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Abstract

Design Out Helplessness:

AI Interventions for Game Inclusivity

by

Batu Aytemiz

There are no single-player videogames. When someone plays a game, they are not only

interacting with the game’s contents, but also engaging with the culture and connections

that are built around that game. This channel by which people connect to one another

gets cut off when the design of the game leaves a player feeling helpless and excluded.

Informed by approaches from game studies, human computer interaction, and artificial

intelligence (AI) research, this work explores how we can fight this unintended exclusion.

From a theoretical standpoint, this work expands our vocabulary of failures

in games, allowing us to differentiate in-loop from out-of-loop failures. It teaches how

to design AI-powered assistance methods, allowing us to repurpose game-playing AI

agents in service of game inclusivity. From a technical standpoint this work contributes

three prototype systems: a dynamic tutorial framework, enabling games to respond to

the skill levels of players; an AI intervention for motor accessibility, helping players to

adapt dexterity based games for deliberative play; and a reinforcement learning based

navigation agent, enabling access to a portfolio of assistance methods.

As a whole, this dissertation constitutes a step towards making games more

inclusive, not for the sake of games, but for the sake of the people who play them.
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Benden önce gelen hocalarıma, ve benden sonra gelecek yeğenime.
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Chapter 1

Introduction

My mother told me that she didn’t like playing videogames. She explained
how as I was growing up she wanted to play videogames with me, but it
never worked out: “When I first tried to play a game with you, I couldn’t
understand what to do, the game made me feel incompetent, and I felt
ashamed.” — Personal anecdote from the author.

Videogames are an essential part of millions of peoples’ lives. [69, 171] Yet,

many others are excluded from experiencing videogames. This exclusion is due to the

assumptions games make about what players know and don’t know, and what players

can and can’t do. When a game rejects a player, whether by having the first levels be too

difficult to understand or by not being accessible enough, players are not only excluded

from engaging with the game’s contents, but more importantly, the whole culture and

the connections that are built around that game—the late night play sessions, the

questionable fan art, the endless arguments over strategies, and more. Given that there

are more than 2 billion videogame players out there already using games as a way

to connect [220], ensuring everyone has a chance to take part in this community is

1



crucial. With my research, I am working to make games more inclusive, so that no one

is excluded from playing games by feeling helpless.

Research to make games more inclusive also benefits players who already “get

it.” According to Raph Koster’s Theory of Fun [189], a widely accepted philosophy in

the games industry, “fun is a response to learning.” If we develop our understanding of

how to support our players’ learning, we can make our games more engaging for all our

players. This includes experienced videogames players jumping into a new game with

less handholding, as well as having systems that can keep training even the expert and

competitive players.

Furthermore, I explore the tension between designer intent and player diversity–

the myriad of ways players can and prefer to play. Designers who can distill their vision

into uncompromising experiences are often applauded by those who can engage with

these experiences. But what about those who are left excluded? In my work I present

an approach to enhance the accessibility of games while retaining the intent of the

designer.

By making games more accessible experiences and more intentional teachers,

we can reduce the exclusion of players and ensure that more people can fully engage

with all the challenges and joys our games have to offer. My research aims to improve

the effectiveness of assistive systems by utilizing artificial intelligence (AI) techniques.

In this dissertation I describe the research I have conducted towards this goal while also

contextualizing my work in the broader literature.

2



My dissertation primarily asks two research questions:

RQ1: What lenses on games and the game design process will allow us to

improve inclusivity in games without negatively affecting the design intent?

RQ2: How might artificial intelligence techniques be used to intervene in game

designs to design out the feeling of helplessness and exclusion?

Rather than answer these questions independently, my proposed work has

developed example interventions inspired by preliminary answers to the first question. I

intend for my work to impact practicing game designers rather than to catalog abstract

knowledge. More specifically, in my dissertation, I have:

• Expanded our understanding of failure in videogames. In many applications, you

don’t want your users to fail. In games this is not so—failure is an essential

component in many games. Therefore, making games easier across the board isn’t

a viable method of making videogames more inclusive. To make videogames more

inclusive while retaining these core aspects, we need to understand the tension

between challenge, access, and player failure and have a richer vocabulary to

discuss and analyze these concepts. This work was published as the conference

paper, “A Diagnostic Taxonomy of Failure [50]”.

• Showed that gameplaying AI techniques can be repurposed to make games more

inclusive. Advances in AI techniques have resulted in immense breakthroughs in

how well we can algorithmically play videogames. Yet, this increased investment

in game-playing AI (GPAI) techniques has not translated into a tangible improve-

3



ment in our players’ game-playing experience. I have proposed to repurpose this

abundant research to assist the player. This work was published as the conference

paper, “Your Buddy The Grandmaster Repurposing the Game Playing AI Surplus

for Inclusivity” [49].

• Prototyped an AI intervention for learnability. Most tutorials are cumbersome,

and they are notoriously hard to tune appropriately, either by not being compre-

hensive enough and leaving novices behind or being too overbearing and irritating

the experts. Tutorials need to serve all skill levels to ensure people from various

backgrounds can fully enjoy the game. I have proposed a dynamic tutorial system

to help players who need it, but only when they need it. This work was published

as the conference paper, “Talin: A Framework for Dynamic Tutorials Based on

the Skill Atoms Theory” [45].

• Prototyped an AI intervention for motor accessibility. Similar to the diversity

in game literacy, players are also diverse when it comes to motor abilities. This

prototype allows converting high-paced dexterity based challenges to deliberative

planning challenges in a narrow set of games that exist in the wild. This work was

published as the paper “SMES: Adapting Dexterity-based Games for Deliberative

Play [48]”.

• Prototyped a reinforcement learning-based navigation AI to create assistive meth-

ods. Navigation is ubiquitous in videogames, and yet for those who have zero

experience in 3D games, it presents a significant challenge that needs to be mas-

4



tered before the rest of the game can be enjoyed. In this RLNav project, I built a

3D parkour game with no combat and designed assistance methods that use the

reinforcement learning-driven navigation system.

• Released the NavAssist research pipeline. For AI driven-assistance methods to be

effective, we need both robust agents and also well-designed assistance methods.

This need for an interdisciplinary approach makes it difficult for more specialized

researchers to make progress in this new area. To help alleviate this problem I have

contributed an open-source research pipeline which includes: (a) for reinforcement

learning researchers, five OpenAI Gym compatible navigation environments to

train more effective agents; (b) for game designers, a Unity game project and

the pre-trained models to implement new AI-driven assistance methods; (c) and

for human-computer interaction researchers, a set of example assistance methods

powered by pre-trained models to investigate and evaluate the effects of those

assistance methods.

5



Chapter 2

Background

With my research, I hope to contribute to videogame inclusivity, not for the

sake of games, but for the sake of those who play them. In this chapter, I show how

playing even single-player games is a social act; present the tension between challenge

and inclusion; describe the lacking state of in-game tutorials; and describe how AI

techniques can be utilized to further inclusion.

2.1 There Are No Single-player Games

The COVID-19 pandemic has assisted in convincing people that games are

culturally and socially relevant. The World Health Organization has encouraged people

to play videogames [24], and as of 2020, there are more than 2 billion game players

worldwide, with the largest games reaching more than 300 million players. [6]

Games help people form communities and build connections. Multiplayer

games are accepted as important sources of human connection with persistent avatars
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and consistent interactions [71]. However, I argue that even single-player games play an

essential part in how people connect. The lead level designer for the original Spyro the

Dragon [166] series, Michael John, argues that there are “No Singleplayer Games” [170]

and explains that even though single-player games often support just one controllable

character, people often push these boundaries and find ways to play together. He de-

scribes the existence of a common culture where single-player games are played by

multiple people on the same couch taking turns, or one person watching the other play.

With the recent advent of livestreaming, the number of people watching has become

drastically larger [172]. John shows that even when a play session is solitary, there

is a slew of ways people connect through games outside the game sessions. He men-

tions the prevalence of speedrunning communities [270], creator fan groups [246], and

communities of practice [233].

This is all to say when someone is excluded from playing the game, they are

not only excluded from the game contents but also excluded from the social network

that is weaved around the game and the potential connections brought by this network.

Thus we must make games more inclusive not as a way to reach more customers or

improving the design of games, but rather, as a necessity to ensure no one is excluded

from the larger conversation that humanity is having.

At the outset, making games inclusive might seem like a simple task. There

are well-established guidelines for digital accessibility [148, 188], and for an organized

design team following compliance rules could be straightforward. However, we will see

in the next section that a common game design ethos is prone to designing for an implied
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player [26] and not recognizing the diverse ways our players engage with the games we

develop. This prevalent (and effective!) design ethos suggests that to make games more

inclusive our theories must be integrated into game design theories and be in connection

with the practices, requirements, and expectations of both players and developers.

2.2 Tension Between Designer Intent and Player Diversity

“In Celeste, we try to gently push the player to do things that they thought
were impossible for them. We also accept that every player is different and
that people come into the game at many different skill levels.” — Matt
Thorsen1

I grew up playing Ortada Sıçan2. It is a game where two throwers attempt to

pass a ball to each other while a catcher in the middle tries grabbing it. I found this folk

game lacking as it pushed me to become frustrated with my friends: the two throwers

would stand very far apart and lob the ball high over the catcher. This means the

catcher would have almost no chance of grabbing the ball. Sure, the throwers handily

won, but the game was utterly boring without any tension. Ignoring my pleas as a

budding game designer, my friends had traded fun for an easy victory. As the designer

I thought Ortada Sıçan was never meant to be played like this and my friends were,

utterly and fundamentally wrong.

The sacred “intended way to play” belief is common in game design, and

many designers suggest that these types of opinionated games result in more engaging

experiences. Soren Johnson, lead designer of Civilization IV [116], describes how ultra-

1https://www.vice.com/en/article/d3w887/celeste-difficulty-assist-mode
2Also known as Keepaway, or Rat, Piggy, Monkey, and other animals in the middle in different

cultures
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competitive players would abuse game systems to get an edge in the game, while also

making the whole experience much more grueling, effectively “optimize the fun out of

a game.” [173] The Game Director of Doom Eternal [165] Hugo Martin explains how

there is a correct way to play Doom, and if the player isn’t doing what they are supposed

to, they shouldn’t be allowed to succeed–the player shouldn’t be able to progress in the

game via an “un-fun” way of playing. [23]. In a similar vein, Sébastien Bénard once

shared that while engaging with the early iterations of Dead Cells [214] players were not

“playing in the way he’d intended” and his team had to make drastic design changes

to ensure the player wasn’t simply picking the most effective way to progress in the

game [70].

In all these previous examples, the designers identified a vision of how the im-

plied players [26] should have fun playing their games and took steps to eliminate other

ways of progressing in these game. Arguably the games were better for it. However, not

every attempted change is successful. When designing XCOM 2 [118], Jake Solomon

wanted the players to take more risks, instead of playing the game in a slow and me-

thodical manner [208]. To incentivize a faster pace, XCOM 2 introduced turn timers

that resulted in a Game Over upon reaching zero. A significant portion of the player

base responded negatively to this change [10], with mods to disable the turn timer soon

popping up. These examples illustrate the underlying tension between the design intent

and the multitude of ways players can engage with a game.

This tension can become more controversial when the design intent is built

upon the core idea of the game being difficult, especially when the difficulty of the game

9



results in the game excluding certain players. For example, a high level of dexterity

might be a core component of a given action game, yet this dexterity requirement might

mean that people with motor disabilities will have problems accessing this game’s con-

tents. And yet, many game designers and scholars, myself included, consider challenge

and failure an inherent component of games [207, 176, 174]. In various cases, challenge

and failure are tailored to be a big part of the whole experience — to the extent that

McGonigal [207] claims players spend a significant amount of their time failing. On one

hand, certain challenges and failures exclude a portion of the player base, on the other

hand, challenge and failure are a core aspect of many games.

I am interested in exploring this tension: with this thesis I argue that there

are two areas we should focus on to help make games more inclusive while retaining the

challenge and difficulty of games.

1. Developing comprehensive assistive methods to support diverse groups of people

2. Making games more intentional teachers of their own systems

Assistive modes are one of the main ways to make games more accessible, and

making games more accessible is essential as videogame players come in all shapes, sizes,

ages, and abilities. If a player cannot engage with a game due to a disability they might

have, then by definition they will have a harder time participating in the conversation

built around that game. Games must be able to support the players without being

condescending or removing the challenge altogether.

Making games more intentional teacher is essential as most games assume a
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certain level of game literacy from their players, which results in players with less gaming

experience (whether they be older folks, people who didn’t grow up in communities

where videogames are popular, or those who simply want to learn games in a different

stage of their lives) being excluded. More importantly, however, games must teach to

the absolute novices without boring the experts.

Both goals require certain technical capabilities to be reached. If a system is

to be an effective teacher, it would be beneficial for the system to be an expert in the

competitions it is trying to teach. Similarly, if a system is supporting its players’ in

playing the game, then the system itself should better be able to play the game itself.

Furthermore, it will be useful to model the player in detail so a useful context could

be presented to them. Both competently playing videogames and modeling players are

problems that can be solved with AI techniques. In the coming sections, I will describe

how AI techniques are useful in tackling these problems.
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Figure 2.1: Examples of permanent, temporary and situational disabilities. Taken from
Microsoft Inclusivity Handbook [12]

2.3 Accessing Games

“I just want to grab all you developers and share our tears, our struggles,
and just how badly we want to play your games.” — Chris “deafgamersTV”
Robinson3

The World Health Organization defines disability as:

“Disability is not just a health problem. It is a complex phenomenon, re-
flecting the interaction between features of a person’s body and features of
the society in which he or she lives.” [4]

This perspective states that disability arises from a mismatch between a person

and the context they are in [152]. This approach is wildly different from thinking

that disability is an unchanging attribute of the person themselves. The mismatch

perspective makes it easier to recognize that not all disabilities are permanent. I am

typing these words one year after having broken my collarbone on my dominant side—I

3https://twitter.com/GA Conf/status/1092555146628714496
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can easily remember the time in which I was temporarily disabled when it came to using

my right arm.

Mismatches can also arise from the context we are in. I do not suffer from

color-blindness or any other visual impairment, yet I used the high-contrast visual aid

mode while playing Mario Odyssey [226]. The reason behind this was related not to

me, but to the time of day: I was playing Mario with a projector, and whenever I

tried to play during the day in my room without blinds, the game’s colors would look

washed out, and I was not able to differentiate the different colors. I was suffering from

a situational mismatch, and having the option to increase the game’s contrast helped

me solve the issue.

Inclusive Design is a method that aims to minimize these mismatches [278] and

also focuses on “designing a diversity of ways for everyone to participate in an experience

with a sense of belonging.” When I use the term “inclusivity” in my title Design Out

Helplessness: AI interventions for Game Inclusivity, I am referring to this perspective of

offering more options for players to participate in playing videogames. It is important

to note, however, this approach isn’t the only aspect of inclusivity in games. The

specific work in this thesis leaves out conversations around gender representation [164]

and cultural inclusion [96] as a way to focus on the issues of learning and accessibility.

Apart from increasing the effectiveness of game tutorials, another way to make

games more inclusive is to create “assist modes” [248]. Every player is different and

might have different needs to fully engage with a game [152]. Some players might find

a game inaccessible due to its difficulty; other players might find the same game inac-
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Figure 2.2: The assist mode of Celeste [205]

cessible due to design choices such as color schemes and specific input mappings [199].

Offering a portfolio of assistance methods can help us reduce the mismatches between

our players and our games.

Assist modes that provide such assistance methods are becoming more popular.

The assistance mode in Celeste [205] is one of the most comprehensive and has garnered

praise from players and designers alike [187]. With it, the player can tweak almost

every aspect of the game’s difficulty: game speed, total climbing stamina, the number

of allowed dashes, and invulnerability are among the many options.

The inclusion of assist mode in Celeste, combined with the release of other

difficult games without any sort of assistance, such as Cuphead [291] and Sekiro [124],

sparked a series of discussions surrounding the design intent and the value of difficulty in
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videogames [191, 302]. Challenge in many games is essential for the design and is shown

empirically to increase enjoyability [93]. Assist modes do not aim to make games easier;

rather, they make games more accessible. Increasing the player’s options decreases the

likelihood of a mismatch between the game and the player’s capabilities. However, while

we have come a long way in improving game accessibility [121], there is still room for

improvement.

One of my favorite tools to help navigate this tension between designer intent

and accessibility is the Accessible Player Experiences (APX) toolkit [58]. APX is a

set of design patterns that invites designers to think about both Access and Challenge.

Access refers to the ability of the player to “be able to perceive what is going on in the

game and to take control of actions in the game. In other words, players need to be

able to sense (see/hear/feel) the output of the game and to provide input to the game

(click/tilt/speak).” [58] Before anything else, it is important for players to be able to

access the game to start playing. However, even after gaining access to a game, some

players might not be able to make progress because of the challenges they face.

The design patterns APX provides offer alternative ways to think about how

players can respond to both Access and Challenge problems they might encounter.

Each of these patterns acts a lens for the designer to evaluate their own game, and

illuminates potential blindspots that the designers might have when it comes to access

and challenge.
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Access Patterns

• Second Channel

• Flexible Text Entry

• Clear Text

• Same Controls but Different

• Improved Precision

• Do More With Less

• Personal Interface

• Flexible Controllers

• Distinguish This From That

• Leave it There

• Flexible Displays

• Clear Channels

Challenge Patterns:

• Total Recall

• Slow it Down

• Save Early, Save Often

• Moderation in All Things

• House Rules

• Undo Redo

• Helping Hand

• Training Ground

• Bypass

• Play Alongside

All of these patterns are relevant in our goals. However, two of them, Do More

With Less and Helping Hand, lend themselves especially well for being powered by AI

methods.

Do More with Less is a pattern that invites designers to recognize that

not every player can input long sequences of actions reliably. This might be due to
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motor disabilities, or cognitive disabilities. The proposed design solution is to reduce

the number of actions in any sequence so that players can successfully make progress in

the game.

Helping Hand invites designers to recognize that some players might need

additional support in the game to make progress, it also suggests the implementation

of different assistance methods.

I see both of these patterns as two (among many other) opportunities for AI

techniques to play a role in making games more inclusive for our players. While neither

of these design patterns require an AI technique to be implemented, I argue that using

AI techniques can further enhance the effectiveness of these patterns. For Do More With

Less, AI systems can chunk groups of actions together in a context-sensitive manner,

and for Helping Hand, the assistance might even take the form of a supportive character.

I further develop these ideas in my own work “Your Buddy, Grandmaster: Repurposing

Game Playing AI Surplus for Game Inclusivity” which I later introduce.

2.4 The State of Tutorials

“Do you ever feel like too stupid for a game? Like you want to love the
game but can’t grasp the mechanics for it to be fun?” - A question posted
on Reddit 4

Tutorials are how videogames teach their players how to play. They become

especially important if the player doesn’t have much videogame experience and has to

learn the very basics of the genre. However, if tutorials don’t discriminate and explain

4https://www.reddit.com/r/patientgamers/comments/et93em/do you ever feel like too stupid for a
game like/
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the very basics of the genre to each and every player instead, the play experience of

experts is affected negatively. This is such a frequent occurrence that the common

consensus around vocal videogame players is that tutorials are almost always bad:

“No one likes tutorials.” [253]

“Onboarding? Vomit.” [313]

“Great tutorials are hard to come by, and bad ones are unfortunately in
over-abundant supply.” [250]

“We all hate in-game tutorials.” [169]

“The T-word everyone skips.” [128]

Not limiting ourselves with explicit quotes, several other articles that discuss

how to design tutorials imply that often they are not seen in a positive light by the

players. [30, 59, 98, 110, 311] What we are seeing here might be a selection bias, where

players show their dislike for the tutorials they recognize, whereas the tutorials that

are effective without being oppressive are not appreciated simply because they have not

been recognized explicitly as tutorials. This suggests the need for a validated review

of whether these claims are in reality substantiated or at the very least more academic

focus on tutorials.

Surprisingly, especially given the amount of possible room for improvement,

game tutorials are an underdeveloped field of research. Green et al. [143] also reaches the

same conclusion with their paper that “surveys the (scant) literature on game tutorials”.

This might be because there is an overwhelming amount of research when it comes to

using games in learning and education [28, 131, 146, 268] and fewer researchers are

concerned with how people learn in commercial videogames over the education system.
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Regardless of the research attention tutorials gets, it is immensely important to overall

player experience, and whether the game will be commercially successful.

In the Experimental Game Development Podcast, the developer of Steambirds

Survival [288], Andy Moore, describes how adding a relevant tutorial that helped players

learn the game boosted the ratings of the game from a mediocre 5 to a respectable 8. [213]

While the experience of Andy Moore is an individual data point, larger studies

involving millions of data points also suggest similar trends. A 2019 report on mobile

gaming statistics shows that, on average, over 70% of players stop playing a game

within the first day. [20] The report describes the game being too complex for users to

understand as one of the major reasons for this low level of retention. [20] Although

I am personally uninterested in focusing on maximizing retention numbers, it is an

undeniable fact that most people create media so that others engage with it. Data

shows that a majority of people’s engagement will be, for better or worse, constrained

to the initial areas of the game; therefore, such the tutorial segments carry a significant

amount of weight in deciding the long-term success of any game.

On the more academic side of things, Cheung et al. try to pinpoint and

explain how important the first impressions of a game are [80]. They analyzed over 200

game reviews and interview industry professionals to identify which aspects of an initial

play session are relevant to keep players engaged, and whether the first play session is

important at all. They, not surprisingly, find that in the first hour “players reconcile

their expectations with their initial experience, setting the tone for the rest of the

game or, perhaps, giving up on playing the rest of the game entirely.” This agreement
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between industry professionals and academics on the importance of tutorials suggests

that research into tutorials is a field ripe for exploration.

What is not explicitly adressed and commented on in these studies and articles,

however, is the impact of losing a player during the tutorial stage. From a metrics

perspective, it might not matter whether a player stopped playing because they got

bored, or because they couldn’t understand the game—in the end, the player stopped

playing. However, from the player’s perspective, there is a huge difference. The feeling

of engaging with the game and then finding out you are not enjoying it is very different

from being unable to even start playing the game because you couldn’t figure it out.

A player who experiences the former might simply move on to another game, whereas

a player who cannot learn how to play a game from the start might give up on games

entirely.

This important (and currently only anecdotally supported) effect of losing

players right as they are just beginning a game is why, I argue, how people learn games

is a crucial facet of game inclusivity. This becomes even more important as more and

more people who don’t traditionally play games (parents, grandparents, that person

who has never used a computer before) start to play.

Through my work, I claim that by increasing the effectiveness of our tutorials,

we can make games more inclusive without sacrificing the enjoyment of our more expert

players. Additionally I suggest using AI techniques to make games more adaptive when

it comes to deciding when and how to teach the player.
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2.5 AI in Games

“If It Works, It’s Not Al.” —Eve M. Phillips [245]

The definition of artificial intelligence (AI) is notoriously difficult to pin down.

Given that this dissertation is being written during the machine learning boom, it is

important to note that I do not equate AI with deep learning. Instead, for the pur-

poses of this dissertation–making games more inclusive–I will assume a more generous

definition: “Systems that imitate intelligence to accomplish tasks.” In my work, I op-

erationalize this definition through various prototypes that I developed: an agent that

can navigate in physics based videogames, an overlay that represent and enables the

editing of user input and a framework that updates and reacts to beliefs of player skills.

However, these are only the systems that I have chosen to build–the theories and ap-

proaches I contribute in this work are agnostic to the underlying AI systems, and can

likely be adapted to use any AI technique.

If we narrow our focus to the videogame technical research domain, the book

Artificial Intelligence and Games describes three5 high-level use cases for academic

AI in games: Procedural Content Generation (PCG), Player Modelling and Gameplay-

ing. [317]. Among these three fields, I make extensive use of the research in gameplaying

and mostly decide not to utilize advances in PCG and player modeling.

5This is certainly not to say that there are only these three fields in technical games research, but
rather that I find it productive to put my work in conversation with these three fields specifically.
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2.5.1 Why Gameplaying?

Throughout my time in graduate school during 2010s there have been several

highly publicized and marketed results in gameplaying research with Deep Q Learn-

ing [212], AlphaGo [281], OpenAI Five [60], Atari benchmarks [53], and Starcraft [309].

This increased publicity has created a lot unfounded hype around how AI in player-facing

videogames has also improved. Yet, most of this research has been focused on pushing

the score benchmarks instead of on enhancing the player experience. Unfortunately,

even though AI agents have gotten stronger and stronger, this has had disproportion-

ately little impact on the gameplay experience of the players. I claim that harnessing

the strength of gameplaying AI agents in the service of inclusivity is an effective method

in realigning this body of research with the experience of players. I will include a more

detailed discussion of this topic to Chapter 6.

