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ABSTRACT OF THE THESIS

Improving the Robustness of Drone Swarm Control

Systems with Graph Learning

By

Jorge De La Torre Mart́ın

Bachelor in Electrical Engineering

University of California, Irvine, 2023

We propose a novel approach to control a swarm of drones. Leveraging Graph Neural

Networks (GNNs), our approach aims to improve the robustness of the drone swarm system,

making the swarm accomplish tasks in adverse and disturbing conditions. In our project, one

example of such harsh conditions can be when one or more agents are biased or compromised.

Related works exist leveraging GNNs to decentralize the global controllers and bring many

benefits to the swarm control system for drones. However, whether applying GNNs can

improve the robustness still needs to be explored. Therefore, our objective is to investigate

this problem and verify if using GNNs can enhance the robustness of the systems.
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Chapter 1

Introduction

Unmanned Airborne System (UAS) reduces life risks by performing tasks that manned

systems cannot do. The UAS development has attracted research attention due to its high

capacity and applications, as shown in military and commercial uses, such as photography,

cinematography, precision agriculture, surveillance security, natural disaster recovery, and

search and rescue operations [2]. An individual UAS can have limited capabilities and thus

cannot perform large-scale tasks. Many natural examples exist, such as bees coordinating

to complete a task or flocks of migrating geese coordinating in an efficient flight pattern

to achieve their migration. Therefore, Swarm Intelligence (SI) has become increasingly

popular, where drones are coordinated collaboratively to achieve their mission. Applying SI

for a UAS swarm can have advantages, such as faster task completion due to the paralleliza-

tion or execution of collaborative tasks. However, the development of these systems is still

in its early stages.

Several research challenges exist in developing SI for UAS. However, the main focus is,

as introduced by [4], on Robustness (the swarm has the capability of completing the tasks

even being affected by failures), Flexibility (the swarm can be rearranged and readjusted
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Chapter 1. Introduction

to form different patterns), or Scalability (the swarm can grow and shrink in size, and

still be able to complete its task). These challenges may also lead to the issue of what con-

troller architecture might be the most suitable, as depending on the application’s specific

requirements, it may be necessary to choose between different communication structures. As

introduced by [2] and [3], there are some common approaches used, such as Infrastructure-

based Swarm communication architecture (centralized, at the cloud level) represented in

Figure 1.1a, or Flying Ad-hoc NETwork (FANET) which supports higher autonomy as the

follower agents, of the leader-follower structure, make their own decision in a distributed

manner (at the edge level) as in Figure 1.1b.

(a) Centralized communication architecture. (b) Decentralized communication architecture.

Figure 1.1: UAV Swarm communication architectures.

On the one hand, centralized controllers are based on the idea that a single entity controls

the swarm, exchanging real-time information with each agent and making decisions for the

swarm by itself. Indeed, centralized controllers make it possible to access and manage all

the swarm information globally, enabling them to achieve more precise tasks.

On the other hand, decentralized controllers are systems where decision-making is distributed

across all the agents. Every agent gathers local information from sensors and actuators (local

2



Chapter 1. Introduction

observation) from its neighbors, enabling these systems to be used in more flexible environ-

ments. The problem arises when a UAS swarm grows in scale, making a decentralized

controller more beneficial than a centralized one. Decentralized control may become even

more critical when operating in restricted communication areas where global communication

may seem impossible.

Graph Neural Networks can be an excellent tool for accomplishing these tasks, as they

can represent swarm data as a graph. Indeed, they are specifically designed to process

graph-structured data so that they can have a better understanding of complex scenarios

and relationships between agents, as well as be able to handle them in a very efficient man-

ner. Besides that, they can be trained to clone global policies via imitation learning, as

introduced by [16], bringing together the beneficial points of the centralized controller but

performing their actions from a decentralized perspective. For the sake of this study, it all

comes down to flocking tasks in which dynamic communication networks play their role.

As mentioned before, there are many examples of natural swarms, such as geese taking ad-

vantage of collaborative control to carry out flocking tasks more efficiently, making it more

attractive to keep exploiting these areas unstudied.

Recent works have made important progress in the usage of GNN techniques to improve

information exchanges and study procedures to avoid using the Global Navigation Satel-

lite System through implementing vision-based controllers [5], or even more, developing

decentralized path planing controllers as in [7]. Even so, few studies have approached the

robustness problem and how using GNNs could enhance performance in the area of UAS

swarm.

