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ARTICLE

Cross-tissue integration of genetic and epigenetic
data offers insight into autism spectrum disorder
Shan V. Andrews 1,2, Shannon E. Ellis 3, Kelly M. Bakulski 4, Brooke Sheppard1,2, Lisa A. Croen 5,

Irva Hertz-Picciotto6,7, Craig J. Newschaffer8,9, Andrew P. Feinberg10,11, Dan E. Arking2,3,

Christine Ladd-Acosta 1,2,10 & M. Daniele Fallin2,10,12

Integration of emerging epigenetic information with autism spectrum disorder (ASD) genetic

results may elucidate functional insights not possible via either type of information in iso-

lation. Here we use the genotype and DNA methylation (DNAm) data from cord blood and

peripheral blood to identify SNPs associated with DNA methylation (meQTL lists). Addi-

tionally, we use publicly available fetal brain and lung meQTL lists to assess enrichment of

ASD GWAS results for tissue-specific meQTLs. ASD-associated SNPs are enriched for fetal

brain (OR= 3.55; P< 0.001) and peripheral blood meQTLs (OR= 1.58; P< 0.001). The CpG

targets of ASD meQTLs across cord, blood, and brain tissues are enriched for immune-

related pathways, consistent with other expression and DNAm results in ASD, and reveal

pathways not implicated by genetic findings. This joint analysis of genotype and DNAm

demonstrates the potential of both brain and blood-based DNAm for insights into ASD and

psychiatric phenotypes more broadly.
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Autism spectrum disorder (ASD) is a complex neurodeve-
lopmental disorder characterized by deficits in social
communication and interaction as well as restricted

repetitive behavior1. ASD has a strong genetic basis2, 3, and most
findings to date have been rare variants, including inherited and
de novo mutations as well as copy number variations4–6.
Although rare variants explain a relatively small proportion of all
ASD cases7, they provide converging evidence for three key
biological processes implicated in ASD, including epigenetic
regulation6, 8, 9. Other lines of evidence also implicate epigenetic
mechanisms in ASD10–14. Common genetic variation also plays a
role, similar to other complex psychiatric diseases15–17, but mega-
analysis GWAS results from the Psychiatric Genomics Con-
sortium ASD workgroup (PGC-AUT)18 are only recently avail-
able, and thorough examination of the biology implicated by
common variants has not yet been fully pursued. Previous studies
of neuropsychiatric disorders19–21 have demonstrated the
enrichment of GWAS results for expression quantitative trait loci
(eQTLs), providing insights into the functional biology of dis-
covered GWAS SNPs, assuming those SNPs confer some risk
through regulatory mechanisms. Given the implications of epi-
genetic regulation in ASD, a similar approach exploring enrich-
ment of SNPs controlling epigenetic marks, such as DNA
methylation, may be fruitful, assuming similarly that ASD genetic
risk may act in part through epigenetic regulation. As with
expression loci, genetic variation contributes to DNAm levels
locally and distally22, 23 and thus integration of methylation QTLs
(meQTLs), or SNPs that are highly associated with DNAm, and
autism-associated GWAS results may inform our understanding
of autism GWAS findings. Moreover, meQTLs are enriched in
top hits for bipolar disorder19 and schizophrenia20, 22, which have
well-established genetic overlap with ASD16.

Epigenetic patterns necessarily differ across tissue types, given
their role in cell differentiation and expression. For brain-related
conditions like ASD, careful consideration of tissue source for
epigenetic analyses is warranted24. This must be balanced by
consideration of tissue availability, which is limited for ASD brain
tissue. We and others have shown blood-based epigenetic bio-
markers are useful in psychiatric conditions, including ASD25, 26,
while recognizing the limitations and need for comparison to the
brain-derived data wherever possible24, 27, 28. ASD-related epi-
genetic differences have also been observed in buccal29, lym-
phoblastoid cell line30, and postmortem brain samples31–33, as
well as in the sperm from fathers of children with ASD34.

Blood–brain DNAm concordance studies have not frequently
observed high correlation of DNAm levels at specific sites across
tissues; however, when such concordance is observed, it is likely
due to genetic influences27, 28. meQTL signals overlap in adult
brain and blood tissues35, suggesting blood-derived meQTLs may
also reflect SNP–DNAm relationships in brain tissue, though this
relationship has rarely been tested.

This study used lists and locations of meQTLs and their CpG
targets, termed meQTL maps, from cord blood, peripheral blood,
and fetal brain tissues to characterize and prioritize ASD GWAS
SNPs and the CpG sites under their control. We created such
meQTL maps from our own data for infant cord and childhood
peripheral blood tissues, and used publicly available meQTL
maps for brain and lung tissues to examine cross-tissue meQTLs.
We find that ASD GWAS signals are enriched for meQTLs in
peripheral blood and fetal brain. The CpG site targets controlled
by ASD-associated SNPs are enriched for immune response
pathways, and can implicate genes not directly identified by
GWAS results alone. Finally, we extend the characterization of
SNP-controlled CpG sites to neuropsychiatric disease more
generally, and discover their enrichment for specific regulatory
features within and across tissue type. Our work demonstrates the
utility of jointly analyzing the GWAS and DNAm data for
insights into ASD and neuropsychiatric disease.

Results
Creating meQTL maps. We identified meQTL SNPs using
combined GWAS and 450 K methylation array data available on
both peripheral blood and cord blood samples. For these analyses,
we defined study-specific parameters that were optimal for each
data set and determined the P value (Wald test) to control the
false discovery rate (FDR) at 10, 5, and 1%. In peripheral blood,
we identified 1,878,577 meQTLs controlling DNAm at 85,250
CpGs; in cord blood, we found 1,252,498 meQTLs controlling
DNAm at 35,905 CpGs, both at FDR = 5%. Peripheral blood and
cord blood meQTLs, on average, were associated with 4.83 and
2.56 CpG sites, respectively. Statistical significance was inversely
related to distance between SNP and CpG site (Supplementary
Fig. 1). We have provided a full list of all identified peripheral and
cord blood meQTLs and their associated CpG sites at FDR= 5%
(Supplementary Data 1 and 2).