2.5.2 Why Not Procedural Content Generation or Player Modeling?

On the surface, procedural content generation (PCG) and player modeling

seem to be an appropriate fit for making games more inclusive. One can generate

whatever content is most suitable for the player, and there already exists a body of

work already aiming to do so [283, 316, 122, 303]. However, there are two reasons why

I personally have decided not to focus on PCG and player modeling techniques in my

work.

First, I am more interested in hand-authored experiences. This in no way is

an attempt to diminish the authorial expertise of PCG algorithm designers or content
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authors, but rather, is a recognition of the increased difficulty in conveying design intent

through procedural systems. As described before, I am excited to explore the tension

between the design intent and the player inclusion. Adding the layer of procedural

content generation between the player and the designer, while perfectly feasible, would

have made my exploration more difficult.

Second, throughout my Ph.D. research I have grown more and more skeptical

about the efficacy of AI systems that force their outputs on their users. Much have been

written on this topic from the perspectives of fairness [234], gender [241], race [230],

design [90] and more. Inspired by this crucial body of work, and humbled by the

mistakes of my own predictive systems, I would like to present a perspective influenced

by anarchism.

2.5.3 A Brief Anarchistic Perspective on AI

The term “anarchism” even as a political philosophy, is overloaded and needs

some disentangling before we can use it to interrogate AI approaches. Anarchism does

not refer to the characterization of molotov-cocktail wielding rioters who supposedly

want to burn everything to the ground; but instead a political philosophy that is focused

on self-determination and the reduction of hierarchical structures [221].

My preferred definition comes from American linguist and anarchist Noam

Chompsky: “Anarchy is the idea that every form of authority and domination and

hierarchy, every authoritarian structure, has to prove that it’s justified—it has no prior

justification.” [81]. What, therefore, does authority and domination mean in the context
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of videogames? I take them to be the sum of the non-negotiable design decisions that

the author forces upon the players.

These decisions can be anything: the implementation details of character cre-

ators (or lack thereof like Rust [114] which assigns the player a random avatar that

cannot be customized); the manner in which the players can save the game, at will or

predefined; the outputs from an AI system—think generated levels, or adjusted diffi-

culties; or even the viability of certain playstyles. For example, in an interview game

director Hugo Martin describes how Doom Eternal [165] kills players who aren’t playing

the way the game is intended. This is made to ensure the players stay in the fun zone [2].

I am in favor of designers being opinionated in bringing their visions to life,

especially because videogames are, almost by definition, consensual activities. The

player can opt-out at any given time. In my humble opinion, the authority of Doom

Eternal over the play-styles of the player is justified.

However, I am skeptical of an automated system making immutable decisions

on behalf of the players–say, creating levels they need to traverse–without their input

attempting to maximize a specific metric. When we, as the designers, model a player, we

make dozens of assumptions. Some of these assumptions are bound to be wrong. Let me

illustrate with a fun example: the engineers who designed the automatic transmission

of my car assumed that I don’t use my car as a dancing aid.

One of the joys of driving is being able to bounce the car up and down to

the beat of the music you are playing. For this to work effectively, however, you need

to switch to a gear lower than normally suitable for driving at whatever speed you
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are traveling—the idea is to get a jolt of movement with each press on the gas pedal.

An automated transmission makes this almost impossible, as it is primarily focused on

providing a smooth driving experience. The assumption that the driver wants a smooth

driving experience is unfounded, and the automated system prevents the driver from

achieving my goals. Along these lines, I find it unrealistic that an AI system can account

for the boundless creativity and diversity of players. Any hierarchical decision that a

designer or an AI system makes on behalf of the player is likely to leave some groups

out.

To bring this conversation back to videogames and my research, let us use this

anarchistic lens of forced design decisions to briefly consider two approaches to difficulty

adjustment: Assist modes, where the player makes the decision, and dynamic difficulty

adjustments (DDA), where the player model makes the decision.

Dynamic difficulty adjustment [158] is the idea of, as the name suggests, the

game automatically adjusting challenges to prevent overwhelming the player or being

seen as trivial. In order for a DDA system to work, it needs to be able to assign a

value that measures the difficulty level of the game felt by the player for any given game

state. This measure is typically done through a set of handcrafted heuristics that use a

combination of variables such as score and health points, and is blind to anything that

is not instrumented. After this measure is defined, several different techniques can be

used to adjust another set of parameters to make the game easier or more difficult. [324]

In most cases, when the DDA system makes a decision the player cannot

overrule the authority of the system. This can lead players to the feeling of being
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patronized [29] due to their lack of agency. Even if DDA improves the player experience

for normative play, transgressive playstyles such as speedrunning or simply messing

around are most likely not going to be acknowledged and appropriately responded to by

the system. How could the designer of the system even know what appropriate might

mean?

In contrast, assist modes that expose the options for adjusting difficulty do

not act on the behalf of the player and make no assumptions about the state of the

player. The agency of the player is respected, and there is much less authority imposed

by the designer. I believe this is much more in line with the anarchistic principles

of empowerment that I am interested in pursuing with my work: SMES provides an

alternative interface that the user can decide not to utilize, while Talin attempts to

predict the skill level of the player, In Talin’s case, the player is fully empowered to

ignore it–more so, if the player ignores the actions of Talin and still makes progress,

by design Talin will fade into the background. In Reinforcement Learning Powered

Assistance methods, the system never intervenes on behalf of the player, but instead

provides a plethora of assistance methods where the player can choose from.

As such, this dissertation is more focused on empowering the player to match

the designer’s intent, not on changing the game to match the player’s perceived state.

Following this principle I intend my work not to patronize but rather to empower the

player. In the next chapter I will discuss the methods I utilized to reach this principle.
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Chapter 3

Research Approaches

In this section, I give a brief overview of how I identified which problems to

tackle, as well as the methods I used to make progress in solving them.

3.1 Problem Solving Approaches

Videogames are an inherently multidisciplinary topic, and so is my approach

to making them inclusive. Throughout my work I have drawn from several different

fields, in such a way that one compliments the other. The following is a brief overview

of how I structured and approached each of my research projects.

3.1.1 Game Studies: Play and Reflect

It was important for me to ensure that the AI interventions I built did not

detract, but rather complimented the vision of the game, whatever the vision might be.

Given a naive approach to assistance, the most common risk was hampering challenge
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aspects of a given game. As such, I had to expand our understanding around challenge

and failure.

For the Taxonomy of Failure, I applied the game studies lens to this exploration—

that is a significant amount of playing and reflecting. I recorded myself playing several

challenging games such as Getting Over It With Bennet Foddy [120], Sekiro [124], and

Dark Souls [55] while applying the “talk aloud” [106] method while recording both my-

self and the screen. During these play sessions I would mumble, groan, curse, cheer, light

up, and sigh. Each emotional quip, and sometimes their accompanying self-reflections,

became my dataset of responses. I further expanded on this dataset by watching other

people play challenging games, mostly on Twitch and YouTube.

The ideas found in the Taxonomy of Failure paper—such in-loop and out-of-

loop failures—and the six classes of failures emerged from analyzing and annotating this

dataset, which constitutes my approach to Game Studies.

3.1.2 Research Through Design: Computational Caricatures

In the Game Studies approach, a sizeable amount of time was spent con-

structing theory. For the other projects, especially Talin, SMES, and Repurposing AI

Surplus, I chose to spend majority of my time designing and developing to explore and

understand the space I am interested in, subscribing to the research through design

methodology. [289]

More specifically, I made ample use of the Computational Caricature method-

ology. [284] A computational caricature exaggerates the salient aspects of the game
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design process while downplaying or distorting all other points. A computational cari-

cature has claims (to be quickly recognized and understood) and oversimplifications (to

be overlooked).

In the Talin project, I claimed that keeping track of and responding to different

player skills improved learnability while using a simple technique to model the player

skills.

In the SMES project, I claimed that re-shaping input allowed new ways of

engaging with games while simplifying UI fidelity, the user experience and the number

of games the system supported.

In Repurposing AI Surplus project, I claimed that game-playing AI methods

can be used to assist our player and prototype several different instantiations of as-

sistance to target different challenges while simplifying the level design, performance

constraints and how the player is introduced to the assistance methods.

3.1.3 Reinforcement Learning Implementations: Train and Evaluate

While the computational caricatures allowed me to get a sense of the ap-

proaches, there is still a significant gap between a caricature and the reality it is trying

to depict that should not be ignored.

In this dissertation, I set out to make games more inclusive. It was important

to me that I could see whether the ideas scaled, at least in principle, to the tools that

were used in the industry—that is if I couldn’t make the theories work in practice as

the primary torch carrier of the ideas, it was too naive of me to expect that others could
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implement and use them.

The technique of choice for my implementations was reinforcement learn-

ing [295]. At different points of my research I touched upon all the steps of the tradi-

tional reinforcement learning methodology such as adjusting policy model design while

monitoring impacts on training metrics, reward shaping and reward redefinition while

monitoring impacts on non-reward metrics to disambiguate changes that superficially

improve learning from those that lead final policies that actually perform the best, per-

form ablations to identify which combinations of design features must be combined to

yield which outcomes.

3.2 Problem Generation Approaches

I used the methods discussed above to answer my research questions and they

served me well. However, these techniques were not very useful in deciding which

questions to answer in the first place. I find that we spend a disproportionate amount

time discussing how to answer questions without exploring how to find questions worthy

of answering in the first place.

This section offers a list of techniques I myself utilized to guide my research as

I progressed in my Ph.D., the grounding for which are my emotions and self-reflections.

The following is not necessary to understand the rest of the dissertation but aims to

give contextualizing insight into how my research questions emerged.
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3.2.1 Dissect Concepts

I initially, and thankfully very briefly, thought the job of a Game Designer

was to “minimize the failures” of a player. This belief was misguided [50], and even I

myself gravitated towards rather challenging games and failure was an important facet

of my play. Yet, I responded to some failures with invigorated enthusiasm, while others

left me feeling better bitter and had me walking away. The concept of failure couldn’t

differentiate the good failures from the bad ones.

Dissecting the concept of failure to create a more discriminative and useful

vocabulary lead to A Diagnostic Taxonomy of Failure in Videogames, which I expound

on in the next chapter of this dissertation.

3.2.2 Follow Frustration

I grew up playing real-time strategy games. One of my favourite memories is

my father excitedly showing me a newspaper article he had just read about how strategy

games increased intellect. This was in 2003, when I was eight years old. All this is to

say, when I started playing Dawn of War III [255] in 2017 I had more than a decade of

controlling armies in real time strategy games experience under my belt.

In order complete the tutorial level of Dawn of War, I had to move the camera

to a designated point of the map. The game told me how to accomplish this task through

six different means: middle of the screen as the primary objective, top left of the screen

as a reminder, bottom of the screen as an instruction, above the designated point as

the target, bottom right of the screen via the minimap. The overbearing tutorialization
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made me feel infantilized. I got frustrated and stopped playing the game.

I switched to playing Crusader Kings II [25], another game I recently had

purchased. It ended up being way too dense for me, and I couldn’t figure out how

to play it. The insufficient tutorialization made me feel helpless and stupid. I got

frustrated and stopped playing the game.

Following this sense of frustration to find a solution lead to Talin: A Framework

for Dynamic Tutorials Based on the Skill Atoms Theory, which I expound on in Chapter

5 of this dissertation.

3.2.3 Repurpose Techniques

I was finishing my undergraduate education when the 2013 paper Playing Atari

with Deep Reinforcement Learning [212] was published. “Game AI was solved!” or so

I thought at the time. I spent the next eight or so years being constantly impressed by

how powerful reinforcement learning was becoming. These techniques were capable of

beating DotA [307] and even Starcraft II [256] professionals!

Yet even though the number of e-sport athletes that AI agents could win

against was increasing steadily, there was a stark consistency in how ineffective these

agents were when it came to enhancing the gameplay experience of ordinary players. I

imagined reinforcement learning as a great source of energy just waiting to be channeled

in the right way. Even thought it didn’t end up being the silver bullet my undergraduate

self assumed it to be, this line of questioning ended up being productive.

In my paper “Repurpusing AI Surplus for Inclusivity” I focused on utilizing
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these gameplaying AI agents to serve the player experience. I expound on the main

concept of this paper in Chapter 7 of this dissertation.

3.2.4 Reify Theories

“A Diagnostic Taxonomy of Failure” and “Repurposing AI Surplus for In-

clusivity” are papers that contribute theories of what to do and how to do them. A

rather straightforward way to find research questions is by seeing whether the theories

proposed held water by operationalizing them through computational implementations.

One might argue that this is no different than the Computational Caricature research

method discussed in the previous section. However, I find the engineering challenges to

be a salient difference that can, in their own rights, produce research questions.

My projects that focused on reinforcement learning powered assistance meth-

ods were a direct reification of the “Re-purposing AI Surplus” paper. Implementing

a reinforcement learning powered assistance methods in a relatively realistic 3D game

engine showed me several limitations of the system that would have remained unknown

had I stayed in the computational caricature scale.

One example concerns the aesthetic style of reinforcement learning agents.

Carrying out my implementation not in a simplified 2D grid world, but rather in a more

realistic 3D environment showed me that a naive implementation of reinforcement learn-

ing agents will most likely not respect the aesthetic style of the given game. If interested

a further exploration of this idea can be found in “Designer Centered Reinforcement

Learning.” [56]
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In the following five chapters I will take a deep dive into the the individual

projects mentioned in this chapter.
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Chapter 4

A Diagnostic Taxonomy of Failure

Large portions of this chapter were published in the Foundations of Digi-
tal Games Conference 2020 under the paper title “A Diagnostic Taxonomy
of Failure for Videogames” [50]. This paper has been co-authored by my
advisor Adam M. Smith.

Failure in videogames is not desirable. A cursory look at several beloved

videogames is enough to challenge the previous blanket statement. From popular cult

classics such as the Dark Souls [55] franchise to the intentionally difficult and frustrating

games such as QWOP [119] and Getting Over It [120], many videogames are known to

explicitly invite failure. These games are enjoyed, even cherished, by many who play

them [5, 35]. When players fail in these challenging games, the failures are seen not as

a problem [273], but rather as a part of the game loop [31]. However, not every failure

is met with such enthusiasm, nor is every type of failure healthy [264, 9]. If a player

is failing because the on-screen text is too small for them to read, or because they do

not know the controls then there is a problem—no one is excited to face these types of

challenges. So, if some failures are welcome, whereas some are unwanted, and if some
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failures are opportunities to grow, whereas others make players feel helpless, how do we

know, articulate, and communicate these differences? In this chapter, we contribute a

diagnostic taxonomy to aid in answering these questions.

Players can fail in a variety of different ways while playing games. Failure

can be part of a game and might even be expected to occur naturally in the span

of a gameplay session. Failure might also be undesirable and necessitate a response

from either the game itself, in the form of a helping action, or from the game designer,

in the form of a design change. For example, in an analytical game such as chess,

we expect most of the exciting challenge of the game to revolve around the failure to

form effective plans (and counter plans or counter-counter plans). If a player is failing

because they made an ineffectual plan, this is par for the course and does not require

a response from neither the game system itself nor from the game designer. However,

if the players are constantly failing because the chess pieces are hard to grasp and keep

slipping from their hands then this asks for a better-designed chess set, as moving the

chess pieces around should not be where the challenge of chess lies. In the former failure

case, the player failed because they didn’t plan their moves correctly, which matches

the presumed design intent of chess. However, if the player fails at handling the chess

pieces this requires an intervention as this type of failure (dropping the pieces) does not

match the presumed design intent of chess.

Let us look at another example: Jenga [267]. Jenga is a game of physical skill

in which players take turns removing one block at a time from a tower constructed

of fifty four wooden blocks. Each block removed is then placed on top of the tower,
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creating a progressively taller and more unstable structure. In a game of Jenga, in

addition to your strategy of deciding which blocks to move, your ability to physically

manipulate the blocks also matters—maybe even more so! Contrary to chess, dropping

a game piece while performing an action is acceptable because the failure in removing

the block by dropping it–after having decided which block to move–matches what we

imagine to be the design intent of Jenga.

In chess, after having made a plan (deciding which piece to move), the act of

executing that plan should be seamless and should not pose any chance of failure, as it

would detract from the play experience. Whereas in Jenga, after having made a plan

(deciding which piece to remove), you can still fail at the act of executing that plan,

and that failure would not be jarring to the overall experience at all, as it is part of the

expected gameloop.

In our Jenga and chess examples, we outlined two similar types of failures

(failures that occur when physically handling a game piece) and described how the

consequences of those failures on the play experiences can be wildly different. This is

why we need to have terms to clearly differentiate the types of failures we want from

the types of failures we would rather avoid. In this chapter, we designate the failures

that support the design intent of a game as in-loop failures (referring to the ideas of

a game loop). The existence of in-loop failures is not detrimental to the enjoyment of

the game, and in many cases, this type of failure is the main component that makes

the game challenging and engaging. On the other hand, out-of-loop failures represents

the unintentional (from the designer’s side) failures that detract from the vision of the
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game and should therefore be minimized. To use our earlier example, dropping the chess

piece would be an out-of-loop failure whereas dropping the Jenga block (and the tower

with it!) would be an in-loop failure, even though they are both execution failures.

In Jenga, physical manipulation is a part of the intended challenge, whereas in chess

physical manipulation of the pieces is definitely not a part of the intended challenge.

In the context of videogames and this chapter, we use the term “failure” to

describe the inability to make progress towards the objective (or goal) suggested by the

game. It is important to note that just because the game is suggesting an objective, it

does not mean the players are going to play the game to accomplish that goal. However,

having this terminology will still help designers hone in on what the game is trying to

accomplish and if appropriate (such as when discussing creative sand-box games or

transgressive play [26]) can be extended to include player-set goals.

Currently, the videogame industry lacks any specific vocabulary to describe the

differences pertaining to failures that occur in videogames. This gap makes it difficult

to communicate which types of failures are desirable and which should be avoided,

especially because communication is one of the problems game development teams often

face [244]. This chapter proposes a taxonomy of failures to facilitate this differentiation

and increase specificity in communication. If we have a vocabulary that allows us to

describe how we, as game designers, are making our players fail, we can investigate

whether these failure instances match our design intent. We propose this Taxonomy of

Failure as a tool to help designers, critics, analysts, educators, and scholars be more

precise in their discussions of failures in videogames.
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We envision this taxonomy being used to:

1. describe what categories of failures are in-loop and which are out-of-loop in the

games we design, and

2. classify different instances of failures to better understand which are problematic

and should be reduced, and which are essential and should be fostered.

4.1 Failure in Games

Failure is an inherent component of games. In many cases, it is tailored to be

a big part of the whole experience—to the extent that McGonigal [207] claims players

spend most of their time failing. As such, the importance of failure has been a part of

the discourse surrounding games from several different angles. Juul [174] investigates

whether the presence of failure affects the enjoyment derived from playing videogames

and concludes that players create elaborate theories of failure as a source of enjoyment.

Further, in The Art of Failure, Juul [176] discusses the aesthetics of failure and argues

that it is a crucial aspect of what makes a game a game. Building on this foundation by

Juul, Roche describes the notion of “valid” failure[258], investigating the cases where

the game recognizes, either from a gameplay or a narrative perspective, that the player

has failed.

Another concept tightly related to failure is challenge. Adams, in Funda-

mentals of Game Design provides two broad categories of challenges: cognitive and

physical [31]. Thinking about what the challenge facing the player should be is another
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way to conceptualize and differentiate in-loop from out-of-loop failures. However, it is

important to note that these gameplay categorizations of challenge still struggle with

measuring difficulty [33] and does not cover all the different ways a player can fail.

Shifting our attention from challenge to failure allows us to engage our users on the

users’ terms, by exploring how the challenges we design are received by our players.

In Uncertainty in Games, Costikyan [91] discusses another aspect crucial to

failure: uncertainty. This discussion provides another perspective to describe in-loop

and out-of-loop failures. If the player expects high uncertainty in their actions, blunders

resulting from those specific moves are in-loop failures because the player acknowledges

the likelihood of failing. Out-of-loop failures are those in which the player does not

expect uncertainty. They do not foresee a potential of failure, and they are jarred if

failure does occur. This lens can be another way to reason about how in-loop and

out-of-loop failures affect the play experience.

Another angle to investigate failure is the aspect of learning and mastery.

Gee [136] describes good videogames as learning machines and explains that failing

and trying again makes failure central to learning and a part of the fun. Similarly, in

The Art of Computer Game Design [94] Crawford, and in A Theory of Fun for Game

Design [189], Koster, argues that fun, learning, and failing are intricately connected.

In their work exploring failures and breakthroughs [163] Iacovides et al. discuss rela-

tionships between learning and in game involvement. Learning and failure have been

connected to one another in other domains as well. Kapur introduces the concept of

productive failures [181] and shows the effectiveness and how to design for them [182].
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Productive failures are the notion of allowing people to fail while attempting to solve

complex problems. This kind of failure facilitates the understanding of the problem at

hand. It is easy to see the similarities between the good game design argued by Gee

and Koster, and the notion of productive failures introduced by Kapur. Anderson digs

into this connection by investigating how failure in games promotes learning [39], and

Kllevig investigates whether the game can play a role in changing a person’s relationship

to failure [178]. Desirable difficulty [63] is another theory that puts emphasis on un-

derstanding how people fail and —through the failure and difficulty— learn. Desirable

difficulty is concerned with matching the learner with the correct difficulty and chal-

lenge. In all these cases having a more precise language to specify and identify different

types of failures would help the clarity and communication of the ideas.

While the idea of learning is deemed to be important when it comes to enjoying

games, the tutorial levels meant to teach players how to play usually leave some things

to be desired—even though they have a significant effect on the rest of the game [38].

It is common for players to complain about the overprotective and cautious nature of

some in-game tutorials, especially complaining about how the tutorial robs the player

of a sense of discovery [250, 313] There has been some work in creating context-aware

tutorials [45] and adjusting the game difficulty to fit the player [158] but there is still

room for improvement. A taxonomy of failure can allow designers to decide when to

provide tutorials and where to let the player explore, which is essential in allowing games

to keep the sense of discovery and learning.

Another important benefit of being able to specify different types of failure is
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related to accessibility in games. There have been improvements when it comes to game

accessibility [126] and there are many resources that educate game designers on how

to make games more accessible such as the extensive Game Accessibility Guidelines [9].

There are still, however, many open research questions in this area. Being able to

classify failures will surface cases where the players are failing due to accessibility issues.

Classifying failures can also contribute to making games more accessible. Another use

for the taxonomy is Universal Design [290], a design approach that prioritizes removing

barriers to engagement with experiences. A taxonomy of failure can allow the designers

to be more precise in deciding which failures act as barriers to enjoyment (and so should

be removed) and which failures are essential for the game experiences (and so should

be preserved).

4.2 Taxonomy of Failure

Figure 4.1: The proposed model of how people play games, specialized for delineating
different types failure.
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In order to classify where people can fail while playing videogames we propose

a specific model of how people play videogames (shown in Fig. 8.1). Our model is

inspired by and builds upon Swink’s feedback loops [296], Sellers interactive loop [272]

and Don Norman’s conceptual models [231], and is adjusted to make delineating failure

classes more straightforward.

Building upon the aforementioned work, we claim that players have a model

of the game even before interacting with the game, created by their cultural knowledge,

previous game experiences, and the aesthetic and representational aspects that the game

is presenting [159]. The model consists of players understanding of the mechanics of

the game (what they can do in the game) and the goals communicated by the game

(what they should do in the game). Players then use this model to form a plan that

can be arbitrarily short or long, in an attempt to achieve the goals they have set for

themselves. Finally, the players attempt to execute this plan. Regardless of whether

the plan is successful or not, the feedback from the game allows the player to update

their mental model of the game and form a new plan.

However, in order to even engage in this model–plan–execute–update loop, the

players need to be able to encode their inputs to the system and decode the outputs

that are coming out of the game. Encoding input refers to the ability of the player to

engage with the game on the most elementary level, whether it is through pressing the

correct buttons, knowing which gestures to make on a touch screen, or being able to

voice the correct verbal commands, etc. Decoding output in this context refers to the

ability of the player to parse and understand the feedback of the game, whether it be
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visual, aural, tactile or otherwise.

The steps described in our model of how a player engages with a videogame

also represent the different classes of failures—points in our model where a failure can

occur.

4.2.1 Encoding Input → What physical action allows me to act in the

game?