In our work, we focus on decentralized control architectures for controlling the flocking

behavior of a group of flying drones. The overall idea or architecture can be illustrated in

3



Chapter 1. Introduction

Figure 1.1b. This type of architecture uses local information about the neighbors to output

some control over the agents. As a general introduction to our approach, we aim to assess

how different types of controllers affect the robustness of the swarm while carrying out flying

tasks. As will be later defined, the main concept of robustness for swarm application is

a system’s capability to perform even if failure involves it. Therefore, we aim to compare

and demonstrate how GNNs controllers can help enhance a swarm’s robustness while flying.

As already stated, as a graph learning model, this project needs some inputs to extract its

outputs. The model’s inputs will be all the sensor state data gathered from each drone,

and the generated outcomes will be an action prediction. This work offers to enhance the

robustness and enable better Swarm Intelligence by embedding Artificial Intelligence

(AI) into communication controllers. More precisely, it is proposed to integrate GNNs into

UAS swarms in a decentralized manner, making it possible to adapt the flocking formation

to the faults, avoiding disconnections or other desirable swarm behavior. Doing so can help

the swarm have a more robust behavior and better agent communication.

Figure 1.2: Graph learning architecture for UAV swarm controller.
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Chapter 2

Background

2.1 Swarm intelligence

As a first introduction to the concept of swarm control, the concept of a swarm should be

defined and explained why it is so relevant nowadays. A swarm is often seen as a cluster

of agents moving together or just being together and standing by. However, this might not

be the exact definition of a swarm. A swarm is a group of agents coordinated individu-

ally to carry out a particular global task, without a central controller or Ground Control

Station (GCS) having to send a unique control action for all the individuals. Indeed, it is

a decentralized collaborative behavior where everyone shares the same mindset and objective.

Some models have been developed to make SI possible. Craig Reynolds was a pioneer

in this area of study, introducing what is known as the Boids model, where all the agents

should follow some rules to complete their global task, more precisely, the flocking task. This

model was first introduced in 1987 by [14] as an approach to simulate the flocking behavior

of natural swarms, such as birds. It is mainly based on three rules defining the flocking
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Chapter 2. Background

behavior that every agent should follow: separation, cohesion, and alignment. The Boids

model can also be applied to situations where goal-seeking is needed, an additional rule for

the model that makes the agents move toward a specified target. More recently, there have

been improvements on those former rules, introducing new rules that target other aspects of

the flocking behavior, such as prey and predator interaction [1]. The three rules defined by

[14][6] to approach the flocking problem

• Separation: keep a minimum distance between agents so everybody has enough room

to fly, avoiding collisions.

• Alignment: steer towards the average path of the neighbors so that every single agent

will be heading in the same direction.

• Cohesion: move toward the average position of the neighbors, keeping the group to-

gether and avoiding disturbances in the swarm.

Figure 2.1: Representation of rules for rule-based SI models, introduced by [6].
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Chapter 2. Background

Studying this natural phenomenon in some animals, such as birds, has inspired new intellec-

tual brains to replicate this phenomenon in the drone area of study. It is known that drone

swarms can help enhance numerous daily activities, or even more, military activities such

as drone attacks. In fact, in the case of military activities, swarms can be a very powerful

and harmful tool since they can spread out in a broader area, collaborating all together.

Therefore, it can be inferred that SI is a potent tool where all the agents can make their

own choices but always follow a specific set of rules that makes them fly in a structured and

organized manner.

2.2 Robustness

In the context of drone swarm control, robustness can be defined as the ability to demonstrate

vigor, strength, firmness, or even more, the capability of performing a task in the presence, or

not, of failure. Moving this property into a system, the robustness of a system is determined

by its ability to tolerate perturbations that may arise in the system. These disturbances or

perturbations in the system may come from multiple sources, such as environmental factors,

sensor noise or failure, disconnections or connection delays, etc. How these perturbations

are handled and their assessment is essential for the system to carry out its task without

any breakdown.

2.3 Graph Neural Networks

By definition, GNNs processes graphical data, making node, edge, or graph-level predic-

tions. Graph Neural Networks can generally be used for several purposes, mainly when the

information is gathered in graphs. The applications of GNNs can be adjusted to node level

predictions, where node features are updated based on the training; edge level predictions,
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Chapter 2. Background

where links between nodes are the ones being updated; or graph level predictions, where up-

dated node features are pooled to generate a global feature that represents the entire graph.

