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ABSTRACT
Seven transmembrane receptors were originally named and
characterized based on their ability to couple to heterotrimeric
G proteins. The assortment of coupling partners for G protein–
coupled receptors has subsequently expanded to include
other effectors (most notably the barrestins). This diversity of
partners available to the receptor has prompted the pursuit of
ligands that selectively activate only a subset of the available
partners. A biased or functionally selective ligand may be able
to distinguish between different active states of the receptor,
and this would result in the preferential activation of one
signaling cascade more than another. Although application of
the “standard” operational model for analyzing ligand bias is
useful and suitable in most cases, there are limitations that

arise when the biased agonist fails to induce a significant
response in one of the assays being compared. In this article,
we describe a quantitative method for measuring ligand bias
that is particularly useful for such cases of extreme bias. Using
simulations and experimental evidence from several k opioid
receptor agonists, we illustrate a “competitive” model for quan-
titating the degree and direction of bias. By comparing the
results obtained from the competitive model with the standard
model, we demonstrate that the competitive model expands
the potential for evaluating the bias of very partial agonists. We
conclude the competitive model provides a useful mechanism
for analyzing the bias of partial agonists that exhibit extreme
bias.

Introduction
It is now broadly recognized that G protein–coupled receptors

are able to stimulate the activity of multiple signaling cascades.
These signaling cascades extend beyond heterotrimeric
G proteins to barrestins and other scaffolding proteins (including
numerous kinases). Furthermore, it has been demonstrated, both
in vitro and in vivo, that some ligands are able activate one
pathway while lacking agonism in responses mediated by other
pathways; this effect has been termed agonist trafficking, agonist-
directed trafficking, functional selectivity, and biased agonism
(Kenakin, 1995, 2003; Berg et al., 1998; Mottola et al., 2002;
Wisler et al., 2007; Urban et al., 2007). Because the propensity for
a receptor to respond to an agonist can be a function of not only
the agonist-receptor interaction but also the context of the
system, the analysis of such activation profiles requires simulta-
neous consideration of multiple parameters, prompting an
expansion of the 2-state model of receptor activation.
The 2-state model of receptor activation is a useful

mechanistic model for understanding receptor-mediated
signaling. According to this model, the receptor isomerizes

between two states; one state is the inactive state, and the
other is the active state of the receptor (del Castillo and Katz,
1957; Monod et al., 1965; Leff, 1995). The positive efficacy of
an agonist is defined by the degree of preference it exhibits for
the active state over the inactive state. One outcome of this
relationship is that agonists may present different degrees of
agonist activity in different systems but the model predicts
that the rank order of agonist activity will remain constant
(Leff, 1995). The demonstration that this rank order of agonist
activity is not constant resulted in the adaptation of the 2-
state model to the 3-state and the n-state models of receptor
activation (Kew et al., 1996, Leff et al., 1997; Berg et al., 1998).
These models incorporate multiple active receptor states to
provide a mechanism for explaining differences in the rank
order of agonist potency and permit the state model to
accommodate agonist bias.
Not only did the observation of changes in the rank order of

agonist activity lead to the evolution of the multistate models,
but it also inspired the search for and development of biased
agonists. Biased agonists are able to distinguish between
different active states and, in the extreme case, produce
selective agonist activity in only one pathway. Several biased
agonists are currently in various stages of preclinical and
clinical development, including those targeting the angioten-
sin IIA receptor as well as the m and d opioid receptors
(DeWire et al., 2013; Soergel et al., 2013; Valant et al., 2014).
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Recent efforts in our laboratory have explored biased agonism at
thek opioid receptor (KOR) (Schmid et al., 2013, Zhou et al., 2013).
For example, 69-guanidinonaltrindole (69-GNTI) was initially
characterized as a potent partial KOR agonist (Sharma et al.,
2001). It was subsequently shown to stimulate G protein coupling
yet induced very little detectable barrestin2 recruitment when
compared with U69,593 [(1)-(5a,7a,8b)-N-methyl-N-[7-(1-
pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide], a KOR
agonist that displays high efficacy in both assays (Rives et al.,
2012; Schmid et al., 2013). Using the method of bias analysis
described by Ehlert (2008) and Kenakin et al. (2012), referred
to herein as the “standard” model, 69-GNTI was determined to
be a biased agonist for G protein signaling over barrestin2
recruitment (Schmid et al., 2013).
There is considerable interest in developing pharmacologi-

cally diverse ligands at the KOR as the KOR modulates
dopamine levels and thereby affectsmood and perception. KOR
antagonists hold promise for treating drug addiction (Carroll
et al., 2004; Walker and Koob, 2008) whereas KOR agonists
produce antinociception and suppress itch. However, the
appeal of KOR agonists is limited by the dysphoria they
produce (Pfeiffer et al., 1986; Togashi et al., 2002; Land et al.,
2008; Van’t Veer and Carlezon, 2013). Interestingly, recent
studies suggest that the dysphoric component of KOR agonism
may be mediated by arrestins inspiring interest in developing
G protein signaling–biased KOR agonists (Bruchas et al., 2006;
Redila and Chavkin 2008). This opportunity for the develop-
ment of biased KOR agonists is accompanied by the challenge
of elucidating the properties of bias with confidence. This is
especially true in the cases where the agonists display
extremely partial agonist activity.
The first pharmacologic characterization of nalmefene

suggested it was a competitive KOR antagonist with the
ability to block the antinociceptive response in mice (Heilman
et al., 1975). However, nalmefene was shown in human
studies to have agonist properties for stimulating prolactin
release and therefore its pharmacologic properties are likely
context dependent (Bart et al., 2005). This apparent complex
pharmacology suggests that nalmefenemay be a candidate for
further exploration of ligand bias. Importantly, nalmefene is
clinically used in the treatment of alcoholism; therefore,
a better understanding of this ligand’s pharmacologic prop-
erties may provide important guidance for future therapeutic
development (Mason et al., 1994; Boening et al., 2001; Walker
and Koob, 2008; Zindel and Kranzler, 2014).
In the studies presented herein, we describe a “competitive”

method for analyzing ligand bias that is particularly useful for
agonists that display minimal agonist activity. We apply both
the competitive and standard models of bias analysis to
mathematic simulations and experimental data from select
KOR agonists (the standard model referred to earlier and
defined in Materials and Methods is from Kenakin et al.,
2012). Specifically, we compare nalmefene and two structur-
ally related morphinan KOR partial agonists that exhibit
different degrees of agonism compared with nalmefene, 69-
GNTI, and nalbuphine with the full agonist U69,593, which
serves as the reference agonist. We find that the standard
model can be used to estimate bias with confidence for
agonists that stimulate a response significantly greater than
baseline. However, as the agonist activity of the ligand
approaches baseline in the assay, the competitive method
allows for amore accurate estimate of bias. From these findings,

we conclude that, although the standard method is well suited
to analyze the bias of agonists with considerable agonist
activity, the competitive model of bias analysis is a useful
mechanism for assessing the bias of very partial agonists.