Before one can truly start playing a game they need to be able to interact with

the game system itself. This class refers to the players’ knowledge of the control scheme

and the physical capability of using it. Is the player aware of the correct buttons to

press, the right gestures to make, or in general, the valid set of actions they can take to

interact with the system? More importantly, is the player physically capable of taking

those actions?

In-loop encoding input failure can arise in puzzle boxes or escape rooms, where

the challenge lies in actually figuring out the specific actions to get a response from the

system or the correct physical components to push and pull.

It is much more common, however, for failures in the encoding input class to

be out-of-loop. A simple example would be the player not knowing which buttons used

to play the game. A more serious encoding input failure is when a player can not use

a functionality due to a physical limitation. A recent example is when a player with

a physical disability loses the ability to play Civilization due to a change in the user

interface [13].
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4.2.2 Decoding Output → Can I parse the feedback of the game?

In addition to the ability of conveying input to the game one must also under-

stand what the game is saying in return. Decoding output refers to the player’s ability

to understand the information presented by the game, whether it be visual, aural, tactile

or through any other medium that the game is using.

Games that use decoding output as an in-loop class would be spot-the-difference

or hidden object games where the challenge lies in parsing a generally complicated scene,

a game where the player is trying to find differences between two images or games where

part of the challenge lies in overcoming the chaotic visuals[75]. Any game where the

challenge lies purely in perception can be considered to have decoding output as an

in-loop class.

Many out-of-loop examples in the decoding output class fall under accessibil-

ity issues: If the player can not differentiate enemies from allies due to their color-

blindness [138] and the game’s color scheme this is a decoding output failure. Further

examples would include not being able to read text on screen because of it being too

small [125], or not being able to understand the natural language that conveys crucial

information about the game.

Encoding Input and Decoding Output groups cover the fundamental re-

quirements for any player to give input to the system and receive clear feedback as an

output. Only after a baseline proficiency in these two classes are established can the

player start engaging with the game productively. It is important to note that many
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failures in these two classes stem from accessibility issues and it is crucial for game

designers to be aware of these cases.

4.2.3 Discovering Mechanics → Do I know what I can do in the game?

This class of failure refers to the player’s understanding of the game’s mechanics

and the set of available verbs offered to the player. In other words, does the player know

the capabilities of the tools that they are given?

If the game is about figuring out how different mechanics relate to one another

and finding creative ways of solving problems through emergent methods, that game

is using discovering mechanics as an in-loop-failure class. The joy in playing the game

comes from learning what the tools are, making the discovery of what the mechanics

are is part of the fun.

On the other hand if the players progression is halted because they could

not figure out how a specific lock-and-key style mechanic functions—whether it be not

realizing that bombs can blow open cracked walls, or the specifics of how levers and

pressure plates work in many adventure games (and the challenge lies in figuring out

where you should place the bombs and the order of pulling the levers, instead of figuring

out whether you can do those things)—then it is an out-of-loop failure in the discovering

mechanics class. Another example would be the player repeatedly getting defeated by a

specific type of enemy because they didn’t realize that a specific tool in their toolkit deals

more damage to that type of target. If the joy in the game is purely about mastery

over the mechanics, and not in uncovering what the mechanics are, then discovering
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mechanics is an out-of-loop failure.

To be more concrete, in rhythm based games such as Guitar Hero [149] or Tap

Tap Revenge [297], the available set of verbs is simple and should be well communicated,

and the joy in the game emerges from getting better at those verbs, not figuring out

what the verbs are. Whereas in Legend of Zelda, Breath of the Wild [229] understanding

how different systems of weather, conductivity, and temperature relate to another would

make discovering mechanics an in-loop class for that game.

This topic also comes up in design discussions that happen in the game in-

dustry. In the Noclip Podcast the game director of Doom Eternal [165], Hugo Martin,

describes why deciding whether to make game mechanics easy to discover or not is

important[2]:

[Doom Eternal gets really ] heavy-handed on the player education stuff, be-
cause we do not want to make learning [mechanics] part of the experience.
As you know in Sekiro, a lot of the [mechanics] are there to be discovered
and that’s a huge part of the experience. For us, I want to make it clear
as day. The fun of the game is not figuring [mechanics] out, the fun of the
game is mastering it.

4.2.4 Setting Goals → Do I know what I should accomplish in the

game?

Any moment a confused player asks “What am I trying to do here?” is a

failure instance belonging to the setting goals class. The setting the goal class refers to

the moments when the player does not know what to do to make effective progress in

the game, or what progress even means. In other words, as long as the player is clear

on what their goal is, the failure is not a setting goal failure.
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In many open world games figuring out where to go next and who to talk to

in order to move the story further is a part of the challenge and enjoyment. In these

cases it is acceptable for the player to not know exactly what the proper next step is.

The challenge and fun comes from discovering what comes next as well as exploring

the space of possible goals. In other games, there are several ways to achieve victory,

from conquering the world by force to becoming a diplomatic mastermind. In these

games deciding which objective to pursue, and sometimes prioritizing, is fun and, as

such, setting goals is an in-loop failure class as well.

In many games however the designers want their players to always know what

their next objective is. If at any point the player is questioning what they should do

next and if this questioning is not a part of the game’s design, then failures stemming

from this confusion are out-of-loop setting goal failures. This is a prominent issue with

confusing quest texts and cases where a non-player character shares what the player

should do next without recording that information anywhere permanent.

When the player does not know where to go and what to do next in open world

survival games, such as Subnautica [306], it is not a problem, since the design of the

game affords wandering around and setting goals through the experience of spending

time in the space. Whereas if a player does not know that the goal of Super Meat

Boy [299], an action-packed platformer, is to reach the end of the level, then this is

an out-of-loop failure! In Super Meat Boy the goal should be abundantly clear and the

challenge should not come from the player understanding what the goal of the level is,

but rather, the process to reach that goal.
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The Discovering Mechanics and Setting Goals classes together represent

a large portion of the mental model that the player uses to play the game. Players

create this model before even playing the game, and through the experience of playing

the game, this model is constantly updated. The player continually learns and improves

their understanding of what is possible in the game and what they should do next, by

forming plans, attempting to execute those plans, and updating their model based on

the result of their actions.

4.2.5 Planning → What steps should I take to accomplish my goals?

Planning is the player using their mental model of the game to decide what

they will do next, given the goals they have and their awareness of the game’s mechanics.

A plan might span just the next few actions if the game is a twitchy reflex game, or

a plan might be an elaborate battle strategy in a complex turn-based grand strategy

game. Failures that fall into this class include the failures that arise from making an

ineffectual plan and the failures at simply making a plan.

In many slow-paced turn-based games most of the fun arises in the plans the

player generates: Which piece to play in chess, which position to move a soldier next in

a turn-based tactics games or which route to take to the next level in a strategy game.

Any failure that arises from making the wrong plan would be an in-loop planning failure.

If a game is designed to be purely about fast reaction times, or repeated exe-

cutions and the player finds themselves making longer term plans (and failing at them)

this would be an example of an out-of-loop failure. To be more concrete, imagine a game

49



where the designer’s intent is to have levels that can be progressed with any loadout

that the player chooses. If there exists a scenario that a player is left unable to progress

due to picking the wrong loadout (a long term plan they made at the start of the level)

then this does not match the outlined design intent of the game. This hypothetical

scenario is an example of how the Taxonomy of Failure could be used to validate and

maintain the design intentions of a game while designing its experience.

4.2.6 Execution → Was I successful in following the steps in my plan?

Execution is the ability to implement the plan formed by the player. There is

a failure in this class whenever a player flops and does not succeed in something they

had planned to do.

Any game where dexterity is intended to play a role most likely has execution

as an in-loop failure class. Whenever the player misses the next platform by a pixel

because they jumped one moment too late, or they could not play the correct notes to

the beat, or they parry one moment to soon and lose their last life, they are experiencing

an in-loop execution failure.

If the game is not testing the players ability to execute those plans and instead

tests the formation of plans, any failure in execution would be an out-of-loop failure. If

a player miss-clicks and sends their armies to the wrong tile on a hex-based strategy

game, if a player clicks on the wrong verb in an interactive narrative or if a player is

forced to play a chess piece touched by accident due to the touch-move rule and as a

result loses the game, they suffered an out-of-loop execution failure.
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It is important to discuss the difference between failures in execution versus

failures in encoding input as they might seem similar. The encoding input class refers

to the players knowledge about the means in which they can act in the game. Does the

player know what actions to take to act in the game and are they generally physically

capable of taking those actions? Whereas Execution refers to their moment to moment

success in taking those actions in the correct time and order. The ability to press a

button does not directly correlate to one’s accuracy of pressing it at the right time - an

example of execution failure. However if you have a physical limitation that prohibits

you from comfortably pressing the button at all then that is an encoding input failure.

In this section we have described the six categories of failure that exist in the

Taxonomy of Failure:

• Encoding Input: What physical action will allow me to act in the game?

• Decoding Output: Can I parse the feedback of the game?

• Discovering Mechanics: Do I know what I can do in the game?

• Setting Goals: Do I know what I should accomplish in the game?

• Planning: What steps should I take to accomplish my goals?

• Execution: Was I successful in taking the steps in my plan?
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4.3 Classifying Games

Why is this classification useful? One way we can use the Taxonomy of Failure

is to classify games by designating which of the classes of failures are in-loop and which

classes of failures are out-of-loop. This classification allows us to look at games we are

interested in through another perspective, complementing other ways of understanding

games.

If we are in the process of designing a videogame then we can use the taxonomy

to act as a map in describing where we want the challenge to exist. This description

can be helpful in evaluating the design decisions we come across as the development

process continues by ensuring failures happen in the in-loop classes, and failures in the

out-of-loop classes are minimized.

Additionally, the Taxonomy of Failure might prove useful when we are trying

to understand games that already exist. After classifying the games that interest us, we

can look at how these games actually guide their players away from out-of-loop failures

and towards in-loop failures.

Altough we believe the taxonomy to be useful, it is important to be aware

of the limitations. An overemphasis on using the taxonomy during the initial phases

of design might pigeon hole the game into a certain idea, and might cause interesting

insights to slip by. It is important to be flexible and try to truly understand what makes

the game fun! If you observe that your players are enjoying failing in categories you

designated as out-of-loop failures then it might be valuable to reevaluate your initial
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classifications.

4.3.1 Super Mario Bros

Let us look at this process through a few examples. We start with Super

Mario Bros [228] (referred to as SMB from here on out). We claim SMB is a game

about mastering how to move in a world filled with spikes, piranha plants and hazardous

landscapes. Given this observation, the in-loop classes are planning and execution

and any failure outside of those two classes are out-of-loop failures.

Figure 4.2: The proposed in-loop (green) and out-of-loop (red) failure classes of Super
Mario Bros.

We can start by digging into the in-loop failure classes of SMB. What is the

main challenge in SMB? First, the player needs to decide which path to take through

the obstacles. Is the player going to jump on the goombas, or will they try to dodge

them by running on the platforms above? There are many paths in the game that are

viable, but there are also many which lead to certain doom. If the player takes a leap of

faith and, after falling into the pit, realizes that jumping is not possible, it is not a big
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problem. They will just take the other route the next time. They conducted a plan to

make the jump and executed the plan but the plan was flawed. Thus the player failed,

but this sequence was not problematic because planning in SMB is an in-loop failure

class. (shown in Fig. 4.2)

After making a plan in SMB, the player actually has to be able to implement

that plan. It is one thing to think, “I am going to jump over the goomba, dodge the

fireball, and vault over the piranha plant” and another to actually be able to do it!

Either way though, if the player is not successful in their execution, they can always

try again and no player is expected to successfully execute their plans on their first try,

or with have a 100% success rate. When Mario dies there is a relatively short respawn

time, and this supports our analysis that players are indeed expected to die several

times in each gameplay session. These factors make execution also an in-loop failure

class.

Now, we can also look at the out-of-loop classes and see how games attempt to

steer the players from failing at those classes. Let us start by investigating the encoding

input class. When we actually look at the hardware design, we see that the Nintendo

Entertainment System controller (Fig. 4.3) has very few buttons, so just by looking at

the controller the player can gauge how to give input to the system. Consider playing

SMB on an emulator on a modern computer. If the player does not know which of the

myriad keyboard buttons actually map to the initial NES controller buttons, then they

can spend several minutes trying to figure out what hardware buttons to press, that

would be a good example of an encoding input class of failure.
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Figure 4.3: The NES controller with no redundancy and a clear way to engage each
button. Image from public domain Wikipedia, owned by Evan-Amos.

When it comes to decoding output, most Mario levels are not about trying

to figure out where the obstacles are; rather, they are about avoiding them. Whether

it be because of the color palette limitations of the day, or by intentional design (and

realistically, a combination of both factors), obstacles in Mario are mostly easily dis-

cernable, and in many cases deaths are not caused because the player does not see the

enemies coming. Even if that ends up being the case, the non-random nature of lev-

els indicates that the designers were comfortable with the players knowing where the

hazards were before trying to navigate through them.

In updating the player’s mental model, the first level of Mario (Fig 4.4) does

a lot of heavy lifting. The way Mario is positioned when the game initially starts, and

how the camera moves in relation to Mario all support the idea that Mario should go

towards the right. Furthermore, the first few minutes of the game, with the goomba
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Figure 4.4: The starting area of the first level (1-1) of Super Mario Bros. Image taken
from Video Game Level Corpus [293].

appearing (and not letting the player continue onwards until they demonstrate they can

jump), the specific placement of the question mark tiles with power-ups, and the varying

height pipes, teach most if not all the mechanics the player has to know to be effective

at the game. If needed, a more detailed breakdown of Mario 1-1 can be found elsewhere

[113]. Just within minutes the player knows what they can do and what they should

do in the game respectively ensuring that no one is failing in discovering mechanics

or setting goals. Miyamoto himself says, “So even within that one section we knew

that the player would understand the general concept of what Mario is supposed to be

and what the game is about” [112]. This gradual learning curve that starts at Mario

1-1 and continues throughout the game because Mario is not a game about the player

exploring how complicated and varied systems interact with each other or figuring out

where to go; rather it is about making a plan and executing it.

One might argue that when a speedrunner is trying to finishMario in under five

minutes, they are effectively exploring the ways of going faster and, as such, uncovering

the hidden (and in this case potentially unintentional) mechanics becomes a part of the
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fun, making discovering mechanics an in-loop failure class. This argument goes to

show that these types of generalizations using the framework run the risk of assuming

the entire game audience engages with the game in an identical way. When using the

taxonomy, care must be given to understanding different styles of games that any game

can support, which might create several different in-loop and out-of-loop failure classes

for each play style and player segment.

4.3.2 Sid Meier’s Civilization

Figure 4.5: The proposed in-loop (green) and out-of-loop (red) failure classes of Civi-
lization games.

Another game we can look at is Sid Meier’s Civilization (shown in Fig 4.5)

series [117]. Similar to SMB both encoding input and decoding output are out-

of-loop failure classes. In Civilization figuring out which buttons to press and visually

identifying what is going on the screen should not be challenging.

When it comes to discovering mechanics, most Civilization-like games, we

claim, expect you to learn the rules of the system and then try to be successful within
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those bounds. The joy does not come from exploring whether hammers help you build

armies faster, or whether apples allow you to grow your cities— these are elementary

building blocks of the game that the player is expected to utilize. If the player has

difficulty grasping these concepts there is a problem and the game has aggressive in

game advisors to ensure that this rarely happens. Thus discovering mechanics for

Civilization is an out-of-loop failure class.

The main bulk of the challenge comes from the player making both long and

short term plans to decide how to move their units, what buildings to construct, how

to conduct diplomacy and what policies to enact. If the player loses the game, it is

expected that this is due to making a series of bad decision, which means that this

style of loss is within the gameloop. Thus planning is an in-loop failure class for the

Civilization series.

Following from this is the execution class. Unlike SMB, after having com-

pleted the plan, there should be no difficulty in actually implementing that plan. If

the player has decided to build a granary, pressing the buttons to do so should be sim-

ple. Similarly if the player has decided to invade the neighboring city giving the order

should be trivial. If the player fails to finish the granary because the city falls to enemy

hands, or the invading army is defeated by the city’s defenders, these are not execu-

tion failures—the orders were given and executed properly. Rather, they were planning

failures, since the plans were not formed effectively which, as discussed above is not

problematic. Therefore, this goes to show that in Civilization execution is definitely

an out-of-loop failure class.
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Figure 4.6: The screenshot displaying a gameplay scene of the turn based strategy game
Civilization VI [117]

Different from SMB however, is the setting goals class. In SMB, the goal is

to reach the right side of the screen and that is closely attached to victory. However in

Civilization there are several ways of achieving victory. You can conquer all the capital

cities of your enemies, you can talk your way into becoming a world leader or you can

win the space race. Deciding on the victory conditions of the player’s goal is a part

of the fun. If the player fails at a given playthrough because they did not alighn their

goal with the strengths of their nation this is not a problem, because they can learn

from their mistakes and try again. As such, setting goals is an in-loop failure class for

Civilization, and not an in-loop class for Super Mario where the only option is to go

right (ignoring transgressive methods of engaging with the game).
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4.3.3 Legend of Zelda: Breath of the Wild

Figure 4.7: The proposed in-loop (green) and out-of-loop (red) failure classes of The
Legend of Zelda: Breath of the Wild.

Similar to our earlier examples encoding input and decoding output are

out-of-loop failure classes in Legend of Zelda: Breath of The Wild [229] (referred to

BoTW from here on out). This game is not about figuring out which buttons to

press or parsing the screen; rather, it is about, deciding what to do in an open-world,

discovering how the game systems interact with one another and fighting different types

of enemy characters.

Unlike the previously mentioned games however, a big portion of the fun when

it comes to playing BoTW comes from gradually learning how the different systems of

the game interact with one another. Initially, the player can figure out that wooden

weapons catch on fire when held close to a firepit, which can lead to the realization that

the shrubbery too is flammable. This understanding culminates in the player figuring

out that the fire creates an air current they can hijack to gain some altitude using
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their paraglider (shown in Fig.4.8). Sequences like these in which the player discovers

how primitive pieces interact and create emergent experiences contribute to what makes

playing BoTW engaging. If the player fails because they perished in the forest fire they

just created—showing that they failed because they didn’t understand the mechanic

previously– this is not a (design) problem. Nor it is a problem if the player has their

progress halted while they play around discovering what tools they have to solve the

puzzle they just encountered. Thus discovering mechanics is an in-loop class for BotW.

Figure 4.8: The screenshot displaying Link from Breath of The Wild [229] using the
updraft created by fire to glide upwards.

When it comes to setting goals, most open world games have an in-loop class

and BoTW is no exception. The player is given the overarching victory condition of

defeating Ganon in his castle. The player can set his sights on that goal directly, or

the player can decide to have their goal be becoming more powerful by recruiting other
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characters or finishing different storylines—all these goals are supported by the base

game. If the player fails to defeat the boss because they set their sights on defeating

him too early before accomplishing other goals this is not game breaking failure. The

player is allowed to change and readjust their goals and try again later.

Planning and execution are also in-loop failures as with many other action

games. When the player is in combat or climbing a rocky mountain, they first need

to plot the actions they want to take and then successfully execute those actions. If

they fail because they made the wrong plan—miscalculating how much stamina they

would need to climb the hill and slipping down—or because they didn’t execute their

plan correctly—missing their bow shot and failing to take down the enemy from afar,

thereby becoming overwhelmed—the play experience is not hampered and the player

can respawn and try again, updating their model with their newfound experience.

4.3.4 Where’s Waldo?

Figure 4.9: The proposed in-loop (green) and out-of-loop (red) failure classes of Where’s
Waldo? The Fantastic Journey.
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We would like to conclude this section with an unorthodox game, Where’s

Waldo? The Fantastic Journey [201] (seen in Fig. 4.10). Although, we argued that

in most cases encoding input and decoding output is an out-of-loop failure class,

this does not always have to be the case. The only manner in which a player should

fail while playing Where’s Waldo should be in finding Waldo, and as such decoding

output is an in-loop failure class in this case. (Fig. 4.9) The player should know what

their goals are, what they could do and which buttons they should press. After spotting

Waldo, the rest should pose no difficulty, and as such, all other classes for this game are

out-of-loop failure classes.

4.4 Classifying Instances of Failures

So far, we have been classifying games, but another use case of the Taxonomy

of Failure is to classify instances of failure. We defined failure as “inability to make

progress towards the objective suggested by the game” earlier in the chapter. For many

games this might be an explicit “Game Over“ screen with a call for the player to try

again, but for others it might take the form of a temporary setback. What exactly is

going to be classified as an “instance of failure” will once again depend on the specifics

of the game and the context in which the taxonomy is being used.

We would go through the trouble of classifying how our players are failing if

this process would help us identify whether a design change is necessary or not. If we

keep observing that the players are failing in a specific out-of-loop failure category, we
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Figure 4.10: A gameplay scene from Where’s Waldo? The Fantastic Journey [201]. Can
you spot Waldo?

can use this to inform our decisions as to what changes to make.

Another capability that is of interest to both industry [61] and researchers is

player modeling [315]. In most approaches to player modeling the player failures are

not differentiated, if represented at all [154]. Given that player response to different

types of failures vary, we expect discriminating different types of failure to be useful for

downstream applications.

But is the granularity of the Taxonomy of Failure enough to be a useful tool

64



in the design process? One might argue that there can be cases where two failures of

the same class might have opposing impacts on the player; even though they are in the

same class, one failure might be in-loop and another might be out-of-loop.

A simple example of this is repeated failures. The first time the player misses

a difficult jump is fine. Perhaps the first five times it is fine, maybe the first fifty.

But for many games there becomes a point in which even an in-loop failure can become

frustrating and detrimental to the intended play experience. In those cases, the first few

failures of the execution class are possibly in-loop, and the latter cases are out-of-loop.

Another example of this comes in the form of specific mechanical interactions.

We argued that in many cases failures in decoding input are out-of-loop failures related

to accessibility. However, consider the flashbangs in many first-person shooters or the

screen obscuring attacks in Super Smash Bros [227] and other party games. Suddenly,

if a player fails as they could not decode the screen because it was visually washed out,

it is once again acceptable.

To account for these type of particular cases, in practice, it is valuable to

extend the Taxonomy of Failure by considering instances of failures specific to the game

one is working on. Going back to our earlier example, in Super Smash Bros. decoding

output might be deemed an out-of-loop failure class, but underneath the decoding

output class, the specific instance of “failure due to screen obstruction mechanic” would

be designated as an in-loop failure instance. The provided Taxonomy of Failure does

not come with this level of specific instances by default— we believe that for most

games, many of the provided instances would be invalid, and it is better to construct

65



this layer for each game individually. As such, we suggest expanding the taxonomy for

the game one is interested in more deeply exploring, by describing the concrete ways

how a player can fail in that game. This exercise allows the designers to be more specific

when needed, and we also believe that the sole act of outlining the possible failure cases

in a game one is designing to be a fruitful activity. Examples of specific failure instances

can be seen in Fig. 4.11.

Figure 4.11: The extended Taxonomy of Failure with a series of potential extensions
shown.

When it comes to using the Taxonomy of Failure in practice, one cannot simply

halt the playtest and ask why the player failed after a loss of health points. While it

is possible for the designer of the game to guess what is happening, that would still be

a guess. A possible way to alleviate this problem is to record the play session and if

time permits, go over the failures with the player and work with them to annotate the
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failures.

Conclusion

In this chapter I described why it is important to delineate between different

types of failures and we offered the Taxonomy of Failure with the six classes of failures

to facilitate doing so:

• Encoding Input: What physical action will allow me to act in the game?

• Decoding Output: Can I parse the feedback of the game?

• Discovering Mechanics: Do I know what I can do in the game?

• Setting Goals: Do I know what I should accomplish in the game?

• Planning: What steps should I take to accomplish my goals?

• Execution: Was I successful in taking the steps in my plan?

Further, I discussed how classifying a game using this terminology can be useful

for both developing and analyzing games: How, for each given game, each class can be

described as in-loop or out-of-loop. That is to say whether the described class of failure

is expected in the game loop or is to be avoided.

I also described how analyzing a game using the Taxonomy of Failure can offer

insights into the analysis and critique of the given game and also offer another metric in

deciding which design changes are appropriate given the expected players and the state
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of the game. Our hope is that after reading this chapter the reader’s relationship with

failure in their favorite games has changed ever so slightly.

The Taxonomy of Failure plays a foundational role in defining the goals of the

computational prototypes described later in this dissertation. Each prototype focuses on

tackling specific failure classes. These projects contain both player-facing and developer

facing interventions. While player-facing interventions attempt to directly assist the

players, the developer facing interventions support the game creators in supporting

their players.