Graph Neural Networks can also be expressed or understood as a message-passing neural

network with a message-passing function, a node update function, and a readout function,

as illustrated in Figure 2.2. Graphs consist of two components: vertices, usually represented

as V , and edges, represented as E . Vertices depict a set of nodes containing data or features

that the GNNs will process to generate predictions. Edges represent the relationships or links

between nodes which can be unidirectional or bidirectional. Usually, the way of reproducing

graphs more mathematically is by using an adjacency matrix named “A.” This is a set of

numbers arranged in rows and columns to form a rectangular array. This set of numbers

in the adjacency matrix represents the relation between nodes within a graph. Hence, its

dimension is (NxN). Moreover, a second matrix defined on graphs consists of the feature

matrix, named “F,” and dimensions (NxF). Moreover, problems solved by GNNs can be

categorized into four groups

• Node classification: the task is to predict the node embedding for every node in the

graph.

• Link prediction: the task is to understand and predict the relationships or connections

between nodes in the graph.

• Graph classification: the task is to classify the whole graph into different categories.

Given a graph, some features could be extracted from it.

• Clustering: the task is to detect the different clusters formed within a graph.

8



Chapter 2. Background

Figure 2.2: Illustration of message passing in GNNs between multi-hop neighbors and node
level prediction.

Graph Neural Networks are a novel Machine Learning (ML) technique that is still under

research. Many recent studies have been focusing on this topic, such as [22, 8, 9, 10] leveraging

GNNs to produce Spatio-temporal embeddings, used in this work, which can potentially

lead to an enhancement in the safety of Autonomous Driving Systems and yield better

transferability. Moreover, there have been other studies regarding security assurance using

GNNs [20, 19, 23, 18] which can result in an interesting topic for the drone swarm control

field to be studied in future works. In essence, Graph Neural Networks are a good solution

to many industrial applications [21, 12] with or without graph classification and clustering

[17].

2.3.1 Graph Neural Network Usage on Swarm Intelligence

In the drone swarm control domain, GNNs can help to enhance the robustness of a swarm

of drones for several reasons. Graph Neural Networks can pass information in multi-hop

exchanges, which makes each agent gather more information about the global group. Graph

Neural Networks, due to its prediction task, can detect when a drone is not working as it

should, also known as fault detection. By the behavior of a particular agent not operating

on its correct path, the GNNs can learn that these variations are due to a failed agent.
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Chapter 2. Background

Graph Neural Networks can learn how to deal with this failing drone so it won’t affect the

swarm performance by making a simple change in the trajectory of the swarm, attempting

to isolate the failed agent. The decision-making is carried out by the GNNs, which is the

main advantage of using GNNs for this type of task. Graph Neural Networks can make

predictions very quickly based on the position and velocity of the agents themselves, as well

as the observations of the neighbors, making the response time much shorter due to their

intrinsic capability of storing the data provided at the time of training. This storing feature

results in the ability to remember certain behaviors, making the model adjust better to

the problem. Hence, the robustness of the swarm increases as the model learns to avoid

efficiently failing agents on the swarm. Besides that, Graph Neural Networks can be trained

in the presence of disturbances so that the model learns how to respond in certain situations

with acting perturbations.

10



Chapter 3

Problem formulation

In this work, we advocate demonstrating the possibility of cloning an optimal policy from

a Ground Truth model into GNNs to enhance the robustness of the flocking behavior. In

the work, we focus on the follower side of the leader-follower structure represented in Figure

1.1b, which is the side with the highest autonomy and ability to make decisions based on

local information. The Ground Truth model is based on a centralized architecture where full

access to global information is assumed. Hence, the objective of the proposed GNN control

system attempts to choose among all the possible outputs the most optimal one, known as

an optimal policy u∗
i (t) = π(si(t)). In such a case, the optimal policy depends on the global

information of the swarm obtained from the Ground Truth model.

Consider a graph formed by a set of N agents distributed on the space forming a set of

vertices of a graph V={1,2,3,...,N }, and a set of edges E . For the sake of our work, consider

a dynamic networked system where these edges represent the flow of information among

agents, depending on the range of communication of a certain sensor with other agents. In

this way, the neighborhood of an agent can be defined as those agents positioned within the

radius of communication of one agent of the swarm, indeed R < 4m. Therefore, the set of

11



Chapter 3. Problem formulation

neighbors of a node i at t time steps, is defined by (3.1)

Ni(t) = {j ∈ V : (i, j) ∈ E} (3.1)

Moreover, consider the dynamics of each agent i described by its position vector si(t) =

[xi(t), yi(t)]
T ∈ R2, relative position with respect to their neighbors rij(t) = [xj(t)−xi(t), yj(t)−

yi(t)]
T ∈ R2, a velocity vector vi(t) = [vx,i(t), vy,i(t)]

T ∈ R2, and an acceleration vector

ui(t) = [ux,i(t), uy,i(t)]
T ∈ R2. For each drone in the network, the acceleration ui(t) = v̇i(t)

can be considered controllable so that changes in the velocity of each agent i can be achieved.