We used publicly available lung23 (to include a likely non ASD-
related tissue) and fetal brain22 meQTL lists and the P value
cutoffs stated in those respective studies (Wald P= 1e–08 for fetal

Table 1 Descriptive characteristics, meQTL query parameters, and meQTL summary results for four tissues examined

Sample size Meth SD
cutoffa

SNP MAF
thresholdb

Max SNP to CpG
distancec

meQTL P value
thresholdsd

# of meQTLs
identified

# of meQTL
targets identified

Fetal braine 166 NA 5% 1Mb 1.0e–08f 299,992f 7863f

Peripheral
blood

339 0.15 2.75% 1Mb 3.1e–05g 2,003,443g 95,195g

1.0e–05h 1,878,577h 85,250h

3.0e–07i 1,598,033i 68,860i

Cord blood 121 0.15 7% 500 Kb 8.5e–06g 1,374,554g 41,681g

2.7e–06h 1,252,498h 35,905h

2.0e–07i 1,032,370i 28,423i

Lunge 210 NA 3% 500 Kb 4.0e–05h 22,866h 34,304h

aThe probe standard deviation across samples that was used as an inclusion criterion for CpG sites in the meQTL query (blood data sets only)
bThe MAF cutoff used as an inclusion criterion for SNPs in the meQTL query
cThe maximum distance between the SNP and CpG site used in the meQTL query for the peripheral blood, cord blood, and lung data sets, and the value at which results for filtered in the fetal brain
results
dSNP-to-CpG association P values considered in subsequent analyses
ePublicly available data
fFDR not specified
gFDR= 10%
hFDR= 5%
iFDR= 1%
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Table 2 Enrichment statistics for meQTLs derived from 4 tissue types in ASD GWAS SNPs

ASD P value= 1e–03 ASD P value= 1e–04

meQTL P–value= 1e–08 meQTL P value= 1e–08

Fetal braina 1.70 (<0.001) 3.55 (<0.001)
meQTL FDR= 10% meQTL FDR= 5% meQTL FDR= 1% meQTL FDR= 10% meQTL FDR= 5% meQTL FDR= 1%

Peripheral bloodb 1.22 (<0.001) 1.20 (<0.001) 1.23 (<0.001) 1.31 (0.001) 1.40 (<0.001) 1.58 (<0.001)
Cord bloodb 1.14 (0.032) 1.21 (0.011) 1.20 (0.023) 1.13 (0.299) 1.10 (0.392) 1.10 (0.406)
Lunga — 1.09 (0.343) — — 0.80 (0.301) —

Enrichment fold statistics and P values based on 1000 permutations
aLD pruning performed with 1000 Genomes CEU samples
bLD pruning performed with the study-specific genotype data. See Methods for additional details

Table 3 Gene Ontology terms significantly enriched in multiple tissue types in comparison of ASD-related meQTL targets to
meQTL targets generally

Term Peripheral blood scaled
ranka

Cord blood scaled
ranka

Fetal brain scaled
ranka

Response to interferon-gamma 0.14 0.11 0.11
Positive regulation of relaxation of cardiac muscle 0.20 0.46 0.30
Production of molecular mediator of immune response 0.65 0.22 0.28

Cellular response to interferon-gamma NA 0.07 0.09
Detection of bacterium NA 0.18 0.06
Detection of biotic stimulus NA 0.26 0.04
T-helper 1 type immune response NA 0.08 0.34
Regulation of interleukin-10 secretion NA 0.09 0.43
Interferon-gamma production NA 0.57 0.19
Regulation of interleukin-4 production NA 0.24 0.62
Interleukin-4 production NA 0.29 0.60
Interleukin-10 production NA 0.25 0.74
Tongue development NA 0.68 0.32
Inflammatory response to antigenic stimulus NA 0.32 0.81
Endochondral bone growth NA 0.71 0.53

Antigen processing and presentation of peptide or polysaccharide
antigen via MHC class II

0.01 0.05 NA

T-cell costimulation 0.05 0.01 NA
Positive regulation of hormone secretion 0.09 0.04 NA
Antigen receptor-mediated signaling pathway 0.08 0.13 NA
Immunoglobulin production involved in immunoglobulin mediated
immune response

0.24 0.03 NA

Single organismal cell-cell adhesion 0.23 0.12 NA
Single organism cell adhesion 0.34 0.16 NA
Negative regulation of nonmotile primary cilium assembly 0.16 0.39 NA
Antigen processing and presentation of polysaccharide antigen via
MHC class II

0.02 0.58 NA

Polysaccharide assembly with MHC class II protein complex 0.03 0.59 NA
Protein-carbohydrate complex subunit organization 0.04 0.61 NA
Microtubule sliding 0.29 0.38 NA
MHC protein complex assembly 0.06 0.75 NA
Negative regulation of serine-type peptidase activity 0.41 0.41 NA
Regulation of satellite cell activation involved in skeletal muscle
regeneration

0.39 0.45 NA

Protein repair 0.43 0.43 NA
Regulation of serine-type peptidase activity 0.48 0.47 NA
Protein localization to basolateral plasma membrane 0.46 0.55 NA
Lymphocyte migration into lymphoid organs 0.47 0.62 NA
Peyer’s patch morphogenesis 0.60 0.70 NA
Regulation of homeostatic process 0.45 0.92 NA
Skeletal muscle satellite cell activation 0.88 0.63 NA

aScaled rank refers to enrichment P value-based rank divided by the number of marginally significant terms post REVIGO filtering for that tissue (peripheral blood: 95, cord blood: 76, fetal brain: 47)
‘NA’ shown for terms that did not appear in these lists for that tissue. Terms are lumped into sections based on cross-tissue overlap: Section 1—all three tissues, Section 2—cord blood and fetal brain,
Section 3—peripheral blood and cord blood. Within each of these sections, terms are arranged according to the sum of the scaled ranks. See Methods for additional details
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brain and Wald P= 4e–05= FDR 5% for lung). In fetal brain,
there were a total of 299,992 meQTLs controlling 7863 CpGs, and
in lung there were 22,866 meQTLs controlling 34,304 CpG sites.
The data set characteristics, meQTL parameters, and P values
used are summarized in Table 1. In all tissues, meQTL targets
(CpG sites controlled by meQTLs) implicate additional genes that
are not accounted for by their corresponding meQTLs (Supple-
mentary Table 1).