• Talin project, discussed in Chapter 5, tackles theDiscovering Mechanics failure

class by aiding developers create more responsive tutorials.

• SMES project, discussed in Chapter 6, converts Execution challenges to Plan-

ning challenges by allowing players to manipulate their playtraces.

• Nav Assist project, discussed in Chapter 8, supports players navigation in both

Execution and Planning failure classes. This projects offers both player-facing

assistance methods and also a developer-facing framework for future developers

to design their own assistance methods.
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Chapter 5

Talin: Dynamic Tutorials Based on the

Skill Atoms Theory

Figure 5.1: Talin assisting players in the Discover Mechanics failure class.

Large portions of this chapter was published in the AIIDE 2018 under the
paper title “Talin: Dynamic Tutorials Based on the Skill Atoms Theory” [45]
which was co-authored by my peer graduate students Isaac Karth, Jesse
Harder and my advisor Adam M. Smith.
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The opening minutes of any video game, which often take the form of a tutorial

level, are extremely crucial. It is critical that the tutorial captures the attention of the

player and teaches them how to read the game’s visual interface and usefully act in the

game world. If the pace of this initial level is either too slow or too fast the player loses

interest: tutorials have a major impact on player progress for games with unfamiliar

mechanics, particularly when the tutorials are context-sensitive. At the same time,

tutorials can be detrimental in games where players are already familiar with the genre

[38]. Therefore, it is in the designers’ interest to have tutorials that can provide context-

sensitive help when the player is unfamiliar with the game but also completely disappear

when the player is comfortable.

Building on top of the Taxonomy of Failure, in this chapter I introduce the

Talin framework,1 to help designers implement adaptive tutorials without the need

of any programming skills. Tutorials built with our framework continuously monitor

evidence of player skills and act in the game world to give targeted feedback just where

needed. Talin supports the players in the Discovering Mechanics failure class discussed

in Chapter 4.

Not everyone requires an explanation of equivalent depth when it comes to

learning new game concepts – not every player has identical gaming literacy. An expe-

rienced player will complain if the game locks away the interesting parts behind a series

of simple tasks, such as camera control lessons, whereas a person new to video games

will feel lost if not enough time is spent teaching the very basics. Rather than binning

1https://github.com/batu/talin
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players into coarse classes (e.g. newbie versus expert) or projecting them onto a single

axis of skill, Talin-supported tutorials can distinguish players along many dimensions,

supporting players with distinct constellations of previous experience.

Meanwhile, in many video games, the tutorial is not integrated into the whole

experience but rather exists only in the first few levels, or pops into view whenever a

new mechanic is introduced. This front-loaded structure makes it difficult for players to

remember the components of the game if they ever take a break or if a friend who was

just watching the earlier interaction grabs the controls later on. When a player returns

to any game after a hiatus, the natural instinct is to pick the game up from where they

left off. In most cases this means they will spend some time trying to remember how

to interact with the system, making very little progress. In severe cases, they will have

to go back and replay the tutorial levels they already completed to bring themselves up

to speed. Neither of these circumstances are desirable. Talin-supported tutorials can

allow tutorial content to be sprinkled throughout a game’s level progression (or even

baked into the behavior of common level design elements) with the knowledge that it

will only be seen by players who need to see it.

Even if the player does not take a break, it is difficult to gauge the player’s

understanding of the more complicated concepts. The game designers have to expertly

craft their levels to ensure the desired progression is accurately reflected in the player’s

experience. In most cases, the system has no explicit feedback acting as a model of a

player’s mastery over the skills, which makes it impossible to give personalized help.

The designers have to work with a one-design-fits-all structure which inevitably loses
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some players through the cracks.

The Talin system provides a solution to these problems by offering a new way

of designing tutorials and making it seamless for any designer to implement. The system

achieves this by operationalizing Dan Cook’s skill atoms theory to build a mastery model

representing the player’s current understanding of the game. The mastery model can

be queried to decide which information the player is lacking at any given moment.

On the high level, the way the system tracks the user’s skill mastery is as fol-

lows: The designer defines what skill atoms need to be tracked, for example attacking

breakable doors. The skill mastery for each skill is represented as a scalar.2 Then the

designer adds a detector to the breakable door object. The detector activates whenever

the player is detected by the detector, in this case, when the player is near a break-

able door. The detector will then decide how to adjust the skill mastery value, either

increasing it or decreasing it. If the player is near a breakable door but they are not

breaking the door, the skill mastery value will decay. If the player attacks the breakable

door, the skill will be considered exercised and the value will increase. The designer can

decide to react to the player based on the value of the skill mastery value by activating

predetermined hints. For example, if the skill mastery value is below a threshold, the

breakable door might start shimmering as a form of a subtle hint. If the value decays

even further, a textual pop-up might appear reminding the button press for attacking.

Through the combination of skill atoms (keeping track of individual proficiencies), de-

tectors (understanding when a skill is relevant) and hints (the way the game responds)

2The designer may interpret a value between 0 and 1 as a probability that the player has mastered
a given skill, but the framework does not enforce this interpretation.
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designers track and respond to individual players.

We built the Talin framework as a Unity asset and focused extensively on

usability and expandability. Skill atoms, detectors, and hints can be configured using the

engine’s graphical editor and placed into useful locations in the 2D/3D scenes of a game.

We understand that, in most cases, video game tutorials are designed and implemented

by game designers who are not proficient programmers. In order to ensure the tool

is accessible and easily introduced into the workflow, we structured Talin to require

no programming expertise. We also ensured that the framework is easily extensible

if a developer with expertise wants to use the system for more specialized purposes

(such as game-specific detector logic). Later in this chapter, we walk through a no-

code implementation of dynamic tutorialization for the Unity-provided 2D Game Kit3

example game.

This chapter operationalizes Daniel Cook’s skill atom theory into a designer-

friendly tool. With the Talin framework we hope to streamline the process of making

personalized tutorials for game designers and developers alike. The addition of this type

of adaptive tutorials should increase the player retention rate as every player could get a

tutorial tailored to fit their knowledge level. Adaptive tutorials will also help designers

ensure that the player is effectively utilizing all the tools they have created. Overall,

we believe this framework can greatly improve the process of authoring personalized

tutorials and help create better game experiences.

3https://unity3d.com/learn/tutorials/s/2d-game-kit
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5.1 Defining the Tutorial

We use the definition and categorization of Darran Jamieson, mainly because

it has been picked up by some of the academic work we will be discussing.

Jamieson discusses four different ways games teach players how to play. [169]

Non interactive in-game tutorials, interactive in-game tutorials, background tutorials

and no tutorials. We will start by going over the definitions and leave the analysis until

later.

Non-interactive in-game tutorials are usually displayed in a written form where

the player has to read the instructions and learn what to do. Worse cases the player

might face an image of a controller and a keyboard with each of the buttons annotated

with the in-game action it activates.

Interactive in-game tutorials, instead of just describing what buttons to press,

actually requires the player to do so. In most cases the progress is prevented until the

player performs the actions that the tutorials are asking them to.

When a game embeds the tutorial text into the game environment it is referred

to as background tutorial. While the player can not engage with the tutorial itself,

the player is still in the game world and can play the game freely. Contrary to the

interactive tutorial however, the player is not asked to accomplish any explicit task and

more importantly the player progress is not artificially gated.

Finally, the no tutorial category refers to games where there is no explicit tuto-

rial but rather the player is asked to learn the game through identifying the affordances
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and exploring the space of actions.

When we look at other articles in the wild we can see almost identical classi-

fications [292] Unfortunately however this categorization leaves several obvious gaps in

our understanding of what a tutorial is. First, this completely ignores any learning that

takes place outside of the game, both through official (game handbook, marketing) and

unofficial means (friends, walkthroughs and let’s play). Second, there is no distinction

between “No Tutorial” meaning there is no intention in how the game elements are in-

troduced versus, “No tutorial” referring to a very intentionally crafted experience that

doesn’t use words to explain the mechanics. For a specific example of an intentionally

crafted experience you can refer to Anna Anthropy’s breakdown of the opening sequence

of Super Mario Bros. [42]

Green et al. in their work [142] regarding generation of tutorials don’t explicitly

create a classification but highlight three common types: Teaching using instructions,

teaching using examples [through non-player characters], teaching using a carefully de-

signed experience. The former type is similar to the categories of Jamieson in regards

to static instructions and the latter is pointing at the muddiness of “no tutorial” classi-

fication. Jamiesson’s classification would categorize “teaching through examples” as a

background tutorial, as it would be in the game, yet wouldn’t be blocking progress.

Andersen et al. instead of categorizing tutorials directly, the authors offer four

features to describe the salient aspects of any given tutorial [38]. The first feature is Tu-

torial presence which simply describes whether the game provides a tutorial to its players

or not. The second feature, Context-sensitivity describes whether the suggestions are

75



delivered within the application context or not. Third feature is called Freedom. This is

the degree to which tutorials force the users to perform the mechanics being described.

The final feature is availability of help which refers to whether the player can access the

documentation on demand. We are going to come back to Andersen to delve deeper

into this work.

So far we can see that there is no agreed upon way of understanding what a

tutorial is and what combinatorial features can be used to describe them. Both Green

et. al and Andersen et al. focus on other facets of tutorials rather than giving a

throughout categorization. When it comes to industry, there is also no agreed upon,

exact definition. This presents an opportunity for further research.

5.2 Measuring the Importance of the First Hour

It is important for both academics and practitioners to deepen their under-

standing of tutorials because they create the first impression the player has of the game,

and it heavily influences whether the player wants to keep playing or not. Furthermore

analysis around tutorials shows that there is a difference between how learning in games

researchers and those who are more entrenched in game design look at learning in games.

Gee’s claims always approach games as a whole and do not differentiate between a tuto-

rial level, and the rest [131]. For Gee, all of the game is “a learning machine.” Whereas

the research surrounding tutorials, by definition, is concerned with only a small part of

the game. Then the question rises, is it warranted for us to reduce our scope of our
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research from the whole game to only the tutorial? I claim that due to the immense

impact the first hour has on the whole play experience, the reduction in scope is justi-

fied, and even productive. This is one of the first differences between learning in games

research and tutorial research. In order to justify my claim in the following section I

will deeply look into research that discusses how impactful the first hour is, in informing

the overall player experience:

Cheung et. al [80] tries to answer exactly how important the first impressions

of a game are. They analyse over 200 game reviews and interview industry professionals

to understand what aspects of the initial play session is relevant to keep players engaged,

and whether the first play session is important at all.

The authors collect 35 reviews from a variety of gaming websites and 212

reviews from amazon, in 30 different game genres. They decided to study Xbox 360

games due to the “popularity of the console and because of similarities across all first

hour experiences such as a common hardware specification. “–and potentially because

this research team’s host organization Microsoft, is affiliated with the brand Xbox, but

this is pure conjecture on my part. These 212 amazon reviews were selected using a

sampling of search terms that indicated the play session was constrained to roughly the

“first hour”. In addition to the reviews they also interview 3 game designers, two game

testers and one user researcher with over 100 years experience between them.

Through the qualitative analysis the authors discover a common experience

arc that takes place within the first hour: Expectations → Experience → Outcomes.

Unsurprisingly players come to the game not as a blank slate but filled with expectations,
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whether it be through reviews, previous experience or influence of friends. One novel

finding is that often, the expectation is a very concrete moment or action in the game

and it is usually infeasible for players to reach that point in one go.

While discussing experience the authors first distinguish positive and negative

experiences but go further to also distinguish experiences that satisfy a player versus

those that intrigue them. The players who are intrigued express further interest in

playing the game. In tagging the authors separate satisfying and intriguing moments

using the terminology memorable and engaging. Memorable moments are those that

conjure fleeting expressions of awe to the events on screen, whereas engaging moments

are accompanied by an enthusiasm for more.

On the flipside the negative experiences also have seperate delineations: an-

noyances, frustrations and tedium. Annoyances are “small negative experiences for

gamers such as music, sound effects, or glitches in the camera view of a game” and are

considered individually dismissable as long as the frequency of these are kept low. Frus-

trations on the other hand are “acute, immediately causing players to consider quitting:

being unable to play a game because of hours of patching are required, an unbeatable

first level, and terrible controls.” and evoke an immediate disengaging response from

the player. Finally, tedium refers to cases where the player gets bored by doing the

same types of events, and might indicate that the player has exhausted the value of the

game.

When it comes to the outcome step of the first hour arc, the authors contribute

two terms: Abandonments and Holdouts. Abandonment is the reasons (whether grad-
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ually or abruptly) that causes the player to stop playing the game. Whereas holdouts

are the inverse, these are the reasons that keep the players engaged even if the rest of

the game isn’t up to their liking. Holdouts could be the earlier mentioned anticipated

elements, a single game mechanic or a good narrative.

The authors then move on to the learning aspect of the first hour experience.

They state that every game has to be learned on the elementary level, but furthermore,

that designers have a clear vision of how the game is supposed to be played–the first

hour is also tasked with teaching the player this ideal way. Towards this end the authors

identify two challenges: Pitfalls and Tradeoffs.

Pitfalls are when a player misses a key detail in learning about the game, and

as such abandons the game. One example of this is a player abandoning a game due to

unskippable cutscenes. In reality, in said games the cutscenes were skippable, but the

game hadn’t made that clear enough to the players.

Tradeoffs refer to the tension between clear directions and a freedom to explore.

The analysis shows that when directions are missing players feel frustrated. “Finally

after running everywhere, I see there’s a hallway up above the room with no access to

it for anyone who can’t fly. . . . Not seeing it made me feel stupid. I don’t like it when

games make me feel stupid.” On the other hand, the authors claim that when the game

is too restrictive and doesn’t allow for self exploration the players feel frustrated as well.

The authors affirm the importance of the first hour but suggest an unorthodox

direction for development. The claim is that “intrigue trumps enjoyment” and the first

phases of the games should be primarily concerned with building intrigue with engaging
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moments instead of evoking fleeting fun with memorable moments. They argue that this

is valid as they categorize the players to be looking for the central purpose of the game

in the first hour, rather than engaging with the game properly. In the tension between

too much and too little hand holding, the authors take the side of more structure that

hints to the depth of the game.

The team concludes the paper by stating the need for more research in the

first hour. While this paper is not explicitly focusing on tutorials and learning, it is

clear that some of the questions they raise pertain directly to these areas and add to

our understanding that tutorials in games, combined with a deeper understanding of

learning, is a valuable area of research.

5.3 Effects of Tutorials

Hopefully the findings of the previous section have justified focusing on tuto-

rials. Let us go back to Andersen’s work and keep investigating their findings. This

will help us understand whether the findings in this domain parallel those in learning in

games. In their paper they aim to understand the impact of different types of tutorials

(as described above) on games of varying complexity. As such, in their study they use

games with different levels of difficulty: Hello Worlds a puzzle platformer which doesn’t

stray away from the genre conventions, Refraction, a slightly more complicated educa-

tion game that is used to teach fractions, and finally Fold It a game which doesn’t easily

fit into any genre and other traditional modes of play. None of these games are isolated
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to lab experiments, and each of them has been released into the wild accruing hundreds

of thousands of game players which makes the overall study much more credible.

The papers outlines four hypotheses regarding tutorial design, one for each of

the features they are testings:

1. Games with tutorials will exhibit better player engagement and retention than

games without tutorials.

2. Tutorials that present instructions in context will be more effective than tutorials

that present information out of context.

3. Tutorials that restrict player freedom improve engagement and retention.

4. Having on-demand access to help improves player retention.

The paper measures engagement in three ways. First they count the number

of unique levels each player completes. Second, they calculate the total length of time

and finally they measure the return rate which is defined as the number of times players

restart the game. Because they did not have access to the individual participants–the

players are engaging with the game in the wild, not in a lab setting– the quantitative

engagement metrics were used to evaluate the effectiveness of the tutorials.

After testing with eight different treatments and over 40.000 players, their

findings are as follows: “Tutorials were only justified in the most complex game.” In

Refraction and Hello Worlds, the lower and medium complexity games, the tutorials had

no significant difference in engagement of the players, however, in Fold It the presence

of the tutorial increased the levels played by 75%.
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Context-sensitivity can improve engagement. In Fold-it context sensitivity

played 40% more levels, yet in the other two games there were not significant positive

effects. Tutorial freedom did not affect player behavior, in any of the games. To explain

the situation the authors hypothesized that the fact that people don’t enjoy being

restricted might cancel out any positive benefit of focusing the players’ attention.

On-demand help harmed and helped player retention. In Fold-it the effects

were positive, with a %12 percent increase in playtime. However, in refraction the

players with the on-demand help completed 12% fewer levers and played for 15% less

time. The results get even less definite when you consider that only 31% of players had

ever used the help button. It is possible that the players only click help when they are

in need of help and can not figure out the puzzle on their own, which likely is also when

they are frustrated. This is one finding that potentially contradicts Gee’s principles, in

this case on-demand & just-in-time principle.

Overall while this paper gives significant insight into how tutorials impact

games, however their results and methodology also shows that there is significant room

for further research. First, their methodology doesn’t involve any qualitative data,

which makes it hard to understand some of the more curious findings. Second, all of

the games they test are serious in nature and attract a certain group of people. It is not

obvious whether the claims generalize to commercial games. Third, their classification of

tutorials fully disregards “teaching through carefully designed experiences.” The games

in question seem to be well designed, we can reach this conclusion by looking at their

player numbers. This then raises the question whether “no tutorial” in this experiment
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actually means “teaching through carefully designed experience.”

5.4 Industry Wisdom Regarding Tutorials

One thing to recognize through this literature review is that game tutorials is

an under researched area of study. Green et al. also reaches the same conclusion with

their paper that “surveys the (scant) literature on game tutorials”. [142] Fortunately

however, there is a significant body of work that we can explore from the game industry

side that is concerned with building more effective and less intrusive tutorials. One

aspect that ties many of these pieces together is their depiction of the current state of

game tutorials and players’ response to them.

The GDC talk titled “Teaching by Design: Tips for Effective Tutorials from

’Mushroom 11’” by Itay Keren, the designer of the unorthodox puzzle game Mushroom

11 captures the industry wisdom when it comes to designing tutorials. Keren discusses

eleven facets that make a tutorial effective. [185] Below I use these 11 tips as an anchor

to summarize the industry wisdom around tutorials and describe how many of these

tips map to Gee’s principles. Keren’s suggestions follow very closely to those provided

in the Game Approachability Principles. [102]

Know what you need to teach. Keren suggests identifying the individual

knowledge gaps for the first time players. He brings up the topic of Expert Bias,

otherwise known as the curse of knowledge [150], where as experts of our own game

we underestimate how much there is to know. This especially becomes problematic
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when we assume our players have a similar background in playing videogames as we

do. Listing all the components of what needs to be taught foregrounds the necessity of

addressing them individually.

Teach one thing at a time. Keren refers to the idea of system 1 (reactive)

and system 2 (reasoning) thinking [177] and suggests that learning happens when users

critically engage with the concepts rather than simply reacting to them. When several

complicated concepts are being taught at once, it is likely that players get overwhelmed

and start reacting instead of reasoning, which hampers the quality of the learning that

takes place. A simple fix to this problem is introducing the concepts one by one. [98]

calls this the isolation principle, and surprisingly this concept is missing from most other

sources. This maps to Gee’s well ordered problems principle.

Learn by play. This tip is based on the notion that self-acquired knowledge

is better and longer retained. Keren suggests that instead of delivering the learning

outcome to the player, designers should create spaces in which players can interact and

discover the outcome themselves. He also mentions the importance of clear cause/effect

patterns in the learning stage. Unpredictability inhibits learning making it more chal-

lenging to acquire an accurate model of how the system functions.

The idea that the player should learn by playing instead of reading text boxes

is among the most common advice that is given.[30, 83, 110, 131, 98, 311] Some sources,

such as Keren, are more thorough when detailing how to actually achieve this. This

maps to Gee’s manipulation principle.

Learn by observation. Sometime it is very difficult for the player to discover
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what needs to be done by simply exploring the same. In these cases the designer can

implement cues that simulate the desired interaction. Instead of directly telling the

player what to do, this would mean showing them. Keren suggests that even if the

player observes an interaction first, due to the hindsight bias, they will feel as if they

had discovered the solution by themselves.

A prominent game critic Egoraptor [110] especially goes deep into this topic,

even using menu selection tools and cinematics as examples of how games can demon-

strate certain actions.

Provide a safe place to experiment and fail. Keren states that people

adjust their behavior according to the perceived risk levels. If players are put into a

risky situation they once again start reacting intuitively instead of reasoning through

the steps, which similar to tip #2 limits their learning. In cases where the game needs

to teach the player about a hazard, putting a save point right before the hazard.

Set clear goals and avoid distractions. It is important for the player to

know what the game expects them to do. Keren mentions that humans have a tendency

to identify patterns, and when there is no clear goal, the player might identify a false

goal and get frustrated when the game isn’t responding to their attempts at reaching

it. Furthermore, designers should be conscious of filling the scene with irrelevant and

misleading clutter. Keren mentions that if players enter a state of functional fixed-

ness [32], it is difficult to lead them back to the correct path. This maps to Gee’s fish

tank principle.

Make players stop and think. When teaching the player a complicated
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skill you might need to reduce the pace of the game to allow the player to think. If

there is a simple, correctly looking solution that is wrong, the player might get fixated

on that mistaken method. An example of these unclearable gaps, that is barely longer

than the jump distance of the player character. Players might not recognize the gap is

too wide, and keep trying to jump across, hoping that if they time it just right, they

will reach to the other side.

This technique is covered by [128], but the terminology used there is “teach

through small puzzles”. The idea is simple, instead of showing an obvious answer, wrap

the teaching idea behind a small challenge. This goes back to the criticisms of Linderoth

of games as learning machines, and how games that don’t follow this principle can carry

the player forward without requiring them to think. This concept is also supported by

the learning concepts desirable difficulty and mastery learning.

Hand Holding is sometimes necessary (when all else fails). In order

for the player to explore the game they need to know what the elementary verbs and

mechanics are. When basic controls of the game are being taught, it is acceptable to use

text popups. Even then it is important to keep them brief, and teach them contextually.

I claim this is the fundamental tension when crafting tutorials which I will

expand on in a later section. Before we move on however, [98] explains this tension

elegantly: “Give too little information, and the player can become totally lost. Flood

the player with information or hold the players hand too much and it takes away the

satisfaction of discovering a game’s complexity.”

Repeat for retention, prime before ramping up. Keren claims that
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spaced repetition helps longer term retention. To act on this knowledge he suggests that

whenever a difficult puzzle is going to be introduced, it is useful to prime the player with

an easier one right before. This is also related to the idea of spaced repetition [180]. If

the player practices concepts through a longer timespan, the retention is increased.

Tune your difficult curve. In addition to mentioning the relatively well

known flow diagram, Keren also states that prolonged difficulty affects learning and

retention negatively. He suggests instead of increasing difficulty linearly, the difficult

should peak mid way. This allows stress to be replaced with euphoria at the endings

stages of a grueling challenge, which increases retention. This maps to Gee’s pleasantly

frustrating principle.

Test your tutorial. As the final tip Keren suggests playtesting widely and

repeatedly. He especially suggests playtesting at events, where there is a diverse crowd

of people and no shortage of other interesting things that are trying to capture the

attention of the player.

Through these eleven points I offer a birds eye view of the best practices when it

comes to designing tutorials. This overview allows a comparison between the principles

of a good tutorial and Gee’s “good games as learning machines” principles.

87



5.5 Comparing Industry Design Wisdom with Learning in

Games Research

There is a lot of overlap between these two camps. Both best practices in

tutorial design, and principles of Gee emphasise utilizing the interactive nature of games

as the primary means of teaching. The best practices of tutorial design are more specific,

which is not surprising given the more applied nature of these ideas.

However not all ideas are represented equally across both domains. While Gee’s

principles spend a lot of time around the ideas of customization and agency, discussions

of these concepts are almost entirely absent in the best practices of tutorial design.

This can be explained by referring back to our earlier observation: Gee’s principles

engage with games as a whole, whereas learning/teaching insights seem to be focused

on the first-hour and tutorials. From the perspective of tutorial design, customization

and agency seem to be attributes inherent to games as a whole and not only tutorials

themselves and as such are not included in the discussion. This showcases the potential

for further research in exploring the effects of customization in game tutorials. On the

flipside what is missing from Gee’s principles is any discussion of usability concerns. This

point was also made earlier when discussing breakdowns as the breakdowns related to

parsing the screen or taking action were not represented in Gee’s principles [259]. This

can be explained by acknowledging that Keren’s principles are much more practice and

design oriented whereas Gee’s principles engage with ideas on a higher level.