Materials and Methods
Reagents. All cell culture reagents were purchased from Life

Technologies (Carlsbad, CA). 69-GNTI ditrifluoroacetate was purchased
from Tocris Bioscience (Ellisville, MO). All other reagents were
purchased from Sigma-Aldrich (St. Louis,MO). The reference compound
U69,593 was purchased from Sigma-Aldrich and was prepared as a 10
mMstock in ethanol. All other ligandswere prepared as 10mMstocks in
dimethylsulfoxide (DMSO) (Fisher Scientific, Fair Lawn, NJ). Each
ligand was diluted in serial dilutions in DMSO. [35S]GTPgS [guanosine
59-O-(3-[35S]thio)triphosphate] was purchased from PerkinElmer
(Waltham, MA). DMSO was added to assay media to maintain the
DMSO concentration at 2%. The DiscoveRx PathHunter assay
detection reagent was purchased from DiscoveRx (Fremont, CA).

Cell Lines and Cell Culture. Chinese hamster ovary (CHO) cells
expressing recombinant human k opioid receptor (CHO-hKOR cell line)
were generated as described previously (Schmid et al., 2013). The CHO
cell lines were maintained in Dulbecco’s modified Eagle’s medium/
Ham’s F-12 medium from Invitrogen (Carlsbad, CA) supplemented
with 10% fetal bovine serum, 1%penicillin/streptomycin, and 500mg/ml
geneticin. All cells were grown at 37°C (5% CO2 and 95% relative
humidity).

[35S]GTPgS Binding. Membranes were prepared according to
a modified procedure of Schmid et al., (2013). Briefly, CHO-hKOR cells
were serum starved for 1 hour in Dulbecco’s modified Eagle’s medium/
Ham’s F-12 medium, collected with 5 mM EDTA, washed with
phosphate-buffered saline, and stored at 280°C. For each assay, cell
pellets were homogenized via Teflon-on-glass homogenizer in buffer
(10 mM Tris-HCl, pH 7.4, 100 mM NaCl, 1 mM EDTA), centrifuged
twice at 20,000g for 30minutes at 4°C, and resuspended in assay buffer
(50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 5 mM MgCl2, 1 mM EDTA,
and 3 mM GDP). For each reaction, 15 mg of membrane protein were
incubated in assay buffer containing ∼0.1 nM of [35S]GTPgS and
increasing concentrations of compounds in a total volume of 200 ml for
1 hour at room temperature. The reactions were terminated by rapid
filtration over GF/B filters using a 96-well plate harvester (Brandel Inc.,
Gaithersburg, MD). Filters were dried overnight, and radioactivity was
determined with a TopCount NXT HTS microplate scintillation and
luminescence counter (PerkinElmer).

bArrestin2 Recruitment. A commercial enzyme fragment
(b-galactosidase) complementation assay (DiscoveRx PathHunter;
DiscoveRx) was used to assess barrestin2 recruitment as previously
described elsewhere (Zhou et al., 2013). U2OS-hKOR-barrestin2-DX
cells were incubated for 60 minutes with the ligands indicated. Each
condition was measured in duplicate in each assay at least three
times. After the 60-minute incubation, the manufacturer’s substrate
and protocol were used to assess barrestin recruitment. Assay plates
were read using a Molecular Devices SpectraMax M5e multimode
microplate reader (Sunnyvale, CA).

Simulations. All simulations were generated using the “simulate
XY data” function built into GraphPad Prism version 6.0f (GraphPad
Software, La Jolla, CA). Two different forms of the operational model
were used to produce response simulations. Stimulatory dose–response
curves were generated using the operational model (Black and Leff,
1983):

Response5Bottom1
ðTop2BottomÞ

11
�

1110ðX 1LogKx Þ
tX ×10ðX1LogKx Þ

�n (1)

In eq. 1, Top represents the maximum response of the system, and
Bottom represents the basal level of response present in the system.
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X represents the log of the agonist concentration, n the transducer slope
factor of the system, and LogKX the log of the affinity constant of the
agonist. In the equation, t represents a parameter proportional to the
intrinsic efficacy of each agonist. For all simulations, the values for Top

and Bottom were set equal to 1 and 0, and the value for n, the transducer
slope factor, was set equal to 1. The values for each of the other parameters
in the equation were specifically defined for each agonist. The parameter
values used for these simulations are provided in Supplemental Table 1.

Fig. 1. The standard bias analysis of simulated dose–
response curves for a reference agonist and two test
agonists in two different systems are presented in the
panels Response 1 and Response 2. Each data point in
the curve is the mean 6 S.E.M. of three simulated data
sets; curves are produced using the standard method.
The values derived from each individual simulation were
pooled and averaged to produce the LogRA and pKi
values in Supplemental Tables 2 and 4. The graphical
representations of LogRA and pKi are produced from the
supplemental tables and demonstrate the wide 95%
confidence intervals that are produced with the standard
method.

