from T0  
Design 

Run # delete 

from T0  

1 1,6,8,10,12 2 1,6,9,11,13 3 1,7,8,11,14 4 1,7,9,10,15 

5 1,12,13,14,15 6 2,3,4,5,16 7 2,3,7,14,15 8 2,4,9,13,15 

9 2,5,11,13,14 10 4,5,6,12,13 11 3,4,10,12,15 12 3,5,8,12,14 

13 3,7,8,10,16 14 2,7,9,11,16 15 4,6,9,10,16 16 5,6,8,11,16 

 

5.2 Optimal Resolution V Designs for n=12 

    Consider the full 24  factorial design T0 , we randomly select 12 runs and 

eliminate 4 runs from it to construct 12-run design. Therefore, there are  

possible designs. Among all the 1820 designs, we identify all the resolution V plans and 

compute their corresponding A-, D- and E-optimality criteria values, accordingly to 

which all the resolution V plans are divided into several classes as shown in Table 5.4. 

We show the number of designs included, a representative design and the optimality 

criteria values in each class. 

 

 

16
1820

12
⎛ ⎞

=⎜ ⎟
⎝ ⎠



	
  
	
  

67	
  

 

Table 5.4 All possible 12-run designs when fit parameters in res V model 

Classes Number A particular design Res 
Det 

1110×  Tr MEV 

1K  120 0 1 2 4S S S SU U U  V 0.73 1.31 0.25 

2K  480 1

(u) (u,v)
2 3 4S S S SU U U  

u 1;(u, v) (2,4), (3,4)≠ ≠  
V 1.46 1.81 0.85 

3K  480 1

(u) (u,v)
2 3 4S S S SU U U  

{ }u 1,2 ;(u,v) (1,3)≠ ≠  
V 2.91 2.18 0.85 

4K  160 (4)
1 2 3 4S S S SU U U  V 2.91 2.43 1.41 

5K  480 1

(u) (u,v)
2 3 4S S S SU U U  

{ }u 1,2 ;(u,v) (3,4)≠ ≠  
V 2.91 2.69 1.72 

6K  100 1

(u) (u,v)
2 3 4S S S SU U U  

{ }u 1,2 ;(u,v) (1,2)≠ ≠  
IV - - - 

Total 1820 - - - - - 
              

               It is tedious to list all the 120 optimal designs in class . But thanks to the 

following three propositions, we can characterize the intrinsic relations among these 

designs. In fact, we will demonstrate in the rest of this section that they all have the same 

A-, D-, E-optimality criteria.  

 

1K



	
  
	
  

68	
  

Proposition 5.1: It’s obvious that permutation of rows of design will not change the 

design, thus will not change the A-, D- and E-optimality criterion values for fitting any 

model.  

Proposition 5.2: Given any one design from class 1T  (or 1K ), by multiplying (-1) to any 

one or two or three or four columns, the resulting 16 designs will have same A-, D-, and 

E-optimality criteria values for fitting a resolution V model (see the proof in Appendix). 

Proposition 5.3: Given any one design from class  (or ), by relabeling the columns 

with different permutation of factors in all possible ways, the resulting 4!=24 designs will 

have same A-, D-, and E-optimality criteria values for fitting a resolution V model (see 

the proof in Appendix). 

By Proposition 5.1, 5.2 and 5.3, the 120 optimal designs in class  can be 

divided into four non-isomorphic groups as shown in Table 5.5. Within each group, any 

two designs can be transformed from one to another by either multiplying -1 onto one or 

more factors or relabeling the factors or both. Therefore, within each group, all the 

designs have the same A-, D-, E-optimality criteria values.  

 

 

 

 

1T 1K

1K
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                                  Table 5.5 120 designs include 4 groups of designs 

Group Number A design Run # delete from 0T  

I 16 t1  

15 + + + - 
12 - + + + 
13 + - + + 
14 + + - + 

 

II 64 t2  

1 - - - - 
12 - + + + 
13 + - + + 
14 + + - + 

 

III 16 t3  

1 - - - - 
11 - + + - 
8 + - + - 
6 + + - - 

 

IV 24 t4  

1 - - - - 
11 - + + - 
13 + - + + 
14 + + - + 

 

Total number 120  - 

 

                A question has not been answered yet is that whether the designs from different 

groups have the same A-, D-, and E-optimality criteria values. Therefore, we continue to 

investigate the designs from different groups, i.e., design t1  for group I, design t2  for 

group II, design t3  for group III, and design t4  for group IV shown in Table 5.5. And we 

prove in the following that the four designs have the same optimality criteria values. 
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Connect t1  and t2  

               Let’s first consider the designs  and . The design matrix X for  

corresponding to main effects and two-factor interactions is	
  

A B C D AB AC AD BC BD CD 
1 -1 -1 -1 -1 -1 -1 1 1 1 
-1 1 -1 -1 -1 1 1 -1 -1 1 
-1 -1 1 -1 1 -1 1 -1 1 -1 
-1 -1 -1 1 1 1 -1 1 -1 -1 
1 1 -1 -1 1 -1 -1 -1 -1 1 
-1 -1 1 1 1 -1 -1 -1 -1 1 
1 -1 1 -1 -1 1 -1 -1 1 -1 
-1 1 -1 1 -1 1 -1 -1 1 -1 
1 -1 -1 1 -1 -1 1 1 -1 -1 
-1 1 1 -1 -1 -1 1 1 -1 -1 
1 1 1 -1 1 1 -1 1 -1 -1 
1 1 1 1 1 1 1 1 1 1 

	
  

Now we rename factors of t2  by Table 5.6. The “O” stands for “Original ( t2 )” and the “R” 

stands for “Renamed ( t2 )”. If we determine the renaming of A, B, C, and D, then the rest 

will follow. 

Table 5.6 Rename t2  

O R 
D A 

AD B 
BD C 
CD D 
A AB 
B AC 
C AD 

AB BC 
AC BD 
BC CD 

t1 t2 t2
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Now by using Table 5.6, we can get columns of design matrix X for renamed t2  

corresponding to main effects and two-factor interactions. 

A B C D AB AC AD BC BD CD 
-1 -1 1 1 1 -1 -1 -1 -1 1 
-1 1 -1 1 -1 1 -1 -1 1 -1 
-1 1 1 -1 -1 -1 1 1 -1 -1 
1 -1 -1 -1 -1 -1 -1 1 1 1 
-1 -1 -1 1 1 1 -1 1 -1 -1 
1 -1 -1 1 -1 -1 1 1 -1 -1 
-1 -1 1 -1 1 -1 1 -1 1 -1 
1 -1 1 -1 -1 1 -1 -1 1 -1 
1 1 -1 -1 1 -1 -1 -1 -1 1 
-1 1 -1 -1 -1 1 1 -1 -1 1 
-1 -1 -1 -1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 

	
  

The first four columns of the above matrix give t1 . Next we calculate X’X of renamed t2 . 

We permute its columns and rows in a way to make them look nicer and present it in 

Table 5.7. This matrix is identical to X’X of t1 . So the X’X of original t2  is exactly the 

same as that of t1  after renaming. 

Table 5.7 X’X 
X’X of renamed t2  is identical to X’X of t1  

 µ  AB AC AD BC BD CD A B C D 
µ  12 0 0 0 0 0 0 -2 -2 -2 -2 
AB 0 12 0 0 0 0 4 -2 -2 2 2 
AC 0 0 12 0 0 4 0 -2 2 -2 2 
AD 0 0 0 12 4 0 0 -2 2 2 -2 
BC 0 0 0 4 12 0 0 2 -2 -2 2 
BD 0 0 4 0 0 12 0 2 -2 2 -2 
CD 0 4 0 0 0 0 12 2 2 -2 -2 
A -2 -2 -2 -2 2 2 2 12 0 0 0 
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B -2 -2 2 2 -2 -2 2 0 12 0 0 
C -2 2 -2 2 -2 2 -2 0 0 12 0 
D -2 2 2 -2 2 -2 -2 0 0 0 12 

	
  

Connect t3  and t4  

               Following the same logic, we can also prove that the designs   and  have the 

same optimality criteria values.  

Connect t1  and t3  

               First, we try to connect t1  and t3  by mapping (i.e., renaming the factors of one 

design to make the renamed factors have same treatment combination in another design). 

In the following, we recall the columns of design matrix of t1  and columns of design 

matrix of t3  corresponding to main effects and two-factor interactions. 

Design matrix of 	
  

A B C D AB AC AD BC BD CD 
-1 -1 -1 -1 1 1 1 1 1 1 
1 -1 -1 -1 -1 -1 -1 1 1 1 
-1 1 -1 -1 -1 1 1 -1 -1 1 
-1 -1 1 -1 1 -1 1 -1 1 -1 
-1 -1 -1 1 1 1 -1 1 -1 -1 
1 1 -1 -1 1 -1 -1 -1 -1 1 
-1 -1 1 1 1 -1 -1 -1 -1 1 
1 -1 1 -1 -1 1 -1 -1 1 -1 
-1 1 -1 1 -1 1 -1 -1 1 -1 
1 -1 -1 1 -1 -1 1 1 -1 -1 
-1 1 1 -1 -1 -1 1 1 -1 -1 
1 1 1 1 1 1 1 1 1 1 

Number 
of (-1)’s 7 7 7 7 6 6 6 6 6 6 

	
  

t3 t4

t1
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Design matrix of  	
  

A B C D AB AC AD BC BD CD 
1 -1 -1 -1 -1 -1 -1 1 1 1 
-1 1 -1 -1 -1 1 1 -1 -1 1 
-1 -1 1 -1 1 -1 1 -1 1 -1 
-1 -1 -1 1 1 1 -1 1 -1 -1 
-1 -1 1 1 1 -1 -1 -1 -1 1 
-1 1 -1 1 -1 1 -1 -1 1 -1 
1 -1 -1 1 -1 -1 1 1 -1 -1 
-1 1 1 1 -1 -1 -1 1 1 1 
1 -1 1 1 -1 1 1 -1 -1 1 
1 1 -1 1 1 -1 1 -1 1 -1 
1 1 1 -1 1 1 -1 1 -1 -1 
1 1 1 1 1 1 1 1 1 1 

Number 
of (-1)’s 6 6 6 4 6 6 6 6 6 6 

 

In addition, we sum the number of (-1)’s for each main effect and two-factor 

interaction. We cannot map t1  to t3  as there is no way we can rename a factor of  to 

make it has four (-1)’s. If we cannot map  to t3 , then we cannot map t3  to t1  either. 