There seems to be a further need of validation and clarification both in Gee’s
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principles but also the best practices of designing tutorials. For example Anderesen’s

results of on-demand help reducing engagement shows that sometimes experimental

results can go against intuition. Furthermore, similar to the lack of clarity around what

“good games” are, there also doesn’t seem to be consensus around what a tutorial is.

This seems especially problematic given the heavy underlying assumption that players

hate tutorials. It would be curious to claim players hate Mario 1-1, one of the most

praised levels in gaming history, yet our current understanding of what a tutorial is can

not cleanly make the distinction between Mario 1-1 and the tutorials that are disliked.

I further claim that this is more than a simple “definition problem” and in reality

might have very real consequences. If a designer has the idea “players hate tutorials”

ingrained into their brains, then they might simply choose to spend less time working

on the tutorial or skip fully. While this last part is pure conjecture on my part, I claim

that the dogmatic belief that players hate tutorials is up for a deeper investigation.

Finally the tension between too much & too little hand holding seems to be a

concern that arises in both domains. The agent and co-design principles of Gee suggest

the importance of free form exploration and active learning. These principles state that

excessive structure isn’t optimal for learning. Tension is much more apparent when it

comes to game design practice. Every single one of the sources that claim tutorials

are disliked links the distaste to the failure of the tutorials to balance free exploration

with structure. The industry wisdom is clear in stating that hand holding in general is

not effective. What the industry wisdom doesn’t help with is actually deciding when

handholding is necessary. I claim this tension between too much hand holding and not
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enough guidance can be resolved by looking into the specifics of how people fail.

For the specifics of the Talin project we based our approach on the knowl-

edge model of the player. The initial inspiration for the project was the skill atoms

player model developed by Daniel Cook [88]. The player’s model of the game system

is disassembled into atomic components, individual skills that the player learns and

combines to form more complicated skills. The player interacts with the game in a

feedback loop, as the actions the player takes update the state of the simulation, which

gives feedback to the player. The player uses the feedback to update their internal

model of the game and uses that to inform their next decision. Each individual unit of

action-simulation-feedback is a skill atom. In Cook’s model, skill atoms can be chained

together to describe more complex skills that are assembled out of multiple atoms: for

example, learning how to stack blocks efficiently in Tetris depends on first learning the

skills to move and rotate the blocks.

The skill atom model was originally developed as part of an effort to create a

game grammar, and it has been adopted and adapted several times. For example, in

the HCI field the model has been amended by Sebastian Deterding to consist of ”goals,

actions and objects, rules, feedback, emergent challenge, and motivation” and combined

with “design lenses” and “intrinsic integration” to arrive at a theory of intrinsic skill

atoms for “gameful design” [103].

Naturally, skill atoms are hardly the first attempt to model user knowledge.

For example, a formal knowledge model of a user’s understanding can be represented as

a graph of the knowledge space [104]. The introduction of Intelligent Tutoring Systems
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(ITS) was predicated on personal computers becoming fast enough to generate intelli-

gent computer-assisted instruction based on cognitive science models of how a student

acquires new cognitive skills [40]. In contrast, rather than being concerned with the

formal accuracy of our player-knowledge model, our approach is oriented toward the

process of designer-accessible model specification and the output of the dynamic tuto-

rials in a widely adopted game making environment. In this sense, our work is related

to the Vixen project [107] which aims to support visual analytics directly from within

the Unity editor UI.

ITSs have been the basis for several tutorial generators. One recent example

is the Thought Process Language (TPL). While TPL can “generate explanations for a

given problem” it requires that an algorithm for solving the problem first be encoded in

TPL [236]. Further, it assumes that the goal of the tutorial system should be to give

the user complete understanding of a specific problem solving process. In contrast, our

system is designed to be added to an existing game without reimplementing the game-

play elements, focusing on the elements of tutorial generation that are more important

for games. Importantly, Talin is designed to suggest ways for the player to interact

playfully with the game, not to instruct the player on the optimum solution.

Another relevant concept present in the learning sciences literature is zone of

proximal development and it refers to the the space between what a learner can do

without assistance and what a learner can do with guidance. It is suggested that being

in this zone has positive effects on learning effectiveness. [105] The dynamic guidance

given by Talin improves the likelihood that the player stays in their zone of proximal
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development throughout their playtime.

For a game-specific approach, Michael Green et al. suggested ways in which

AI techniques could be applied to the tutorial generation problem in the General Video

Game AI (GVG-AI) framework [143]. Our goal differs from this project: rather than

inferring the game rules that the tutorial explains, we assume that the developer is best

equipped to manually specify the elements using our tutorial development toolkit. Our

focus is on the dynamic presentation of the tutorial to the player, using the skill atom

graph to dynamically focus the tutorial on only the elements that the player needs to

have explained.

Another related research area is dynamic difficulty adjustment (DDA) [158].

While dynamic difficulty adjustment systems implicitly have a player model, they are

more concerned with keeping the player in the flow channel rather than tracking which

skills the player knows about or strategizing how to introduce an unknown mechanic

to the player. Dynamic difficulty adjustment can be complementary to a dynamic

tutorial system- perhaps the system displays hints before later escalating to adjusting

the difficulty, while using the knowledge model to better track if the player is finding

particular skills to be too frustrating or boring.

5.6 Talin Technical Design

The Talin framework consists of three modular building blocks that the game

designer manipulates to create the dynamic tutorials (Fig. 5.2). Skill Atoms capture
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Figure 5.2: Overview of how skill atoms, detectors, and hints are structured.

a player’s current mastery of a skill as a scalar value, Detectors decide when a skill

mastery update is relevant, and Hints activate whenever the skill mastery value crosses

a designated threshold.

Consider the mechanic of attacking a breakable wall in order to remove it.

This is a game mechanic that can benefit from being taught in a dynamic fashion for

several reasons: First, it is a common game mechanic that seasoned players will have

internalized. Second, the mechanic affords a sense of discovery that could be undermined

if a tooltip pops up and reveals the salient information too soon. Third, it is a context

specific skill that is only applicable when a breakable wall is present. Due to the skill

not being in the core gameplay loop, it can be easily forgotten when the player takes
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an extended break from the game.

Figure 5.3: In-editor Talin designer interface showing how the Skill Atoms are initialized.

The implementation process starts with the designer creating the skill atom

representing the BreakWall skill (Fig. 5.3). The designer then initializes the skill atom

with a starting value that represents the initial skill mastery of the player. The designer

is free in deciding how to initialize the skill mastery level. If they wish, they can assume

prior knowledge of a common game mechanic, such as moving around and initialize the

skill at a high value. Otherwise, if the skill in question is more domain specific, they can

initialize the skill at a much lower initial value. The skill mastery value range is set to

be between 0 and 1, where 1 represents total mastery of the skill and 0 represents lack

of any understanding regarding the skill. Regardless of the initialization, as the player

progresses through the game this skill mastery value increases or decreases to reflect the

understanding of the player for the wall-breaking mechanic.
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Not every skill that is required by the game is relevant throughout the expe-

rience. BreakWall skill is only of interest when the player is near breakable walls. This

is where detectors come in. Detectors allow designers to specify when a skill atom is

exercised (the atom’s value is increased) or decayed (its value decreased). Designers

can choose from several built in detectors covering the majority of simple cases. Those

with programming experience can even extend an existing detector class to cover com-

plex edge cases. The most commonly used detectors are proximity detectors and input

detectors.

As the name suggests, the proximity detector allows the designer to check

whether an object, often the player, is near the detector. For the BreakWall skill, a

sensible option is to attach a proximity detector to the breakable wall object and decay

the BreakWall skill whenever the player is within a set radius (Fig. 5.4). The proximity

detector represents the idea that if a player is standing right next to breakable wall, and

not breaking it, they might not realize that the wall is actually breakable. The longer

the player actively lingers right next to the breakable wall without making any progress,

the more likely it becomes that they need a hint to figure out that the wall is indeed

interactable.

Yet, it is not enough to only decay the breakable wall skill value. The designer

also needs a method to increase mastery level whenever the player show that they know

how to break a wall. To compliment the proximity detector, an input detector can be

used. The input detector tracks whether a player successfully attacks and breaks a wall.

Using the combination of the proximity detector and the input detector, the designer
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Figure 5.4: Visual representation of the proximity detector, indicated by the green circle.
The proximity detector is attached to the breakable wall, and linked to the BreakWall
skill.

is able to update the wall breaking mastery of the player simply by observing the play

pattern. Due to the context specific implementation, the updates only happen when

the skill itself is relevant. In order to allow designers to customize how the skill mastery

values change we offer different ways of manipulating the value itself. The designer can

pick between a linear change (increase/decrease by a constant amount), logistic change

(reduce the distance to a target value by a constant fraction), or exponential change

(scale the value by a constant fraction).

Hints are the structured way to create in-game events that trigger in relation

to the given skill mastery level. A hint can be a simple tooltip pop up or even a sound

cue. Or they can be much more intricate, resulting in substantial changes within the

game systems. A hint activates when the mastery value of a skill crosses a designated

threshold. It is up to the designer to define their own hints and at which mastery level
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the hints trigger. There is no limit as to how many hints can be attached to a particular

skill atom. This allows the designer to combine different hints as they see fit. Using

multiple hints with distinct thresholds, designers can start by introducing subtle hints

and gradually become more explicit as the player shows signs of struggling.

Within the tool we offer several pre-built hints such as activating a particle

system, playing a sound cue, or introducing a tool tip. For example, for the BreakWall

skill, the designer can decide to activate a hint that creates a particle effect system

emphasizing the cracks on the wall when the skill atom decays past a certain threshold.

If the player stays within the radius of the proximity detector without breaking the wall

even further, a second, more explicit hint can activate. Since the player missed both the

cracks on the wall and the animated particles, the new hint has grounds to be very direct:

a tooltip explicitly stating that the wall is breakable appears. For extreme scenarios,

we can even imagine a hint implementation that assumes control of the player character

to physically demonstrate the desired action (something the player might perceive as a

cutscene).

Using the combination of skill atoms, detectors, and hints, a designer creates

levels that adjust to the players. The skill atoms give the designers a method to keep

track of what the player knows. The detectors allow the designer to manipulate the skill

values. Finally, the hints introduce a convenient way to trigger user-defined in-game

events.

97



Figure 5.5: In-editor Talin designer interface. The proximity detector is displayed in
the level editor view on the left as a yellow circle. In the center, the Detector is listed in
the scene hierarchy, parented under the breakable object. On the right is the interface
for the proximity detector properties, which allows the designer to completely specify
the behavior without needing to use code.

5.7 Tutorial Implementation

Talin can be used without any programming knowledge. All of the skill

atoms, detectors and hints can be implemented using the visual interface that Unity

offers (Fig. 6.2). We believe it is crucial for the tool not to require programming to

function. In most cases the person who is tasked with creating the tutorial is a game

designer who might or might not be comfortable with programming. It is important

that the tool offers enough flexibility out of the box to seamlessly adapt into the work-

flow of whoever is using it. If someone can create the rest of their tutorial scene with

graphical scene editing tools, those tools should also serve them in making the tutorial

dynamic. While we discuss our Unity specific implementation in detail as an example,
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we expect the developers to re-implement these ideas in manners they see fit for the

games they are creating regardless of the technology stack they use.

In this section, we walk through a no-code implementation of dynamic tuto-

rialization for the Unity-provided 2D Game Kit example game. This example game

includes an existing, static tutorial design that we adapt via integration with Talin-

provided building blocks.

Referring back to our example, if a designer wants to implement the BreakWall

skill they start by instantiating a Knowledgebase prefab4 in the editor and attaching a

skill atom GameObject to it as a child. The skill atom game object has input fields for

its name and the initial skill mastery value. The Knowledgebase is simply a container

for all skill atoms. Then, they will attach a proximity detector game object to the

breakable wall prefab and link it with the BreakWall skill atom through the visual

interface. The ability to add a detector as a child of another game object makes it

so that only one change to a prefab propagates through all instances of said object

throughout the game. Even if the tutorial is being implemented long after other levels

are completed, implementing the tutorial at the prefab level makes it relatively easy

to embed the dynamic tutorial all throughout the game with very little effort. After

linking the skill atoms and the detector all that remains is to set up the desired hints.

The hints are also added to the detector object as a script. This allows for the designer

to have the ability to have different sets of hints at different detectors. In the case of

the BreakWall skill, the designer can select the predefined hint that activates a game

4In Unity, prefabs are the editor’s abstraction of game object templates. In a lower-level game engine,
our framework primitives might be realized as base classes to be instantiated or extended.
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object, and through the visual interface set it up so that whenever the BreakWall skill

decays under a certain threshold a tooltip gameobject activates.

While the simple workflow of Talin requires no programming knowledge, the

system allows for easy expandability. If a developer wants to have a certain detector

trigger in more specific scenarios than simple radius or input situations, they can extend

any of the base classes to include the desired functionality. Consider a case where the

designer wants to introduce a PickUpHealthPack skill atom. In this context, a standard

proximity detector will not be sufficient. If the player is lingering next to a health pick

up while they are not missing any health points, the designer can not assume that the

player doesn’t know how the health pack functions, as they might be deciding not to

pick it up so as to save it for later. Thus, the proximity detector can be extended

with a few lines of code to decay only when the person is near a health pick up and

they are missing a certain amount of health points. While this is a trivial example, the

extendibility of the base classes allows the developers to create game specific structures

to support the type of tutorials they want to achieve.

The tool also comes with simple debugging support, including visualizations

of the values of each skill atom and how they change as the player progresses.

5.8 Example Personas

Compared to the existing static tutorial in 2D Game Kit, the dynamic tutorial

made by Talin offers different experiences to different players (Fig. 5.6). For example
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Figure 5.6: The experience of the different personas through different game moments,
contrasting our dynamic tutorial experience with the traditional static tutorial.

the expert player starts the game and immediately knows how to navigate the space.

Because they move around with ease, the input detector recognizes the player exercising

the movement skill and thus, no hint regarding movement appears.

When the expert player reaches the first breakable wall segment, it takes only

a few seconds for them to realize there are cracks on the wall sprite. At this point, due

to their previous experience the expert player discovers that they can attack the wall

to destroy it. Similarly, when they reach the second breakable wall several levels down

the line, they do not need any support.

Overall, the expert player, due to never needing any help, never sees any of the

hints. This allows them to discover some of the game mechanics themselves hopefully

increasing their enjoyment.

Whereas an expert player doesn’t need any help, a novice player might need
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more pointers than we expect. When the game starts the novice player spends some

time exploring the controls but doesn’t figure them out. The initial detector tracks that

the player is not making any progress and activates the first hint explaining how to

navigate the game.

When the player arrives at the second moment, they spend some time near

the breakable wall without making any progress. Due to the proximity detector this

loitering incrementally decays their BreakWall skill. When the break wall skill crosses

the first threshold a particle effect system activates drawing the attention of the player

to the well. Yet, the player spends a little bit more time near the wall without any

progress. Then the second hint activates, explicitly telling how to make progress at this

step.

When it comes to the third moment, another breakable wall several levels into

the game, the player still takes a few moments. This time however, they do not need

the tooltip to appear as the particle effects are enough for them to remember the break

wall mechanic.

Next we consider a player who has gone through the first two moments, then

has decided to take a long break from playing the game before coming back. Their

memory of the two moments and the tutorial prompts attached to them is blurry. When

the player reaches the third moment, they do not remember the break wall mechanic.

As they linger, the attached proximity detector decays their BreakWall skill. When the

mastery level crosses the first threshold the particle effects appear, but in this case that

is not enough. The player spends a few more seconds within the radius of the proximity
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detector which results in the explicit tooltip hint activating. The player remembers the

controls and the mechanics. This allows them to keep on making progress, instead of

getting frustrated and stopping playing the game altogether.

Overall every single player gets an experience that is specifically tailored to

their skill level, which is made possible by the constant tracking of the individual mastery

levels.

Conclusion

In this chapter we presented a new tool designed to help game designers create

dynamic tutorials. We showed how Talin operationalizes Dan Cook’s skill atom theory

to create compartmentalized skill mastery tracking. We showed the steps outlining

how to create a dynamic tutorial and discussed how different players engage with the

dynamic tutorials.

While this project mainly focused on contributing in the area of tutorials,

we believe this granular level of skill mastery tracking can be an incredibly valuable

dataset when it comes to understanding the holistic experience of the players going

through games.

Talin currently requires the manual specification of skill chains. While this is

consistent with our design goal of developer-control, a possible future direction is to

build on the research by using Cognitive Task Analysis to identify skill chains [156].

We believe that it should be useful to model the player’s mastery level for
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many more skills than are explicitly addressed with hints. Additional skills that are

tracked behind-the-scenes should provide useful context for nuanced gameplay analytics.

Beyond knowing where in a given level players are likely to abandon gameplay, we would

like to know which concepts they were struggling with. Analytics based on skill level

might suggest the need for additional dynamic hints far from the game’s traditional

tutorial level.
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Chapter 6

SMES: Adapting Dexterity-Based

Games for Deliberative Play

Figure 6.1: SMES assisting players in execution failure class.

Large portions of this chapter was published in the Experimental AI in
GamesWorkshop in the AIIDE Conference 2020 under the paper title “SMES:
Adapting Dexterity-Based Games For Deliberative Play” [48] which was co-
authored by my undergradute mentees Hunter Lynch, Carl Erez, Jesse Harder
and my advisor Adam M. Smith
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Figure 6.2: On the left, the approximate path that player took from the bottom left of
the map to the top right of the map in the game Celeste. On the right, the buttons
press sequence that the player pressed in order to take this path.

In the previous chapter, with Talin, we looked into how we can support players learning

the games. In this chapter, we discuss the Sharp Multi-input Editing Software (SMES).

The SMES allows converting high-paced dexterity based challenges to deliberative plan-

ning challenges in a narrow set of games that exist in the wild. SMES was built with

difficult platformers with very short deterministic levels in mind such as Celeste [205]

and Super Meat Boy [299].

When faced with barriers to engagement it is common for people to mod-

ify games through using the different interfaces to play the game such as switch con-

trols [275] or Microsoft Universal Controller [111], or by changes in software via trainers.

Inspired by the spirit of modifying how people engage with games, SMES

allows the players to save, display, modify and replay their keypress sequences. SMES

106



works through the following four steps:

1. The player attempts the challenge and SMES records their keypresses.

2. The SMES visualizes the keypresses over time.

3. The player makes experimental changes to the keypresses.

4. The SMES replays the edited keypresses (and the player returns to step 2).

This loop allows the player to change how they engage with dexterity based

games. The challenge stops being about the precise timing of button presses, but rather

becomes more like a puzzle game where the player incrementally refines the play trace

until they clear the level.

When we extract and replay the playtrace of the player, we treat the sequence

of actions as a stateless, fixed policy. Similar stateless action sequences have been used

successfully for difficult exploration problems [109] [322] and is shown to be a promising

starting point.

We believe that AI techniques can be effective in assisting players while op-

erating on playtraces. Representing dexterity based games as playtraces, and then

recording how player changes allows us to get another type of data as to how a player

might improve their playtraces.

In the rest of this chapter we will discuss the technical details and the design

decisions of SMES, and how the extracted play traces can be a fruitful avenue for AI

research.
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Videogames provide intrinsically valuable experiences to millions of individu-

als [175]. Maybe more importantly, games are an important part of how people connect

to one another [235]. While multiplayer games offer moment-to-moment connectivity,

the connective nature of games also extends to single player games through creating a

set of shared experiences [170] and communities [137].

It is important for everyone to be able to engage in this shared culture. Yet,

through a combination of design decisions of developers and differing abilities of players,

a significant group of people are excluded from engaging with games [298]. To make

games more inclusive, in recent years there have been a number of games that include

assist modes such as Celeste [205] and Super Mario Odyssey [226]. These assist modes

allow the player to change the magnitude of difficulty they encounter by tweaking vari-

ables such as game speed, player and enemy attributes and other relevant factors. The

addition of assist mode has been met with positive feedback from the players [187].

Most assist modes do not modify what type of challenge there is but rather

they work by changing the magnitude of the challenge. In this project we wanted to

explore whether we could change the type of challenge that the game presented. We

use the Taxonomy of Failure (ToF) to categorize the types of challenges [50]. ToF

offers six different categories of failure which map to different types of challenges that

exist in a game. For this project the relevant categories are Planning and Execution.

Planning refers to the challenge category where the player is deciding on what actions

to take. The Execution category on the other hand refers to the challenge of the player

to actually take those actions, by pressing the correct buttons in the correct order and
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timing.

In the context of difficult platformer games, which SMES is targeting, the

planning challenge would be deciding what route to take and when to use the relevant

abilities such as dash or jump, and the execution challenge would be related to pressing

the buttons to activate the relevant abilities at the correct time. Our goal in this project

is to replace the challenging execution aspect from playing difficult platformers into a

planning one.

Instead of building a new game that has the planning challenge present as a

default, in this project we explore a tool that targets already existing culturally relevant

games and supports people’s ability to engage with them. While there have been many

successful games that are specifically designed to target groups with disabilities [141]

we believe that due to the social nature of games it is important to support players in

engaging with pre-existing cultural artifacts. The player centered assistance nature of

the SMES allows the player to be in charge of how to, and with which game, to SMES

with.

In building the SMES we were inspired by the ideas of transgressive play [26]

and the diversity of ways players customize how they engage with games. One example of

this is the WeMod community1. WeMod allows players to reconfigure over a thousand

single player games through a unified interface, letting them customize the game to

their liking, often through changing difficulty and progression variables. As of July

2020 WeMod advertises that it has over 8 million users. This shows that a significant

1https://www.wemod.com
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population of players are accustomed to modifying their play experience by reaching

outside the game.

The Speedrunning community is another group that inspired this project.

Speedrunners are interested in completing a game as fast as humanly possible. Tool

Assisted Speedruns (TAS), take this concept a step further and use emulators to com-

plete a game as fast as possible using any and all available tools. While most TAS

systems run the game in an emulated environment to have frame by frame control,

in order to increase generalizability of our system we simply replay keypress events

(which is not guaranteed to reproduce gameplay over long periods of time) instead of

attempting to emulate the whole game.

The disability community has also been customizing the way they engage with

games through a combination of software and hardware [58]. The Accessible Player

Experiences [71] design patterns are a great resource when it comes to making games

more inclusive. These 22 patterns target both the ability of the players to access the

game content, and their ability to adjust the challenges present in the game. In the

later chapter we will be discussing how SMES fits these design patterns.

6.1 Technical Design of the SMES

6.1.1 Design Inspirations

Before the development phase of the SMES we reached out to different com-

munities on Reddit to inform our design. We had conversations on the disabledgamers,
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TAS (tool assisted speed run) and pc gaming subreddits. While few in number, the dis-

cussions around how such a tool might be used was immensely valuable in prioritizing

certain features over others and understanding potential user needs.

Our design was informed by a public discussion of a system prototype on

Reddit’s r/disabledgamers community and r/TAS communities

We incorporated casual creator design patterns wherever possible [86]. Casual

creator patterns aim to make systems more usable and friendly. While these design pat-

terns are traditionally used in the context of generative systems, we found them useful

in our design. Like most casual creators, SMES is a tool that prioritizes approachability

and flexibility over control and frame-perfect precision.

Finally SMES also drew inspiration from the Accessible Player Experiences [71]

(APX) patterns. APX patterns have two distinct categories: Access patterns support

players accessing the game by allowing them to tune the experience to meet their unique

needs, and challenge patterns on the other hand allow players to modulate the amount

of challenge they want to face.

6.1.2 Recording Key Presses

One decision we had to make early on was what layer of abstraction to have

SMES integrate. While extending an emulator would allow us to be much more precise

both in recording and replaying our playtraces, it would also limit the games that the

SMES would be compatible with to those that could run on the decided emulator. One

of our guiding principles while building SMES was to support access to a broader set
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of culturally relevant games, and we therefore decided not to limit ourselves with any

specific emulator.

In order to reach a wider range of games SMES uses the Win32 API2 to

integrate into the keyboard input layer. We also investigated the reverse-engineering

tool Frida3 as means to be fully platform agnostic. This would have allowed us to

potentially save and restore game state which would have unlocked a more granular

control of how time passes in the game [262]. This control over time could have allowed

more comprehensive assistance methods to be implemented. In the end however, we

decided to focus on capturing keyboard calls to reduce user burden of instrumenting

each game specifically.

After the player starts recording, the SMES intercepts and saves the virtual

keyboard calls that happen while the game is focused. When the player stops recording,

the keypresses are saved into a text file. Having players seed the starting playtrace with

their own action connects with the “No blank slate” pattern of casual creators. While

the players can start from scratch to create the full playtrace using SMES, having a

starting playtrace to edit makes the iterative process much faster.