Fig. 2. The competitive model analysis of simulated
dose–response curves representing the response pro-
duced by a reference agonist and two test agonists in two
different systems. In addition, simulations where each
partial agonist, relative to its affinity, produces a re-
versal of the response stimulated by the full agonist are
presented for each response, titled Response 1 and
Response 2. Shown are the mean 6 S.E.M. of three
simulated data sets; values derived from individual
simulations were pooled and averaged to produce the
LogRA and pKi values in Supplemental Tables 3 and 5.
The graphical representations of LogRA and pKi are
produced from the supplemental tables and demon-
strate that the competitive method produces narrow
95% confidence intervals.
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A second form of the operational model was used to simulate the
incomplete inhibition of response produced by a partial agonist
(Kenakin, 2009; Ehlert, 2014):

Response5Bottom1
ðTop2BottomÞ

11
�

1110ðX 1LogKX Þ 110ðB1LogKBÞ
tX ×10ðX1LogKX Þ 1 tB ×10ðB1LogKBÞ

�n (2)

Several parameters in this equation share identical names and
definitions with eq. 1 (Top, Bottom, and n). The noticeable difference
between the two equations is that eq. 2 incorporates parameter
definitions for two different agonists. The log concentration, affinity,
and intrinsic activity of one agonist are presented by one set of
parameters (X, LogKX, and tX). The same attributes are also
presented for a second agonist (B, LogKB, and tB). The incorporation
of two different agonist-specific parameters and the relationship of
these parameters in the equation permit this model to accommodate
competition between the two agonists for a common binding site. In
the simulations produced with eq. 2, a specific log concentration value
for the reference agonist (28.0) was imposed as the X parameter in
the equation. The inhibition curves were simulated using increasing
concentrations of each test agonist. The parameter definitions and
values used for these inhibition curves were identical to the dose–
response curves described earlier and stated in Supplemental Table 1.

Both equations were used to simulate concentration-response and
concentration-inhibition curves for two different responses. The
distinction of one response versus another was made by selecting
different t values for the agonists in each response. In one response, the
agonists were more efficacious; in the second response, the agonists
were less efficacious. In both responses, the simulated reference agonist
was much more efficacious than each of the test agonists. The data sets
were simulated three times, with each simulated data set intended to
describe a single experiment. For both the stimulatory and inhibitory
simulations, 10 X values were produced in triplicate for each simulated
data set. Random error was superimposed in each simulation by setting
the standard deviation to 0.07.

Monte Carlo simulations were performed using the simulation
feature in Prism 6.0f. Equations 3, 4, and 7 (expressed in the Data
Analysis section) were used to construct simulated concentration-
response curves based on the parameter values defined in Supplemen-
tal Table 1. The simulated data were generated with an equal number
of data points for each data set, and a random error with standard
deviation of 0.07 was imposed. The resulting data were fit with either
the standard or competitive model. This process was repeated for 1000
iterations, and the resulting LogRA value of each test agonist was
recorded. The frequency distribution of the LogRA values was then
plotted, and the standard deviation of the distribution was calculated.

Data Analysis. All curves were fitted by nonlinear regression using
GraphPad Prism version 6.0f. Two different methods of analysis are
presented herein, and both methods use a derivation of the operational
model (eq. 1). The first method of analysis, defined here as the standard
method, employs eqs. 3 and 4 (Griffin et al., 2007; Ehlert, 2008):

Response5Bottom1
ðTop2BottomÞ

11

 
1110ðX1LogKReferenceÞ

10ðX 1LogRÞ

!n (3)

Response5Bottom1
ðTop2BottomÞ

11
�

1110ðX1LogKTestÞ
10ðX1LogR1LogRAÞ

�n (4)

These equations are used to fit the response produced by the
reference agonist (eq. 3) and the test agonist(s) (eq. 4). Each of these
equations is derived from the operational model, and the definitions
for the parameters Top and Bottom are identical. It should be noted
that the equation is written in a form that accommodates a transducer
slope factor, defined as n, different from 1. This form of the equation

has previously been used to analyze responses with slope factors
different from 1 (Griffin et al., 2007; Kenakin et al., 2012). In eq. 3,
X represents the log of the concentration of the reference agonist
whereas in eq. 4 X represents the log of the concentration of the test
agonist. Similarly, LogKReference is the log affinity constant (inverse
molar units, M21) of the reference agonist in eq. 3 and LogKTest is the
test agonist’s log affinity constant in eq. 4.

The t parameter is noticeably absent from these equations. In fact,
the equations are reparameterizations of the operational model that
combine the t and LogK parameters for each agonist (where possible)
into a single LogR value. When the two equations are fitted to
a reference and test agonist(s) simultaneously, the LogR parameter
defines the log t×K value of the reference agonist.

The LogR of the test agonist is subject to further reparameteriza-
tion in eq. 4. Instead of determining the LogRTest of the test agonist
directly, the equation is written in a form where the LogRA is
determined (this parameter shares the same definition with the
ΔLogR; Kenakin et al., 2012 and see Discussion). The LogRA is
defined as the difference between the LogRTest (the LogR of each test
agonist) and the LogRReference (the LogR of the reference agonist):

LogRA5LogRTest 2LogRReference (5)

The resulting LogRA of each test agonist is then compared between
different assays to produce the ΔLogRA:

DLogRA5LogRAResponse1 2LogRAResponse2 (6)

This is a measure of the bias of an agonist for Response 1 or Response
2. Specifically, a ΔLogRA value greater than 0 indicates a bias toward
Response 1; a value less than 0 indicates a bias toward Response 2.

Fig. 3. The frequency distribution of the LogRA values produced by
Monte Carlo simulation of the standard and competitive method. The
distributions were produced based on the same values used to simulate
the two test agonists in the Response 2 of Supplemental Table 1. Each bin
of the distribution is 0.1 units wide, and the dotted line intersecting each
distribution indicates the true LogRA value of the agonist. For Agonist
A the true LogRA value is20.7 and for Agonist B the true LogRA value is
22.7. The associated standard deviation is presented in the text box
above each distribution.
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The second method of bias analysis also uses eq. 2 to fit the
reference agonist. The distinct difference in this method, defined as
the competitive method of bias analysis, is the type of experimental
design it requires and the form of the operational model it employs.
The experimental design required in this method leverages the
competitive relationship between the reference agonist and test
agonist. The results of these experiments demonstrate a functional
reversal of the response, produced by the reference agonist, upon
application of increasing concentrations of the test agonist. Equation
2 can be reparameterized to provide an equation that is adequately
suited to analyze the effects produced by partial agonist competition
for the binding site occupied by a full agonist:

Response5Bottom1
ðTop2BottomÞ

11

 
1110ðA1LogKReferenceÞ 110ðX1LogKTestÞ

10ðA1LogRÞ 1 10ðX1LogR1LogRAÞ

!n (7)

In this form of the equation, the parameters defined are identical to
the parameters in eqs. 3 and 4. Specifically, A defines the log
concentration of the reference agonist, and LogKReference refers to the
log affinity constant of the reference agonist. The LogR corresponds to
the same parameter in eq. 3. Similarly, the parameter identities are
the same for the test agonist. X in eq. 7 refers to the log concentration
of the test agonist, and LogKTest represents the affinity of the test
agonist. As expressed in eq. 4 and defined in eq. 5, the LogRA defines
the difference between the LogR of the test agonist and the LogR of
the reference agonist. The resulting LogRA values for each response
were used to determine a ΔLogRA value for each test agonist. The
ΔLogRA value is produced by the same calculation stated in eq. 6.