Although mapping is not allowed between t1  and t3 , we still want to find a way to 

explain why these two designs have same A-, D-, and E-optimality criteria values. Next, 

instead of mapping designs, we turn to mapping their X’X matrices. We recall X’X of t1  

and t3  which are shown as follows: 

 

 

 

t3

t1

t1
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X’X of t1  
 µ  AB AC AD BC BD CD A B C D 
µ  12 0 0 0 0 0 0 -2 -2 -2 -2 
AB 0 12 0 0 0 0 4 -2 -2 2 2 
AC 0 0 12 0 0 4 0 -2 2 -2 2 
AD 0 0 0 12 4 0 0 -2 2 2 -2 
BC 0 0 0 4 12 0 0 2 -2 -2 2 
BD 0 0 4 0 0 12 0 2 -2 2 -2 
CD 0 4 0 0 0 0 12 2 2 -2 -2 
A -2 -2 -2 -2 2 2 2 12 0 0 0 
B -2 -2 2 2 -2 -2 2 0 12 0 0 
C -2 2 -2 2 -2 2 -2 0 0 12 0 
D -2 2 2 -2 2 -2 -2 0 0 0 12 

	
  

X’X of t3  
 µ  AB AC AD BC BD CD A B C D 
µ  12 0 0 0 0 0 0 4 0 0 0 
AB 0 12 0 0 0 0 4 0 4 0 0 
AC 0 0 12 0 0 4 0 0 0 4 0 
AD 0 0 0 12 4 0 0 0 0 0 4 
BC 0 0 0 4 12 0 0 0 0 0 -4 
BD 0 0 4 0 0 12 0 0 0 -4 0 
CD 0 4 0 0 0 0 12 0 -4 0 0 
A 4 0 0 0 0 0 0 12 0 0 0 
B 0 4 0 0 0 0 -4 0 12 0 0 
C 0 0 4 0 0 -4 0 0 0 12 0 
D 0 0 0 4 -4 0 0 0 0 0 12 

	
  

Both X’X of t1  and t3  have a nice structure. We partition these two matrices 

into four parts and denote each part with a new name. 
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(X 'X )ti ,i =1,3  

 µ  AB AC AD BC BD CD A B C D 
µ  

L M ti
 

AB 
AC 
AD 
BC 
BD 
CD 
A 

M ti
'  12I4  B 

C 
D 

	
  

Define matrix P and U to be 

P = I7 0

0 U

!

"
#
#

$

%
&
& ,        U =

−0.5 −0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 0.5 −0.5 0.5
−0.5 0.5 0.5 −0.5

"

#

$
$
$
$

%

&

'
'
'
'

,  

where PP’=P’P=I, UU’=U’U=I, so that P and U are both orthogonal matrices. Then 

  P(X 'X )t1P ' = I7 0

0 U

!

"
#
#

$

%
&
&

L M t1

M t1
' 12I4

!

"

#
##

$

%

&
&&

I7 0

0 U '

!

"
#
#

$

%
&
&=

L M t1

UM t1
' 12U

!

"

#
##

$

%

&
&&

I7 0

0 U '

!

"
#
#

$

%
&
&

                      =
L M t1

U '

UM t1
' 12UU '

!

"

#
##

$

%

&
&&
=

L M t3

M t3
' 12I4

!

"

#
##

$

%

&
&&
= (X 'X )t3 .
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And hence, 

(X 'X )t3 −λI = P(X 'X )t1P '−λI = P((X 'X )t1 −λI )P ' = P (X 'X )t1 −λI P '

                       =1* (X 'X )t1 −λI *1= (X 'X )t1 −λI
	
  

Therefore, (X 'X )t1  and (X 'X )t3  have same Eigenvalues. (X 'X )t1
−1  and (X 'X )t3

−1  have 

same Eigenvalues. So the optimal criteria values are all same for the designs t1  and t3 . 

	
  

5.3 Optimal Resolution V Designs for n=13, 14, 15, 16 

               In this section, we search for optimal resolution V designs for n=13, 14, 15, and 

16. The results for n=13, 14 and 15 are shown in Table 5.8, Table 5.9 and Table 5.10 

respectively. For n=16, it’s known that  is optimal with the A-, D- and E-optimality 

values being 0.69, 5.68×10−14  and 0.09 respectively. For each value of n, a design in the 

optimal class is given as an example.  

	
  	
  	
  	
  Table 5.8 All possible 13-run designs for res V model 

Class Number A design Tr 
Det 
×1012  

MEV 

L1  160 S0 ∪S1∪S2 ∪S3
(2,3,4) ∪S4  1.14 2.08 0.25 

L2  240  1.5 3.64 0.70 
L3  160  1.67 4.85 0.81 

Total 560 - - - - 
 

0T
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               In Table 5.8, we further observe that there are two groups of isomorphic designs 

in the optimal class . One is characterized by having one factor column of 5 (-1)’s or 8 

(-1)’s, and the other three factor columns each of which has 6 (-1)’s or 7 (-1)’s. The other 

is characterized by having all four factor columns each of which has 6 (-1)’s or 7 (-1)’s. 

The former group consists of 64 designs, and the latter group consists of 96 designs. The 

designs in  perform better than the balanced design (n=13) given by Srivastava and 

Chopra (1971) for fitting a resolution V model.  

Table 5.9 All possible 14-run designs for res V model 

Class Number A design Tr 
Det 
×1013  

MEV 

F1  80 
S1∪S2 ∪S3

(u,v,z) ∪S4  
(u,v,z) ≠ (1,2,3)  

0.98 6.06 0.25 

F2  40  1.19 9.09 0.5 
Total 120 - - - - 

 

               In Table 5.9, we further observe that there are two groups of isomorphic designs 

in the optimal class F1 . One is characterized by having even number of (-1)’s in each 

factor column. The other is characterized by having odd number of (-1)’s in each factor 

column. The former group consists of 48 designs, and the latter group consists of 32 

designs. The designs in  perform better than the balanced design (n=14) given in 

Srivastava and Chopra (1971) for fitting a resolution V model.  

 

L1

L1

F1
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Table 5.10 All possible 15-run designs for res V model 

Class Number A design Tr 
Det 
×1013  

MEV 

B1  16 
Delete any run 

from 0T  0.83 1.82 0.2 

Total 16     
                            

               All the 16 designs are isomorphic to each other, and have the same A-, D-, E-

optimality criteria values. Therefore, they are equally optimal for fitting resolution V 

model. 
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Chapter 6  

Up-Resolution V Designs for m=5 

 

6.0 Main Results 

               Unlike m=4 shown in Chapter 5, the exhaustive search for optimal resolution V 

designs of 2m  series for m=5 becomes computationally extensive. Srivastava and Chopra 

(1971) have focused on the class of all balanced fractional factorial designs and searched 

the optimal design only among this class, which is known as the balanced optimal 

fractional factorial design (BOFFD). However, the BOFFD sometimes could be worse 

than some unbalanced designs. Therefore, in this chapter, we propose a method to 

construct Up-Res V designs that is not limited to balanced designs, and show that the 

designs can perform slightly better than the BOFFD with respect to A-, D-, and E-

optimality criteria. For a given n, all our designs are isomorphic having same optimality 

properties. 

 

6.1 Construction Method 

   For m=5 and a given practical value of n, the simplest method to identify the 

optimal designs for fitting a resolution V model is to search among all possible designs 



	
  
	
  

80	
  

balanced or unbalanced. For example, when n=18, there are 25

18

!

"
##

$

%
&&= 471435600  

possible designs, among which we can identify the optimal designs to be the one having 

smallest A-, D- and E-optimality criteria values. However, this method is extremely 

computationally expensive. Therefore, instead of doing so, in the following we give an 

alternative approach which significantly saves a huge amount of computation time. 

Although this approach may not find the optimal designs from the whole class of possible 

designs, the Up-Res V designs we constructed are slightly better than BOFFDs, possess 

neat properties, and are easy to obtain. 

   Given the value of n with 16 ≤ n ≤ 32 , the method works in two steps as follows. 

(1) Add i=n-16 runs randomly selected from the 25−1  fractional factorial design with 

defining relation I= -ABCDE to the 25−1  fractional factorial design with defining relation 

I= ABCDE to obtain a set of all the 16
i

!

"
##

$

%
&&  possible designs. (2) Identify the optimal 

designs from the set defined in (1) to be the designs that have the smallest A-, D-, and E-

optimality criteria values. We call these designs Up-Res V designs. 

    When n=16, we don’t need to add any run to the 25−1  fractional factorial design 

with defining relation I=ABCDE, since it is known to be optimal. Obviously, this method 

works for any general value n and m as well as shown in next chapter. 
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   In this chapter, we denote X 16×16( )  to be the design matrix corresponding to 

the regular 25−1  fractional factorial design with I=ABCDE under Resolution V model. 

Likewise, we denote X * 16×16( )  to be the design matrix corresponding to the regular 

25−1  fractional factorial design with I= -ABCDE under Resolution V model. Let 

X i i×16( )  be a submatrix consisting of i ( 0 ≤ i ≤16 ) rows of X * . Define 

X (i )
(16+i )×16

=
X
X i

"

#
$
$

%

&
'
' . Therefore, X (i )  is the design matrix of the constructed n (n=16+i) run 

design for a choice of i rows in X * . Obviously, X 'X = X * 'X * =16I16 ,  X (i ) 'X (i ) =

X 'X + X i 'X i =16I16 + X i 'X i ,  and X iX i ' =16Ii .  

 

6.2 Up-Resolution V designs for 16 ≤ n ≤ 32  

               The A-, D-, and E-optimality criteria values of our Up-Res V designs with m=5 

are given in Table 6.1. The same criteria values of the BOFFDDs in Srivastava and 

Chopra (1971) are given in Table 6.2. These designs are referred as to S-C designs.  

              Comparing Table 6.1 and Table 6.2, we can see that the criteria values of some 

Up-Res V designs are slightly less than that of the S-C designs. Moreover, for any 

particular value of n, the Up-Res V designs we obtained are all isomorphic with respect 

to A-, D-, and E-optimality criteria, which means that no matter which i (i fixed) rows 

selected from X * , the resulting designs share the same optimality criteria values. We 
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refer this property as to “isomorphism of Up designs”. Moreover, as n increases by 1, the 

Trace value is decreased by .03125, and the Determinant value is decreased by half. The 

Maximum Eigenvalue is .0625 for 16 ≤ n ≤ 31.  