To support the quickest edit-and-replay interaction loop, it is the player’s re-

sponsibility to include input sequences that would reset the game to a safe state (e.g.

accessing an in-game menu to restart the level from a checkpoint). If there is no such

obvious sequence to include in the playtrace that will accomplish this goal, the player

can always use manual controls (similar to how they recorded the original playtrace) to

2https://docs.microsoft.com/en-us/windows/win32/api/
3https://frida.re/
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reset the game before continuing the SMES loop.

6.1.3 Representing Key Presses

It is common for speed-runs to be shared through a BK24 file. These files are a

way to record which combination of keys were pressed down at which frame. Inspired by

this, our intermediate representation is in a simple human readable text file. This was

decided in part to support the easy sharing of play traces. The easy sharing component

is aligned with the “Self promotion” casual creator design pattern that acknowledges

the shared and social nature of playing games.

Having a semi-permanent copy of the playtrace that the player can keep editing

also aligns with the “Save Early, Save Often” and “Slow it Down” patterns of APX.

The player can take as many iterations as they would like to edit the playtrace. This

allows the player to engage with the game on their own pace instead of being locked to

the speed the game demands. Furthermore, even if they have to close SMES and come

back later, the text file will be there for them to pick up where they left off.

Because SMES can not know what exact frame each button was pressed, in-

stead of matching keypresses to frames, we record the timing of each press. We record

the timing of whenever a key is pressed down and later released. However, instead of

recording at what time these actions of key down and key up happen, we record how

much time elapses in the middle. This makes keeping track of multiple keypresses and

the duration of a specific keypress easier. To be more specific, our representation is a

4http://tasvideos.org/Bizhawk/BK2Format.html
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Figure 6.3: The visual path that is described by the given playtrace.

series of two data points, the action type and the modifier. There are three possible

actions, key down, key up, or delay, and each action has a modifier associated with it.

If the action type is key up or down, then the modifier is the name of the key that

is pressed or released. Whereas if the action type is delay, the modifier is how many

milliseconds have elapsed since the last entry.

Let us give an example of a playtrace. Imagine a character starts running to

the right, then jumps over a gap, and stops running. This can be shown as follows:

key_down , d

delay , 500

key_down , w

delay , 1000

key_up , w

delay , 500

key_up , d

In this example, the player holds down “d” for two seconds, while pressing “w”

for a single second in the middle.
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6.1.4 Visualizing and Editing Keypresses

After the playtrace is saved into a text file, the SMES GUI loads them and

visualizes them. The current GUI is written using the QT framework and is still a work

in progress. While designing the visualization we were inspired by digital audio work-

station (DAW) software packages. SMES allows the users to manipulate the playtraces

by changing when and for how long a key is pressed down. When the desired changes

are done the updated playtrace is once again saved into the text document.

This design is aligned with the “Improved Precision” and “Personal Interface”

patterns of APX. It is an additional interface that the players can use to engage with

dexterity games and by removing the temporal aspect of taking actions the player can

be more precise. Depending on motor skills and personal preferences, players may have

an easier time with our GUI or with a text editing tool for which they have built deeper

fluency (in which case the GUI forms a passive viewer tool).

6.1.5 Replaying the Playtrace

The player can start the replay whenever they want by pressing the replay

button. SMES then starts replaying the playtraces that is saved in the intermediate

text file. In order to replay the playtrace we use the underlying Win32 API, the same

system we used to record the keys. We use the python package winput5 to send Virtual

Key Codes as input to the operating system directly.

Due to the game not running in an emulator and the Win32 API not being

5https://pypi.org/project/winput/
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Figure 6.4: The visual mock-up of the editor.

instantaneous the playtrace that is replayed is not completely deterministic. In our

experiments there is an 2% average divergence between the length of the input sequence

and its realized replay. Because the errors compound in a playtrace this can result in

perceivable differences in outcomes across different replays of the same playtrace. This

is the main bottleneck that limits the usefulness of the current state of the SMES in

supporting longer playtraces or styles of play that rely on precise determinism (e.g.

luck manipulation strategies used in TAS). These are not critical limitations, however,

because we imagine SMES being applied to localized scenes (which can be re-attempted
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many times) in games that were otherwise completable within the limits of human

dexterity.

6.2 Future Work: Manipulating Playtraces with AI

As mentioned earlier, there is currently no AI system acting on the saved play-

traces. However, other work shows that by adding a simple level state awareness reusing

parts of play traces can be very useful. For an example from the games industry, in the

fighting game Killer Instinct, the enemy shadow AI learns how to play by memorizing

sequences of player actions [222]. Then the AI agent replays parts of the player’s action

sequences when a correct game state is matched. This method proves effective enough

to be deployed in a live commercial game, and it has been met with approval from the

player base6.

In the future, we are interested in taking a co-creator approach to support-

ing playtraces similar to the reinforcement learning based mixed-initiative level creator

Morai Maker [144] or the work on user empowerment where a reinforcement learning

agent is trained to augment (rather than replace) player input [108].

We imagine that the edits that the user makes to the timeline are not directly

applied but are instead taken as training data points to tune a stateful and observation-

dependent action policy. In this setup, the player is still making deliberate choices about

how to act in specific moments, but the local choices they make can have impact on

several other moments (e.g. those that arise in the future or as the result of different

6https://forums.ultra-combo.com/t/shadows-ai-retrospective-discussion/24899
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stochastic elements of the game).

Furthermore, we believe that the datasets describing how a player iteratively

refines their playtrace can be interesting for future applications.

Conclusion

In this chapter we presented the work-in progress Sharp Multi-input Editing

Tool (SMES) which allows the players of difficult platformer games to change the chal-

lenge type from a dexterity based execution challenge to a cerebral planning challenge.

SMES does this by recording the actions of a player, and then presents it to them in a

visual interface where they can make changes and replay the updated playtraces. We

also discussed how playtraces can be operated on via AI systems with the goal of as-

sisting and empowering players. We hope that with SMES we can contribute to the

ongoing conversation of how we can use AI techniques to assist our player.
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Chapter 7

Repurposing the Game-Playing AI

Surplus for Inclusivity

Large portions of this chapter was published in the Artificial Intelligence
and Interactive Digital Entertainment Conference 2020 under the paper title
“Your Buddy, the Grandmaster: Repurposing the Game-Playing AI Surplus
for Inclusivity” [49] which was co-authored by my undergraduate mentees
Xueer Zhu, Eric Hu and my advisor Adam M. Smith

The previous chapters of this dissertation expanded our understanding of failure in

videogames, and introduced two computational prototypes that used simple systems to

assist the players. Now we turn our attention to exploring how we can use gameplaying

AI (GPAI) agents to do the same.

Since the mid-2010s, there have been several high profile victories for game-

playing AI techniques. In the videogames domain, the research community made

progress towards overcoming several difficult problems: an immense branching factor in

Go [281]; multiagent communication in DOTA2 [60]; working with hidden information
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in poke [66]; parsing the screen with Atari [53]; and balancing low-level control with

high-level decision making in Starcraft 2 [309]. In all these projects, the AI agents

learned how to play the game very well, often even beating the best human opponents

they faced. Unfortunately, however, this increase in the game-playing competency of

the AI agents has not directly improved the game-playing experience of human players.

We classify game-playing AI techniques to be any function that takes in a game

state and maps it to an action for the agent to take. For the purposes of this chapter,

we are not interested in the methods used to do the mapping; rather we will focus on

how this mapping can assist the player.

The book AI in Games describes three high-level use cases for academic AI

in Games: Gameplaying, Procedural Content Generation (PCG), and Player Mod-

elling [317]. Both PCG and Player Modeling have had wide adoption from the game

industry [115, 54]. However, the recent improvements in game-playing, especially of

learning-based methods, have not seen a similar level of adoption.

A significant portion of game-playing research is concerned with creating agents

that play games optimally [317]. However, this aspiration for optimality is not found

in the game industry. Commercial game developers are not interested in creating un-

beatable opponents for their players to face; rather, they are concerned with crafting

an engaging experience. Therefore, the need for an optimal AI agent as a non-player

character (NPC) is often not very high [266]. Most NPC enemies are alive for a very

short time before they are removed from the game. Simpler techniques are enough to

achieve the desired design goals in this short span of time. Even the opponents that are
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expected to put up a good fight can usually do so through cheating behind the scenes

or through clever game mechanics.

Even when the goal of the AI agent is to be as strong as possible, there is always

an underlying aesthetic constraint. The AI agent’s actions must fit the context of the

game. Most of the recent reinforcement learning or evolutionary methods–although

effective in maximizing the given objective–are horrible at being graceful while doing

so [190, 194]. Even though continuously jumping might be the optimal way to traverse a

map, it is unlikely that the game designers would be happy to see their special operations

soldier NPC doing so.

These obstacles in using game-playing techniques primarily arise when we as-

sume, as it is traditionally done, that the AI will drive an opponent behavior to beat

the player. However, there are several different ways our game playing-agents can assist

the player:

• A search-based agent can highlight a good path through the obstacles in a compli-

cated action-platformer, allowing the user to concentrate on timing their button

presses to follow the highlighted path.

• A rule-based agent can offer reminders if the player is consistently using the unin-

tended tool for the job, allowing the player to utilize all the affordances the game

provides.

• A policy-based agent can take control of microing units in a real-time strategy

game, allowing the player to focus their attention on macro-level strategic choices.
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• A value-based agent can pinpoint which action reduced the player’s chances of

winning, allowing them to improve their game-playing skills more efficiently.

Shifting our focus from beating the player to supporting the player has several

benefits. Through assisting, optimality becomes a valuable trait since we would like

the AI to help the player in the best way possible! Furthermore, depending on the

implementation we choose, we can assist the player without the need for a physical

avatar, which makes shaping the aesthetic impact of our AI much easier.

Why should we be concerned with providing assistance to our players? Because

doing so makes our games more inclusive, allowing more players to experience our

games [248]. Every player is different and might have different needs to fully engage

with a game [152]. Some players might find a game inaccessible due to its difficulty.

Other players might find the same game inaccessible due to design choices such as color

schemes and specific input mappings [199]. Offering a portfolio of assistance methods

can help us reduce the mismatches between our players and our games. In recent years,

games such as the difficult action platformer Celeste [205] have started including assist

modes. We propose using AI agents to assist our player as a personalized and effective

extension to preexisting assist modes.

Another reason we should use GPAI to help our players is that contextual help

can potentially increase player retention, especially in highly complex games [38]. One

reason why players stop playing games is that they don’t fully grasp how to play the

game itself [80]. We can use GPAI to show players how to proceed whenever they are
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stuck and at risk of abandoning the game. It is already common for players to refer

to walkthroughs and wikis when they cannot proceed, and having a system where the

players can seek help from the game itself will give more control to the designers.

However, it might not be immediately obvious which aspects of the game a

player might need help with. Additionally, it can be difficult to discern what the different

assistance methods might look like. To help address these challenges, we present a design

exercise to explore the design space of GPAI-driven assistance methods. This exercise

can help us categorize a game’s challenges and use these challenge categories to ideate

different assistance methods. In this chapter, we apply this design exercise to Celeste

to generate a variety of different assistance method ideas. We then implement two of

them, one responding to the execution challenge and one responding to the planning

challenge. The purpose of this implementation is to better understand the implications

of using GPAI to assist players by creating a computational caricature [284].

In summary, this chapter contributes:

1. A reframing to utilize game-playing AI techniques in service of player experience

and inclusivity,

2. A design exercise to systematically explore the design space of GPAI-driven assis-

tance methods,

3. An implementation of two different assistance methods targeting two different

challenges in a clone action platformer of Celeste.
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7.1 Weak Human + Machine + Superior Process

in 1997, IBM’s chess-playing computer, Deep Blue, beat the former World

Chess Champion Gary Kasparov [74]. Kasparov’s reaction to this defeat was very

forward-facing. The following year, in 1998, he announced Advanced Chess [184], a

fresh take on chess where each human player uses a computer chess program to explore

the possible results of candidate moves [95]. Several years later, in 2005, a freestyle

chess competition was organized, and any AI, human, or centaur team could compete.

Surprisingly, the winner was not a grandmaster backed up by a supercomputer; rather,

the winners were a pair of amateur chess players who used three ordinary desktop

computers. What had allowed them to succeed was not their individual chess knowledge,

nor the amount of computation they had, but rather how the pair had utilized the

strengths of their AI [77]. After analyzing this victory, Kasparov reached the following

conclusion: “Weak human plus machine plus better process was superior to a strong

computer alone and, more remarkably, superior to a strong human plus machine plus

inferior process“ [184]. This project attempts to contribute one such process in how we

can utilize game-playing AIs to support player experience.

Some recent games have started including assist modes to let their players

adjust game challenges. The assistance mode in Celeste is one of the most comprehensive

ones and has garnered a lot of praise [187]. With it, the player can tweak almost every

aspect of the game’s difficulty: game speed, total climbing stamina, the number of

allowed dashes, and invulnerability are among the many options.
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The inclusion of assist mode in Celeste, combined with the release of other

difficult games without any sort of assistance, such as Cuphead and Sekiro, sparked

a series of discussions surrounding the design intent and the value of difficulty in

games [302, 191]. Challenge in many games is essential for the design and is shown

empirically to increase enjoyability [93, 243]. Assist modes do not aim to make games

easier; rather, they make games more accessible. Increasing the player’s options de-

creases the likelihood of a mismatch between the game and the player’s capabilities.

While we have come a long way in improving game accessibility [121], there is still room

for improvement.

Outside of accessibility, there are other reasons why players use techniques

that seem to make the games “easier.” For example, they can change the main mode of

gameplay by using an emulator for Tool Assisted Speedruns (TAS) or by using train-

ers [87].

Specific techniques can also be used to extract additional information from a

game to help make analysis easier. One such tool is Bob’s Buddy [271] for the card game

Hearthstone. In the Battlegrounds mode, this add-on, given a boardstate, calculates the

odds of the player winning, losing, or tying and is often used by the players to improve

their play.

Tools such as Bob’s Buddy show that players are already creating tools to

help them engage with games on a deeper level. Additionally, systems such as tool-

assisted speedrun emulators show alternative ways to play. The increasing prevalence

of assist modes, along with the positive reactions to them, show that making systems
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more accessible is beneficial in several different ways. In the following section, we will

be describing our attempt at a “better process,” to show how we can repurpose GPAI

techniques to assist our players.

7.2 Design Exercise for Discovering Assistance Methods

Although it is easy to state that we should utilize GPAI agents to help players,

it is relatively difficult to formulate the specifics. First, we must decide on what way

the player will be assisted. Then, we must decide on the magnitude of the assistance.

Most games offer a variety of challenge types, and not every player will need support

in every challenge. Furthermore, while some players would prefer a bit of assistance,

others might benefit from a more comprehensive solution. In this section, we describe

a design exercise that facilitates the formation of a portfolio of assistance methods that

vary in both assistance type and magnitude.

This assistance method ideation exercise has three steps:

1. Identify the different difficulty types of our game,

2. Construct the design space of assistance methods,

3. Explore this space to formulate a portfolio of methods.

7.2.1 Identifying the Challenge Types

The first step is to decide on the primary challenges the player must overcome

throughout the game. Challenges can be deemed primary either through simple reason-
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ing or by using a pre-existing framework. We suggest using the Taxonomy of Failure [50]

(ToF) to identify the challenge categories in a game. Subscribing to a preexisting frame-

work makes this step more systematic, and using the ToF can help discover unexpected

challenge categories, especially when it comes to accessibility. However, the user should

employ the categorization method that best fits their game.

The ToF proposes a model of how people play videogames, focusing on areas

where players can encounter a failure. According to the ToF, there are six classes of

failure. Thus, the players could face a challenge in:

• Encoding Input: Is the player physically capable of using the game’s controls?

• Decoding Output: Can the player parse the feedback of the game?

• Discovering Mechanics: Does the player know what they can do in the game?

• Setting Goals: Does the player know what they should accomplish in the game?

• Planning: What steps should the player take to accomplish their goals?

• Execution: Was the player successful in following the steps of their plan?

We can analyse the game in question with the ToF to identify the main categories

of challenge. In Celeste, figuring out what the hardware button mappings are should

not be challenging (encoding input). Parsing the screen and understanding what is

being displayed is also not one of the desired challenges (decoding output). Similarly,

while playing Celeste, the player has a simple goal: to reach the end of the level with

a limited but expressive skill set of jumping, dashing, and climbing. Discovering the
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goal and uncovering new mechanics are not part of where the challenge lies (discovering

mechanics and setting goals). Instead, the designers are interested in challenging “both

the mind and fingers” [187]; players must decide on the correct path of each level while

also being able to follow that path. The player must constantly plan their way through

each level and execute said plan by pressing the correct buttons at the correct timings,

meaning the challenges they constantly face are planning and execution.

7.2.2 Mapping the Design Space

It is important for the assistance methods to vary in the challenge they target–

not every player needs help with the same difficulties–and in the magnitude of help they

offer–not every player needs the same degree of assistance. Therefore, a design space

of possible assistance methods can be parameterized by target assistance type and the

assistance magnitude. To construct this design space, we create a graph where each axis

represents the increasing magnitude of assistance in one of the chosen difficulty types.

Typically, one starts with a data set and maps it to selected axes to explore

how the data points are related. In this exercise, we do the inverse by starting with

an empty graph, and working our way back to the data points: We select a point

in the constructed graph and formulate an assistance method that would map to the

selected point. This procedure helps systematically discover assistance methods that

vary in both targeted difficulty and assistance magnitude. A positive side effect is that

it also surfaces interesting combinations where both difficulty types are targeted by the

assistive method to varying degrees.
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Figure 7.1: Each point represents a possible GPAI-driven assistance method discovered
by applying the design exercise. The graph is not descriptive–it does not visualize
preexisting data points. Rather, it is explorative, for it is used to discover assistance
methods that map to points in the design space.

Figure 7.1 shows our attempt at exploring the design space of assistance meth-

ods in Celeste. This is not meant to be an exhaustive list; rather, it gives the reader

an idea of how we can use the exercise to pick a point in the space and come up with

a GPAI-driven assistive method that maps to our selected point. The top right region

of the graph represents how traditional GPAI is used: playing the game by fully re-

sponding to all of its challenges. The bottom region shows assistance methods that only

target the execution challenge, and the left region shows assistance methods that only
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target the planning challenge. The middle region shows assistance types that target

both difficulties.

Below, we give a brief explanation for some of the potential assistance methods

we ideated using this design exercise for Celeste. The goal is to showcase the range of

assistance methods that can be reached using this exercise, rather than comprehensively

specify implementation details.

7.3 Discovered Execution Assistance Methods

Click to Move This assistance style emerged after we asked what it would

look like if the AI fully took care of the execution challenge in the game. While this

assistance method is active, as its name suggests, the player must solely click wherever

they would like their agent to go, and the AI handles the rest. We imagine execution

assistance methods to be useful for players who might not have the manual dexterity

necessary to execute the complex sequence of actions but still enjoy the planning chal-

lenge. This assistance method could also be used by players who are exploring optimal

ways to navigate the space.

Free Run Style Assistance In this assistance style, the player still has to

move their character in the direction they would like it to go, but the AI takes care of

jumping over small obstacles, gaps, and hazards. We were inspired by the freerunning

system of the Assassin’s Creed games in which the player must direct the character, but

the AI system decides which ledge to grab and which corner to step on.
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Enhanced Forgiveness Mechanics A lot of platformer games, and among

them Celeste itself, implement a series of Forgiveness Mechanics [274]. For example, the

characters can jump several frames after they leave a ledge, and if the player presses

the jump button before their character hits the ground, the game recognizes the intent

of the player to jump, thereby makes the character jump the moment they land. These

additions subtly assist the player, and usually are implemented with simple boolean

checks. If we have an AI that knows–given a goal–how to get there, we can use this

AI system to implement a series of enhanced forgiveness mechanics that span a wider

range of assistance.

Execution Coach If we have an agent that has close to optimal play, we can

also measure how far the player is from the optimal sequence. Thus, we can use the

oracle not to take over the execution aspect of the play, but rather to give the player

advice so they can improve their own abilities. This advice would focus on the timing

and sequence of actions, and it can also act as a dynamic hint system.

7.4 Discovered Planning Assistance Methods

Ghost The most comprehensive version of the planning assistance is when the

AI system directly displays what the optimal path from any given point in the map is

without moving the character. Planning assistance methods can be useful when players

consistently fail to find the correct path to reach the goal, whether due to a cognitive

impairment or otherwise. These methods can also be useful for speedrunners as they
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attempt to validate the optimal path in a level.

Explicit Way Points In this assistance method, the AI displays points along

the optimal path instead of the full sequence of actions. This can be used to show the

player which platform to jump from or at what point to dash towards the goal without

revealing step-by-step instructions.

Planning Coach If we have an optimal path, it takes just a little more effort–

defining a distance metric–to evaluate other paths against it. We can use this capability

to give our player tips and tricks as to which path to take. When the AI recognizes that

the player is straying too much from the optimal path, or, more likely, when the player

asks for help, the AI can annotate at which point the player first left the optimal path.

Implicit Way Points Another way to convey optimal path information is

through the environment. Instead of explicitly showing way points, we can use subtle

environmental cues. Level designers work hard to guide the player through their levels.

Combining implicit way points with effective level design would allow that guidance to

be dynamic and adapt to the specifics of the player.

7.5 Combining Assistance Methods

Flow Path In this style, we combine both the explicit waypoints and free

run assistance. This combination results in an assistance method in which free run

assistance only activates when the player is on the optimal path towards their goal.

This method would be similar to a game feature that encourages and rewards players
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for taking the expected route in lieu of an assistance method.

One Button Celeste In this style, the GPAI agent almost fully takes over

playing the game. The path the character takes is fully determined by the AI and–

similar to the Free Run execution assistance–the GPAI handles moving through small

obstacles and gaps. The assistance can be set up so that the player is only in charge

of the jumping capabilities of the character. This means the player can solely engage

with the game by using the jump button. This assistance method can help players with

motor impairment engage with the game by using switch access control methods.

Ending with One Button Celeste, we described nine assistance methods. Not

all of these would be effective when implemented in the game. Instead of specifying one

or two robust assistance methods in detail, our goal in this section was to convey that

there are a lot of opportunities and diversity in the ways we can repurpose GPAI to

assist our players, and show how designers can go through this exercise for the games

they are working on. However, in order to start testing the validity of these potential

ideas, implementing them in context is necessary.

7.6 Implementing Assistance Methods

Staying in the ideation phase is not sufficient if the goal is to explore the po-

tential design of an assistance method. In this section, we describe how we implemented

our game-playing AI for a simplified clone of the game Celeste and used it to prototype

different assistance methods. In order to exemplify our solution in this project, we use

133



the Computational Caricature [284] methodology. A computational caricature exagger-

ates the salient aspects of the game design process while downplaying all other points.

A computational caricature has claims (to be quickly recognized and understood) and

oversimplifications (to be overlooked). With our following prototype, we:

• Claim that game-playing AI methods can be used to assist our player and pro-

totype several different instantiations of assistance to target different challenges.

• Simplify level design and performance constraints. More importantly, we over-

simplify the means in which the assistance becomes available to the player in

addition to the limits of said assistance, both of which are crucial components in

the gameplay experience that requires further research.

To put our assistance methods into practice, we built upon the open source

code base of André Cardoso’s recreation of Celeste in Unity1. This implementation

uses the default Unity physics engine to move the character. Inspired by [304], we

decided to use A* to drive our assistive AI. We parametrized the game space with a

seven-dimensional state description: The x and y positions of the character, the x and y

velocities of the character, and flags that denote whether the character can jump, dash,

and walk.

Within this space, we used the actions walk, jump, and dash to do the search.

We used a simple euclidean distance heuristic between the player’s character and the

goal to guide the search. To run the actual search, we instantiated a separate Unity

1https://github.com/mixandjam/Celeste-Movement
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Figure 7.2: Our implementation of the Ghost planning assistance. When a player asks
for help, we spawn a copy of the player, and it takes necessary actions to reach the goal.
It is up to the player to repeat those actions.

physics scene where we can manually set the physics timestep to be much smaller. We

also implemented fuzzy tile matching, which allowed us to do the search more efficiently

and within acceptable timeframes. Using this capability, we implemented two of the

discovered assistance methods: Ghost to assist with planning challenges and Move to

Click to assist with execution challenges.

7.6.1 Ghost Implementation Details

With the Ghost (fig 7.2.) assistance method, the player presses the P key to

start the search. When the search is complete, a copy of the character with a grayscale

sprite (a.k.a the Ghost) travels directly to the goal. The Ghost shows the optimal path

without directly interacting with the player. Thus, the Ghost acts as a guide without

taking away player agency.