There were 2,704,013 overlapping SNPs considered for meQTL
discovery across peripheral blood, cord blood, and fetal brain
analyses. Of these, 125,869 (4.65%) were identified as meQTLs in
all three tissues, 407,722 (15.08%) were meQTLs only in
peripheral and cord blood, 30,691 (1.14%) were meQTLs only
in peripheral blood and fetal brain, and 528 (0.02%) were
meQTLs only in cord blood and fetal brain (Supplementary
Table 2).

Enrichment of meQTLs in ASD GWAS SNPs across 4 tissue
types. We observed enrichment of fetal brain meQTLs at both the
more liberal GWAS SNP P value threshold (enrichment fold=
1.70, permutation Penrichment < 1e–03 at Wald PGWAS< 1e–03),
and at a more stringent GWAS P value threshold (3.55, permu-
tation Penrichment< 1e–03 at Wald PGWAS< 1e–04) (Table 2).
There was no association with lung meQTLs at either the more
liberal (1.09, permutation Penrichment = 0.343) or more stringent
(0.80, permutation Penrichment= 0.301) threshold.

In peripheral and cord blood, we considered multiple GWAS
SNP P value thresholds as well as multiple meQTL discovery

thresholds (the latter not available in the brain and lung public
data). There was significant meQTL enrichment for all GWAS
and meQTL thresholds considered using peripheral blood
meQTLs (enrichment fold range= 1.20–1.58, permutation
Penrichment < 1e–03; Table 2). However, in cord blood, meQTL
enrichment was only observed for a liberal GWAS SNP threshold
(range= 1.14–1.21, permutation Penrichment= 0.011–0.032 at
Wald PGWAS< 1e–03). This was not statistically significant after
considering a Bonferonni correction to account for the 16
enrichment tests performed.

Gene ontology enrichment analyses of meQTL targets. We
examined the biological functions of meQTL targets of ASD SNPs
specifically compared to meQTL targets generally. We identified
210, 66, and 53 meQTL targets associated with ASD SNPs in
peripheral blood, cord blood, and fetal brain, respectively. After
mapping these CpG sites to genes, performing GO enrichment
analyses, and removing overlapping GO terms, there were a total
95, 76, and 47 nominally significant (hypergeometric test
P< 0.05) biological processes, respectively.

A total of 37 biological processes were present across either two
or three tissues (Table 3, Supplementary Data 3–5), many of them
relating to immune system function. Of these, three terms
overlapped across all three tissues, 12 processes were enriched in
cord blood and fetal brain but not peripheral blood, and 22
processes were present in both the peripheral and cord blood but
not in fetal brain.
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GATA4BLK

FAM167A-AS1
SLC35G5MTMR9
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RP1L1
PRSS55MSRA
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chr8:10,049,871–11,666,485 chr19: 49,576,241–49,689,673
meQTL to meQTL target association,
non-ASD SNP
PB P -value ≤ 1.1E-5 = FDR 5%
CB P -value ≤ 2.7E-6 = FDR 5%
FB P -value < 1E-8

meQTL to meQTL target association,
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PB P -value ≤ 1.1E-5 = FDR 5%
CB P -value ≤ 2.7E-6 = FDR 5%
FB P -value < 1E-8

C8orf74
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ASD SNPsASD SNP
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a b

Fig. 1 ‘Expansion’ of ASD loci through meQTL mapping in peripheral blood, cord blood, and fetal brain. Each tissue-specific panel presents, from bottom to
top: genomic location, gene annotations, SNP locations, SNP–CpG associations, CpG locations. Light gray meQTL association lines denote all SNP to CpG
associations in that tissue type; Dark meQTL association lines denote SNP–CpG associations for ASD-associated SNPs in PGC (P value<= 1e–04). a Locus
at chr8; b Locus at chr19. Data are presented for meQTL maps for fetal brain (top); cord blood meQTLs (middle), and peripheral blood meQTLs (bottom).
Please note locus coordinates differ from those in Supplementary Data 6 because in this context they encompass the locations of meQTL target CpG sites
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To test whether our findings were unique to ASD meQTL
targets, we performed the same analysis comparing all
meQTL targets to all CpG sites. (Supplementary Figs. 2–4).
Though there were some immune-related pathways discovered
for fetal brain ASD meQTL targets that are also enriched in
meQTLs generally, this was not the case in peripheral and cord
blood.

Expansion of ASD GWAS loci via ASD meQTL target loca-
tions. The location of CpG targets for particular meQTL asso-
ciations can further elucidate genes or regions relevant to ASD
risk beyond the genomic location of the associated SNP variant.
Of the 1094 ASD-associated PGC SNPs (Wald P< 1e–04), five
(0.46%) were detected as meQTLs across peripheral blood, cord
blood, and fetal brain tissues (Supplementary Table 3, Supple-
mentary Data 6). Consideration of the CpG DNAm targets of
these SNPs implicates genes not directly annotated to the SNPs
themselves. For example, ASD SNPs in XKR6 target CpGs in
TDH in both peripheral blood and fetal brain, and target CpGs in
SOX7 in peripheral blood and cord blood (Fig. 1a). A similar
result can be seen for ASD SNPs in PPFIA3 with meQTL target
CpGs that implicate HRC (Fig. 1b).

Characterizing meQTL targets for regulatory feature overlap.
We sought to quantify the propensity of regulatory features to
overlap with meQTL targets within and across tissue type, and
particularly whether meQTL targets of SNPs associated with

psychiatric conditions have specific regulatory features. Individual
and overlapping tissue meQTL target lists were compared for
regulatory feature annotation. First, among psychiatric condition-
associated SNPs (via the PGC cross-disorder analysis17), their
meQTL targets were significantly enriched for DNaseI hyper-
sensitive sites (DHSs) in peripheral blood (OR= 1.22, Fisher’s
exact P= 0.014), fetal brain (OR= 2.23, Fisher’s exact
P = 3.5e–03), and peripheral blood-fetal brain overlap lists (OR=
2.22, Fisher’s exact P= 0.018; black font and boxes, Fig. 2),
compared to meQTL targets of SNPs not associated with psy-
chiatric conditions. Further, there was marginally significant
enrichment of CD14 cell-specific DHSs (OR= 2.42, Fisher’s exact
P = 0.013; Supplementary Data 7) in the peripheral blood-fetal
brain list. Few chromatin marks met Bonferroni significance
(Fisher’s exact P≤ 3.95e–05) defined by the 181 tests of reg-
ulatory features performed in all 7 lists of meQTL targets, though
numerous marginally significant enrichment associations were
observed for blood H3K36me3 (active) and blood H3K27me3
(repressive). Transcription factor-binding sites (TFBSs) with
observed enrichment include (Supplementary Data 7) STAT1 for
fetal brain (OR= 4.32, Fisher’s exact P= 2.66e–05) and periph-
eral blood (OR= 2.24, Fisher’s exact P= 3.56e–08), TAF1 for
peripheral blood (OR= 1.53, Fisher’s exact P= 2.24e–06), cord
blood (OR= 2.24, Fisher’s exact P= 4.01e–06), and fetal brain
(OR= 3.2, Fisher’s exact P= 4.40e–06), and POL2RA for per-
ipheral blood (OR= 1.38, Fisher’s exact P= 1.14e–06), cord
blood (OR= 2.28, Fisher’s exact P= 3.54e–08), and their overlap
(OR= 2.20, Fisher’s exact P= 9.63e–09).