The parameter t is considered a time-discrete index representing consecutive time samples

of interval T.

Our primary focus is to compare the performance of GNNs against the Boids model. Indeed,

we have demonstrated the ability of the new controller to outperform the Boids model, han-

dling the problem of flocking behavior. To do so, one of the metrics from the literature which

measures the flying performance of a UAS swarm is from [6], where they used the average of

the rewards as their primary metrics. One of the main rules of the flocking problem is flock

centering, where all the agents attempt to stay close to their nearby flock-mates [13]. As our

metrics, we have defined flock centering as the Level of Cohesion (LoC), calculated by

averaging the distances between every flying drone and the Center of Mass (CoM) of the

group. Ideally, a swarm flocks cohesively [14]. In order words, agents should stay as close

as they can to the CoM, which can be calculated as in (3.2), by summing up the position of

each agent and averaging the positions of the whole network by the number of agents N.

CoM(t) =

(
x1(t) + ...+ xN(t)

N
,
y1(t) + ...+ yN(t)

N
,
z1(t) + ...+ zN(t)

N

)
(3.2)

Moreover, the distance between each drone of the swarm and the CoM(t) has to be calcu-

lated. Where the distance is the module of the vector or the Euclidean norm || � ||, between

12



Chapter 3. Problem formulation

the current position of each drone si(t) and the CoM(t). As a result, a cohesion vector is

generated, illustrated in (3.3).

Coh = [||[x1(t), y1(t), z1(t)], CoM(t)||, ..., ||[xN(t), yN(t), zN(t)], CoM(t)||] (3.3)

By averaging the cohesion vector by the number of agents, the Average Cohesion (AvC)

can be computed. This is a main representation of the LoC on each time step. Equation

(3.4) introduces the mathematical expression of the AvC.

AvC(t) =
1

N

N∑
i=1

||[xi(t), yi(t), zi(t)], CoM(t)|| (3.4)

Finally, AvC has to be averaged over the whole analyzed time period, giving a measurement

of the global AvC among all the time steps, defined as LoC, which takes into account those

time steps where some of the drones are acting under failure.

LoC =
1

t

t∑
t=0

AvC(t) (3.5)

Figure 3.1: Swarm state evolution and LoC calculation.
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Chapter 4

Experimental part

4.1 Experimental Setup

In our work, we demonstrate that the GNN approach can improve robustness. To do so, it

is important to define first a comparative model to which GNN outperforms. This former

model is the baseline of our approach, the Boids model previously introduced. Currently,

[16] gives some insight into robustness and how flocking tasks can be made. Additionally,

the authors of [16] have open-sourced the implementation1 for public access, which we have

made use of as a base for our algorithm implementation.

As for the evaluating platform, we selected AirSim because evaluation with actual drone

flyers might be too costly to accomplish similar results. AirSim is a real-time open-source

simulator that enables us to test the controllers with higher-order dynamics and lower delay

time between control actions. As introduced in [16], controllers can be modeled in different

scenarios and simulators, but AirSim gives an excellent approximation of the real flying

tasks.

1https://github.com/katetolstaya/multiagent_gnn_policies

14
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Chapter 4. Experimental part

4.1.1 Ground truth controller

This work defines a Ground Truth model to be cloned by GNNs. A graphical representation

of the algorithm used for the Ground Truth model is described in Figure 4.1. Inspired from

[14], we present a centralized version of the Boids model in which global information of the

graph is assumed; indeed, the range of vision is amplified to the whole graph. The dynamics

of the agents on this model can be characterized by the already introduced separation,

alignment, and cohesion rules, illustrated in Figure 4.2, which have also been used for the

Boids model implementation to achieve the flocking behavior on a decentralized architecture.

Figure 4.1: Ground Truth model implementation algorithm.