In order for the equations to fit the data and produce results for
comparison, it was appropriate to set specific values and constraints
for some parameters in the equations. For instance, it has been shown
that an infinite number of combinations of t and Kx will produce
identical concentration-response curves for a full agonist but,
nonetheless, a unique LogR value (i.e., log t×KX). For this reason, it
was reasonable to constrain the LogKX of the reference agonist to
a large specific value. We constrained the affinity of the reference
agonist to 100 mM (LogKReference 5 21).

Two other constraints were imposed to limit the parameter space
available and thereby produce appropriate parameter estimates for
all the data sets in both methods of bias analysis. The affinity of each
test agonist was constrained to lie in a range from 1 fM to 1 M.
Additionally, the LogRA of each test agonist was constrained to have
an absolute value between 0 and 10. The resulting parameter values,
from each experiment, were pooled to produce logK and LogRA
estimates (mean and 95% confidence interval [CI]) for each test
agonist. An unpaired Student’s t test of the results from the two
systems was then used to calculate the ΔLogRA mean and 95% CI for
each test agonist.

Results
Simulation of Dose-Response Curves of Biased

Ligands. The initial comparison of the two methods of
analysis is presented using several sets of simulated data.
(The construction of the simulations is described in detail in
Materials and Methods). The simulations are designed to
mimic the responses produced by a full reference agonist and
two test agonists in two different systems. In each system, the
full agonist is more efficacious than the two test agonists.
Each of the responses is independently simulated 3 times
with each data point produced in triplicate. One of the
simulated responses is intended to mimic a highly coupled
system (Response 1) whereas the other response is made to
resemble a more lowly coupled system (Response 2). This
produces test agonists with greater maximal response in the
first response than in the second response.

Fig. 4. The bias factors derived from the standard model and competitive
model for each simulated test agonist are presented as ΔLogRA. The bars
indicate the 95% confidence interval of the ΔLogRA determination, and
the midline represents the mean. If the bar overlaps 0, the ligand is
considered unbiased. A bar that does not touch 0 is considered biased, and
the degree of bias is defined as the distance from 0. Calculating the
difference-of-mean of the LogRA, according to eq. 5, produces the ΔLogRA
estimate for each method. The standard method and the competitive
method are calculated separately, and the figure presents a graphical
representation of the values in Supplemental Tables 6 and 7. The results
of the competitive method produce a decrease in the width of the
confidence interval for each test agonist compared with the results of
the standard method.

Fig. 5. Gprotein signaling via KOR ismeasured by stimulation of [35S]GTPgS
binding in CHO-hKOR cell membranes. U69,593, the reference agonist, was
used for comparing relative responses of nalmefene, nalbuphine, and 69-
GNTI. Data were analyzed using both the standard and competitive
methods, as indicated. For each data set, both equations produced good fits
of the data. In the case of the competitive method, the inhibition curves are
fit to a top equal to the response produced by 100 nM U69,593. Each data
point in the curve is the mean 6 S.E.M. of more than three independent
experiments.
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Fitting Response Curves with the Standard Model
That Permits Variability in the Test Ligand’s Affinity
Produces Poorly Defined Parameter Estimates. In the
simulation of Response 1, presented in Fig. 1, the response
produced by the full agonist and each of the test agonists is
apparent. That is, the midpoint of each response curve is well
defined. This is an outcome of Response 1 being defined as
a highly coupled system. In contrast, the EC50 of the full
agonist in Response 2 is easily discernible, but the midpoint of
each test agonist response curve is much harder to estimate.
Although these responses are subject to different degrees of
amplification, it is possible to normalize the response pro-
duced by the test agonists to the response produced by the full
agonist in each system. The normalization is accomplished by
fitting the experimental data with eqs. 3 and 4 (derived by
Griffin et al., 2007). For clarity, we refer to this method as the
standard method throughout this article. An important
parameter, the intrinsic relative activity (LogRA), is produced
by this fit. This parameter defines the difference between the
log(t×K) values of the test and reference agonists in the system
analyzed (eq. 5). When the LogRA values are compared across
assays, an estimate of each test ligand’s bias is produced
(ΔLogRA). The simulations presented in Fig. 1 are analyzed
using the standard method.
In addition, a second parameter estimate, the affinity of the

test agonists (pKi), is also obtained with the standard method
analysis. The mean LogRA and pKi values for these simu-
lations are presented in Supplemental Tables 2 and 4 and are
plotted with 95% CI in Fig. 1. We have chosen to represent the
mean 695% CI as error throughout this manuscript because
this representation provides a useful measure of how well the
estimatedmean compares with the truemean of the population
(Motulsky, 2010). Upon inspection of the widths of these 95%
CIs, for each parameter estimate, there is a large degree of
uncertainty for both parameters seen in Response 2 (the lowly
coupled system). For example, the pKi for the two test agonists
in Response 2 span two to three orders of magnitude (Agonist A
pKi5 9.9–6.8; Agonist B pKi5 7.7–5.2). In the case of Response
1, the highly coupled system, the fit to themodel producesmore
reasonable estimates of the parameter values, with relatively
narrow 95% CIs. These estimates still exhibit significant error,
with the 95% CI of the pKi for Agonist A spanning close to two
orders of magnitude (9.0–7.3).
Fitting Response Curves with the Competitive Model

Can Produce More Defined Parameter Estimates. In
Fig. 1, there is a large separation between the maximal
response produced by the full agonist and the maximal
responses produced by each test agonist. Because this
submaximal response is a characteristic of partial agonism,
there arises the opportunity to investigate the ability of the
test agonist to inhibit the response produced by a preselected
(∼EC50–EC80) concentration of the full agonist. In fact, using
an equation derived from a form of the operational model that

accommodates competition (eq. 7), all the data can now be
analyzed to produce a global estimate of the LogRA and pKi

values of each test agonist. This method of analysis is referred
to herein as the competitive method.
Specifically, in contrast to the standard method, this com-

petitive method simultaneously uses both stimulatory and
inhibitory curves to characterize the test agonists. Figure 2
presents the stimulation produced by each agonist, the in-
hibition of response that each test agonist produced in the
presence of 10 nM of the full agonist, and the competitive fit
analysis parameters with 95% CI. When compared with the
error obtained for the LogRA and pKi values using the standard
model (Fig. 1), the competitive method of analysis demonstrates
a substantial reduction in error in all cases except for the
estimate of the LogRA of Agonist B in Response 1 wherein the
error remains very similar (standard: 23.2 6 0.1; competitive:
23.2 6 0.3), suggesting that this difference in error is
unremarkable.
For Very Partial Agonists, the Competitive Fit