Table 6.1 Our designs       Table 6.2 S-C designs       

n Tr 
Det 

 
MEV       n Tr 

Det 
 

MEV 

16 1 5.42 .0625       16 1 5.42 .0625 
17 .96875 2.71 .0625       17 .96875 2.71 .0625 
18 .9375 1.355 .0625       18 .9398 1.404 .0625 
19 .90625 .6776 .0625       19 .9296 .9479 .0625 
20 .875 .3388 .0625       20 .9194 .6425 .0625 
21 .84375 .1694 .0625       21 .84375 .1694 .0625 
22 .81250 .0847 .0625       22 .81250 .0847 .0625 
23 .78125 .0423 .0625       23 .7979 .0537 .0625 
24 .75000 .0212 .0625       24 .7881 .0362 .0625 
25 .71875 .0106 .0625       25 .7815 .0268 .0625 
26 .68750 .0053 .0625       26 .68750 .0053 .0625 
27 .65625 .0026 .0625       27 .65625 .0026 .0625 
28 .62500 .0013 .0625       28 .6300 .0014 .0625 
29 .59375 .00066 .0625       29 .6199 .00097 .0625 
30 .56250 .00033 .0625       30 .5830 .00039 .1 
31 .53125 .00017 .0625       31 .53125 .00017 .0625 
32 .50000 .00008 .03125       32 .50000 .00008 .03125 

 

6.3 Characterization by Determinants 

In this section, we propose Theorem 6.1 to mathematically prove that all the 

Up-Res V designs of the same value of n have the same Determinant.  

 

 

×1020 ×1020



	
  
	
  

83	
  

Theorem 6.1: For 0 ≤ i ≤16,  | (X (i ) 'X (i ) )
−1 |= 1

1616 ×2i
,  ∀ X i ⊂ X

*. 

 

Proof: 

For 0 ≤ i ≤16,  

| X ( i ) 'X ( i ) |=| X 'X + Xi 'Xi |

              =| X 'X || Ii + Xi (X 'X )
−1Xi ' |

              =1616 | Ii +
1
16
XiXi ' |

              =1616 | Ii +
16
16
Ii |

              =1616 | 2Ii |

              =1616 ×2i               ∀ Xi ⊂ X
*.  

Therefore, 

| (X ( i ) 'X ( i ) )
−1 |= 1

1616 ×2i
,      ∀ Xi ⊂ X

*. 

 

Proof is completed.  

 

6.4 Characterization by Eigenvalues 

               In this section, we propose Theorem 6.2 to mathematically prove that all the 

Up-Res V designs of the same value of n have the same Maximum Eigenvalue. 
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Theorem 6.2: For all a ≠ 0,  
a '((X ( i ) 'X ( i ) )

−1)a
a 'a

≤
1

16
   for i <16

=
1

32
   for i =16

.

$

%
&
&

'
&
&

 Proof: 

For all a ≠ 0, 	
  

a '(X ( i ) 'X ( i ) )a
a 'a

=
a '(X 'X )a
a 'a

+
a '(Xi 'Xi )a

a 'a

                      =16+
(Xia) '(Xia)

a 'a

                      ≥16.

 

The equality (“= ”) holds when X ia = 0. 	
  If  then there is always an a 	
  satisfying 

X ia = 0,  given that the 16 rows in X *  are all orthogonal to each other. If 	
  then 

X i = X
* and	
   X (i ) 'X (i ) =16I16 +16I16 = 32I16 .	
  Thus, Theorem 6.2 will follow.	
  

	
  

6.5 Characterization by Traces 

               In this section, we propose Theorem 6.3 to mathematically prove that all the 

Up-Res V designs of the same value of n have the same Trace.  

Theorem 6.3: For 0 ≤ i ≤16,  Tr(X (i ) 'X (i ) )
−1 =1− i

32
,  ∀ X i ⊂ X

*. 

 

16,i <

16,i =
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Proof: For 0 ≤ i ≤16,  

X (i ) 'X (i ) =16I + X i 'X i
 

So,
 

(X (i ) 'X (i ) )
−1 =

1
16
I − 1
162

X i '(
1
16
X iX i '+ Ii )

−1X i

                  = 1
16
I − 1
162

X i '(2Ii )
−1X i

                  = 1
16
I − 1
2×162

X i 'X i .

	
  

Therefore, 

Tr[(X (i ) 'X (i ) )
−1]=1− 1

2×162
Tr(X i 'X i )

                        =1− 1
2×162

Tr(X iX i ')

                        =1− 1
2×162

Tr(16Ii )

                        =1− i
2×16

                        =1− i
32
.

 

Proof is completed. 
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Chapter 7  

Isomorphism of Up designs in 2m  Factorial Experiments 

 

7.0 Main Results 

 In Chapter 6, we proposed a novel method to construct a series of Up-Res V 

designs with m=5. The designs were found out isomorphic to each other by having same 

optimality properties for a given n. However, such property might not always hold for 

any value of m and for fitting any factorial effects model. Instead, it only holds under 

certain conditions. Therefore, in this chapter, we first follow Section 6.1 to describe the 

design construction method for general values of m in Section 7.1. In Section 7.2, the 

conditions are stated and explained mathematically for this isomorphic property to hold 

in general situations. Special situations are considered in Section 7.3 where the conditions 

can be significantly simplified. Meanwhile, examples are given for understanding these 

conditions.  

 

7.1 Construction Method 

    Consider in a 2m  factorial experiment, we want to fit a model M with p1  

parameters. Suppose we have a base design that consists of n1  runs from the 2m  possible 

runs ( ), and is capable of fitting such model. Denote this base design to be T1 , and n1 ≥ p1



	
  
	
  

87	
  

its corresponding design matrix to be X1(n1 × p1) . Denote the complement of T1  from the 

 factorial to be T1
* , and its corresponding design matrix to be X1

*((2m − n1)× p1) . 

Given a practical value of n with n1 ≤ n ≤ 2
m  and let i = n− n1 , the optimal design for 

fitting model M can be constructed in the following two steps.  

(1) Add i = n− n1  runs randomly selected from T1
*  to T1  to obtain a set of all 2m − n1

i

"

#
$
$

%

&
'
'  

possible augmented designs. The augmented design can be expressed as T2ij =
T1
T1ij
*

!

"

#
#

$

%

&
&

with the corresponding design matrix X2ij =
X1
X1ij
*

!

"

#
#

$

%

&
&
n2×p1

, where 

j =1,  2,...,  2m − n1

i

"

#
$
$

%

&
'
'  indexes jth 	
  the selection of i run(s) from . Notice that i 

can take all positive integers from 1 to 2m − n1 . 

(2) Identify the optimal designs from the set obtained in (1) to be the designs that have 

the smallest A-, D-, and E-optimality criteria values.  

It is of interest to find whether the designs in (1) have the isomorphic property 

or not. More specifically, we want to know that no matter which i runs are added, 

whether the resulting T2ij ’s will have the same A-, D- and E-optimality criteria values. In 

the next section, we identify the conditions for the determinant of (X2ij 'X2ij )
−1  to be 

2m

T1
*
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independent of j, and also the conditions for the trace of (X2ij 'X2ij )
−1  to be independent 

of j.  

 

7.2 Isomorphism of Up designs Property in General Situations 

                This following two theorems specify the conditions for the isomorphism of Up 

designs property (A- and D-optimality criteria) to hold. The E-optimality criterion is too 

complex to consider here. 

Theorem 7.1: The determinant of (X2ij 'X2ij )
−1  is independent of j if and only if 

| Ii + X1ij
* (X1 'X1)

−1X1ij
* ' | 	
  is independent of j.  

Theorem 7.2: The trace of (X2ij 'X2ij )
−1  is independent of j if and only if 

Tr((X1 'X1)
−1X1ij

* '(Ii + X1ij
* (X1 'X1)

−1X1ij
* ')−1X1ij

* (X1 'X1)
−1)  is independent of j.  

When i =1, (X21 j 'X21 j )
−1 = (X1 'X1)

−1 −
(X1 'X1)

−1X11 j
* 'X11 j

* (X1 'X1)
−1

(1+ X11 j
* (X1 'X1)

−1X11 j
* ')

, where  

(1+ X11 j
* (X1 'X1)

−1X11 j
* ') 	
  is a scalar. Hence, 

Tr(X21 j 'X21 j )
−1 =Tr(X1 'X1)

−1 −
Tr(X1 'X1)

−1X11 j
* 'X11 j

* (X1 'X1)
−1

(1+ X11 j
* (X1 'X1)

−1X11 j
* ')

.  
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Therefore, the condition in Theorem 7.2 becomes 

Tr(X1 'X1)
−1X11 j

* 'X11 j
* (X1 'X1)

−1

(1+ X11 j
* (X1 'X1)

−1X11 j
* ')

 is independent of j. 

When i >1, 

Tr(X2ij 'X2ij )
−1 =Tr(X1 'X1)

−1 −Tr((X1 'X1)
−1X1ij

* '(Ii + X1ij
* (X1 'X1)

−1X1ij
* ')−1X1ij

* (X1 'X1)
−1)

                      =Tr(X1 'X1)
−1 −Tr(X1ij

* (X1 'X1)
−2X1ij

* '(Ii + X1ij
* (X1 'X1)

−1X1ij
* ')−1).  

Therefore, if both Tr(X1ij
* (X1 'X1)

−2X1ij
* '  and X1ij

* (X1 'X1)
−1X1ij

* '  are independent of j, 

then the trace of (X2ij 'X2ij )
−1  is independent of j. Under such conditions, the determinant 

of (X2ij 'X2ij )
−1

 
is also independent of j. 

  In the rest of this section, we illustrate the usage of the above two theorems by 

the following example. Let’s consider a 24  factorial experiment under resolution V 

model. Let T1  consist of all the 11 runs in S1∪S2∪S4 , and its complement design T1
*  

consist of all the other 5 runs in S0∪S3 . Then for any value of i with 1≤ i ≤ 5 , we can 

follow the method in Section 7.1 to construct ’s and compute their A-, D-, E-

optimality criteria values as shown in Table 7.1. From this table, we can see that all ’s 

have the same criteria values for the same value of i. Therefore, the isomorphic property 

holds.  

 

T2ij

T2ij
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Table 7.1 Isomorphic Property of T2ij  under Res V model 

i n Number 
of designs Tr Det×1011  MEV 

0 11 1 1.49 2.59 .25 
1 12 5 1.31 .73 .25 
2 13 10 1.14 .21 .25 
3 14 10 .98 .061 .25 
4 15 5 .83 .018 .2 
5 16 1 .69 .0057 .06 

 

               Theorem 7.1 and Theorem 7.2 can verify the isomorphic property as follows. 

When i =1 and n =12,  ∀ j :  X11 j
* (X1 'X1)

−1X11 j
* ' = 2.556,X11 j

* (X1 'X1)
−2X11 j

* ' = .6173.  

Therefore, by Theorem 7.1 and 7.2, the determinant and the trace of (X21 j 'X21 j )
−1  are 

independent of j.  

When i = 2 and n =13,  ∀ j :

X12 j
* (X1 'X1)

−1X12 j
* ' = 2.556 −.444

−.444 2.556

"

#
$$

%

&
'',X12 j

* (X1 'X1)
−2X12 j

* ' = .6173 −.1327
−.1327 .6173

"

#
$$

%

&
''.  

Therefore, by Theorem 7.1 and 7.2, the determinant and the trace of (X22 j 'X22 j )
−1  are 

independent of j.  