We realized that Celeste already uses a similar technique in a simplified man-
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Figure 7.3: Our implementation of the Click to Move execution assistance. The player
clicks anywhere within the radius and the AI handles the execution challenge by moving
the player character to the target location.

ner. Instead of doing a search from the player’s position to the goal, the Ghost in

Celeste is simply embedded into the level and keeps looping, showing the player what

to do2. This visual guide’s limitation, however, is its attachment to that specific place

in that specific level. For example, if the player takes a break from the game for several

months, and cannot remember specific moves when they return, the Ghost embedded

in the level would not be helpful.

7.6.2 Click to Move Implementation Details

While implementing the Click to Move assistance method, we decided on a

maximum distance of automated movement to be searched. In this implementation we

wanted the player to click on the path they would like to take, and as such, we decided

to limit the radius where the AI would be active. It is important to note, however, this

2https://youtu.be/E1Ox37N1efQ?t=979
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is one possible implementation of this assistance mode, and the assistance would have

worked without a radius limit as well. In order to use our assistance method, the player

clicked within a small radius for the AI to find the path there.

Click to Move created a cycle where the player would click where they would

like to move, wait for for the AI to take the required actions, and then find the next po-

sition they would like to reach. This cycle resulted in a more staggered play experience.

Sometimes the player would try to move up a platform, but the platform would be out

of the clickable radius. When the player clicked the closest point possible, usually in

the air, the agent would reach that point and fall to the ground before the player could

click on the next point.

7.7 Discussion and Future Work

Implementing the assistance methods showed us that before GPAI assistance

methods can be claimed as effective, several further research questions need to be an-

swered:

First, simply picking the assistance method is not enough, and much more

thought must go into implementation details. While our implementation of the Ghost

assistance method seemed to have fulfilled its purpose, the initial design of Click to

Move subtracted from the game-playing experience. An iterative process that finetunes

the limitations and strengths of the methods is crucial. What are the best practices

in designing GPAI-driven assistance methods?
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Second, a more comprehensive look into designing the most effective way to

introduce these assistance methods is needed. A study conducted by Anderson et al.

found that depending on the complexity of the game, adding a help button could harm

engagement [38]. It is not entirely clear whether locking these assistance methods behind

the options menu is the best option or if there is any way to actively recognize and

suggest assistance methods without overstepping boundaries. What are the most

effective ways of introducing GPAI-driven assistance methods to the player?

Finally, there still needs to be an empirical evaluation of the effects of these

different types of assistance on the player’s experience. While assist modes in general

have been received positively by those who use them, it is important to test whether

the added complexity and diversity of the assistance methods actually translates into

enhanced play experiences, and makes games more accessible. How effective are

specific GPAI-driven assistance methods in improving the gameplay experi-

ence?

Conclusion

In this chapter, we described how repurposing GPAI capabilities to assist the

player can enhance the game-playing experience and help make games more inclusive.

To assist with the ideation of assistance methods, we proposed a design exercise with

two steps: first, we suggest using the Taxonomy of Failure to discover the types of chal-

lenges that exist in the game. Second, we show how to use these types of challenges to
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delineate the design space of assistive methods. We then applied this design exercise to

Celeste to generate several assistance methods. We implemented two of the discovered

methods, Ghost and Click to Move, to further explore this process. Through our imple-

mentation, we discovered several additional research questions that must be answered

before GPAI-driven assistance methods can be confirmed as effective. We believe this

research direction furthers the discussion on how to utilize GPAI in service of the player

experience. We hope crafting our GPAI agents to be supportive buddies to our players,

instead of hostile enemies, will contribute to making videogames more inclusive.
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Chapter 8

Reinforcement Learning Powered

Navigation Assistance

Figure 8.1: RLNav assisting players in both the execution and planning failure classes.

RLNav represents reifying the theories presented in the previous chapter
by utilizing traditionally gameplaying focused reinforcement learning tech-
niques for accessibility.
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In the previous chapter we explored how, instead of attempting to beat the

player, the game playing capabilities of AI agents can be repurposed to support the

players to enhance the player experience [49]. In this chapter, we reify the theories dis-

cussed in the previous chapter by training a reinforcement learning powered navigation

agent.

We claim that using reinforcement learning agents for supporting the player

over as non-player character opponents has several benefits. First, when assisting the

player in playing the game optimality becomes important. If you are using an AI agent

to help someone, you would expect the agent to be really good at what it attempts to

do. Currently the capability to defeat world champions in Dota [60] or Starcraft [309]

does little to affect the day-to-day experience of majority of players, however, if we start

repurposing this competency to support the players this reality might change.

Second, using the agent capabilities for assistance reduces the need for an

embodied non-player character avatar to be on the screen which reduces the likelihood

of the RL agents’ actions disrupting the aesthetics consistency of the videogame [47].

Building on top of this strand of work, this project focuses on helping the

players navigate in a complex 3D environment with several movement mechanics such

as jumping, double jumping and wall running. We chose navigation as our assistance

target because the ability to move intentionally is a core component of many games,

and often is a prerequisite for engaging with the rest of the gameplay experience. In this

chapter we contribute a playable example of reinforcement learning powered assistance

methods.
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8.1 Why focus on navigation assistance?

Even though it might come as second nature to those who have played many

videogames, navigating in 3D space with multiple movement abilities is a rather difficult

task for novices [67, 217, 21]. Most games assume that players are competent in moving

around in the created world, and as such, navigation is a prerequisite for accessing

many games’ contents. Targeting a common aspect of many games also increases the

likelihood of the insights to be applied in a variety of different games, compared to

focusing assistance in a niche mechanic in a specific game.

Furthermore movement systems, especially those with additional mechanics

such as wall jumping, dashing, etc. can have rather high skill ceilings which makes

expert play such as speed running possible [270]. So with this one mechanic we can

target and assist players on both ends of the skill spectrum–getting novices to start

playing and getting experts to push the boundaries.

8.2 What is reinforcement learning?

“Reinforcement learning is learning what to do—how to map situations to

actions—so as to maximize a numerical reward signal. The learner is not told which

actions to take, but instead must discover which actions yield the most reward by trying

them.” [295] In other words, reinforcement learning is a specific formalism for presenting

sequential decision making problems.

This formulation often contains an environment and an agent. The agent is
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given a set observation every timestep from the environment and is tasked with taking

the action that maximizes the cumulative future discounted reward. In our case, the

game level is the environment, the character that is navigating within the world is the

agent, and the agent is trying to take the action that allow it to reach the navigation

target which is the reward.

While there are multiple techniques that can be used to solve reinforcement

learning (RL) problems, such as evolutionary algorithms and value iteration look up

tables, during the 2010s machine learning boom, RL has almost become synonymous

with Deep Reinforcement Learning [123] due to it’s proven effectiveness which uses

neural networks to parameterize the policies, and gradient descent to train them. In

my work I make use of the recent advances in DRL, and use the off-policy Soft Actor

Critic algorithm [145].

8.3 Why use reinforcement learning over traditional nav-

igation methods?

While navigation meshes [287] are the industry standard [206] for non-player

character navigation they do not scale well with the number of different actions the

player can take [44]. In the traditional setup, a designer needs to annotate the map [308]

for the different types of movement abilities such as wall-running or double jumping.

While these limitations are acceptable when it comes to non-player character navigation,

the need of assistance being always available at any point in the map (whether on the
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ground, climbing stairs, during jumping or while being farther away from a link node)

limits the usefulness of navmeshes for assistance methods. Furthermore the fact that

RL algorithms share the same action and traversal space as the players also makes it

easier to use them in assistance.

Reinforcement learning methods are shown to handle relatively complicated

environments and can scale well with multiple actions [36]. Outside of videogames, deep

reinforcement learning has a history of being used for navigation problems as well [323],

such as navigation using visual input [321], local obstacle avoidance [319], social naviga-

tion [294], and multi agent navigation [196]. The success of deep reinforcement learning

in these domains suggests that this approach will be effective in videogames as well.

After the training pipeline is set up, RL techniques also reduce the authoring

burden on the designers. When a new map needs to be processed, no additional an-

notation from the designer is necessary compared to manually adding navmesh linking

nodes, which can be time consuming [308]. RL techniques can also demonstrate nav-

igation strategies that were not anticipated by the designer. This capability also has

benefits that are orthogonal to assistance such as bug-finding and machine playtest-

ing [139].
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8.4 Reinforcement Learning Setup

8.4.1 The NavAssist Environment

Even though there are multiple pre-existing reinforcement learning environ-

ments, at the time of writing none of them faithfully implement a 3D movement system

commonly found in commercial videogames while also being sufficiently easy to use. Be-

cause our goal is to create assistance methods that can later be adopted in videogame

design practice, it is important that the environment we train our agents on are similar

to commercial videogames. Towards this end we based our training environment on the

First Person Shooter (FPS) Microgame Template published by Unity.1

Using this template as a basis gave us several advantages: First, we can be

confident that the character controller implementation we use is a simplified but realis-

tic approximation of the controllers commonly found in other commercial First Person

games. Second, the myriad of resources and tutorials available explaining and building

on top of the FPS Microgame makes it easier for other researchers to customize the

NavAssist project based on their own needs. Furthermore, even though we primar-

ily focus on navigation, the existence of other pre-existing game components such as

shooting with different weapons, multiple enemy types, and a variety of implemented

modes ensure that the NavAssist project gives us many opportunities to increase the

complexity of the assistance methods implementable in the future.

The agent is rewarded for reaching a goal point. At the end of each episode

1https://learn.unity.com/project/fps-template
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new random positions are sampled for both the agent’s starting point and the goal.

More specifically, a random position in the 3D space is sampled, which then is used as

a starting point for a downward raycast. If the raycast lands on a valid surface, the

collision point is used as the spawn for the agent or the goal. This ensures the agents and

the goals always spawn on reachable and valid positions. A curriculum that gradually

increases the distance between the sampled starting points for the agent and the goals

is applied.

On top of the sparse reward for reaching the goal location, an optional dense

reward which is given to the agent for moving closer to the goal can be configured.

Potential Based Reward Shaping [225] can be enabled for this dense reward. PBRS

ensures that, when a dense reward is introduced, the optimal policy for the initial task

remains the same–which is to reach the goal as fast as possible, not to simply get close

to the goal. This helps the agent in cases where it needs to move away from the goal

for a while to reach it.

8.4.2 The NavAssist Supported Observations

In each of the environments the agent has access to several configurable obser-

vations (sensors), seen in Figure 8.2.

Agent and Goal states: Information about the agent’s current state is given

including the agent’s and the goal’s relative position, agent velocity, the number of jumps

and air jumps that are remaining, etc. This observation informs the agent of how it

is moving and where it should go. Alternate observation encoding schemes are easily
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Figure 8.2: Our agents sense the environment via customizable observations.

configured.

3D Occupancy Grid observation: In an offline step we discretize the space

into cubes and store whether the cube is occupied by level geometry or not. During

play we collect the occupancy of nearby grid cells as an additional observation repre-

senting the local structure of the world. The grid resolution and sampling pattern are

customizable.

2D Depthmap observation: We cast several rays forward from the agent

position and return whether the raycasts hit, and if so, how far away the hit is. This

observation informs the agent about the obstacles facing direction. The resolution and

maximum depth of this sensor are customizable.

Whiskers observation: We cast a small number of short rays that surround

the agent and return whether the ray hit an obstacle, and if so how far the obstacle is.

This observation informs the agent of its immediate surroundings, and the edges of the

platforms it is on. The number, direction, and depth of these raycasts is configurable.

The default environment baselines use all the observations described above,
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and the default configurations have been set empirically. Each of these observations are

implemented by inheriting from a base observation class which makes it easier for new

types of sensors to be implemented and open sourced in the Unity project. We hope

that open sourcing this project will make it easier for other researchers to investigate

more sophisticated representations of the world (particularly those that lead to better

human assistance rather than just improved agent performance).

8.4.3 The NavAssist Supported Actions

The user can choose among two continuous action spaces, one that uses agent

rotation, and one that does not. Both action spaces share common actions for moving in

the x axis, moving in the z axis, and jumping. The continuous jump action outputted by

the network is discretized to be a binary action by using a threshold in the environment.

These map to the common use of WASD keys for strafe movement, and Spacebar for

jumping actions that the human player takes. The action space that uses rotation adds

two additional action outputs that control the agent direction in the X and Y axes.

These additional actions map to common use of mouse movement for camera controls.

8.4.4 Learning Setup

For our reinforcement learning baselines we decided to use Soft-Actor Critic [145],

following the procedure described by Alonso [36]. In the baselines shown we are using

the stable-baselines3 library for our algorithm implementation. These baselines are not

attempts at state-of-the-art results but instead represent the performance of applying
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a common reinforcement learning algorithm without any algorithmic improvements,

curricula or non-default network architectures.

The network architecture used in the baselines is kept simple. The observation

input vector is passed into the network that consists of two fully connected layers of

2048 hidden units each. We experimented with the DenseNet [157] architecture as

per [237] however empirically we did not observe any improved performance for using

the DenseNet architecture and decided to keep using the simpler multilayer perceptron

architecture.

Figure 8.3: The training curve for the navigation environment. The shaded area shows
the standard deviation over three different seeds.

We present more details of the training procedure in the Appendix. The pre-

sented information includes a comparison between using the default hyperparameters

versus fine-tuning them; an ablation study of different observation types and algorith-

mic improvements; and the success rate changes with network size which we found to
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be crucial.

8.5 Example Assistance Methods

Figure 8.4: Our five example assistance methods support planning and execution in
different ways.

We also offer five different example assistance methods. The ideas for these ex-

ample assistance methods were generated using the design exercise suggested by Aytemiz

et al. [49] as follows: The game is broken down into the different challenging aspects.

Responding to a diagnostic taxonomy of failure in videogames [50], we define a planning

challenge, deciding which route to take to reach the goal, and an execution challenge,

the ability to actually press the buttons correctly to follow that route. Then we can

explore how to assist the players using our navigation in each of the challenges.

Move To Goal: The agent assists the player in both challenge types by taking
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full control over the player character and navigating towards the goal. This could be of

interest to players who prefer to simply skip certain playing parts of the game without

missing out on seeing the kind of play that it would have required.

Ghost: The agent assists the player in the planning challenge by taking control

of a separate invisible ghost agent that navigates to the goal and leaves a visible trail

for the player to follow. The player now knows a viable path to the goal but it is up to

the player to follow that path. This could be of interest to players who are stuck and

do not know which path to take to the goal.

Click to Move: The agent assists the player in the execution challenge by

taking control of the player character and navigating towards a point clicked by the

player. The player has indicated what route to take by clicking but the agent handles

the movement along the indicated path. This could be of interest to players who are

interested in self-directed navigation of the world, but they do not want or lack the a

capability to execute the complex actions necessary.

Only Jump and Only Move: The agent assists the player in both the

execution and planning challenges to a varying degree. In these assistance methods the

agent takes control of some aspect of the movement, moving or jumping respectively.

In Only Move, the player only has to move towards the goal, and the agent will jump at

the correct moments. In the Only Jump assistance, the agent will automatically move

towards the goal and the player instead has to time the jumps. This might be of interest

to players who have a limited input space when it comes to playing the games, such

as people with impaired mobility using sip and puff [215] input systems, but who still
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want some of the challenge of fine-grained controls.

8.6 System Evaluation

While the post training success rate is an important indicator of how effective

the agent would be in assistance it does not tell us the whole story. One main problem

is that during training (and final testing) the 1000 sampled goal/agent positions are

sampled uniformly over the map. This does not reflect the average play pattern–our

players do not randomly move around, they have more specific goals.

Another problem is that when it comes to assistance, some failures are more

costly than others. In our environment there are two ways in which an agent can fail,

it can either time out by not reaching the goal in the allocated time, or it can fall down

the chasm, restarting the level. In the context of assistance the latter case is much more

harmful. If the player sees that the agent is stuck repeating the same action again and

again they can simply take over and continue play. While definitely not the intended

result the impact of this failure on the player is relatively small. On the other hand if

the assistance method causes a level reset, not only the agent has not accomplished its

given task, it has also affected the progress of the player up to this point.

To tackle these two problems we created a more representative test suite.

We placed five goals in hard to reach locations we thought would be analogous to

where an ingame objective would be. Then, starting from the same initial position, we

recorded ourselves reaching each of the goals respectively. We created a dataset of 943
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Figure 8.5: Blue columns represent the five goal positions, and the orange capsule is
the agent starting position.

Success Rate Falling Failure Percentage Timeout Failure Percentage

0.986 23% 77%

Table 8.1: Success rate of our best performing model on the 943 trajectories.

start/end pairs that are representative of where the player could be while navigating to

a reasonable goal.

We spawned our agent at each of those 943 points and measured its success

rate in reaching the goal of the respective trace. We ran through this dataset 3 times

as the model actions are not deterministic and the success rate changes slightly across

runs.
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Table 8.1 shows the success rate, and the two different possible failure types.

Falling failure represents the agent failing to execute a jump and falling down the world,

whereas the Timeout failure represents the agent getting stuck and timing out.

By simply implementing these methods and engaging with them ourselves

certain design problems in each implementation immediately becomes obvious. For

example taking control of the player avatar and camera in Full Gameplay assistance can

cause disorientation and motion sickness, causing more harm than good. Sometimes it

is challenging to see where the ghost assistance is headed if the target is immediately

behind the player. Click to Move assumes the player is able to click on a surface, this

makes it very difficult to jump on to the platforms if the surface cannot be seen from

below. In Only Move and Only Jump assistance methods, the model is not trained with

the human model, and as such, expects the human to act like itself. This is not a valid

assumption and can cause the model to expect actions from the player that they won’t

take in order to progress toward the goal.

While we can show that the technical system will be effective in helping the

player, thorough user studies are necessary to uncover the full effects of introducing

these assistance methods and our proposed study can be found in Appendix B. Further-

more, we only scratched the surface of the possible assistance methods, and applicable

reinforcement learning (or other AI) techniques.

To support a larger body of interdisciplinary researchers to participate in the

conducting of AI driven inclusivity research we decided to open source our codebase,

experiment baselines, and models as the NavAssist research pipeline.
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8.7 NavAssist Research Pipeline

In order for AI-driven assistance methods to be implemented in commercial

games and assist the players effectively we need:

• AI researchers to create competent AI agents that can be trained within reasonable

timescales,

• Game designers to come up with assistance methods that do not undermine the

interesting challenges of gameplay,

• Human Computer Interaction researchers to ensure the assistance methods are

contextualized properly and evaluated thoroughly.

Without any one of these different perspectives, it becomes difficult to effec-

tively pursue this line of research end-to-end. If a game designer wants to design AI

driven assistance methods they need the AI models to be already developed, if a human-

computer interaction (HCI) researcher wants to test different ways of introducing these

methods they need the AI assistance methods to be in place, and if an AI researcher

is interested seeing their work utilized for assistance they need perspectives of both the

game designers and HCI researchers.

To bridge this gap between different disciplinary groups we are contributing the

open source NavAssist research pipeline (see Figure 8.6) which is a set of components

that make it easier to conduct end-to-end AI-driven assistance research. The NavAssist

research pipeline consists of:
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Figure 8.6: The NavAssist research pipeline offers multiple open-source components
(orange) that make it easier for researchers with different perspectives (blue) to demon-
strate impact with fully-realized player assistance systems.

• A Unity project for a human-playable first person platformer game with complex

movement abilities,

• Several levels designs of this game exported in an Open AI Gym environment

format,

• Pre-trained reinforcement learning models (policies) capable of navigating in these

game levels,

• The learning curves of these trainings experiments for baseline comparisons,

• Implementation of several assistance methods that showcase underlying HCI chal-

lenges,

• A human playable game build with the implemented assistance methods.

With the NavAssist project a researcher can choose to focus their attention

on improving the aspect of AI-driven assistance research in which they personally are

invested, while using the provided components for other aspects. With this chapter,
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our hope is to contribute to the foundations for shared progress and to make it eas-

ier for our community to make progress in AI driven accessibility research. All the

referred pieces can be found in this Github repository with accompanying notebooks:

https://github.com/batu/NavAssist/

8.7.1 The NavAssist RL Environments

Figure 8.7: Four of our example navigation environments.

Using the Unity project we contribute several different environments with in-

creasing complexities (four are shown in Figure 8.7). While the number of environments

in the repository is more than five and steadily increasing, we describe five environment

that are representative.

Debug environment contains no obstacles and is used to quickly test learning

algorithms. To solve this environment, it is sufficient for the agent to learn to walk

towards the goal.

Jump environment contains floating platforms that the agent must jump over.

Platforms on the corners of the map are inaccessible from jumps from the ground, but
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they can be reached by from lower platforms nearby. In order to solve this environment,

agents must learn routes more complex than straight lines and to use their double-jump

effectively.

One Building environment contains a 5-story tall building that the agent

must climb. Each story requires either a jump or a double-jump to ascend. In order

to reach the top, the agent needs to jump out of the building through the window and

then do a double-jump back to reach the roof.

Five Buildings environment contains five tall buildings (shifted replicas of

the building in the previous environment). To traverse this environment effectively, the

agent must learn how to jump between buildings.

Crane environment models a 150 meter by 150 meter first person shooter style

game map with several buildings, bridges to cross chasms. The Crane environment

extends the Urban environment by adding a (static) crane that connects one side of the

map to the other. The crane presents an important challenge as it is unlikely for the

agents to collect many states from there by following a random exploration. To solve

this environment, the agent has to learn routes to climb to points of interest while also

being able to reliably execute jumps with precision.

8.8 Nav Assist Pipeline Baselines

For our reinforcement learning baselines we decided to use Soft-Actor Critic [145],

following the procedure described by Alonso [36]. In the baselines shown we are using
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Figure 8.8: Results of the Soft-Actor Critic algorithm on each of the environments
confirms their increasing difficulty. These baselines are offered as starting points for
exploration of algorithmic improvements, curricula, advanced network architectures,
etc. and do not represent the state of the art results on these environments.

the stable-baselines3 [252] library for our algorithm implementation. These base-

lines are not attempts at state-of-the-art results but instead represent the performance

of applying a common reinforcement learning algorithm without any algorithmic im-

provements, curricula or non-default network architectures. The hyperparameters were

tuned on the One Building environment and kept consistent across all environments.

The provided repository also includes results for our best performing navigation agents.

We use one million, three million, five million and seven million five hundred

thousand timesteps for the Jump, One Building, Five Buildings, and Crane environ-

ments respectively. Results are shown in Figure 8.8. All of the environments use the

same observation and action spaces, which includes all the earlier described observations

and no rotational actions.

8.9 Questions Addressable with NavAssist

We hope that this pipeline will support the shared foundations of AI driven

assistance research, and in this section we describe several open research questions that
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we believe the NavAssist research pipeline can be useful in answering.

8.9.1 Open Questions for Reinforcement Learning

The current training pipeline forces the reinforcement learning agent to mem-

orize the level geometry in the neural network weights. Being able to generalize (or use

transfer learning) to new maps would increase the effectiveness of RL methods drasti-

cally. How can reinforcement learning agents generalize or transfer to new

maps?

Many games contain different playable characters with different movement

characteristics. The common approach currently is to train a new model per movement

style which, when combined with the need to train a model for each level, does not scale

very effectively. How can reinforcement learning agents generalize to different

characters with differing movement characteristics?

It is common for trained agents to behave in an unhuman-like manner, which

has the potential to break immersion in certain cases. How can the agents learn to

navigate more like a human?

The observations (the depth map, occupancy grid, and whiskers) used to repre-

sent the level geometry are all coarse estimations of the actual environment and can fail

in specific configurations. How can we more effectively represent level geometry

to a higher level of fidelity without exploding complexity?

It is common for games to be tested extensively both during development and

also after release. How can we utilize the human demonstrations available from
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player and quality assurance testing?

Most deep reinforcement approaches use RL to handle every aspect of game-

play. While potentially very effective, this makes it difficult for designers to tune specific

aspects of the behavior. How can we modularly integrate RL into the rest of

the game AI stack to ensure the overall behavior is manipulable by the

designers?

8.9.2 Open Questions for Game Design

The provided example assistance implementations are far from an exhaustive

list of what is possible in AI-driven navigation assistance. What are other, poten-

tially more effective AI driven assistance methods?

Even though in this chapter we assumed the lens of assistance, these capabili-

ties can also potentially become a part of the default gameplay. How can we use the

navigation capabilities to uncover new gameplay opportunities?

We demonstrated ways of using RL-trained policies to assist the player, but

many RL methods also trained value functions that assign scores to states. How can

trained value functions be used to assemble new assist modes?