Produces More Precise Test Ligand LogRA and ΔLogRA
Values Bias Estimates Compared with the Standard
Fit. To compare the ability of the two methods to correctly
estimate the LogRA parameter value of a population, we pro-
duced a series of Monte Carlo simulations. From these simu-
lations, we compiled frequency distributions of the LogRA of
the two simulated test agonists in Response 2 from both the
standard and competitive methods. These distributions are
presented in Fig. 3 along with the standard deviation for each
distribution. It can be seen, both visually and by comparison of
the standard deviation values, that the competitive model
produces LogRA values that lie closer to the actual (known)
LogRA value of each test agonist. For Agonist A, the mean and
standard deviation for the standardmodel were20.71 and 0.36
whereas the mean and standard deviation for the competitive
model were20.7 and 0.19. (The actual LogRA for Agonist A in
these simulations was 20.7.) For Agonist B, the mean and
standard deviation for the standardmodel were22.59 and 0.79
whereas the mean and standard deviation for the competitive
model were22.71 and 0.20. (The actual LogRA for Agonist B in
these simulations was 22.7.) From these simulations, we are
able to conclude that the competitive model provides a distinct
advantage when producing parameter estimates for extremely
partial agonists.
The degree of agonist bias is described by the term ΔLogRA

(defined in Materials and Methods as the difference between
the LogRA of each agonist in the two responses). If the mean
ΔLogRA is equal to 0 (or the 95% CI of the mean overlaps 0)
then that test ligand is defined as unbiased (Kenakin et al.,
2012). (It is worth noting that the reference agonist, by
definition, has a ΔLogRA value equal to 0, ΔLogRA [ 0.) The
distance of the ΔLogRA value from 0 defines the degree of bias
displayed by the agonist between two systems relative to the
reference agonist. The value of ΔLogRA can be either positive

TABLE 1
pKi values from standard fit

Compound pKi-GTP coupling (95% CI) pKi-barr2 recruitment (95% CI)

69-GNTI 8.9 (9.1 to 8.6) 8.1 (8.8 to 7.3)
Nalbuphine 7.0 (7.3 to 6.7) 6.6 (6.7 to 6.5)
Nalmefene 8.7 (9.5 to 7.9) 8.1 (8.2 to 8.0)

TABLE 2
LogRA values from the standard fit

Compound LogRAGTP coupling (95% CI) LogRAbarr2 recruitment (95% CI)

U69,593 0 0
69-GNTI 1.3 (1.1 to 1.6) 0.3 (20.2 to 0.9)
Nalbuphine 20.9 (21.2 to 20.5) 21.3 (21.5 to 21.1)
Nalmefene 0.3 (20.5 to 1.2) 20.6 (20.7 to 0.4)
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or negative, indicating that the agonist is biased toward or
away from one or the other response.
Using the LogRA values produced from the two different

methods we have discussed, the ΔLogRA of each test agonist is
calculated using eq. 6 (these values are presented in Supple-
mental Tables 6 and 7). The resulting bias values from each
method are plotted in Fig. 4. The figure shows that there is
a significant reduction in error in the bias estimate produced
using the competitive fit versus the standard fit of the data. In
fact, the estimate of the ΔLogRA for Agonist A includes 0 when
the LogRA values for the standard fit are used, but it does not
when the LogRA values for the competitive fit are used. This
finding is important because it indicates that the reduction in
the error of the LogRA produced by the competitive estimate
can result in both a qualitative and quantitative difference in
the demonstration of ligand bias.
Analyzing the [35S]GTPgS Coupling Stimulation of

Partial Agonists with the Competitive Method Produ-
ces a Reduction in Error for Some of the Parameter
Estimates Compared with the Standard Method. To
validate the findings presented for the simulated data, we
analyzed a series of experimental data using both methods of
bias analysis. For the first response, agonist stimulation of
KOR is measured using a [35S]GTPgS binding assay (Fig. 5) by
running three partial agonists with varying response profiles in
parallel with U69,593, a full agonist in the assay. Using
U69,593 as the reference agonist, the responses produced by
the three test agonists are fit using the standardmethod (eqs. 3
and 4), and the LogRA and pKi values with 95% CI are
presented in Tables 1 and 2.
It is apparent from the stimulation curves, that nalmefene

generates such a low amount of stimulation that fitting the
curve with nonlinear regression is not ideal. Therefore, to gain
greater confidence in the relative potency of the compounds in
the assay, inhibition curves, presented in the lower panel of
Fig. 5, were run in parallel to the stimulation curves (against
100 nM U69,593). Together, these data were used to calculate
the competitive fit parameters (presented in Tables 3 and 4).
To compare the two methods of analysis, the resulting

parameter estimates from each fit are plotted in Fig. 6 (with
95% CI). For the competitive model, we observed a slight
increase in the size of the LogRA confidence interval for
69-GNTI when comparing with the standard model. For
nalbuphine, there was no difference observed between the
two models. The benefit of the competitive fit became apparent
when comparing the results for nalmefene. There was a sub-
stantial reduction in the width of the 95% CI for nalmefene
with the competitivemodel compared with the standardmodel.
The Competitive Method of bArrestin2 Recruitment

Studies Also Produces Error Reduction, in Some
Cases, Compared with the Standard Method. A second
response thatweuse tomeasure agonist stimulation of theKOR
is the barrestin2 recruitment enzyme complementation assay
(DiscoveRx PathHunter). U69,593 is also used as the reference
agonist in this response, allowing for the comparison of the
relative agonist activity of the test agonists in the two different
responses. Fig. 7 shows that U69,593 produces a maximum
response that is much greater than each of the test agonists in
this response. The upper panel of Fig. 7 shows only the
stimulation curve data that is applied to the standard fit
analysis; it is important to note that nalmefene has extremely
low efficacy in this assay.