When i =3, 4, and 5, the proof is similar. 

 

 

 



	
  
	
  

91	
  

7.3 Isomorphism of Up designs Property in Special Cases 

                 The conditions in Theorem 7.1 and Theorem 7.2 have quite complicated 

mathematical forms. In practice, a special yet reasonable situation we might expect is that 

the design matrix of base design, X1  is orthogonal column-wise. That is, X1 'X1 = n1I p1

and (X1 'X1)
−1 =

1
n1
I p1 . Under such situation, the conditions can be significantly 

simplified as shown in Corollary 7.1 and Corollary 7.2. 

Corollary 7.1: Given X1 'X1 = n1I p1 	
  and (X1 'X1)
−1 =

1
n1
I p1 , the determinant of 

(X2ij 'X2ij )
−1  is independent of j if and only if | Ii +

1
n1
X1ij
* X1ij

* ' |  is independent of j.  

Corollary 7.2: Given X1 'X1 = n1I p1 	
  and (X1 'X1)
−1 =

1
n1
I p1 , the trace of (X2ij 'X2ij )

−1  is 

independent of j if and only if Tr(Ii +
1
n1
X1ij
* X1ij

* ')−1  is independent of j. (See Proof in the 

Appendix) 

When i=1,∀ j : 

X11 j
* X11 j

* ' = p1, Tr(X21 j 'X21 j )
−1 =

p1 −1
n1

+
1
n1
Tr( 1
n1
p1 +1)

−1 =
p1( p1 + n1 −1)
n1( p1 + n1)

.  
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Therefore, by Corollary 7.1 and 7.2, the determinant and the trace of (X21 j 'X21 j )
−1  are 

always independent of j. 

When i=2, denote X12 j
* X12 j

* ' =
p1 qj
qj p1

!

"

#
#

$

%

&
&,  then 

| I2 +
1
n1
X12 j
* X12 j

* ' |=

p1
n1
+1

qj
n1

qj
n1

p1
n1
+1

=
p1
2 + n1

2 + 2p1n1 − qj
2

n1
2

.  

By Corollary 7.1, the determinant of (X22 j 'X22 j )
−1  is independent of j if and only if 

qj
2  is a constant ∀ j.   

Also, 

Tr( 1
n1
X12 j
* X12 j

* '+ I2 )
−1 =Tr

p1
n1
+1

qj
n1

qj
n1

p1
n1
+1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

−1

=
2n1( p1 + n1)
( p1 + n1)

2 − qj
2
.

	
  

Hence, 

Tr(X22 j 'X22 j )
−1 =

p1 − 2
n1

+
2( p1 + n1)

( p1 + n1)
2 − qj

2
. 	
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By Corollary 7.2, the trace of (X22 j 'X22 j )
−1  is independent of j if and only if 

qj
2  is a constant ∀ j.  

               For example, let’s consider a 24  factorial experiment under the model M that 

contains general mean, all main effects and two 2-factor interactions AB and AC, the 

base design T1  is chosen to have defining relation I=ABCD. Therefore, its complement 

design T1
*  has defining relation I= -ABCD. Then for any value of i (0 ≤ i ≤ 8 ), we can 

follow the method in Section 7.1 to construct designs  and compute their A-, D-, and 

E-optimality criteria values. The results are shown in Table 7.2. From this table, we can 

see that for any fixed i, ’s share the same criteria values. Therefore, the isomorphic 

property holds. 

Table 7.2 Isomorphic Property of T2ij  under model M 

i n Number 
of designs Tr Det×107  MEV 

0 8 1 .875 4.768 .125 
1 9 8 .81667 2.543 .125 
2 10 28 .75893 1.362 .125 
3 11 56 .70192 .7336 .125 
4 12 70 .64583 .3974 .125 
5 13 56 .59091 .2167 .125 
6 14 28 .5735 .1192 .125 
7 15 8 .48611 .0662 .1111 
8 16 1 .4375 .0373 .0625 

 

T2ij

T2ij
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               Corollary 7.1 and Corollary 7.2 can verify the isomorphic property as follows. 

First, we can easily check that X1 'X1 = 8I7,(X1 'X1)
−1 =

1
8
I7.  Therefore, X1  is orthogonal 

column-wise.   

When i=1, by Corollary 7.1 and 7.2, the determinant and the trace of (X21 j 'X21 j )
−1  are 

always independent of j.  

When i=2, we can prove that for any j,	
   qj = ±1, | I2 +
1
n1
X12 j
* X12 j

* ' |=
p1
2 + n1

2 + 2p1n1 − qj
2

n1
2

= .375.
	
  

Tr(X22 j 'X22 j )
−1 =

p1 − 2
n1

+
2( p1 + n1)

( p1 + n1)
2 − qj

2
= .75893.  Therefore, by Corollary 7.1 and 7.2, 

the determinant and the trace of (X22 j 'X22 j )
−1  are independent of j. 

When i =3,…,8, the proof is similar. 

 

 

 

 

  



	
  
	
  

95	
  

 

Chapter 8 

Efficient Up-Down Resolution III Designs 

 

8.0 Main Results 

          In this chapter, we propose a general Up-Down method to search for efficient 

2m  fractional factorial designs in fitting a class of models when the number of factors is 

m, and the number of runs is n. We present the efficient resolution III designs obtained by 

the Up-Down method for  and a range of practical values of n. While many of 

these designs are found to be the global optimal resolution III designs by exhaustive 

computer search, the other designs are near global optimal designs. For m=4 and 5, we 

compare our designs with the optimal resolution III+k (k=0,1,2,…) designs in Ghosh and 

Tian (2006). 

 
8.1 Up-Down Method 

          In practice, resolution III plans are very popular when experimenters want to 

study the main effects of the factors in factorial experiments. For a fixed value of m, we 

already know the optimal resolution III plans are the full factorial design or regular 

fractional factorial design for n= , , etc. due to their orthogonality property. For 

the same reason, 12-run PB design is optimal for n=12 and m≤ 11. However, when n 

takes other values, the optimal resolution III designs become unknown. In this section, 

3≤m ≤10

2m 2m−1
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we propose an Up-Down method to construct efficient resolution III designs for 

3≤m ≤10  and a range of practical values of n, which works in four steps as follows.  

(1) Given the values of m and n, find the nearest lower value nL  and nearest upper value 

nU  for which the corresponding optimal resolution III designs are available. For some 

small value , a resolution III design might be unavailable due to run limitation; we 

would use some regular fractional factorial design to substitute. Denote these two designs 

to be dL and dU .  

(2) Add n− nL  runs randomly selected from the remaining 2m − nL  runs to dL 	
  to form all 

the 
2m − nL
n− nL

"

#

$
$

%

&

'
'

 Up designs. Calculate their A-, D-, and E-optimality criteria values for 

fitting resolution III model. 

(3) Eliminate nU − n  runs from dU 	
  
to form all the 

nU
nU − n

"

#

$
$

%

&

'
'

 Down designs. Calculate 

their A-, D-, and E-optimality criteria values for fitting resolution III model. 

(4) Among all the Up (Down) designs, identify the best Up (Down) designs, denoted by 

Zn
↑  (Zn

↓ ), to the ones that have the smallest optimality criteria values. The better one of 

Zn
↑  and Zn

↓  is chosen to be our efficient resolution III designs.  

nL
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               Most of the time, the runs in  and  are distinctive. However, this is not 

always the case. For example, when m=4, n=12, the PB design with 4 columns is an 

optimal resolution III plan that has two replicated runs. Under such case, steps (2) and (3) 

in the Up-Down method might need to be changed slightly. When  contains replicated 

runs, then in step (2), we add  runs randomly selected from the remaining 2m − nL
*  

runs to 	
  to form an Up design, where nL
*  is the number of distinctive runs in . 

When  contains replicated runs, actually it will not cause problems, as the way we do 

in step (3) will cover all the Down designs. 

               Let’s illustrate the Up-Down method by using m=5 as an example. In Section 

8.4, we present the efficient resolution III designs among Up and Down designs that we 

construct for n=6, 7, 9, 10, 11, 13, 14, and 15. For n=8, 12, and 16, we already know that 

the existing orthogonal arrays of strength 2 are the optimal resolution III plans. Also, for 

n=4, a resolution III design is impossible due to run limitation, but we believe that the 

design with defining relation I=ABC=CDE=AD should be an efficient design . Thus, 

for n=6, 7, we build Up designs by adding runs to the above 4-run design  and build 

Down designs by eliminating runs from 8-run design dU . For n=9, 10, 11, we build Up 

and Down designs based on 8-run and 12-run designs. For n=13, 14, 15, we build Up and 

Down designs based on 12-run and 16-run designs. For a particular n, we search out the 

best resolution III designs among the Up and Down designs, and present them in the table. 

	
  

dL dU

dL

n− nL

dL dL

dU

dL

dL
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8.2 m=3 

  The efficient resolution III designs for m=3, n=4, 5, 6, 7, and 8 are presented in 

Table 8.1. For n=4, the regular fractional factorial design  with defining relation 

I=ABC is optimal. For n=8, the full factorial design  is optimal. For n=5,6,7, we add 

n-4 runs to  to construct the Up designs and eliminate 8- n runs from  to construct 

the Down designs. Since the best UP designs Zn
↑  and the best DOWN designs Zn

↓  are 

equally efficient, so we list both of them in the table. In the last column in Table 8.1, we 

present the runs of one representative design. We refer the Up-Down designs to as G-Z 

designs. 

Table 8.1 m=3, Up-Down G-Z res III designs 

Designs n Tr 
Det 
×104  

MEV Optimality  
criteria  Runs 

Z4  4 1 39.1 .25 A,D,E *1,2,3,123 

Z5
↑,Z5

↓  5 .875 19.5 .25 A,D,E 1,2,3,123, any one run 
from the remaining 

Z6
↑ ,Z6

↓  6 .75 9.77 .25 A,D,E 1,2,3,123, any two runs 
from the remaining 

Z7
↑ ,Z7

↓  7 .625 4.88 .25 A,D,E 1,2,3,123, any three runs 
from the remaining 

Z8  8 .5 2.44 .125 A,D,E **0,1,2,3,12,13,23,123 
              * n=4, I=ABC. ** n=8, full factorial. 

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  The case considered in this section is so simple that we can use computer to 

search out the global optimal resolution III designs as shown in Table 8.2, where Dn in 

the first column denotes the optimal designs for n-run designs. The “global” is defined in 

Z4

Z8

Z4 Z8
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the way that computer searches out all possible 2m

n

!

"
##

$

%
&&  designs that with no replicated 

runs and identifies the optimal ones. 