meQTL targets vs.
non-meQTL targets

PGC meQTL targets vs.
non-PGC meQTL targets

Lung (LU)

OR=1.26

OR=1.23

P=0.382

OR=1.45

OR=1.07

P=0.874

OR=1.41

OR=1.22

P=0.014

Peripheral
blood (PB)

Fetal brain (FB)

OR=1.31

OR=2.23

OR=1.60

OR=2.22

P=0.018

Cord blood (CB)

OR=1.38

OR=1.24

P=0.229

OR=1.56

OR=1.04

P=0.843

All CpG sites

meQTL targets

meQTL targets of PGC
cross disorder hits

PB/LU Overlap

P=3.80E-63

P=6.38E-42

P=9.23E-61

PB/CB Overlap

P=2.17E-89

P=2.03E-148

PB/FB Overlap

P=3.74E-30

P=3.5E-3

P=4.20E-18

Fig. 2 Enrichment of meQTL target CpG sites in DNaseI hypersensitive sites. We identified the meQTL targets (at FDR 5% in peripheral blood, cord blood
and lung, and past 1e–08 P value threshold in fetal brain results) in peripheral blood, cord blood, fetal brain, and lung as well those meQTL targets that were
present in the overlap of peripheral blood with the other three tissues. Odds ratio and P value in gray text represent enrichment fold statistic and P value
from Fisher’s exact tests examining the tendency of meQTL targets to overlap with DHS sites compared to CpG sites that were not meQTL targets. Odds
ratio and P value in black text represent enrichment fold statistic and P value from Fisher’s exact tests examining the tendency of meQTL targets of
significant (P value<= 1e–04) SNPs from the PGC cross-disorder results or their proxies (r2>= 0.8) to overlap with DHS sites compared to CpG sites
that were not meQTL targets of the same SNPs. A full list of enrichment statistics and P value for both tests against a total of 181 cell-type-specific DHS
sites, cell-type-specific chromatin marks, and transcription factor-binding sites is available in Supplementary Data 7 and 8
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When considering meQTL targets generally (regardless of their
status of being downstream of PGC SNPs), compared to non-
meQTL-target CpGs, enrichment was observed for DHSs for all
seven meQTL target lists, with the largest effect sizes among the
peripheral blood-cord blood overlap list and the peripheral
blood-fetal brain overlap list (gray font and boxes, Fig. 2). In fact,
a large number of regulatory features were significantly enriched
among meQTL targets for each tissue, including lung, given the
very large sample size of CpG sites (Supplementary Data 8).
However, these were typically small effects. Larger, but still
moderate enrichment effects were primarily seen for cross-tissue
overlap meQTL lists, particularly for the peripheral blood-cord
blood overlap list and the peripheral blood–fetal brain overlap
list.

Discussion
This study integrating ASD GWAS results and meQTL maps
provides insights about ASD etiology using data within and
across tissue types. First, using blood samples from birth and
early life, we identify meQTL maps and compare them to pre-
viously reported fetal brain tissue meQTLs, showing a subset of
SNPs that are meQTLs across all three tissues., The highest
percent overlap is between peripheral and cord blood meQTL
maps, as is expected given their tissue similarity. When exam-
ining enrichment among ASD GWAS results, we observe
enrichment of peripheral blood (1.20≤OR≤ 1.58; permutation
P< 0.001) and fetal brain (OR= 1.70 and 3.55; permutation
P< 0.001) meQTLs. When considering the biological processes
annotated to ASD meQTL targets, we see enrichment for
immune-related pathways using all three tissue meQTL maps.
Further, specific ASD meQTL targets may suggest regions for
functional follow-up of ASD genetic associations. Finally, we
identify several regulatory elements that preferentially overlap
with meQTL targets associated with known SNPs for neu-
ropsychiatric disease generally. Our results demonstrate the utility
of meQTLs and their CpG targets for insights into ASD and
neuropsychiatric disease overall.

Comparison of meQTL lists across tissues presents several
challenges for interpretation of results. First, each set of samples
came from a different study source, reflecting different sets of
individuals and different sampling strategies, as well as differences
in sample size and in genotyping and methylation array plat-
forms. For example, we expected and observed considerable
overlap between cord and peripheral blood meQTL signals, and
less overlap with brain. The lack of further cross-tissue con-
cordance with brain and blood could be due to differential sta-
tistical power between studies, lack of SNP or CpG overlap on
arrays, or differences in pipelines used for meQTL discovery
(choices of window size, SNP minor allele frequency (MAF), etc).
In our functional characterization of meQTL targets, we used
down sampling of peripheral blood results to make them com-
parable to the sample size and meQTL query pipeline decisions of
the tissue to which it was being compared. While this is likely an
incomplete solution, it is a step toward harmonization that has
not been carried out in other studies.

We demonstrate that the joint analysis of SNP and DNAm data
can reveal insights towards ASD etiology not apparent when
looking at either type of the data alone. It is important to examine
the biological implications of the genes implicated by SNPs, as
well as the genes and regulatory functions implicated by DNAm.
When considering the ASD SNPs, we found enrichment of fetal
brain and peripheral blood meQTLs. The enrichment was
stronger at increasingly stringent meQTL P value and ASD P
value thresholds, bolstering confidence in these findings. These
results are also concordant with similar studies of schizophrenia,

a disorder with known genetic overlap to ASD16, that have
demonstrated enrichment in fetal brain meQTLs22 and peripheral
blood meQTLs20. A previous study examining enrichment of
eQTLs in ASD, GWAS SNPs observed enrichment in parietal and
cerebellar eQTLs but not lymphoblastoid cell line eQTLs21,
though the GWAS results in that report likely differ greatly from
those of the larger PGC-AUT mega-analysis. Crucially, we did
not observe enrichment of lung meQTLs, supporting the speci-
ficity of fetal brain and peripheral blood results. However, we also
did not observe an enrichment of cord blood meQTLs, suggesting
the role of ASD-related DNAm marks in peripheral tissues may
be developmentally regulated or a function of age.