To model the data for the competitive fit, both stimulatory
and inhibitory curves are produced for 69-GNTI, nalmefene,
and nalbuphine using 100 nM U69,593 for the competitive
curve analyses. The fit of the competitive method is shown in
the lower panel of Fig. 7. The resulting estimates for the
LogRA and pKi (with 95% CI) from eachmethod are presented
together in Fig. 8 for comparison. (The values for each fit are
also provided in Tables 1–4.) In each case, the competitive
method produces a LogRA with less than or equal error
compared with the standard method.
It is important to note that the lack of increase in error for

the LogRA values supports the conclusion that there is little
downside risk (of greater error) to employing the competitive
method when analyzing agonist bias. For the predicted pKi

values, there is error reduction for 69-GNTI, but there is
a slight increase in error for nalbuphine and nalmefene.
Although the widths of the pKi estimates do increase for both
nalbuphine and nalmefene, Fig. 8 demonstrates that the
predicted 95% CIs for these agonists do not overlap or even
touch. This indicates that the affinity values of nalbuphine
and nalmefene, predicted by the competitive method, lie in
a region where the standard method predicts the true affinity
of the population would be found by chance 5% of the time.
This striking difference between the methods suggests that
the estimates of LogRA, produced by the competitive method,
are substantially more accurate than those estimates result-
ing from the standard method.
The Competitive Method May Assist in Establish-

ment of Bias for Some Partial Agonists. The ΔLogRA
values for each method are presented in Fig. 9 (and Tables 5
and 6) and, in some cases, the two methods produce quite
different bias predictions. In the case of 69-GNTI, both
methods indicate a bias toward G protein coupling. The
previous estimate of ΔLogRA for 69-GNTI was calculated,
using the standard method, as 0.8; this resulted in a bias
factor of 5.82 (the bias factor was calculated as the antilog of
ΔLogRA in Schmid et al. (2013)). The results of the standard
and competitive method are both in agreement with this
conclusion. Specifically, we found that the ΔLogRA value of
69-GNTI is 0.6 (bias factor of 4.0) using the competitive
method and 1.0 (bias factor of 10) using the standard method.
Moreover, in both methods, the 95% CI of ΔLogRA does
not overlap zero indicating that the agonist is biased toward
G protein coupling.

TABLE 3
pKi values from competitive fit

Compound pKi-GTP coupling (95% CI) pKi-barr2 recruitment (95% CI)

69-GNTI 8.7 (9.1 to 8.4) 8.5 (8.8 to 8.1)
Nalbuphine 6.8 (7.0 to 6.6) 7.1 (7.4 to 6.9)
Nalmefene 9.1 (9.4 to 8.9) 9.0 (9.4 to 8.7)

TABLE 4
LogRA values from the competitive fit

Compound LogRAGTP coupling (95% CI) LogRAbarr2 recruitment (95% CI)

U69,593 0 0
69-GNTI 1.2 (0.8 to 1.6) 0.6 (0.4 to 0.9)
Nalbuphine 21.0 (21.4 to 20.7) 20.9 (21.1 to 20.7)
Nalmefene 0.8 (0.6 to 0.9) 0.3 (0.1 to 0.5)
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For nalbuphine and nalmefene, the standard fit produces
ΔLogRA values that suggest nalbuphinemay be slightly biased
toward G protein coupling and nalmefene is unbiased. That is,
consideration of the 95% CI of the bias factors reveals greater
uncertainty is obtained with the standard method than the
competitive method. Specifically, in the case of nalbuphine, the
95%CI in the competitive fit overlaps 0, indicating that there is
no bias observed, whereas analysis using the standard model
suggests this agonist is biased. More interestingly, the width of
the 95% CI of the ΔLogRA exhibited by nalmefene appears to
decrease by close to an order of magnitude from a ΔLogRA
range of 20.28 to 2.04 for the standard fit to a range of 0.32 to
0.67 for the competitive fit. This reduction in the width of the
95% CI from the competitive fit supports the conclusion that
nalmefene does exhibit a degree of bias toward G protein
coupling similar to 69-GNTI [69-GNTI ΔLogRA 5 0.58 (0.08–
1.07); nalmefene ΔLogRA 5 0.50 (0.32–0.67)]. Overall, these
findings demonstrate that the bias estimates produced by the

two methods can be considerably different and that, in some
cases, the competitive method produces a large reduction in
error for LogRA, pKi, and ΔLogRA when compared with the
standard method.

Discussion
In this study, we introduce a modification of the operational

model that can be used to improve confidence in the calculation
of bias parameters in cases of extreme bias. Because it takes
advantage of estimating affinities from the competitive nature
of partial agonists, the model is referred to as the competitive
model. Based on the simulations and the original data provided
herein, we demonstrate that the use of the competitive model
can improve the estimates of bias factors in cases where the
agonist response approaches baseline. In these cases of
minimally efficacious agonists, the competitive model can
provide conclusive evidence of the bias of the ligand for or
against a specific signaling pathway where the standard
operational model is unable to resolve certain parameters
and thus unable to confidently calculate ligand bias.
We have used three KOR ligands that are potent partial

agonists with different degrees of efficacy. Nalmefene, which
produces the least stimulation in each assay, acts as a potent
competitive partial agonist and allows for a confident assess-
ment of affinity in each assay. We demonstrate that, by
measuring both agonism and competitive agonism, this
increased confidence in the affinity estimate can be used to

Fig. 6. The competitive and standard models produce differences in the
estimates of LogRA and pKi. The graphs present the parameter estimates
for each method as mean 6 95% confidence interval. The results of each
individual experiment were pooled and averaged to produce the LogRA
and pKi values for [35S]GTPgS binding in Tables 1–4. The graphical rep-
resentation of both LogRA and pKi in this figure are produced from the
values in these tables. The graphs demonstrate the competitive method of
normalization produced 95% confidence intervals that are similar to, or
more narrow than, the standard fit.