Table 8.2 m=3, optimal res III plans by computer search 

Designs n Tr 
Det 
×104  

MEV Optimality  
criteria  

D4 4 1 39.1 .25 A,D,E 
D5 5 .875 19.5 .25 A,D,E 
D6 6 .75 9.77 .25 A,D,E 
D7 7 .625 4.88 .25 A,D,E 
D8 8 .5 2.44 .125 A,D,E 

 

               From Table 8.2, we can see that Designs D4 to D8 are equivalent to our Up-

Down designs in Table 8.1 since they have the same A, D, and E-optimality criteria 

values. Therefore, our Up-Down designs in this case are not just efficient, but globally 

optimal. 

 

8.3 m=4 

  The efficient resolution III designs for m=4, n=5,…,12 are presented in Table 

8.3. For n=5, 6, 7, we construct Up designs by adding n-4 runs to the regular fractional 

factorial design with defining relation I=ABC= BCD=AD. For n=7, one class of Up 

designs Z7.1
↑  is efficient with respect to A- and D-optimality criteria, one class of Up 

designs Z7.2
↑  is efficient with respect to E-optimality criterion. For n=12,  is the design Z12
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obtained by projecting the PB design onto its four columns. It is known to be optimal 

resolution III design.  

Table 8.3 m=4, Up-Down G-Z res III designs 

Designs n Tr 
Det 
×106  

MEV Optimality  
criteria  Runs 

Z5
↑,Z5

↓  5 1.75 977 1 A,D,E 2,3,14,1234,1  

Z6
↑  6 .975 195 .25 A,D,E 2,3,14,1234,1,4 

Z7.1
↑ ,Z7

↓  7 .833 81.4 .333 A,D 2,3,14,1234,1,34,24 

Z7.2
↑  7 .841 88.8 .25 E 2,3,14,1234,1,4,24 

Z8  8 .625 30.5 .125 A,D,E *0,12,13,14,23,24,34,1234 

Z9
↑  9 .577 18.8 .125 A,D,E 0,12,13,14,23,24,34,1234, 

any one run from remaining 
Z10
↑  10 .530 11.6 .125 A,D,E 0,12,13,14,23,24,34,1234,1,134 

Z11
↓  11 .476 6.89 .143 A,D take out any one run from 

0,1,3,4,12,23,24,123,124,134,134,234 
Z11
↑

 11 .483 7.23 .125 E 0,12,13,14,23,24,34,1234,1,134,3 

Z12  12 .417 4.02 .083 A,D,E **0,1,3,4,12,23,24,123,124,134,134,234 
* n=8, I=ABCD. ** n=12, PB4(col 1 to 4). 

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Again, we use computer to search global optimal resolution III designs Dn’s as 

shown in Table 8.4.  
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Table 8.4 m=4, optimal res III designs by computer search 

Design n Tr 
Det 
×106  

MEV Optimality  
criteria  # 

D5 5 1.11 434 .25 A,D,E 16 
D6 6 .975 195 .25 A,D,E 160 

D7.1 7 .833 81.4 .333 A,D 80 
D7.2 7 .841 88.8 .25 E 480 
D8 8 .625 30.5 .125 A,D,E 10 
D9 9 .577 18.8 .125 A,D,E 80 
D10 10 .530 11.6 .125 A,D,E 240 

D11.1 11 .476 6.89 .143 A,D 16 
D11.2 11 .483 7.23 .125 E 320 
D12 12 .438 4.52 .125 A,D,E 120 

 

               From Table 8.4, we can see that Designs D6 to D11.2 are equivalent to our Up-

Down designs in Table 8.3. Therefore, our Up-Down designs in this case are not only 

efficient but also optimal. For n=12, design Z12  outperforms D12. This finding implies 

that a design with replicates sometimes can be better than a design with all distinct runs 

depending on the model. 

               Ghosh and Tian (2006) considered a set of models Mk  with parameters as the 

general mean, main effects, and k two-factor interactions for a factorial experiment with 

m factors. They considered a class of fractional factorial designs with n runs permitting 

the unbiased estimation of the factorial effects under each model in the set of models 

considered. They presented the optimal designs from this class of designs satisfying some 

optimality criterion functions for m=4, (n,k)=(5,0), (6,1), (7,1), (8,2), (9,3), (10,5), (11,6); 

m=5, (n,k)=(6,0), (7,1), (8,1), (9,2), (10,3), (11,3), (12,5), (13,5), (14,7), (15,9), (16,10). 

In Table 8.5, we take their designs Tn  of m=4 to fit resolution III model, and present their 
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A-, D-, and E-optimality criteria values. In Table 8.6, we compare our G-Z designs with 

their G-T designs. 

Table 8.5 m=4, G-T designs under res III model 

Design n Tr 
Det 
×106  

MEV 

T5  5 1.111 434 .25 
T6  6 .975 195 .25 
T7  7 .833 81.4 .333 
T8.1  8 .708 40.7 .25 
T8.2  8 1.125 122 .427 
T9  9 .577 18.8 .125 
T10  10 .542 12.1 .167 
T11  11 .476 6.89 .143 

 

Table 8.6 Comparisons of G-Z and G-T designs for m=4 under res III model 

n Tr Det×106  MEV 
 G-Z G-T G-Z G-T G-Z G-T 
5 1.75 1.111 977 434 1 .25 
6 .975 .975 195 195 .25 .25 

7 .833 .833 81.4 81.4 .333 .333 
.841  88.8  .25  

8 .625 .708 30.5 40.7 .125 .25 
 1.125  122  .427 

9 .577 .577 18.8 18.8 .125 .125 
10 .530 .542 11.6 12.1 .125 .167 

11 .483 .476 7.23 6.89 .125 .143 
.476  6.89  .143  

 

               From Table 8.6, we can see that when n=7, 8, 10 and 11, our designs are better 

than G-T designs. When n=6 and 9, our designs are equivalent to G-T designs. When n=5, 

G-T designs are better.  
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               In the following sections, we show similar tables for m=5, 6, 7, 8, 9, 10. The 

tables are quite self-explanatory.  

8.4 m=5 

Table 8.7 m=5, Up-Down G-Z res III designs  

Design n Tr 
Det 

 
MEV Optimality  

criteria  Runs 

Z6
↑ ,Z6

↓  6 1.5 610 .5 A,D,E *3,14,25,12345+24,345, 

 7 1.058 163 .25 A,E 3,14,25,12345,24,12,5 

 7 1.063 153 .35 D 3,14,25,12345,24,12,15 

 8 .75 38.1 .125 A,D,E **I=ABC=CDE=ABDE 

 9 .696 21.8 .125 A,D,E I=ABC=CDE=ABDE, any  
one run from remaining 

 10 .643 12.5 .125 A,D,E I=ABC=CDE=ABDE,  
1,34 

Z11
↓  11 .583 6.697 .167 A,D PB5.2 takes out any one run or PB5.1 

takes out one replicate 

Z11
↑  11 .592 7.27 .125 E I=ABC=CDE=ABDE,  

1,34,1234 
 12 .5 3.34 .083 A,D,E ***PB5.1 or PB5.2 

Z13
↑  13 .472 2.23 .083 A,D,E PB5.2, any one run from remaining 

Z14
↑  14 .444 1.49 .083 A,D,E PB5.2, 1,23 

Z15
↓  15 .413 .95 .1 A,D I=ABCDE take out any one run 

Z15
↑  15 .418 1.00 .083 E PB5.2, 1,23,24 

 16 .375 .596 .0625 A,D,E I=ABCDE 
* n=4, I=ABC=CDE=AD: 3,14,25,12345. 

** n=8, I=ABC=CDE. 

*** n=12, PB5.1(col 1 to 4 and 10): 0,12,15,23,24,35,45,134,134,1235,1245,2345; 

       PB5.2(col 1 to 5): 0,4,12,15,35,123,134,234,235,245,1245,1345. 

 

×107

Z7.1
↑

Z7.2
↑

Z8

Z9
↑

Z10
↑

Z12

Z16
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               In Table 8.8, we take G-T designs Tn  of m=5 to fit resolution III model, and 

present their A-, D-, and E-optimality criteria values. The design  is the optimal design 

for resolution III model obtained by Ghosh and Tian (2006). In Table 8.9, we compare 

our G-Z designs with their G-T designs. 

Table 8.8 m=5, G-T designs under res III model 

Design n Tr 
Det 

 
MEV 

 6 1.20 391 .25 
 7 1.21 203 .5 
 7 1.16 244 .25 
 7 1.058 163 .25 

 8 .92 69.8 .25 

 9 .828 35.4 .25 

 10 .656 13.6 .125 
 11 .606 7.93 .125 
 11 .637 9.84 .125 

 12 .527 3.89 .133 

 13 .484 2.38 .113 

 14 .475 1.80 .125 

 15 .413 .95 .1 

 16 .375 .596 .0625 
 

 

 

 

 

T6

×107

T6
T7.1
T7.2
T7.3
T8
T9
T10
T11.1
T11.2
T12
T13
T14
T15
T16
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Table 8.9 Comparisons of G-Z and G-T designs for m=5 under res III model 

n Tr Det  MEV 
 G-Z G-T G-Z G-T G-Z G-T 
6 1.50 1.20 610 391 .5 .25 

7 

1.058 
( ) 

1.21 
( ) 

163 
( ) 

203 
( ) 

.25 
( ) 

.5 
( ) 

1.063 
( ) 

1.16 
( ) 

153 
( ) 

244 
( ) 

.35 
( ) 

.25 
( ) 

 
1.058 
( )  

163 
( )  

.25 
( ) 

8 .75 .92 38.1 69.8 .125 .25 
9 .696 .828 21.8 35.4 .125 .25 
10 .643 .656 12.5 13.6 .125 .125 

11 

.583 
(Z11

↓ ) 
.606 

( ) 
6.70 
(Z11

↓ ) 
7.93 

( ) 
.167 
(Z11

↓ ) 
.125 

( ) 
.592 
(Z11

↑ ) 
.637 

( ) 
7.27 
(Z11

↑ ) 
9.84 

( ) 
.125 
(Z11

↑ ) 
.125 

( ) 
12 .5 .527 3.34 3.89 .083 .133 
13 .472 .484 2.23 2.38 .083 .113 
14 .444 .475 1.49 1.80 .083 .125 

15 

.413 
(Z15

↓ ) .413 
.95 

(Z15
↓ ) .95 

.1 
(Z15

↓ ) .1 

.418 
(Z15

↑ )  
1.00 
(Z15

↑ )  
.083 
(Z15

↑ )  

16 .375 .375 .596 .596 .0625 .0625 
 

               From Table 8.9, we can see that when n=8, 9, 10, 11, 12, 13 and 14, our designs 

are better than G-T designs. When n=7, 15 and 16, our designs are equivalent to G-T 

designs. When n=6, G-T designs are better.  