Additional insights may be gained through examination of
specific CpG targets of the ASD-related SNPs. Among CpG sites
that are targets of ASD SNP meQTLs, there is an abundance of
immune response-related pathways, using brain, peripheral
blood, or cord blood meQTL lists. This immune enrichment was
not seen when considering CpG targets of all meQTLs in blood
(not just the ASD SNPs), suggesting specificity to ASD. However,
such enrichment was seen for all meQTL targets in fetal brain.
This may be a consequence of the complications during preg-
nancy that resulted in fetal tissue collection (56–166 days post
conception22). Though many immune-related disorders are
known to be comorbid with ASD36, previous enrichment-type
analysis for genetic variants alone have not highlighted immune-
related pathways, instead implicating chromatin regulation,
synaptic function, and Wnt signaling6, 9, particularly for genes
implicated via rare variants. However, several gene expression
and epigenetic studies of ASD have implicated immune function
in both brain tissue31, 37–39 and peripheral blood40, 41. Our results
are concordant with these expression and epigenetic studies but
still suggest a role for genetic variation in contributing to immune
dysregulation in ASD, through SNP control of DNAm.

Beyond genome and epigenome enrichment analyses, specific
meQTL targets also helped to “expand” ASD GWAS-implicated
regions to include CpG sites, and their associated genes. While
this does not increase or decrease statistical support for a parti-
cular GWAS SNP finding, better characterization of the func-
tional architecture of the region can inform follow-up analyses of
these hits. Two GWAS loci displayed evidence of meQTLs in
peripheral blood, cord blood, and fetal brain, and many more loci
displayed evidence of meQTLs in at least one tissue. These target
CpG sites, and the genes they implicate, would not be identified
via traditional genetic (i.e., GWAS) analyses, since the sequence
itself does not show ASD-related variability in these areas.
Insights emerge only through the integration of the SNP and
DNAm data. Current PGC-AUT GWAS results are likely
underpowered to provide reliable genome-wide hits. As larger
GWAS of ASD emerge with higher-confidence findings, this
cross-tissue meQTL mapping approach should be used to expand
regions for follow-up, as recently demonstrated for schizophrenia
in fetal brain22.

Finally, we sought to understand the propensity of meQTL
targets, both generally and those controlled by psychiatric
disorder-related SNPs, to overlap with regions of known func-
tional activity. MeQTL targets of psychiatric SNPs in peripheral
blood, fetal brain, and their intersection significantly overlapped
with DHS sites, a result that is concordant with our observation of
meQTL enrichment among ASD SNPs limited to peripheral
blood and fetal brain. We also identified specific TFBSs enriched
in psychiatric disorder meQTL targets such as TAF1 and STAT1.
Recently, a study of nine families demonstrated both de novo and
maternally inherited single nucleotide changes in TAF1 to be
associated with intellectual disability, facial dysmorphology, and
neurological manifestations42. Our finding that binding sites for
the TAF1 transcription factor overlap meQTL targets of
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psychiatric SNPs could serve a basis for future functional studies
examining the link between TAF1 mutations and adverse neu-
rological phenotypes. Lastly, mutations in STAT1 have been
linked to early life combined immunodeficiency43. The significant
overlap with STAT1 TFBSs could thus serve as a starting point for
functional work looking to understand the role of immune dis-
orders in ASD and psychiatric phenotypes generally.

We also considered regulatory feature overlap with meQTL
targets in general, for comparison to results for psychiatric
meQTLs. Given the very large number of meQTL targets when
not restricting to those downstream of psychiatric GWAS SNPs,
many cell type-specific DHS sites and chromatin marks showed
significant enrichment for meQTLs in general. Among within-
tissue analyses, the effect sizes were small. However, enrichment
seen in meQTL targets that overlapped peripheral blood and cord
blood, and meQTL targets that overlapped peripheral blood and
fetal brain was of larger effect size (though still moderate). This is
consistent with the idea that genetically controlled CpGs are more
likely to have common function across tissues (given they all
share genomic sequence) compared to those less under direct
genetic control. For example, one study has demonstrated that
cross-tissue meQTLs (the SNPs, rather than meQTL CpG targets)
are enriched for miRNA-binding sites35. We have not found lit-
erature examining cross-tissue meQTL targets themselves. This
finding suggests an important area for future research, that could
give greater context to our and future investigations of cross-
tissue meQTL targets in a disease context specifically.

In summary, in our work, we perform a genome-wide study of
meQTLs in the context of ASD. The results point to the utility of
both brain and blood tissues in studies of ASD that integrate the
epigenetic data to enhance current GWAS findings for ASD. We
show the utility of examining the meQTL targets of ASD SNPs in
providing insights into functional roles like immune system
processes that would not be apparent via genotype-based analysis
in isolation. Our work suggests that genetic and epigenetic data
integration, from a variety of tissues, will continue to provide
ASD-related functional insights as GWAS findings and meQTL
mapping across a variety of tissues improve.

Methods
Cord blood samples. Cord blood DNA was obtained from newborn participants
of the Early autism risk longitudinal risk Investigation (EARLI), an enriched-risk
prospective birth cohort described in detail elsewhere44. The EARLI study was
approved by Human Subjects Institutional Review Boards (IRBs) from each of the
four study sites (Johns Hopkins University, Drexel University, University of
California Davis, and Kaiser Permanente). Informed consent was obtained from all
participating families. The 232 mothers with a subsequent child born through this
study had births between November 2009 and March 2012. Infants were followed
with extensive neurophenotyping until age three, including ASD diagnostics.