Fig. 7. Stimulation of barrestin2 recruitment to KOR is measured for
U69,593 and each of the three test agonists. These graphs show the data
analyzed using both the standard and competitive methods. For each data
set, both equations produced good fits of the data. In the case of the
competitive method, the inhibition curves are fit to a top equal to the
response produced by 100 nM U69,593. Each data point in the curve is
the mean 6 S.E.M. of at least three independent experiments.
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determine that nalmefene is a KOR agonist with bias for G
protein signaling. However, as the confidence for estimating
intrinsic efficacy over baseline increases, the benefit of using
the competitive model is no longer apparent. This can be seen
using 69-GNTI, which produces a clear and distinct activation
of response in both assays that can easily be resolved from the
baseline. Although the competitive model does not confer
a distinct benefit over the standard model for 69-GNTI, both
the standard and competitive methods provide estimates of
69-GNTI bias toward G protein signaling that are in
agreement with previous studies (Rives et al., 2012; Schmid
et al., 2013). In this case, the data obtained by calculating
relative affinity using the competitive analysis does not
further resolve the estimation of bias; moreover, this
approach may actually introduce error into the analysis, as
evidenced by an increase in the width of the 95% CIs. This
finding suggests that fitting to the standard method produces
a confident estimate of bias if the test agonist exhibits

significant agonist activity in both responses (as previously
suggested by Kenakin et al., 2012).
In this study, we have used the barrestin2 recruitment

assay based on enzyme fragment complementation. A hall-
mark of this system is that the receptors are generally highly
overexpressed. These cell lines have been optimized for high-
throughput screening and produce very robust responses. In a
sense, the choice of this assay may “bias” the signaling re-
sponse to seem more robust in the barrestin2 assay. Nonethe-
less, the estimate of RAi is unaffected by receptor expression
because this parameter is ultimately a relative estimate of
affinity for the active receptor state.
Another issue relates to the assumption of a logistic

dependence of arrestin recruitment on receptor occupancy
(operation model) when the relationship is more likely to be
a proportional one (Bohn and McDonald, 2010). Although
applying the operational model in the latter case may
introduce an unnecessary complication, Griffin et al. (2007)
demonstrated that the operational model and a null method
produce equivalent estimates of relative intrinsic activity.
Therefore, although the operational model may incorrectly
assume the occupancy-response relationship, it will produce
an accurate measure of RAi regardless of this relationship.
The benefit of using the competitive analysis is evident

when the ligand exhibits minimal agonism in a system
(i.e., approach baseline). The estimate of ΔLogRA produced
for nalbuphine using the standard model appears to be
biased, although the 95% CI comes very close to overlapping
zero (Table 5). However, the estimate of intrinsic activity
provided by the competitive model supports the conclusion
that this agonist is not biased. Whether the estimation of
efficacy captured in these cell-based assays is predictive of
the activity of the ligands in vivo remains to be determined.
However, the information gained by applying the competi-
tive method of analysis may be very helpful in binning and
prioritizing ligands in drug development efforts, particularly

Fig. 8. The competitive and standard methods of analysis produce
pronounced differences in the estimates of LogRA and pKi for barrestin2
recruitment. The graphs present the parameter estimates for eachmethod
as mean 6 95% confidence interval. The results of each individual ex-
periment were pooled and averaged to produce the LogRA and pKi values
for barrestin2 recruitment in Tables 1–4. These graphs demonstrate that
the competitive method of normalization produces 95% confidence inter-
vals for LogRA that are similar to, or more narrow than, the standard
fit.

Fig. 9. The bias factors derived from the standard model and competitive
model for each test agonist are presented as ΔLogRA. The bars define the
95% confidence interval of the ΔLogRA determination, and the midline
defines the mean, for each agonist produced by the two methods of
analysis. As in Fig. 3, a bar overlapping 0 defines an unbiased agonist, and
a bar that does not touch 0 is a biased agonist. The distance of the mean
from 0 defines the degree of bias for G protein coupling or barrestin
recruitment. Calculating the difference-of-mean of the LogRA, according
to eq. 5, results in the ΔLogRA estimate for each method. The standard
method and the competitive method are calculated separately, and the
figure presents the values in Tables 5 and 6. The results of the competitive
method produce a decrease in the width of the confidence interval along
with a change in the mean. The disparity between these intervals provides
a striking difference in the conclusion of bias for the test agonists.
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when it is difficult to distinguish agonism over the baseline
response.
The quantification of bias begins by recognizing that the

product of intrinsic efficacy and affinity of a (test) agonist can
always be estimated relative to the same efficacy:affinity product
observed for a standard agonist. This estimate is known as
intrinsic relative activity (RAi). (In this article, the RAi is
expressed as the logarithm of the RAi value (denoted LogRA) to
facilitate comparison between responses.) To use this informa-
tion, it is only necessary to produce a “measurement of the
concentration-response curve” of each agonist (Ehlert et al.,
1999; Griffin et al., 2007). This ability provides a useful means of
comparing agonist activitywithout the need to directly access the
affinity of the agonist or the degree of receptor reserve present in
a system. Specifically, it provides a relativemeasure of the active
state affinity constant of the agonist for the particular signaling
pathway under investigation (Tran et al., 2009).
Agonist activity can be addressed at different hierarchical

levels relating to the output of single receptors (level 3),
a population of receptors (level 2), and a response downstream
in the signaling pathway (level 1). At a given level, drug action
is defined by unique pharmacologic parameters, which can be
expressed mathematically in terms of the next deeper level
parameters (Tran et al., 2009). For example, the EC50 and
Emax values of agonists (level 1 parameters) can each be
expressed in terms of observed affinity and intrinsic efficacy
(level 2 parameters). Analogously, the observed affinity and
efficacy values of an agonist can be expressed in terms the
affinity and isomerization constants of receptor states (level 3
parameters). Ultimately, the parameters of receptor states
are independent parameters for drug receptor interactions.
There are implications of these relationships with regard to

the estimation of RAi. Depending upon the available in-
formation, it may be impossible to estimate the observed
affinity (KTest) and tTest values, or perhaps even the product
(tTest ∙ KTest), from the concentration-response curve of an
agonist. Nonetheless, it is always possible to estimate the RAi

value of a test agonist, expressed relative to a reference
agonist, because this parameter is equivalent to the corre-
sponding ratio of active state affinity constants, which are
independent parameters, unlike the K and t values. Thus, if
the operational model is used to analyze concentration-
response curves, the observed affinity may be constrained to

different values causing an inverse effect on the estimate of t.
This inverse relationship between the estimates of KA and
t results in no change in the estimate of RAi (Griffin et al.,
2007). If it is known that the reference agonist is a full agonist,
then it is possible to obtain a reasonable estimate of the
product of t × K of the test and reference agonists, even though
the t or K values may not be well defined.
This theory is relevant to a recent discussion in the