 

 

×107

Z7.1
↑ T7.1 Z7.1

↑ T7.1 Z7.1
↑ T7.1

Z7.2
↑ T7.2 Z7.2

↑ T7.2 Z7.2
↑ T7.2

T7.3 T7.3 T7.3

T11.1 T11.1 T11.1

T11.2 T11.2 T11.2
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8.5 m=6, 7, 8, 9, 10 

 

Table 8.10 m=6, Up-Down G-Z designs under Res III model 

Design n Tr 
Det 
×108  

MEV Optimality  
criteria  Runs 

Z7
↑  7 1.438 381 .512 A,D,E *12,34,56,123456+35,136,236 

 8 .875 47.7 .125 A,D,E **12,34,56,123456,135,146,236
,245 

 9 .817 25.4 .125 A,D,E 
12,34,56,123456,135,146,236,2
45+any one run from the 
remaining 

 10 .759 13.6 .125 A,D,E 12,34,56,123456,135,146,236,2
45+0,2356 

Z11
↓  11 .7 6.70 .2 A,D take out any one run from PB6.1 

(or PB6.2) 

Z11
↑  11 .702 7.34 .125 E 12,34,56,123456,135,146,236,2

45+0,2356,1456 
 12 .583 2.79 .083 A,D,E ***PB6.1 or PB6.2 

Z13
↑  13 .553 1.76 .083 A,D,E PB6.1 (or PB6.2), any one run 

from the remaining 
Z14
↑  14 .522 1.12 .083 A,D,E PB 6.1, 1,12356 

Z15
↓  15 .486 .662 .111 A,D 

take out any one run from 
12,34,56,123456,135,146,236,2
45,0,136,145,235,246,3456,125
6,1234 

Z15
↑  15 .492 .709 .083 E PB 6.1, 1,12356,345 

 16 .438 .373 .063 A,D,E 
****12,34,56,123456,135,146,2
36,245,0,136,145,235,246,3456,
1256,1234 

*n=4, I=ABCD=CDEF=ACE=ABCDEF: 12,34,56,123456. 

**n=8, I=ABCD=CDEF=ACE. 

***n=12, PB6.1(col 1 to 6): 12456,2356,1346,245,356,46,15,126,123,234,1345,0; 

      PB6.2(col 1 to 5 and 7): 1245,2356,1346,2456,35,46,156,12,1236,234,1345,0. 

****n=16, I=ABCD=CDEF. 

 
 

Z8

Z9
↑

Z10
↑

Z12

Z16
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Table 8.11 m=7, Up-Down G-Z designs under Res III model 

Design n Tr 
Det 
×1010  

MEV Optimality  
criteria  Runs 

Z8  8 1 596 .125 A,D,E *127,135,146,236,245,347,567,1
234567 

 9 .9375 298 .125 A,D,E 
127,135,146,236,245,347,567,12
34567, any one run from the 
remaining 

 10 .875 149 .125 A,D,E 127,135,146,236,245,347,567,12
34567, +0,3467 

Z11
↓  11 .833 69.8 .25 D take out any one run from PB7  

Z11
↑  11 .8125 74.5 .125 A,E 127,135,146,236,245,347,567,12

34567, +0,3467,2456 
 12 .667 23.3 .083 A,D,E *PB7 

Z13
↑  13 .633 14.0 .083 A,D,E PB7, any one run from the 

remaining 
Z14
↑  14 .60 8.37 .083 A,D,E PB7, 1,13567 

Z15
↓  15 .5625 4.66 .125 A,D 

take out any one run from 
127,135,146,236,245,347,567,12
34567,7,136,145,235,246,34567,
12567,12347 

Z15
↑  15 .567 5.02 .083 E PB7, 1,13567,267 

 16 .5 2.33 .0625 A,D,E 
***127,135,146,236,245,347,56
7,1234567,7,136,145,235,246,34
567,12567,12347 

*n=8, I=ABCD=ABEF=CDG=ADF. 

**n=12, PB7 (col 1 to 7): 0,126,157,234,356,467,1237,1345,2457,12456,13467,23567. 

***n=16, I=ABCD=ABEF=CDG. 

 

 

 
 

 

Z9
↑

Z10
↑

Z12

Z16
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Table 8.12 m=8, Up-Down G-Z designs under Res III model 

Design n Tr 
Det 
×1011  

MEV Optimality  
criteria  Runs 

Z9
↓  9 2 2093 1 A,D,E take out 0,23567,24578 from 

PB8 
Z10
↓  10 1.33 349 .50 A,D,E take out 23567,24578 from PB8 

Z11
↓  11 1 77.5 .33 A,D take out any one run from PB8 

Z11
↑  11 1.11 181 .25 E *12,56,2367,1357,1468,2458,34

78,12345678 + 4,38,78 
 12 .667 19.4 .083 A,D,E **PB8 

Z13
↑  13 .714 11.1 .083 A,D,E 

0,467,1237,1268,1345,1578,234
8,3568,12456,23567,24578,134
678, any one run from the 
remaining 

Z14
↑  14 .678 6.34 .083 A,D,E 

0,467,1237,1268,1345,1578,234
8,3568,12456,23567,24578,134
678, 
1,12378 

Z15
↓  15 .643 3.33 .14 A,D 

take out any one run from 
12,56,2367,1357,1468,2458,347
8,12345678,3456,2467,1457,12
34,78,1368,2358,125678 

Z15
↑  15 .643 3.64 .083 A,E 

0,467,1237,1268,1345,1578,234
8,3568,12456,23567,24578,134
678, 
1,12378,357 

 16 .5 1.46 .063 A,D,E 
***12,56,2367,1357,1468,2458,
3478,12345678,3456,2467,1457
,1234,78,1368,2358,125678 

*n=8, I=ABCD=CDEF =EFGH =AEG =ADF: 12,56,2367,1357,1468,2458,3478,12345678. 

**n=12, PB8(col 1 to 8): 0,467,1237,1268,1345,1578,2348,3568,12456,23567,24578,134678. 

***n=16, I=ABCD=CDEF =EFGH =AEG. 

 

 

 

 

Z12

Z16
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Table 8.13 m=9, Up-Down G-Z designs under Res III model 

Design n Tr Det 
×1011  

MEV Optimality  
criteria  Runs 

Z10
↓  10 1.667 58.14 .5 A,D,E take out 1578, 23567 from PB9 

Z11
↓  11 1.25 9.69 .5 A,D,E take out any one run from PB9 

 12 .83 1.62 .083 A,D,E *PB9 

Z13
↑  13 .795 .88 .083 A,D,E PB9 plus any one run from 

remaining 
Z14
↑  14 .758 .48 .083 A,D,E PB9 plus 3, 1278 

Z15
↑

 15 .721 .26 .083 A,E Z14
↑

 plus 12569 

Z15
↓  15 .729 .24 .167 D take out any one run from  

 16 .625 .09 .063 A,D,E **see below 
 *n=12, PB9(col 1 to 9) 

**n=16, I=ABCE=BCDF=ACDG=ABDH=ABCDJ. 

 

                 For n=10,11,15, we only consider Down designs because of the computation 

difficulty on Up designs. However, for n=15, we consider all possible Up designs by 

adding a run to Z14
↑ . 

 

 

 

 

 

Z12

Z16
Z16
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Table 8.14 m=10, Up-Down G-Z designs under Res III model 

Design n Tr Det 
×1012  MEV Optimality  

criteria  Runs 

Z11
↓  11 1.833 16.15 1 A,D,E take out any one run from PB10 

 12 .917 1.35 .083 A,D,E *PB10 

Z13
↑  13 .877 .70 .083 A,D,E PB10 plus any one run from 

remaining 
Z14
↑  14 .837 .37 .083 A,D,E PB10 plus 1, 12678910 

Z15
↑

 15 .798 .19 .083 A,E Z14
↑

 plus 2567 

Z15
↓  15 .825 .18 .2 D take out any one run from  

 16 .688 .06 .063 A,D,E **see below 
 *n=12, PB10(col 1 to 10). 

 **n=16, I=ABCE=BCDF=ACDG=ABDH=ABCDJ=ABK. 

 

For n=11 and 15, we only consider Down designs because of the computation 

difficulty on Up designs. However, for n=15, we consider all possible Up designs by 

adding a run to Z14
↑ . 

  

Z12

Z16
Z16
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Chapter 9 

Variance Property 

 

9.0 Main Results 

               In this chapter, we study the variance-covariance matrix of the parameter 

estimates under resolution III+k models, specifically for k=1, for designs d1,...,d7  

introduced in Section 4.2.  The seven designs are divided into two groups with respect to 

the variance-covariance matrix. The first group consists of designs d1,...,d5,d7 . And the 

second group is just design d6 . This study is valuable to study the design performances 

for fitting the models assumed.  

 

9.1 Variance-Covariance matrix for designs d1,...,d5 ,d7  

To study the dependence of a response variable on m factors A1,A2 ,...,Am ,  each 

at two levels, we consider the following resolution III+1 models 

Mi1i2
:
E( y) = jnβ0 + A1β1 + ...+ Amβm + Ai1Ai2βi1i2

,  1≤ i1 < i2 ≤m

var( y) =σ 2I

!
"
#

$#
                    (9.1)  
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where y (n×1)  is a column vector of n observations on the response variable; jn (n×1)   is 

a unit column vector; β0  is an unknown parameter corresponding to general mean; 

A1,...,Am ,  and Ai1Ai2  are known (n×1)  column vectors from the design;  β1,...,βm 	
  are the 

unknown parameters corresponding to the main effects; βi1i2  is an unknown parameter 

corresponding to the Ai1Ai2  two-factor interaction; and σ 2  is an unknown parameter.  

   Under the designs d1,...,d7 , n=12 and m=5, the models in (9.1) can be expressed 

as 

Mi1i2
:
E( y) = X (i1i2 )β(i1i2 ) ,  1≤ i1 < i2 ≤ 5

var( y) =σ 2I

!
"
#

$#
                                              (9.2)

 

where β(i1i2 ) = (β0 ,β1,...,β5,βi1i2 ) ' and X (i1i2 ) = [ jn ,A1,...,A5,Ai1Ai2 ]. The least squares 	
  

estimator of β(i1i2 )  and its variance are β̂(i1i2 ) = (X (i1i2 ) 'X (i1i2 ) )
−1X (i1i2 ) ' y,  var(β̂(i1i2 ) ) =σ

2 (X (i1i2 ) 'X (i1i2 ) )
−1.

	
  

               In the following, we identify the variance-covariance matrix var(β̂(i1i2 ) )  under 

resolution III+1 model for designs d1,...,d5,d7 . This matrix can be partitioned into three 

components. 
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1.                            1
σ 2
var

β̂0
β̂i1
β̂i2

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=
a(1×1) b j '(1×2)
b j

(2×1)
cI + dJ (2×2)

!

"

#
##

$

%

&
&&
,  

2.                          1
σ 2
cov

β̂0
β̂i1
β̂i2

!