Consider the previously defined position, velocity, and acceleration vectors for each agent in

the network at each simulation time step. To implement these three rules into our algorithm,

we use the Ground Truth math model defined below, where the control actions are described

using differential equations; indeed, velocity and position vectors for each of the agents in

15



Chapter 4. Experimental part

the swarm can be defined and updated as in (4.1).

s̈i(t) = v̇i(t) = ui(t) (4.1)

Consider the separation rule, which accounts for the minimum distance between Boids or

agents so that every agent can avoid collisions and leave some space for them to move and

react to changing actions freely. Repulsion force can be calculated as indicated in (4.2),

summing up the weighted inverted distance (defined by the Euclidean norm || � ||) between

the agent and its neighbors, being stronger as agents come closer.

v̇∗separation,i(t) = wsep

( ∑
j∈Ni

si(t)− sj(t)

||si(t)− sj(t)||

)
(4.2)

The alignment rule aims to ensure that each swarm agent aligns its velocity with its neigh-

bors’ velocities moving in the same direction as a group. Indeed, it represents the averaged

velocity of its neighbors as introduced in (4.3).

v̇∗alignment,i(t) = walign

(∑
j vj(t)

N

)
(4.3)

The cohesion rule is responsible for moving each agent towards the Center of Mass (CoMNi
(t))

of its neighbors at each time step t. Indeed, it ensures that all the agents flock cohesively

within their neighborhood. Equation (4.4) describes the attraction force between agents in

a neighborhood.

v̇∗cohesion,i(t) = wcoh(CoM(t)− si(t)) (4.4)

The three rules are adjustable by their corresponding weights wsep, walign, and wcoh, describ-

ing the interaction between agents. These weights are used to determine and control the

influence of each of the three rule forces, making it possible to achieve the desired flocking

behavior. In our work, we adjust the weights so that the declarative model matches the

centralized model behavior without agent failures. Indeed, flocking more clustered enables
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Chapter 4. Experimental part

maintaining an active connection between agents while flocking without dealing with swarm

segmentation. Equation 4.5 represents the sum of the three rules. Even more, it represents

the control action to be taken by each agent on the Ground Truth model, in essence, the

optimal action to be cloned or imitated by GNNs.

u∗
i (t) = v̇∗separation,i(t) + v̇∗alignment,i(t) + v̇∗cohesion,i(t) (4.5)

4.1.2 Baseline controller

The Boids model has been defined as the baseline approach of our work as it is a commonly

used algorithm for simulating the collective and collaborative motion of agents. Moreover,

this model has low computational requirements and high flexibility to be adjusted to differ-

ent environments, making it even more attractive for use.

Figure 4.2: Illustration of the three rules that govern the flocking behavior.

Consider the three rules of the Boids model, represented in Figure 4.2, whose mathematical

representation was introduced by [11]. The mathematical expression for the separation rule

is described by (4.6). As in the Ground Truth model, this rule accounts for the minimum

distance between Boids or agents so that agents can avoid collisions and leave some space to

17



Chapter 4. Experimental part

move and react to changing actions freely.

v̇separation,i(t) = wsep

( ∑
j∈Ni

si(t)− sj(t)

||si(t)− sj(t)||

)
(4.6)

In contrast to the Ground Truth model, the alignment rule only considers the velocity of

its closest neighbors, so the alignment is only produced within the radius R. Equation (4.7)

introduces the alignment rule of the decentralized architecture.

v̇alignment,i(t) = walign

(∑
j∈Ni

vj(t)

NNi

)
(4.7)

Equation (4.8) describes the attraction force between agents in the neighborhood. The

cohesion rule is responsible for moving each agent towards the Center of Mass (CoMNi
(t))

of its neighbors at each time step t, as already defined. However, in the Boids model,

the neighborhood of each agent Ni is reduced so that only the agents within the radius of

communication between agents are considered.

v̇cohesion,i(t) = wcoh(CoMNi
(t)− si(t)) (4.8)

As described for the Ground Truth model, the output or control action can be obtained from

the sum of the three rules of the flocking behavior, as in (4.9). However, for the Boids model,

the action is not the optimal one, as explained further on, enabling us to make comparisons

between the optimal actions from the Ground Truth model against the actions to be taken

by the agents following the Boids model policy, Tables 4.1 and 4.2.

ui(t) = v̇separation,i(t) + v̇alignment,i(t) + v̇cohesion,i(t) (4.9)
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Algorithm 1: Boids model implementation

Input: Agent relative positions and velocities.

Output: Agent accelerations.