Cord blood DNA methylation. Cord blood biospecimens were collected and
archived at 175 births. DNA was extracted using the DNA Midi kit (Qiagen,
Valencia, CA) and samples were bisulfite treated and cleaned using the EZ DNA
methylation gold kit (Zymo Research, Irvine, CA). DNA was plated randomly and
assayed on the Infinium HumanMethylation450 BeadChip (Illumina, San Diego,
CA), or “450k”, at the Center for Inherited Disease Research (CIDR, Johns

Hopkins University). Methylation control gradients and between-plate repeated
tissue controls (n= 68) were used34.

The minfi library (version 1.12)45 in R (version 3.1) was used to process raw
Illumina image files with the background correcting and dye-bias equalization
method: normal-exponential using out-of-band probe (Noob)46, 47. Probes with
failed detection P value (> 0.01) in >10% of samples were removed (n= 661), as
were probes annotated as cross-reactive (n = 29,233)48 and those mapping to sex
chromosomes (n= 11,648). All cord samples passed sample-based filters (sex
matching, detection P values> 0.01 in greater than 1% of sites). The pre-processed
data were adjusted for batch effects related to the hybridization date and array
position using the ComBat() function49 in the sva R package (version 3.9.1)50. The
methylation data were available from 175 cord blood samples at 445,241 probes.

Cord blood genotyping. Overlapping cord blood DNA methylation and the cor-
responding SNP data were available on 171 EARLI cord blood samples. The
genotype data were generated for 841 EARLI family biosamples and 18 HapMap
control samples run on the Omni5 plus exome (Illumina, San Diego, CA) geno-
typing array at CIDR (Johns Hopkins University), generating the data on 4,641,218
SNPs. The duplicated HapMap sample concordance rate was 99.72% and the
concordance rate among five EARLI samples with blind duplicates was 99.9%.
Samples were removed if they were HapMap controls (n= 18), technical duplicates
(n= 5; selected by frequency of missing genotypes), or re-enrolled families/other
relatedness errors (n= 9). No samples met the following additional criteria for
exclusion: missing genotypes at > 3% of probes, or excess heterozygosity or
homozygosity (4 SD). Probes were removed for CIDR technical problems
(n= 94,712), missing genomic location information (n= 8124). Among probes
with high minor allele frequencies (> 5%), SNPs with a missing rate > 5% were
excluded (n= 8902) and among probes with low minor allele frequencies (< 5%)
SNPs with a missing rate > 1% were excluded (n= 65,855). There were 827 sam-
ples and 4,463,625 probes at this stage and SNPs out of Hardy–Weinberg equili-
brium (χ2 test P< 10–7) were flagged (n= 2170). Samples were merged with the
1000 genomes project (1000GP, version 5) data51 and EARLI ancestries were
projected into four categories (White, Black, Asian, Hispanic). EARLI measured
genotype data were phased using SHAPEIT52 and imputed to the 1000GP data
using Minimac353. SNPs with MAF >1% were retained, leaving a total of 9,377,008
SNPs.

Peripheral blood samples. Samples were obtained from the Study to Explore
Early Development (SEED), a multi-site, national case-control study of children
aged 3–5 years with and without ASD. Overall, 2800 families were recruited and
classified into three groups according to the status of the child: the ASD group, the
general population control group, and the (non-ASD) developmental delay
group54. This study was approved as an exemption from the Johns Hopkins IRB
under approval 00000011. Informed consent was obtained from all participants as
part of the parent SEED study. SEED recruitment was approved by the IRBs of
each recruitment site: IRB-C, CDC Human Research Protection Office; Kaiser
Foundation Research Institute (KFRI) Kaiser Permanente Northern California IRB,
Colorado Multiple IRB, Emory University IRB, Georgia Department of Public
Health IRB, Maryland Department of Health and Mental Hygiene IRB, Johns
Hopkins Bloomberg School of Public Health Review Board, University of North
Carolina IRB and Office of Human Research Ethics, IRB of The Children’s Hospital
of Philadelphia, and IRB of the University of Pennsylvania. All enrolled families
provided written consent for participation.

Peripheral blood DNA methylation. Genomic DNA was isolated from whole
blood samples using the QIAsumphonia midi kit (Qiagen, Valencia, CA). For each
a subset of case and control samples (n= 630), bisulfite treatment was performed
using the 96-well EZ DNA methylation kit (Zymo Research, Irvine, CA). Samples
were randomized within and across plates to minimize batch and position effects.
The minfi R package (version 1.16.1) was used to process Illumina.idat files gen-
erated from the array45. Control samples (n= 14) were removed and quantile
normalization performed using the minfi function preprocessQuantile()55. Probes
with failed detection P value (> 0.01) in >10% of samples were removed (n= 772),
as were probes annotated as cross-reactive (n= 29,233)48, and probes on sex
chromosomes (n= 11,648). Samples were excluded if reported sex did not match

Table 4 Samples downloaded from Roadmap Epigenomics Project for 5 different histone modifications

H3K27me3 H3K36me3 H3K4me1 H3K4me3 H3K9me3

Adult lung NA GSM1059437 GSM1059443 GSM1227065 GSM1120355
GSM1220283 GSM956014 GSM910572 GSM915336 GSM906411

Fetal brain GSM621393 GSM621410 GSM706850 GSM621457 GSM621427
GSM916061 GSM916054

Peripheral blood GSM1127130 GSM1127131 GSM1127143 GSM1127126 GSM1127133
GSM1127142 GSM613880 GSM613878
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predicted sex (minfi function getSex()) (n = 0), detection P values> 0.01 in >1% of
sites (n = 2), low overall intensity (median methylated or unmethylated intensity
<11; n = 2), and if they were duplicates (n= 8). Successive filtering according to
these criteria resulted in 445,154 probes and 604 samples.

Peripheral blood genotyping. Of the SEED samples with DNAm data, 590 had
whole-genome genotyping data available, measured using the Illumina
HumanOmni1-Quad BeadChip (Illumina, San Diego, CA). Standard quality con-
trol measures were applied: removing samples with < 95% SNP call rate, sex
discrepancies, relatedness (Pi-hat> 0.2), or excess hetero- or homozygosity;
removing markers with <98.5% call rate, or monomorphic. Phasing was performed
using SHAPEIT52 followed by SNP imputation via the IMPUTE2 software53, with
all individuals in the 1000 Genomes Project as a reference. Genetic ancestry was
determined using EigenStrat program56. A total of 4,948,723 SNPs were available
post imputation at MAF> 1%.