In this chapter we have focused on assisting the player, however the same

capabilities can also be used in assisting the game designers, for example when it comes

to ensuring all the items placed on a map are reachable. So, generally, how can we

use navigation AI to support game designers?

Rules that allow the game to respond to the player’s intent versus the actual
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player input are called forgiveness mechanics [130]. One such mechanic for example, is

called “coyote time,” and it allows the player to be able to jump for a few frames after

they leave a platform. These forgiveness mechanics often result in a more responsive

gameplay. How can we utilize navigation based assistance methods to make

the games more responsive?

8.9.3 Open questions for Human-Computer Interaction

It is imperative that we quantify how much better, if at all, are the AI-driven

assistance methods over assistance methods that do not use any AI techniques. How

effective are the assistance methods in actually assisting the players and

improving the overall play experience?

One of the issues that became apparent when assisting is that the player does

not exactly know what the AI model is going to do and this reduces the sense of agency

which is crucial to maintain when assisting. How can we ensure that the assistance

mode communicates what is going to happen and ensures the player feels in

control when the assistance is active?

We discussed several usability issues that arose in our current implemented

examples, such as not being able to target the top of platforms with the Click to Move

assistance method. To ensure the methods can be used as intended we would need to

know what some common usability issues that arise are when implementing

assistance methods?

One danger when it comes to offering assistance methods is being condescend-
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ing to the player. It is important that the player is made aware of the existence of these

methods, yet this introduction does not feel patronizing. Towards that end we would

need to explore the best practices in introducing the assistance methods.

Conclusion

In this chapter we have introduced the NavAssist research pipeline to support

end-to-end research for AI-driven navigation assistance methods. We described the

three main components of the research pipeline:

• The reinforcement learning environments and training baselines for researchers to

improve upon,

• A set of pre-trained navigation models for designers to use in creating new assis-

tance methods,

• A set of example AI driven assistance methods to work as inspiration and basis

of evaluation.

We hope these building blocks will help our community make progress in this

research area. We are looking forward to integrating the requests and ideas of the

larger community to the repository in terms of new environments, movement abilities,

observations assistance methods and other components.
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Chapter 9

Future Work

The projects I presented only scratch the surface of how to utilize artificial

intelligence techniques for making videogames more inclusive—plenty of work remains.

In this chapter I describe five research directions that can be built on top of the ground

covered by this dissertation.

9.1 Explore the Effectiveness of Assist Modes

At the time of writing, even with the growing body of game accessibility re-

search [9, 58, 192, 73], there is still much we do not know about assist modes implemented

in commercial videogames. We do not yet know how often they are used by the players,

how effective they are in making games more inclusive, or what the best practices are

when designing and presenting different accessibility options.

Understanding which accessibility options are most effective and sought after

by players can guide future design decisions in the games industry. Understanding the
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impact of the baseline assist modes is also important when it comes to quantifying the

effectiveness of AI-driven assist modes. A proposed user study can be found in Appendix

B.

Accessibility modes usually change the abilities of the player, such as making

the character invincible in Celeste [205], but sometimes they can also change how pun-

ishing the game is, such as resetting Mario to the last point he jumped off when he

misses a platform in Super Mario Odyssey [226]. While the Taxonomy of Failure [50]

helps us understand the failure of players, we lack a comprehensive exploration of how

the game reacts after a player fails. A deeper understanding of the responses a game

can give to player failure—a taxonomy of punishment in videogames, if you will—can

assist designers intent on coming up with a more diverse set of accessibility options.

9.2 AI-Driven Coaches

As argued in this dissertation, I believe another approach to making games

more inclusive is to ensure they are more effective teachers. I am very much interested

in utilizing the gameplaying competencies of AI agents to coach players [305].

As argued in Chapter 5 most games frontload their tutorialization and teach

the rules of the game without teaching players how to master the game. While this

approach can be sufficient in simpler games, in more complex genres, it leaves groups of

players behind. For example, many struggle to learn the multiple subsystems of grand

strategy games or understand the intricacies of positioning in fighting games. An AI
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coach can help identify the aspects the players is lacking in and give precise feedback

on how to improve.

Imagine a sports game where after each match, the player can receive an

analysis of the blunders that lead them to lose points, and the alternative options they

could have taken. This type of feedback could potentially help people improve their

gameplay at a much steadier rate, reducing the frustrations of getting stuck in a skill

plateau. Any type of function that maps a given state to its utility could be used for this

purpose. Conveniently, the critic/value networks [295] in any actor-critic reinforcement

learning algorithm does exactly this, and one can get it for free when training an RL

model.

9.3 Learning Sciences for Games

Using games for learning is a well studied topic. [249] Educators have tried

to understand game design to make learning more effective. I believe we can look into

learning sciences to make games more effective.

While “fun is a response to learning” is a rather popular theory in the games in-

dustry [189], not a lot of effort has been put into bringing the best practices of the science

of learning into game design. Concepts such as, zone of proximal development [105],

spaced repetition [43], worked-out examples [257], expertise reversal effect [179], and

mastery learning [64] are thoroughly studied in learning sciences and can be integrated

into and evaluated in the videogame entertainment context.
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For example, the trained agents in the RLNav project can be used to show

the players effective ways to traverse the level acting as a worked out example. The

knowledge representation of player skill in Talin can be enhanced by incorporating the

times in which the players are supported with a skill under a spaced repetition regiment.

9.4 Repurpose Gameplaying AI Agents for Design Insights

This dissertation explores using gameplaying AI agents for game inclusivity to

support players. What if we use the same gameplaying capability to support videogame

designers as well? Previous work has attempted to address some of these questions [153,

322, 223, 279], and the intent here isn’t to suggest an alternative to playtesting with

real humans, but rather, using the gameplaying capabilities to distill insights that can

inform design decisions.

For example, can we utilize a gameplaying agent to ensure all the items placed

on a map are reachable? With a navigation agent can we measure the parts of a

game where an important landmark visible? Or, can we use the gameplaying agents to

understand the balance of our games? As our ability to train and deploy agents mature,

our approaches regarding how to utilize them need to mature alongside them.

9.5 Lean on the Domain Specificity of Videogames

Reinforcement learning research is often conducted with an eye towards real

life, and videogames are seen as stopgap. This means that improvements and design
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decisions that can only work in videogames domain aren’t celebrated. However, if we

are going to be staying in the videogames domain, then there is no reason to ignore

videogame specific aspects we can take advantage of.

For example, reinforcement learning agents usually have a rather naive way

of perceiving the topology of the world they inhabit—through a number of raycasts.

However, if we acknowledge that we are going to be staying in the world of a videogame,

then there is no reason not to use the underlying structure that organizes the game’s

world. In many modern engines, game worlds are represented by scene graphs [62]. We

can feed this scene graph directly to our reinforcement learning agents, parsed via graph

convolutions [263], in addition to them learning the world through other less structured

observations such as raycasts.

Overall, I hope that this dissertation generates more questions than it answers.
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Chapter 10

Conclusion

My mother told me that she didn’t like playing videogames. She explained
how as I was growing up she wanted to play videogames with me, but it
never worked out: “When I first tried to play a game with you, I couldn’t
understand what to do, the game made me feel incompetent, and I felt
ashamed.”

Videogames made my mother feel helpless and made her decide never to engage

with them. Not only she was excluded from the enchanting stories and vibrant worlds

of these games, but also from the potential conversations and shared experiences with

me. In this dissertation I argued that we should focus on making games more inclusive,

not for the sake of game but for the sake of people who play them.

To this end, I set out to discover AI-powered approaches to making games

accessible experiences, and more effective teachers. Of course, this goal cannot be

achieved through a single body of work. This dissertation, however, marks a number of

both theoretical and practical advances towards achieving this goal:
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• A Diagnostic Taxonomy of Failure project expands our game design vocabulary

and contributes a finer grain understanding of failure in videogames.

• Talin: A Framework for Dynamic Tutorials Based on the Skill Atoms Theory

project recognizes that not every player learns the same way and contributes a to

making tutorials more responsive.

• SMES: Adapting Dexterity-Based Games For Deliberative Play project acknowl-

edges that there can be many ways of engaging with videogames and contributes

a method of converting execution failures to planning failures.

• Repurposing the Game-Playing AI Surplus for Inclusivity project reframes our pre-

existing capabilities in service of the player experience and contributes a design

exercise for the generation of assistance methods.

• Reinforcement Learning Powered Assistance Methods project operationalizes the

proposed theories and contributes several navigation assistance methods.

• NavAssist Research pipeline contributes a common platform where interdisci-

plinary research on reinforcement learning driven accessibility modes can be con-

ducted.

I hope with this work, I contributed to people feeling more welcome in the

digital worlds we create.
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[85] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics and AI: An

Introduction. CRC Press, July 2018.

181



[86] Kate Compton and Michael Mateas. Casual creators. In ICCC, pages 228–235.

axon.cs.byu.edu, 2015.

[87] Mia Consalvo. Cheating: Gaining Advantage in Videogames. MIT Press, August

2009.

[88] Daniel Cook. The chemistry of game design, Jul 2007.

[89] Henry Caldwell Cook. The Play Way: An Essay in Educational Method. Frederick

A. Stokes Company, 1917.

[90] Sasha Costanza-Chock. Design justice: Community-led practices to build the

worlds we need. The MIT Press, 2020.

[91] Greg Costikyan. Uncertainty in Games. MIT Press, 2013.

[92] Ben Cowley, Darryl Charles, Michaela Black, and Ray Hickey. Toward an under-

standing of flow in video games. July 2008.

[93] Anna Cox, Paul Cairns, Pari Shah, and Michael Carroll. Not doing but thinking:

the role of challenge in the gaming experience. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’12, pages 79–88, New

York, NY, USA, May 2012. Association for Computing Machinery.

[94] Chris Crawford. The art of computer game design. 1984.

[95] Thibault de Vassal. Advanced chess. http://www.ficgs.com/wikien− advanced−

chess.html.Accessed : 2020− 6− 2.

182



[96] Lars de Wildt, Thomas H Apperley, Justin Clemens, Robbie Fordyce, and Souvik

Mukherjee. (re-)orienting the video game avatar. Games Cult., 15(8):962–981,

December 2020.

[97] O Delalleau, E Contal, E Thibodeau-Laufer, R C Ferrari, Y Bengio, and F Zhang.

Beyond skill rating: Advanced matchmaking in ghost recon online. IEEE Trans.

Comput. Intell. AI Games, 4(3):167–177, September 2012.

[98] Design Doc. Teaching game mechanics well - guidance VS. hand holding design

doc, August 2016.

[99] Heather Desurvire and Charlotte Wiberg. Master of the game: assessing approach-

ability in future game design. In CHI’08 extended abstracts on Human Factors in

Computing Systems, pages 3177–3182. ACM, 2008.

[100] Heather Desurvire and Charlotte Wiberg. Game usability heuristics (play) for

evaluating and designing better games: The next iteration. In International Con-

ference on Online Communities and Social Computing, pages 557–566. Springer,

2009.

[101] Heather Desurvire and Charlotte Wiberg. User experience design for inexperi-

enced gamers: GAP – game approachability principles. In Regina Bernhaupt,

editor, Evaluating User Experience in Games: Concepts and Methods, pages 131–

147. Springer London, London, 2010.

[102] Heather Desurvire and Charlotte Wiberg. User experience design for inexperi-

183



enced gamers: Gap—game approachability principles. In Game user experience

evaluation, pages 169–186. Springer, 2015.

[103] Sebastian Deterding. The lens of intrinsic skill atoms: A method for gameful

design. Hum.-Comput. Interact., 30(3-4):294–335, May 2015.

[104] J.P. Doignon and J.C. Falmagne. Knowledge Spaces. Springer Berlin Heidelberg,

2012.

[105] Peter E Doolittle. Vygotsky’s zone of proximal development as a theoretical

foundation for cooperative learning. Journal on Excellence in College Teaching,

8(1):83–103, 1997.

[106] Anders Drachen, Pejman Mirza-Babaei, and Lennart Nacke. Games User Re-

search. Oxford University Press, Inc., USA, 2018.

[107] Brandon Drenikow and Pejman Mirza-Babaei. Vixen: interactive visualization of

gameplay experiences. In Proceedings of the 12th International Conference on the

Foundations of Digital Games, page 3. ACM, 2017.

[108] Yuqing Du, Stas Tiomkin, Emre Kiciman, Daniel Polani, Pieter Abbeel, and Anca

Dragan. AvE: Assistance via empowerment. June 2020.

[109] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune.

Go-Explore: a new approach for Hard-Exploration problems. January 2019.

[110] Egoraptor. Sequelitis - mega man classic vs. mega man X, October 2011.

184



[111] Kit Englard. Microsoft has created the most accessible gaming controller

ever made. https://www.vice.com/enus/article/d3kvx7/microsoft− adaptive−

controller, 2018.Accessed : 2020− 7− 24.

[112] Eurogamer. Miyamoto on world 1-1: How nintendo made mario’s most iconic

level.

[113] Extra Credits. Design club - super mario bros: Level 1-1 - how super mario

mastered level design, June 2014.

[114] Facepunch Studios Ltd. Rust. Windows, 2013.

[115] L V Fernandes, C D Castanho, and R P Jacobi. A survey on game analytics in

massive multiplayer online games. In 2018 17th Brazilian Symposium on Computer

Games and Digital Entertainment (SBGames), pages 21–2109, October 2018.

[116] Firaxis Games. Civilization iv. Windows PC version, 2005.

[117] Firaxis Games. Civilization VI. PC, October 2016.

[118] Firaxis Games. Xcom 2. Windows PC version, 2016.

[119] Bennet Foddy. QWOP. PC, November 2008.

[120] Bennet Foddy. Getting over it with bennett foddy. PC, December 2017.

[121] Renata Pontin M et. al Fortes. Game accessibility evaluation methods: A liter-

ature survey. In Universal Access in HCI. Design and Development Approaches

and Methods, page 182, 2017.

185



[122] Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta. Evolution of arti-

ficial terrains for video games based on accessibility. In European Conference on

the Applications of Evolutionary Computation, pages 90–99. Springer, 2010.

[123] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, and

Joelle Pineau. An introduction to deep reinforcement learning. arXiv preprint

arXiv:1811.12560, 2018.

[124] From Software. Sekiro : Shadows Die Twice. Windows PC version, 2018.

[125] Ethan Gach. The year in tiny video game text, 2019, Dec 2019.

[126] Lee Garber. Game accessibility: enabling everyone to play. Computer, (6):14–18,

2013.

[127] Lee Garber. Game accessibility: enabling everyone to play. Computer, (6):14–18,

2013.

[128] GDC. How to make great game tutorials, August 2016.

[129] Gdc. This is a talk about tutorials, press a to skip, January 2019.

[130] GDC. Forgiveness mechanics: Reading minds for responsive gameplay, March

2020.

[131] J P Gee. Learning by design: Games as learning machines. Interactive educational

multimedia: IEM, 2004.

[132] J P Gee. Situated language and learning: A critique of traditional schooling. 2004.

186



[133] J P Gee. Are video games good for learning? Nordic Journal of Digital Literacy,

2006.

[134] J P Gee. Games for learning. Educational Horizons, 2013.

[135] James Paul Gee. Good video games and good learning. Phi Kappa Phi Forum,

85:33+, 2005.

[136] James Paul Gee. Learning by design: Good video games as learning machines.

E-Learning and Digital Media, 2(1):5–16, March 2005.

[137] James Paul Gee and Elizabeth Hayes. Nurturing affinity spaces and game-based

learning, 2012.

[138] Cameron Gidari. What it’s like to play games when you’re colorblind, July 2014.

[139] Camilo Gordillo, Joakim Bergdahl, Konrad Tollmar, and Linus Gisslén. Improving

playtesting coverage via curiosity driven reinforcement learning agents. March

2021.

[140] David Graeber. Are you an anarchist? the answer may surprise you! The

Anarchist Library, 2010.

[141] Dimitris Grammenos, Anthony Savidis, Yannis Georgalis, and Constantine

Stephanidis. Access invaders: Developing a universally accessible action game.

In Computers Helping People with Special Needs, pages 388–395. Springer Berlin

Heidelberg, 2006.

187



[142] Michael Cerny Green, Ahmed Khalifa, Gabriella A B Barros, Andy Nealen, and

Julian Togelius. Generating levels that teach mechanics. In Proceedings of the 13th

International Conference on the Foundations of Digital Games, number Article

55 in FDG ’18, pages 1–8, New York, NY, USA, August 2018. Association for

Computing Machinery.

[143] Michael Cerny Green, Ahmed Khalifa, Gabriella AB Barros, and Julian Togelius.

”press space to fire”: Automatic video game tutorial generation. arXiv preprint

arXiv:1805.11768, 2018.

[144] Matthew Guzdial, Nicholas Liao, Jonathan Chen, Shao-Yu Chen, Shukan Shah,

Vishwa Shah, Joshua Reno, Gillian Smith, and Mark Riedl. Friend, collaborator,

student, manager: How design of an AI-Driven game level editor affects creators.

January 2019.

[145] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-

Critic: Off-Policy maximum entropy deep reinforcement learning with a stochas-

tic actor. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th

International Conference on Machine Learning, volume 80 of Proceedings of Ma-

chine Learning Research, pages 1861–1870, Stockholmsmässan, Stockholm Swe-
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Ontañón. The VGLC: The video game level corpus. June 2016.

206



[294] Libo Sun, Jinfeng Zhai, and Wenhu Qin. Crowd navigation in an unknown and dy-

namic environment based on deep reinforcement learning. IEEE Access, 7:109544–

109554, 2019.

[295] R S Sutton and A G Barto. Reinforcement learning: An introduction. IEEE

Trans. Neural Netw., 9(5):1054–1054, September 1998.

[296] Steve Swink. Game feel: a game designer’s guide to virtual sensation. CRC Press,

2008.

[297] Tapulous. Tap tap revenge. IOS, July 2008.

[298] Christopher Taylor. Able gamers includification. 2013.

[299] Team Meat. Super meat boy. Windows PC version, 2010.

[300] Gerald Tesauro. Temporal difference learning and TD-Gammon. Commun. ACM,

38(3):58–68, 1995.

[301] C Therrien. “ to get help, please press x” the rise of the assistance paradigm in

video game design. 2011.

[302] Cherry Thompson. Sekiro: Accessibility in games is about far more than ’diffi-

culty’ - IGN, April 2019.

[303] Tommy Thompson and Matthew Syrett. ’play your own way’ adapting a procedu-

ral framework for accessibility. In Proceedings of the 13th International Conference

on the Foundations of Digital Games, pages 1–7, 2018.

207



[304] Julian Togelius, Noor Shaker, Sergey Karakovskiy, and Georgios N Yannakakis.

The mario ai championship 2009-2012. AI Magazine, 34(3):89–92, 2013.

[305] Mike Treanor, Alexander Zook, Mirjam P Eladhari, Julian Togelius, Gillian Smith,

Michael Cook, Tommy Thompson, Brian Magerko, John Levine, and Adam Smith.

Ai-based game design patterns. 2015.

[306] Unknown Worlds Entertainment. Subnautica. PC, January 2018.

[307] Valve Corporation. Dota 2. Windows, 2013.

[308] Wouter van Toll, Atlas F Cook, and Roland Geraerts. Navigation meshes for

realistic multi-layered environments. In 2011 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 3526–3532, September 2011.

[309] Oriol Vinyals and Igor et. al Babuschkin. Grandmaster level in StarCraft II using

multi-agent reinforcement learning. Nature, 575(7782):350–354, November 2019.

[310] Helen Wauck and Wai-Tat Fu. A Data-Driven, multidimensional approach to hint

design in video games. In Proceedings of the 22nd International Conference on

Intelligent User Interfaces, pages 137–147. dl.acm.org, 2017.

[311] Matthew M White. Learn to Play: Designing Tutorials for Video Games. CRC

Press, June 2014.

[312] Josef Wiemeyer, Lennart Nacke, Christiane Moser, and Florian ‘Floyd’ Mueller.

Player experience. In Ralf Dörner, Stefan Göbel, Wolfgang Effelsberg, and Josef
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Appendix A

NavAssist Further Experiments

Figure A.1: Tuned hyperparameters versus default hyperparameters of the underlying
library in the Urban environment. Shaded regions show standard deviation over 5 seeds.

Often in reinforcement learning research only the final, fully tuned training

curves are reported. This however hides the amount of effort necessary in finding the

correct hyperparameters and downplays the sensitivity of the algorithms. The experi-
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Value Function Hidden
Layer Width

Value Function
Parameter Count

Mean Final
Success Rate

Best Final
Success Rate

2560 7.872.000 0.983 ± 0.008 0.992

2048 5.249.024 0.988 ± 0.004 0.993

1536 3.150.336 0.979 ± 0.006 0.988

1024 1.575.936 0.953 ± 0.004 0.960

512 525.824 0.942 ± 0.002 0.946

256 197.376 0.916 ± 0.008 0.930

128 82.304 0.830 ± 0.052 0.875

Table A.1: The results of training the reinforcement learning for navigation agent in
the Urban environment with changing critic network sizes. The results show mean over
5 seeds.

Removed Component Remaining Observation Size Mean Final Success Rate

Baseline 505 0.988 ± 0.0049

Depth Map 450 0.979 ± 0.007

Whiskers 479 0.970 ± 0.013

Occupancy 100 0.934 ± 0.003

Absolute Position 499 0.967 ± 0.007

Curriculum 505 0.952 ± 0.002

Dense Reward 505 0.836 ± 0.020

Table A.2: The results of the ablation study on the reinforcement learning for navigation
agent in the Urban environment. The results show mean over 5 seeds for 10 million
timesteps.

ments shown are from training Soft-Actor Critic algorithm on the Urban environment

used in chapter 8.

In an attempt to be more transparent on the importance of hyperparameter

tuning figure A.1 shows the comparison between a highly tuned agent with the default

hyperparameters.

In our hyperparameter tuning we found that one of the most important param-

eters to tune is the size of the value network, which is shown in table A.1. We also ran an

ablation study to explore the importance of different types of observations and algorith-
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mic decisions. Table A.2 shows the results of our experiments. The full list of used hyper-

parameters can be found here: https://wandb.ai/batu/Urban/runs/1kxiy929/overview
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Appendix B

NavAssist User Study Proposal

In this dissertation, I have contributed several computational prototypes (fol-

lowing the computational caricatures research method [284]). In order to learn more

about the efficacy of these systems, and how players realistically interact with the sys-

tems, user studies need to be conducted. In particular, I am interested in exploring

how players utilize and respond to the provided assistance methods. This chapter con-

tributes a detailed study design in order to guide future researchers who want to follow

up on the NavAssist project described in chapter 8. In particular, the study design

sketched offers a method for evaluating the effectiveness of new assistance modes that

might be invented the future. The user study will explore how players respond to the re-

inforcement learning powered assistance modes. The study will utilize a mixed-methods

approach, collecting both quantitative and qualitative information via semi-structured

interviews and task-based analysis.
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Recruitment

Participants will all be ages 18 and over. They will be recruited online and

within the Santa Cruz community to complete one or more tasks each. An intake

questionnaire will record demographic info and previous videogame playing experience.

We hope to recruit a wide variety of ages and especially experience levels.

Task Based-Analysis

The recruited individuals will be asked to complete the task of navigating

to a set of goals in the provided videogame while using different assistance methods.

This section will help us gather insights into players’ responses to using each assistance

method. Then, the recruited individuals will be asked to complete a similar set of

navigation challenges, while having the option to use (or not use) whichever assistance

method they prefer. This section will give us preliminary data on player choices into

when and which assistance methods they use and will inform the design of future more

comprehensive longitudinal studies. Before and after participating in these tasks, they

will be asked to fill out participation surveys on their emotional states and perception of

their experience. Both the screens and faces of the players will be recorded for matching

the emotional responses of the player to the events happening on the screen. The players

will be prompted to use the speak aloud [106] technique to help communicate their

feelings and inner state.

Several metrics will be tracked such as the amount of time it takes for the

players to complete the tasks, the number of mistakes they make, the amount of time
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they spend using each assistance mode when they have the choice. These metrics will

be recorded by the game automatically and will be analyzed in conjunction with the

qualitative information

Semi-Structured Interviews

As a part of the user study, semi-structured interviews will be conducted that

aims to understand players’ opinion of and past experience with accessibility modes, and

their engagement with the RL-powered assistance methods presented. The interview

structure asked in the interviews will be refined in early small-scale pilot studies.

The experiments will continue until the saturation of information. We will be

using thematic analysis techniques to process the interviews. We expect the results of

this analysis to inform the design of future prototypes and highlight important future

research questions.
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