"

#
#
#
#
#

$

%

&
&
&
&
&

,

β̂u1
β̂u2
β̂u3
β̂i1i2

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

=
e j '(1×3) f(1×1)
kJ (2×3) g j

(2×1)

!

"

#
##

$

%

&
&&
,  

3.                         1
σ 2
var

β̂u1
β̂u2
β̂u3
β̂i1i2

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

=
hI + pJ (3×3) q j

(3×1)

q j '(1×3) s(1×1)

!

"

#
##

$

%

&
&&
,  

where 1≤ u1 < u2 < u3 ≤ 5,  u1,u2 ,u3 ≠ i1,i2 ,  j  is a unity vector, I  is an identity matrix, J  is

a square matrix with all elements unity. a,b,c,d ,e, f ,k,g,h, p,q,s are values indenpendent

of i1,i2. That implies no matter which two-factor interaction is included in the model, the

variace-covariance matrix of the estimates is invariant under a permutation of the factor

symbols or rename of the factors. This property is true for balanced design of full strength

(Srivastava and Chopra,1971). For example, the variace-covariance matrix when taking

product of the first two factor columns as the two-factor interaction A1A2  (i1 =1,i2 = 2) under

a resolution III+1 model for design d1  is
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1
σ 2

var

β̂0

β̂1

β̂2

β̂3

β̂4

β̂5

β̂12

!

"

#
#
#
#
#
#
#
#
#
#
##

$

%

&
&
&
&
&
&
&
&
&
&
&&

=

.097 .016 .016 .017 .017 .017 −.003
.0885 .005 0 0 0 .016

.0885 0 0 0 .016
.0889 .006 .006 −.017

.0889 .006 −.017
.0889 −.017

.097

µ          A1        A2          A3          A4          A5       A1A2!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

,
 

where elements in the lower diagonal matrix are symmetrical to those in the upper 

diagonal matrix. It is interesting to observe that we can group the 7 factorial effects 

estimates into three groups: (1) β̂1, β̂2 ; (2) β̂3, β̂4 , β̂5 ; (3) β̂0 , β̂12 . The estimates within the 

same group have same variance. Moreover, the estimates in group (1) and the estimates 

in group (2) have covariance 0. Within group (2), any two estimates have covariance .006. 

The estimates in group (1) and the estimates in group (3) have covariance .016. The 

estimates in group (2) and the estimate β̂0  in group (3) have covariance .017. The 

estimates in group (2) and the estimate β̂12  in group (3) have covariance -.017. 

 

9.2 Variance-Covariance matrix for design d6  

                In this section, we study the variance-covariance matrix var(β̂(i1i2 ) )  of the 

parameter estimates under resolution III+1 model for design d6 . The reason for us to 

consider it separately is that it is not a balanced design of full strength, and therefore its 

variance-covariance matrix does not necessarily have the invariant property described in 
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Section 9.1. In fact, in this section, we are going to show that d6  does not have the 

property. However, after changing the signs of one or two factors on top of renaming 

factors, it will have the property. 

The variance-covariance matrix var(β̂(12) )  for i1 =1,  i2 = 2  is 

1
σ 2

var

β̂0

β̂1

β̂2

β̂3

β̂4

β̂5

β̂12

!

"

#
#
#
#
#
#
#
#
#
#
##

$

%

&
&
&
&
&
&
&
&
&
&
&&

=

.083 0 0 0 0 0 0
.083 0 0 0 0 0

.083 0 0 0 0
.097 .014 .014 .042

.097 .014 .042
.097 .042

.125

!

"

#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&

   µ         A1       A2        A3        A4         A5       A1A2

.                       (9.3)

 

The variance-covariance matrix var(β̂(13) )  for i1 =1,  i2 = 3 is 

1
σ 2

var

β̂0

β̂1

β̂2

β̂3

β̂4

β̂5

β̂13

!

"

#
#
#
#
#
#
#
#
#
#
##

$

%

&
&
&
&
&
&
&
&
&
&
&&

=

.083 0 0 0 0 0 0
.083 0 0 0 0 0

.097 0 −.014 .014 .042
.083 0 0 0

.097 −.014 −.042
.097 .042

.125

!

"

#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&

µ         A1       A2        A3        A4         A5       A1A3

.                 (9.4)
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By renaming the factors A2  as A3 , matrix (9.4) becomes 

1
σ 2

var

β̂0

β̂1

β̂2

β̂3

β̂4

β̂5

β̂13

!

"

#
#
#
#
#
#
#
#
#
#
##

$

%

&
&
&
&
&
&
&
&
&
&
&&

=

.083 0 0 0 0 0 0
.083 0 0 0 0 0

.083 0 0 0 0
.097 −.014 .014 .042

.097 −.014 −.042
.097 .042

.125

!

"

#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&

µ         A1       A2        A3        A4         A5       A1A2

.                (9.5)

	
  

By changing the sign of entries for factor A4 , matrix (9.5) becomes exactly (9.3) as 

follows: 

1
σ 2
var

β̂0
β̂1
β̂2
β̂3
β̂4
β̂5
β̂13

!

"

#
#
#
#
#
#
#
#
#
#
##

$

%

&
&
&
&
&
&
&
&
&
&
&&

=

.083 0 0 0 0 0 0
.083 0 0 0 0 0

.083 0 0 0 0
.097 .014 .014 .042

.097 .014 .042
.097 .042

.125

!

"

#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&

µ         A1       A2        A3        -A4         A5        A1A2

.                    (9.3)
	
  

               Then, under this mapping 
A1 A2 A3 A4 A5
A1 A3 A2 −A4 A5

"

#

$
$

%

&

'
'

, that is, renaming the 

factors A2  as A3 , changing the sign of entries for factor A4 ; the variance-covariance 

matrix (9.4) becomes (9.3). The above mapping is from var(β̂(13) )  to var(β̂(12) ) , where 

the two-factor interactions A1A3  and A1A2  in two models have one factor in common. 

Let’s look one example that two-factor interactions A3A4  and A1A2  in two models have 
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no factor in common and see how to map var(β̂(34) )  to var(β̂(12) ) . The variance-

covariance matrix var(β̂(34) )  for i1 = 3,  i2 = 4  is 

1
σ 2
var

β̂0
β̂1
β̂2
β̂3
β̂4
β̂5
β̂34

!

"

#
#
#
#
#
#
#
#
#
#
##

$

%

&
&
&
&
&
&
&
&
&
&
&&

=

.083 0 0 0 0 0 0
.097 −.014 0 0 −.014 −.042

.097 0 0 .014 .042
.083 0 0 0

.083 0 0
.097 .042

.125

!

"

#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&

  µ       A1       A2        A3        A4         A5        A3A4

.                       (9.6)
 

This mapping can take two steps: (1) var(β̂(34) )  to var(β̂(13) ) ; (2) var(β̂(13) )  to 

var(β̂(12) ) . Under the mapping 
A1 A2 A3 A4 A5
A4 A2 A3 A1 A5

!

"

#
#

$

%

&
&

, matrix (9.6) becomes exactly 

(9.4) as follows: 

1
σ 2
var

β̂0
β̂1
β̂2
β̂3
β̂4
β̂5
β̂34

!

"

#
#
#
#
#
#
#
#
#
#
##

$

%

&
&
&
&
&
&
&
&
&
&
&&

=

.083 0 0 0 0 0 0
.083 0 0 0 0 0

.097 0 −.014 .014 .042
.083 0 0 0

.097 −.014 −.042
.097 .042

.125

!

"

#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&

  µ       A1       A2        A3        A4         A5        A3A1

.                       (9.4)
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Therefore, step (1) can be achieved. Under the mapping 
A1 A2 A3 A4 A5
A1 A3 A2 −A4 A5

"

#

$
$

%

&

'
'
 

we 

just go over, step (2) can be achieved. Hence, if we combine steps (1) and (2), we can 

map var(β̂(34) )  to var(β̂(12) )  under the mapping 
A1 A2 A3 A4 A5
A4 A3 A2 −A1 A5

"

#

$
$

%

&

'
'

. 

               In fact, the variance-covariance matrix var(β̂(i1i2 ) )  for all the 5
2

!

"
##

$

%
&&=10  choices 

of i1  and i2  are the same as var(β̂(12) )  after renaming the factors and/or changing the sign 

of one or two factors as shown in Table 9.1.  

Table 9.1 Variance-Covariance matrices mapping 

A1A2  A1  A2  A3  A4  A5   A1A2  A1  A2  A3  A4  A5  

A1A3  A1  A2  A3  A4  A5   A1A3  A1  A3  A2  -­‐ A4  A5  
A1A4  A1  A2  A3  A4  A5   A1A4  A1  A4  -­‐ A3  A2  -­‐ A5  
A1A5  A1  A2  A3  A4  A5   A1A5  A1  A5  A3  -­‐ A4  A2  

A2A3  A1  A2  A3  A4  A5  mapping
→

 A2A3  A3  A2  A1  A4  A5  

A2A4  A1  A2  A3  A4  A5   A2A4  A4  A2  A3  A1  -­‐ A5  
A2A5  A1  A2  A3  A4  A5   A2A5  A5  A2  A3  -­‐ A4  A1  
A3A4  A1  A2  A3  A4  A5   A3A4  A4  A3  A2  -­‐ A1  A5  
A3A5  A1  A2  A3  A4  A5   A3A5  A5  A3  A2  A4  A1  
A4A5  A1  A2  A3  A4  A5   A4A5  -­‐ A4  -­‐ A5  A3  A1  A2  

 

               Now, let’s revisit variance-covariance matrix (9.3). It is interesting to observe 

that we can group the 7 factorial effects estimates into three groups: (1) β̂0 , β̂1, β̂2 ; (2) 
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β̂3, β̂4 , β̂5 ; (3) β̂12 . The estimates within the same group have same variance. Moreover, 

within group (1), any two estimates have covariance 0. The estimates in group (1) and the 

estimates in group (2) have covariance 0. Within group (2), any two estimates have 

covariance .014. The estimates in group (2) and the estimate in group (3) have 

covariance .042. 
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Chapter 10 

Conclusions 

 

               We discuss orthogonal projection and non-orthogonal projection by presenting 

some existing results and our own findings on projection from balanced arrays. We study 

the projection of factorial design from the perspective of statistical modeling and 

characterize the projection property by using linear models.  

               We investigate the projection properties of PB design when projecting onto its 4 

factor columns and 5 factor columns. We examine the estimability of the projected 

designs when fitting various models, and give some helpful results that are not available 

in current literature. Moreover, we compare the projected PB design of 5 columns with 

BAs and obtain many interesting results. 