literature regarding two methods of quantifying agonist bias
(Kenakin and Christopoulos, 2013a; Rajagopal, 2013). Both
methods produce a measure of the RAi of each test agonist by
normalizing to a full reference agonist. This approach was
elaborated by Griffin et al. (2007) and uses the operational
model (Black and Leff, 1983). In onemethod (which we refer to
as the standard method), the bias of an agonist is defined as
the change in its RAi value (ΔΔLogR) between assays
(Kenakin et al., 2012; Kenakin and Christopoulos, 2013b). A
slightly different adaptation proposed by Rajagopal et al.
(2011) employs radioligand-binding studies to estimate the
observed dissociation constant of each test agonist. The
equilibrium dissociation constant is assumed to be the same
for every measure of response. And, for this reason, the
dissociation constant is then used to constrain the fit of the
operational model and produce estimates of each agonist’s
intrinsic efficacy. The difference between the intrinsic efficacy
of each test ligand and the reference agonist is determined in
each assay (eq. 3; LogRA), and the difference of differences is
determined for the two assays (eq. 4; ΔLogRA). Aside from the
scaling factor (√2) used by Rajagopal et al. (2011) to produce
b-lig (b-lig is defined as a direct comparison of the ratio of
efficacy of the test agonist to the reference agonist in the two
systems), both methods yield similar estimates of bias
because of the independent nature of RAi and the inverse
correlation between estimates of K and t described earlier.
One of the major differences between the two methods of

calculating bias is the way the ligand affinity is evaluated when
fitting with themodel (reviewed in Kenakin and Christopoulos,
2013b). In the standard method (Kenakin et al., 2012), the
affinity estimate for each test agonist is produced by assuming
that the test agonists are partial compared with the reference
agonist. In this method, the affinity of the ligand is a variable
parameter value that is fit by themodel instead of an accessible
parameter to bemeasured in each response. The unconstrained
nature of the affinity in this method permits it to take a dy-
namic role in facilitating the fit instead of providing a useful
constraint for producing an appropriate measure of bias.
Conversely, the method used by Rajagopal et al. (2011) assumes
that the affinity of the test ligand is constant and directly cor-
relates with the results of radioligand binding studies. However,
this assumptionmay introduce error into the estimate of the test
ligand’s coupling efficacy. Specifically, it was demonstrated that
ligands may have different affinities for the same receptor in
different measures of response (Berg et al., 1998; Perez and
Karnik, 2005). Although each method of bias analysis may yield
different estimates of affinity and efficacy, the error in the
estimates of these parameters are correlated and hence have
little effect on the bias estimate so long as the potency and
maximal response of the test agonist are adequately defined.
The competitive method we present in this article incorpo-

rates assumptions from each of the two other methods.
Specifically, the competitive method treats the test agonist’s
affinity as a finite and accessible parameter value. The

TABLE 5
ΔLogRA values from the standard fit

Compound ΔLogRA(GTP coupling – barr2 recruitment) (95% CI) Bias
FactorStandard

U69,593 0 1.0
69-GNTI 1.0 (0.6 to 1.4) 10
Nalbuphine 0.5 (0.006 to 1.0) 3.2
Nalmefene 0.9 (20.3 to 2.0) 7.9

TABLE 6
ΔLogRA values from the competitive fit

Compound ΔLogRA(GTP coupling 2 barr2 recruitment) (95% CI) Bias
FactorCompetitive

U69,593 0 1.0
69-GNTI 0.6 (0.1 to 1.1) 4.0
Nalbuphine 20.1 (20.6 to 0.4) 0.8
Nalmefene 0.5 (0.3 to 0.7) 3.2

A Competitive Model for Biased GPCR Agonists 875



estimate produced by the competitive fit is based on both the
stimulatory and inhibitory curves generated with each test
agonist. This estimate permits the affinity value to differ
between responses (an assumption used by the comparison of
transduction coefficients). However, the agonist’s affinity
value in each assay is defined by, and must satisfy, the
predicted occupancy function produced by the inhibition
curves (fundamentally equivalent to the affinity value used
to calculate the blig, and determined by competition of
radioligand binding). In this way, the competitive fit produces
the most predictive estimate of the test agonist’s EC50 in each
system. In the case of nalbuphine and nalmefene, the EC50 of
the response curve was not well defined in each assay (Figs. 7
and 8) because each of these agonists produces a marginal
stimulation for barrestin2 recruitment that approaches
baseline measures. We show that by experimentally de-
termining an appropriate estimate of the IC50 of each of these
compounds, the competitive method can produce highly
accurate estimates of the bias of each agonist. This is
compelling evidence to support the conclusion that, in cases
of very partial agonism, accurately estimating the affinity of
a partial agonist can drastically improve the estimate of bias.
One of the most notable advantages of the competitive

method is the large reduction of error produced for the
parameter values. This is particularly interesting in cases
where the test agonist demonstrates extreme bias. For
agonists with extreme bias, an accurate estimate of occupancy
provides invaluable confirmation that the agonist has
retained affinity for the receptor in each response. (The
currently available methods of bias analysis have not been
optimized to verify the position of the response curve for
extremely biased ligands [Kenakin, 2011].) It is also possible
that comparison of affinity values between responses could
lead to the discovery of multiple, highly distinct, active states.
In fact, it may be appropriate to compare in the 3-state or
n-state models (Kew et al., 1996; Leff et al., 1997).
In summary, we have presented a modification of the

operational model that has utility for confidently assessing
bias in cases of extreme partial agonism. This proves to be
particularly useful in the cases of apparent “extreme bias”
wherein the response profile appears to be flat. It is reason-
able to suggest that this newly described route to accessing
the affinity of biased ligands may lead to new uses for this
parameter in receptor modeling, including the means to
assess the relative potential for antagonism across assays.
Furthermore, the competitive method produces a marked
benefit when estimating LogRA and pKi as well as a reduction
in the error propagated to the ΔLogRA. From these findings,
we conclude that for extremely partial agonists this compet-
itive method provides a conservative yet highly relevant
means of demonstrating agonist bias. Additionally, based on
the establishment of occupancy, we conclude that the
calculated bias of the agonist produced by the competitive
model is an innate property of the ligand-receptor complex
and is not an artifact imposed by a limit of response
amplification or threshold.
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