Normal lung tissue meQTLs. A list of meQTLs identified in a recent character-
ization of normal lung tissue23 as well as the total list of SNPs (n= 569,753) and
450k CpG sites (n= 338,730) tested for meQTL identification (i.e., passed filtering
and QC done in that study) was obtained from the study authors.

Fetal brain meQTLs. Fetal brain meQTLs were identified via imputed genotypes in
a recent study examining meQTLs in the context of schizophrenia22. The total list
of SNPs (n= 5,159,699) and 450k CpG sites (n= 314,554) that were tested (i.e.,
passed filtering and QC done in that study) was obtained from the study authors.
For all analyses, only fetal brain meQTLs within a SNP to CpG distance of 1Mb,
were included, in order to improve comparability to the other three meQTL lists,
where distant (trans) meQTL relationships were not explored (peripheral blood,
cord blood) or used (lung).

meQTL identification parameters. There are three main parameters of interest in
a meQTL query: the SNP MAF threshold for inclusion, the definition of standard
deviation cutoff that dictates a CpG site is variably methylated, and the maximum
physical distance between a SNP and CpG site to be queried, often referred to as
the window size. These 3 factors contribute to the total number of CpG to SNP
linear regression tests that are performed. Our available sample sizes (and thus
statistical power, at fixed effect size) for the joint DNAm and genotype data differed
for peripheral blood (n= 339) and cord blood (n= 121) analyses after limiting
both to samples of European descent identified via principle components analysis
of the SNP data. Thus, the ideal combination of these parameters should differ
between the two study populations for them to be comparable.

For each tissue sample set, we computed the total number of CpG-to-SNP
linear regression tests at various combinations of the three main parameters of
interest to a meQTL query. We then used the genetic power calculator Quanto57 to
determine the most permissive set of parameters that allowed for 80% power to
detect a 5% difference in methylation for each addition of the minor allele, at the
lowest allowed MAF. We computed this power calculation at a Bonferroni-based
significance level derived from the total number of CpG to SNP linear regression
tests. We defined ‘most permissive’ in a hierarchical manner that first prioritized
the inclusion of the most methylation sites (lowest sd cutoff), then the inclusion of
the most number of SNPs (lowest MAF threshold), and then the use of the largest
window size. This procedure resulted in study-specific MAF thresholds for the SNP
data, standard deviation cutoffs for the methylation data, and window sizes that
were tailored to the number of samples available.

meQTL identification procedure. Pairwise associations between each SNP and
CpG site were estimated via the R package MatrixEQTL58, with percent methy-
lation (termed ‘Beta value’, ranging from 0 to 100) regressed onto genotype
assuming an additive model, adjusting for the first two principal components of
ancestry and sex. Models did not adjust for age given the very narrow age ranges in
each tissue type.

FDR was controlled via permutation23. Briefly, the total number of CpG sites
(Nobs) under genetic control was obtained for a meQTL P value of po. Genome-
wide meQTL query was performed for each of 100 permuted sets of the genotype
data (scrambling sample IDs, to retain genotype correlation structure). In each set,
we retained the total number of CpG sites under genetic control (Nnull) at the same
P value po. The FDR was defined as the mean (Nnull)/Nobs. Finally we determined
the value of po to control the FDR at values of 10, 5, and 1%. Both the meQTL
discovery and FDR determination were performed in each tissue or study sample.

Enrichment of meQTLs in ASD-associated SNPs. We tested for enrichment of
meQTLs from four tissue types among ASD GWAS SNPs. ASD SNPs were
assigned from the PGC-AUT analysis (downloaded February 2016), based on 5305
cases and 5305 pseudocontrols59. The PGC provides results for 9,499,589 SNPs;
11,749 SNPs exceeded an ASD P value threshold of 1e–03, and 1094 SNPs
exceeded an ASD P value threshold of 1e–04. For each tissue, we included only
SNPs available in both the PGC-AUT analysis and our meQTL analysis, either via

direct or proxy (r2> 0.8 within 500 Kb window in CEU 1KG) overlap as defined
via the SNAP software60.

To estimate the proportion of meQTLs among ASD SNPs vs. among all SNPs
(or a sample of null SNPs), we recognized three important factors that could differ
between null SNP sets and the ASD SNP set: LD structure, MAF distribution, and
number of CpG sites per window size in the meQTL screen. We designed a
comparison process to address each of these. First, we performed LD pruning
‘supervised’ by PGC ASD P value (so as to not prune away all ASD SNPs) using
PriorityPruner (v0.1.2)61, removing SNPs at r2> 0.7 within a sliding 500 Kb
window. For the peripheral blood and cord blood data sets this pruning was done
with the study-specific genotype data, and for the fetal brain and lung data sets this
pruning was done with 1000 Genomes CEU samples. Second, we grouped
remaining SNPs into MAF bins of 5%. Third, we characterized each SNP according
to the number of CpGs within the meQTL discovery window size to allow for
differential opportunity to have been identified as a meQTL. We then collapsed this
number into categories of 0–49, 50–99, etc. to reflect the same concept. We defined
1000 null SNP sets by finding, for each SNP in the ASD set, a random SNP in the
genome that matched that SNP on both MAF bin and CpG opportunity. We
computed an enrichment fold statistic as the proportion of meQTLs in the ASD
SNP set divided by the mean proportion of meQTLs across null sets; and a P value
as the total number of null set proportions as or more extreme than in the ASD set.
To evaluate the robustness of our results, we used two PGC AUT P value cutoffs
(1e–03, 1e–04) and three meQTL P value cutoffs (FDR 10%, 5%, 1%) for peripheral
blood and cord blood. However, based on available information for lung and fetal
brain, we were limited to assess our results at FDR 5% for lung, and P< 1e–08 for
fetal brain for meQTL P value.

Gene ontology analysis of meQTL targets. We further assessed which biological
pathways are implicated by the location of CpG targets of ASD SNPs acting as
meQTLs. To do this, we identified CpG sites associated with ASD SNPs (ASD-
related meQTL targets) among all CpG sites controlled by SNPs (all meQTL tar-
gets). We then examined Gene Ontology (GO) terms specific to these ASD-related
meQTL targets, in order to enumerate biological pathways engaged specifically by
ASD SNPs.