               We exhaustively search for optimal resolution V designs of  series for m=4 

and n=11, 12, 13, 14, 15, and 16. Unlike m=4 shown in Chapter 5, the exhaustive search 

for optimal resolution V designs of  series for m=5 becomes computationally 

extensive. We propose a method to construct Up-Resolution designs that are not limited 

to balanced designs (Srivastava and Chopra, 1971), and show that the designs perform 

slightly better than the BOFFDs. For a given n, all our designs are isomorphic having 

same optimality properties. For general m and n, the conditions are derived for obtaining 

such isomorphic designs with respect to Trace and Determinant.  

2m

2m
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          We propose a general Up-Down method to search for efficient 2m  fractional 

factorial designs in fitting a class of models when the number of factors is m, and the 

number of runs is n. We present the efficient resolution III designs obtained by the Up-

Down method for  and a range of practical values of n.  

               We study the variance-covariance matrix of the parameter estimates under 

resolution III+k models, specifically for k=1, for designs d1,...,d7  introduced in Section 

4.2.  

  

3≤m ≤10
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Appendix 

Proof 1.1: First, we argue matrix C given property , if dimension allows, for every 

submatrix of matrix C, there exist one submatrix  which satisfies the 

following three conditions: (Note: We can prove the preceding argument by contradiction: 

if this kind of submatrix doesn’t exist, then the property  cannot be obtained.) 

a, all the elements are 1 and -1. 

b, three distinct columns and none of the three columns is complement of another column. 

c, three distinct rows and none of the three rows is complement of another row. 

            Without loss of generality, we can suppose a matrix D, being changed the sign of 

a row/column and being rearranged the rows/columns, then will have the following form 

that the first row is all 1’s and the first column is (1,-1,1)’ (Note: this transformation will 

not change the property of matrix D): 

 

            Now, in order to make D still have the aforementioned three conditions, the 

matrix D can only have the following three stuctures: 

or  or  

2P

Cs (n×3) (3 3)D ×

(3 3)D × 2P

Pt

1 1 1
1 1 3
1 2 4

D x x
x x

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

1

1 1 1
1 1 1
1 1 1

D
⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

2

1 1 1
1 1 1
1 1 1

D
⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

3

1 1 1
1 1 1
1 1 1

D
⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟−⎝ ⎠
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It’s easy to check that the above three D matrices all have the property . Hence, we can 

claim that property  implies property .  

 

Proof Proposition 5.2: Let’s denote a design that is randomly chosen from class 1T  as

T11×4 , the corresponding design matrix as X11×11  with columns that are corresponding to 

general mean ( )µ , all main effects (A,B,C,D) and all two-way interactions 

(AB,AC,AD,BC,BD,CD). Denote each of the resulted 16 designs as T11×4
( i ) , the 

corresponding design matrix as X11×11
( i ) . So that T11×4

( i )  and X11×11
( i ) can be represented as the 

following: 

T ( i ) =T *

δ1 0 0 0

0 δ2 0 0

0 0 δ3 0

0 0 0 δ4

!

"

#
#
#
#
##

$

%

&
&
&
&
&&

,	
  

X ( i ) = X *D( i ) = X *

δ0 0 0 0 0 0 0 0 0 0 0

0 δ1 0 0 0 0 0 0 0 0 0

0 0 δ2 0 0 0 0 0 0 0 0

0 0 0 δ3 0 0 0 0 0 0 0

0 0 0 0 δ4 0 0 0 0 0 0

0 0 0 0 0 δ1δ2 0 0 0 0 0

0 0 0 0 0 0 δ1δ3 0 0 0 0

0 0 0 0 0 0 0 δ1δ4 0 0 0

0 0 0 0 0 0 0 0 δ2δ3 0 0

0 0 0 0 0 0 0 0 0 δ2δ4 0

0 0 0 0 0 0 0 0 0 0 δ3δ4

!

"

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&&
11×11

,

 

3P

2P 3P
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where δ0 =1,  δ1,δ2 ,δ3,δ4 =1 or −1.  It’s obvious that the diagonal elements of  D( i )  is 

either 1 or -1, so D( i ) = D( i ) ' =1 or -1.  

Therefore, 

  X ( i ) 'X ( i )

= (XD( i ) )' (XD( i ) )

= D( i ) 'X 'XD( i )

= D( i ) ' X 'X D( i )

= D( i ) 2
X 'X

= X 'X ,

	
  

so X ( i ) 'X ( i ) 	
  and X 'X 	
  have the same determinant which is greater than 0. Then X ( i ) 'X ( i )

and X 'X 	
  are both invertible, (X ( i ) 'X ( i ) )−1 	
  and (X 'X )−1 	
  have the same determinant. 

Also, 

  X ( i ) 'X ( i ) −λI

= D( i ) 'X 'XD( i ) −λD( i ) 'D( i )

= D( i ) ' X 'X −λI( )D( i )

= D( i ) ' X 'X −λI D( i )

= D( i ) 2
X 'X −λI

= X 'X −λI ,
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so X ( i ) 'X ( i ) 	
  and X 'X have the same Eigenvalues 1 2 3 11, , ,..., .λ λ λ λ  Also, as Then 

(X ( i ) 'X ( i ) )−1 	
  and (X 'X )−1 	
  have same Eigenvalues 
1 2 3 11

1 1 1 1, , ,..., .
λ λ λ λ

Hence, they have the 

same max Eigenvalue. Also, 

tr((X ( i ) 'X ( i ) )−1) = 1
λii=1

11

∑ ,

tr((X 'X )−1) = 1
λii=1

11

∑ ,

(X ( i ) 'X ( i ) )−1 = 1
λii=1

11

∏ ,

(X 'X )−1 = 1
λii=1

11

∏ .

 

It’s easy to see that (X ( i ) 'X ( i ) )−1 	
  and (X 'X )−1 	
  have the same A-, D- and E-optimality 

criteria values. Proof ends. 

 

Proof Proposition 5.3: Let’s denote a design that is randomly chosen from class 1T  as

T12×4 , and label column 1, 2, 3 and 4 as factor A, B, C and D, respectively. The 

corresponding design matrix as X12×11  with columns that are corresponding to general 

mean ( )µ , main effects (A,B,C,D) and two-way interactions (AB,AC,AD,BC,BD,CD). 

Now, we relabel the columns of T12×4  with different permutation of factors, and denote 

the resulting design as T12×4
( i )

 which has columns corresponding to factor A, B, C and D, 
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the corresponding design matrix as X12×11
( i )  which has columns corresponding to general 

mean ( )µ , main effects (A,B,C,D) and two-way interactions (AB,AC,AD,BC,BD,CD). 

It’s easy to find T12×4
( i )  and X12×11

( i )
	
  can be represented as the following: 

T ( i ) =T *PT1
( i ) , 	
  

X ( i ) = X *PX
( i ) , 	
  

where 

PX
( i ) =

1 0 0
0 PT1

( i ) 0

0 0 PT2
( i )

!

"

#
#
#
#
#

$

%

&
&
&
&
&
11×11

, 	
  

where PT1
( i )

	
  
is a 4 4× permutation matrix, PT2

( i )

	
  
is a 6 6× permutation matrix and PX

( i )
	
  is a 

11 11× permutation matrix.  

               A permutation matrix is a square binary matrix that has exactly one entry 1 in 

each row and each column and 0s elsewhere. For instance, 

 PT1
( i ) =

P11 P12 P13 P14
P21 P22 P23 P24
P31 P32 P33 P34
P41 P42 P43 P44

!

"

#
#
#
#
##

$

%

&
&
&
&
&&

, 	
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where 

Pij =1 or 0,

Pij =1
i=1

4

∑ ,

Pij =1
j=1

4

∑ .

 

Permutation matrices are orthogonal matrices, i.e., PT1
( i )PT1

( i )' = I ,PT2
( i )PT2

( i )' = I ,PX
( i )PX

( i )' = I .  It’s 

obvious that PX
( i ) = PX

( i ) ' =1 or −1.  

Therefore, 

  X ( i ) 'X ( i )

= (XPX
( i ) )' (XPX

( i ) )

= PX
( i ) 'X 'XPX

( i )

= PX
( i ) ' X 'X PX

( i )

= X 'X ,

	
  

so X ( i ) 'X ( i ) 	
  and X 'X 	
  have the same determinant which is greater than 0. Then X ( i ) 'X ( i )

and X 'X 	
  are both invertible, (X ( i ) 'X ( i ) )−1 	
  and (X 'X )−1 	
  have the same determinant. 
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Also, 

  X ( i ) 'X ( i ) −λI

= PX
( i ) 'X 'XPX

( i ) −λPX
( i ) 'PX

( i )

= PX
( i ) ' X 'X −λI( )PX( i )

= PX
( i ) ' X 'X −λI PX

( i )

= X 'X −λI ,

	
  

so X ( i ) 'X ( i ) 	
  and X 'X 	
  have the same Eigenvalues 1 2 3 11, , ,..., .λ λ λ λ  Then (X ( i ) 'X ( i ) )−1 	
  and 

(X 'X )−1 	
  have same Eigenvalues 
1 2 3 11

1 1 1 1, , ,..., .
λ λ λ λ  

Hence, they have the same max 

Eigenvalue.  

Also, 

tr((X ( i ) 'X ( i ) )−1) = 1
λii=1

11

∑ ,

tr((X 'X )−1) = 1
λii=1

11

∑ ,

(X ( i ) 'X ( i ) )−1 = 1
λii=1

11

∏ ,

(X 'X )−1 = 1
λii=1

11

∏ .

 

It’s easy to see that (X ( i ) 'X ( i ) )−1 	
  and (X 'X )−1 	
  have the same A-, D-, and E-optimality 

criteria values. Proof ends. 
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Proof Corollary 7.2: 

Since 

X1 'X1 = n1I p1
,  (X1 'X1)

−1 =
1
n1
I p1 ,

	
  

we have 

(X2ij 'X2ij )
−1 =

1
n1
I p1 −

1
n1
2
X1ij
* '( 1
n1
X1ij
* X1ij

* '+ Ii )
−1X1ij

* .
 

Therefore, 

Tr(X2ij 'X2ij )
−1 =

p1
n1
−
1
n1
2
Tr( 1
n1
X1ij
* X1ij

* '+ Ii )
−1X1ij

* X1ij
* ',  

And so, 

n1Tr(X2ij 'X2ij )
−1 = p1 −Tr(

1
n1
X1ij
* X1ij

* '+ Ii )
−1( 1
n1
X1ij
* X1ij

* ')

                         = p1 −Tr(Ii − (
1
n1
X1ij
* X1ij

* '+ Ii )
−1)

                         = p1 − i +Tr(
1
n1
X1ij
* X1ij

* '+ Ii )
−1.

 

Therefore,  

Tr(X2ij 'X2ij )
−1 =

p1 − i
n1

+
1
n1
Tr( 1
n1
X1ij
* X1ij

* '+ Ii )
−1.

 

The proof is completed. 
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