1 System initialization → steps = 0;

2 while steps < 500 do

3 Get states (AirSim)→ si(t), vi(t);

4 v̇separation,i(t) = wsep

(∑
j∈Ni

si(t)−sj(t)

||si(t)−sj(t)||

)
;

5 v̇alignment,i(t) = walign

(∑
j∈Ni

vj

N

)
;

6 v̇cohesion,i(t) = wcoh(CoMNi
(t)− si(t));

7 ui(t) = v̇separation,i(t) + v̇alignment,i(t) + v̇cohesion,i(t);

8 ui(t) → Send accelerations (AirSim);

9 end

4.1.3 GNN controller

Our proposed controller is based on GNNs configured to perform an imitation learning task.

GNN controller leverages the network’s structure and positioning to predict each agent’s

actions. In a UAS swarm network, every node has some features of dimensions F, which

can be gathered as a feature matrix of dimensions (NxF), denoted in (4.10). We have used

the features defined in [16] as our base for the GNN approach, even though we have added

an extra feature considering the velocity of each agent itself, that when introduced to the

NN is normalized as well as the rest of features to obtain better convergence and avoid the

overweight of one feature over the others.
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X(t) =



x1(t)

.

.

.

xN(t)


(4.10)

For the primary purpose of this work, we introduce the concept of Graph Shift Operator

(GSO), which is a critical component of GNNs used to propagate information within the

network, and, is a learnable parameter. The basic functioning of GSO is that it is a nonzero

value if and only if (i, j) ∈ E(t), E(t) meaning the connection between agents or edges of the

graph. The propagation equation is described in (4.11).

[S(t)X(t− 1)]i =
∑

j∈Ni(t)

sij(t)xj(t− 1) (4.11)

A valid GSO for this application can be a weighted and unweighted adjacency matrix or,

even more, weighted, unweighted, or normalized Laplacians. The Graph Shift Operator may

help in recursion to extract a sequence of signals from it, as defined in the following equation.

Yk(t) = S(t)Y(k−1)(t− 1) (4.12)

Meaning that each agent at k-hop distance will receive the information from their neighbors

at a (k-1)-hop distance following the previous equation, indeed, following the GSO at that

fixed time. Generally, an agent located at a k-hop distance of an agent considered the initial

one Yo(t) = X(t) will receive the information in the following fashion.

Yk(t) = [S(t)S(t− 1)...S(t− k + 1)]X(t− k) (4.13)
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Thus, the sequence of signals is aggregated into a single output matrix for each node i present

in the graph. Which can be expressed with the following mathematical representation (4.14).

Z(t) = [X(t), S(t)X(t− 1), ..., S(t− (k − 2))X(t− (k − 1))] (4.14)

The matrix Z(t) results from aggregating all the graph states. Its dimensions are N x k x

F, where N is the number of nodes in the graph, k is the number of hops made to gather all

the information, and F is the number of features of each node in the graph. As can be seen,

there is a delay in the matrix, known as delayed aggregation .

Finally, once all the information is aggregated in matrix Z(t). The last step is to apply

a Neural Network (NN) in which the input would be the aggregation matrix. The layers

of the NN are represented by (4.15). The output is given as the predicted action to be taken

by each agent in the network, defined by the matrix U(t).

Zl = σl(θlZl−1) (4.15)

Each layer’s l output is denoted by Zl, σl accounts for the activation function used for each

layer of the NN, and θl represent the learnable parameters of the NN. The overall expression

of the NN is given in (4.16).

U(t) = NNΘ(Z(t)) (4.16)

Training the GNN is a way of modeling the network to obtain the desired predictions. The

training aims to find the optimal previously defined controller with the highest possible

accuracy. To do so, it is necessary to introduce the concept of loss function (L), which it

is compared the optimal output with the predicted output resulting from the computation of

the GNN given a set of inputs. For this training task, we need training samples to be learned

by the controller. In this training phase, all the learnable parameters of the GNN and NN
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are adjusted to have the lowest prediction errors and the lowest value of L. For training

purposes, the training policy used to find the optimum parameters Θ∗ can be expressed in

(4.17).

Θ∗ = argmin
Θ

( ∑
X(t),U∗(t)∈D

L(U(t), U∗(t))

)
(4.17)

Algorithm 2: GNN model implementation

Input: Agent relative positions and velocities.

Output: Agent accelerations.