Specifically, we first filtered the full list of CpG sites associated with any meQTL
to only those sites associated with an ASD SNP (PGC Wald P< 1e–04; N= 1094)
or their proxies (r2> 0.8 within 500 kb window in CEU 1KG as defined via the
SNAP software60). We used thresholds of FDR≤ 5% for peripheral and cord blood
meQTL lists, and Wald P< 1e–08 for the fetal brain list. We only examined CpG
sites that did not overlap with SNPs within 10 bp of the CpG site or at the single
base extension62, as it has been previously demonstrated that these CpG sites may
strongly influence functional-type enrichment analysis of CpG sites63, and these
CpG sites were not examined in the fetal brain meQTL lists22. We used the gometh
() function in the MissMethyl R package64, which maps 450k DNAm sites to their
nearest gene, and corrects for bias due to non-uniform coverage of genes on the
450k. We further ran nominally significant (hypergeometric test P< 0.05) results
for the category “biological processes” through the REVIGO tool to avoid reporting
GO terms with a greater than 70% overlap in gene lists65. Finally, we determined
the set of terms in these lists that overlapped at least two tissues, and prioritized
them by summing the scaled, enrichment P value-based rank in each tissue. This
scaling was done by dividing the raw rank for the term in the list for that tissue by
the total number of nominally significant, post-REVIGO terms for that tissue.

We also ran analogous GO analyses comparing all meQTL targets to all CpGs
to explore functional implications for meQTL targets vs. CpGs not under strong
genetic control. This allowed for comparison of ASD SNP-specific functional
pathways engaged through methylation vs. general SNP functional pathways
engaged through methylation.

Identifying genes via ASD meQTL target locations. Defining ASD SNPs as those
with PGC Wald P< 1e–04, meQTL relationships as in the GO analysis, and RefSeq
genes from the UCSC Genome Browser66, we annotated gene overlap (if any) via
findOverlaps() in the GenomicRanges R package for all ASD SNPs and their
associated CpG sites (if any). We filtered out long intergenic non-coding RNAs,
long non-coding RNAs, microRNAs, and small associated RNAs from the RefSeq
gene list. We further collapsed SNPs into bins by LD block. Blocks were defined
using recombination hot spot data from 1000 Genomes51.

Regulatory feature characterization of meQTL targets. To quantify the pro-
pensity of regulatory features to overlap with meQTL targets within and across
tissue type, we first compared regulatory feature overlap of all meQTL targets to
non-meQTL targets. We next compared meQTL targets of psychiatric condition-
related SNPs to meQTL targets of SNPs unrelated to psychiatric conditions. SNPs
associated with psychiatric conditions were obtained from the PGC cross-disorder
analysis17 (PGC Wald P< 1e–04) and their proxies. We used these SNPs in order
to analyze a greater total number of meQTL targets than associated with ASD SNPs
only (and thus ensure a well-powered analysis), and to make functional insights
that could be applied to psychiatric disease more broadly. Our results are still
relevant to ASD in light of known cross-disorder GWAS consistency16.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00868-y

8 NATURE COMMUNICATIONS |8:  1011 |DOI: 10.1038/s41467-017-00868-y |www.nature.com/naturecommunications

www.nature.com/naturecommunications


We performed both comparisons for unique and overlapping tissue categories
(n= 7): peripheral blood, cord blood, fetal brain, lung, intersection of peripheral
blood and cord blood, intersection of peripheral blood and fetal brain, and
intersection of peripheral blood and lung. For each intersection, we conducted a
meQTL discovery screen in which the peripheral blood was down sampled to the
sample size of the other tissue, and run at the same parameters used to identify
meQTLs in that tissue. This increases comparability with respect to power and
meQTL query parameters. For the peripheral blood overlaps with cord blood and
lung, we also computed the meQTL P value to control the FDR at 5%, since this
FDR threshold was available for each of those tissue types23. However, we only
computed the FDR P values using the data from the first 6 chromosomes, as we
found empirically that FDR P value estimates stabilized by this point. Finally, for
the peripheral blood-fetal brain comparison, we retained results for peripheral
blood that passed a meQTL P value of 1E-8, as reported from the fetal brain
study22.

Regulatory feature information came from several sources. General DHSs were
defined as those CpG probes experimentally determined to be within a DHS, as
determined by the manifest for the 450k array67. In addition, the tissue-specific
DHS data were tested for enrichment. Brain DHSs were downloaded from GEO68

for three brain regions: Frontal Cortex [GEO Sample ID: GSM1008566],
Cerebellum [GSM1008583], and Cerebrum [GSM1008578]). Two blood (CD14+
Monocytes; ‘wgEncodeOpenChromDnaseMonocd14’ and CD4+ cells;
‘wgEncodeUwDnaseCd4naivewb78495824PkRep1’) and one lung-derived (IMR90;
‘wgEncodeOpenChromDnaseImr90Pk’) data sets were additionally downloaded
from the UCSC Genome Browser66.

The trissue-specific histone data were compiled from the Roadmap
Epigenomics Project69 for five different marks: H3K27me3, H3K36me3, H3K4me1,
H3K4me3, and H3K9me3. As the Epigenome Roadmap Project data were often
generated across a number of individuals, for those cases in which data were
generated in more than one Caucasian individual, the overlap across individual
samples was utilized in downstream analyses. Overlap was calculated using the
UCSC Genome Browser’s ‘intersect’ function for those samples indicated in
Table 4. Regions with any overlap were included in functional enrichment analyses.

Finally, TFBS information from ChIP-Seq experiments carried out by the
ENCODE project70 were extracted for 161 transcription factors from the UCSC
Genome Browser (‘wgEncodeRegTfbsClusteredV3’)66.

Significant feature overlap was assessed via two-sided Fisher’s 2 × 2 exact test,
with Bonferroni correction (P< 0.05/(181 regulatory features × 7 categories)=
3.95e–05). Odds ratio and P value were recorded for each test in each unique and
overlapping tissue category.

Code availability. Scripts for the analyses conducted in this study are available at
https://github.com/sandrews5/ASDmeQTL_Manuscript.git

Data availability. The data from the EARLI study is available from the National
Database for Autism Research repository (collection number: 2462). SEED data are
not available at this time due to restrictions imposed by the informed consent
signed by the study participants. We are working with the Centers for Disease
Control and Prevention (CDC) to find a solution that might enable deposition of
these data into a genomics data repository in the future. All other data that support
the findings of this study are available from the corresponding authors upon
reasonable request.
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