1 System initialization → steps = 0;

2 while steps < 500 do

3 Get features (AirSim)→ rij(t), vi(t);

4 Start the message passing ;

5 Aggregation→ Z(t) = [X(t), S(t)X(t− 1), ..., S(t− (k − 2))X(t− (k − 1))];

6 Action prediction→ U(t) = NNΘ(Z(t));

7 ui(t) → Send accelerations (AirSim);

8 end

4.2 Experimental design

Our default scenario considers a flock of N = 9 agents with a communication radius of

R = 4m. We have evaluated a sampling and step time of T = 0.01s, based on the simulation

updating rate of the AirSim software. Agent initial positions are uniformly located in a

grid formation, with a distance dij = R− 0.25m between agents to ensure complete commu-

nication. The velocity of the agents is initialized with a module of ||vi(0)|| = 5m/s, where

directions are randomly selected, and acceleration is bounded for all the agents throughout

the entire simulation to ||ui(t)|| ≤ 3m/s2. Even more, it should be considered that random

initialization is replicated over experiments using seeds so that the results are as comparable

as possible. To handle heavy computational loads and AirSim simulator, we have used an
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NVIDIA GeForce GTX 1080 GPU.

For the baseline approach, we set the number of testing episodes to 50 and the number

of steps to 500. For each weight, we have made experimental adjustments, leading to the

most optimal result when wsep = 0.875, walign = 1.1, and wcoh = 1.25. Whereas for the

Ground Truth model, we have achieved the best result with wsep = 15.75, walign = 1.1, and

wcoh = 0.79, where the separation rule has a greater weight to balance the focus on the

nearest neighbors while the other rules account for the whole swarm.

On the other hand, for the GNN model, we set the number of k-hops over which the agent

information is passed to k = 4. The NN was built on convolutional layers, the input, the

first hidden layer, and the second hidden layer activated by the hyperbolic tangent. For

the output layer, a linear activation has been applied. Each hidden layer has been provided

with 128 neurons so that the model can understand every non-linear behavior of the flocking

model. The GNN model has been trained with a learning rate of 5 · 10−4, over 300 episodes

with 500-time steps each; indeed, the total time spent on an episode was t = 500T .

To test the validity of our work, drone failures are randomly generated following several

patterns, as depicted in Tables 4.1 and 4.2. We have simulated a sequential failure pattern,

where only one agent failed at a time. Failures have been generated periodically with a

controllable frequency depending on the desired total number of failures. The second tech-

nique for simulating failures is a one-time failure of a controllable number of drones so that

a specified number of drones fail simultaneously at a certain time. We have used AirSim

software for gathering training data in an online learning setting described in [7]; more pre-

cisely, we have used the Dataset Aggregation (DAgger) algorithm defined by [15], with a

probability β = 1 of choosing the Ground Truth model. Hence, the Ground Truth action is

always preferred to be aggregated to the dataset D.
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4.3 Results

This section reports the most representative results obtained from the simulations. Com-

parisons have been made between the ground truth, baseline, and GNN approach with the

metrics (e.g., LoC). The expected results of these comparisons are the GNN model having a

higher level of accuracy when dealing with failure, indeed, being able to maintain the group’s

unity, as shown in Tables 4.1 and 4.2. First, we have compared the optimal actions of the

Ground Truth model against the Boids model in terms of LoC evaluating their performance

on different scenarios. Moreover, this comparison enables us to establish a range over which

the GNN model should be performing to prove the enhancement of the robustness of the

swarm.

Performance (%)

Agent failures Ground truth Boids GNN Ground truth vs Boids Ground truth vs GNN

4 2.952 3.377 3.08 87.424 95.840

3 3.025 3.381 3.12 89.470 97.031

2 3.104 3.436 3.16 90.337 98.273

1 3.163 3.466 3.22 91.236 98.276

0 3.237 3.552 3.28 91.140 98.581

Table 4.1: Performance evaluation under sequential failure scenario as a function of LoC.

Performance (%)

Agent failures Ground truth Boids GNN Ground truth vs Boids Ground truth vs GNN

4 2.947 3.386 3.240 87.033 90.952

3 3.024 3.468 3.142 87.206 96.240

2 3.103 3.450 3.210 89.955 96.658

1 3.163 3.466 3.235 91.236 97.772

0 3.237 3.552 3.284 91.140 98.581

Table 4.2: Performance evaluation under one-time failure scenario as a function of LoC.
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As shown in Tables 4.1 and 4.2, performance in the Boids model, as well as in the GNN

model, starts to decay upon agent failures. However, the GNN model maintains a better

performance even with a large number of failures. As represented in the tables, LoC starts

to decrease with the number of agents, as they spread over a smaller area. However, as we

are not comparing the performance of the swarm on a single model but comparing several

models between each other, this fact can be neglected.

(a) Boids model simulation with no
agent failures.

(b) GNN model simulation with no
agent failures.

(c) Boids model simulation with 4 agent
failures.

(d) GNN model simulation with 4 agent
failures.

Figure 4.3: Airsim test simulation with sequential agent failures.

These two tables represent that the Boids model has a similar performance under different

failing patterns due to the fact that the Boids model is more sensitive to disconnections be-

tween agents, leading to the segmentation of the initial group. In both the Boids and GNN
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models, disconnections are irreversible, meaning that once the segmentation of the swarm is

reached, the group cannot get together again.

(a) Boids model simulation with no
agent failures.

(b) GNN model simulation with no
agent failures.

(c) Boids model simulation with four
agent failures.

(d) GNN model simulation with 4 agent
failures.

Figure 4.4: Airsim test simulation with one-time agent failures.

The potential benefit of the GNN model could be reduced to the fact that information is

passed across the group so that every agent has information about k-hop neighbors, indeed,

local and global information about the group. Therefore, every agent can make decisions

based on the aggregated states of the k-hop neighbors. In fact, it eventually leads to better

performance and cohesive flocking due to the increased information collected by every drone.

Figures 4.3 and 4.4 give a good insight into how the GNN model is capable of maintaining

the flock in a more cohesive manner making disconnections less harmful to the swarm and,
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therefore more robust to failures. Nevertheless, Table 4.2 shows that the more critical the

failures are, the less likely the GNN model is to keep performing well, as more critical discon-

nections occur in the group that makes it impossible to maintain the cohesive behavior and,

therefore, more cluster separations. Hence, the benefits of using the GNN model become

smaller when critical failures arise even though it still outperforms the Boids model.
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Conclusion

The current research aims to improve the robustness of drone swarm control systems using

Graph Neural Networks (GNNs). This project has been carried out with the help of Air-

Sim simulator, a software developed by Microsoft. It has been combined with Python 3.10

programming language, using the available Python API for AirSim , to build the required

scripts for running the simulations. To test the validity of our research, we have built three

models: the Ground Truth, Boids, and GNN. We have introduced two well-known commu-

nication structures used for SI applications, Infrastructure-based (Centralized) and FANET

(Decentralized). Even though our work has focused on the decentralized architecture because

of its autonomous capability. In the decentralized structure, we have introduced the idea of

a leader-follower structure. The follower side is our area of interest, on which we have built

the Boids and GNN model. The Boids model is a rule-based approach that simulates animal

and robot swarm collective behavior. The GNN model is the solution for handling com-

plex situations more robustly compared to the Boids model, as illustrated in Table 4.1 and

4.2. The main idea behind GNNs is leveraging the information passing throughout the group

by multi-hop exchanges to make predictions of each agent’s actions as accurately as possible.
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Besides, this work aims to answer the question of why we should attempt to compare the

Boids model directly against the GNN model instead of comparing it to another ML model.

The advantage of Graph Neural Networks is that they are specifically designed to process

graph-structured data so that they have a better understanding of complex scenarios and

relationships between agents and can handle them very efficiently. Therefore, they seem

to be an excellent approach to address the problem of flocking or, even more, flying in a

graph-structured manner.

This research has shown that Graph Neural Networks are an excellent solution to improve

the robustness of a swarm while flying autonomously from the follower side. They leverage

their capability to process graph-structured data to outperform previously used control algo-

rithms such as the Boids model. Therefore, GNNs may be a desirable algorithm for dealing

with collective behavior tasks in autonomous systems with communication constraints.

5.1 Acquired competences

The development of this thesis has contributed to acquiring the following competencies:

• Graph Neural Networks and its implementation in programming languages such as

Python, with the help of libraries such as PyTorch Geometric.

• Model-based programming techniques in Python software environment.

• Swarm intelligence models and communication structures.

• Improved knowledge of drone flying physics and control strategies.
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5.2 Future work

While this work has provided valuable insights into drone swarm control, there are several

avenues for future research and exploration. Some of the ideas for future works are:

• Transferring the knowledge from this work to real life, testing and evaluating the models

in real-life conditions.

• Search for new ways GNN can help improve the performance of the overall systems

working collectively, such as improving energy consumption.

• Study ways of achieving a more robust system on the leader side, as it has been done

on the follower side so that the overall robustness of the system can be improved.
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