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Abstract

Intrinsically disordered proteins and unfolded proteins have fluctuating conformational ensembles 

that are fundamental to their biological function and impact protein folding, stability and 

misfolding. Despite the importance of protein dynamics and conformational sampling, time-

dependent data types are not fully exploited when defining and refining disordered protein 

ensembles. Here we introduce a computational framework using an elastic network model and 

normal mode displacements to generate a dynamic disordered ensemble consistent with NMR-

derived dynamics parameters, including transverse 

R2

relaxation rates and Lipari-Szabo order parameters 

(

S2

values). We illustrate our approach using the unfolded state of the drkN SH3 domain to show that 

the dynamical ensembles give better agreement than a static ensemble for a wide range of 

experimental validation data including NMR chemical shifts, J-couplings, nuclear Overhauser 

effects, paramagnetic relaxation enhancements, residual dipolar couplings, hydrodynamic radii, 

single-molecule fluorescence Förster resonance energy transfer, and small-angle X-ray scattering.

*Corresponding author, thg@berkeley.edu. 
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INTRODUCTION

It has long been perceived that proteins need to adopt a well-defined three-dimensional 

structure to carry out their function, although it is increasingly clear that all proteomes 

encode proteins that do not adopt stable three-dimensional structure that are nevertheless 

important for cellular function.1–10 Proteins that do not possess stable structural domains, 

known as intrinsically disordered proteins (IDPs), or contain intrinsically disordered regions 

(IDRs), play a central role in signaling, transcription, and regulation of cell cycle, as well as 

in the formation of biomolecular condensates in the cell.11–22 In addition, unfolded states of 

folded proteins are increasingly appreciated as critical for understanding protein folding and 

stability23–25. Finally, both IDPs/IDRs and unfolded proteins can participate in pathological 

aggregation or fiber formation, with strong dependencies on the conformational equilibria in 

the disordered ensembles.26–27

Because IDPs/IDRs and unfolded states have fluctuating heterogeneous conformations 

under physiological conditions, it necessitates detailed investigation into the underlying 

conformational ensembles to enable structural correlations with function.14, 28–29 There are 

a number of solution experimental techniques that can guide the construction of structural 

ensembles, many of which encompass key features of disordered states: fractional local 

structural propensities as measured by NMR chemical shifts (CSs)28, 30–32, J-couplings 

(JCs)33, and residual dipolar couplings (RDCs) 34–37; global properties as measured through 

NMR hydrodynamic radii values38 and small angle X-ray scattering (SAXS) data39–42; 

and tertiary contact information as measured through NMR paramagnetic relaxation 

enhancements (PREs)43–44, nuclear Overhauser effects (NOEs)28 and single-molecule 

fluorescence Förster resonance energy transfer (smFRET)29, 45.

However, due to the fast dynamics in the disordered state, the measured NMR, SAXS 

and smFRET observables are highly averaged, resulting in significant challenges to bridge 

the connection between experimental observables and structural ensembles.5, 45–46 Thus 

computational models play a critical role in constructing structural ensembles of disordered 

states by first creating an initial library of putative conformations, and then a selected subset 

is chosen based on improving the agreement with the available experimental solution data. 

Most computational efforts have focused on the ensemble subset selection process, such 

as the ENSEMBLE program47 that uses a Monte Carlo algorithm or the ASTEROIDS 

approach with its evolutionary algorithm48, to select a set of conformations for which 

the back-calculated data fit the available experimental data. Head-Gordon and co-workers 

have introduced the extended Experimental Inferential Structure Determination (X-EISD) 

procedure that uses a variety of experimental observables, and their known errors and 

variances, to determine the most probable structural ensemble from candidate structures 

for disordered states.33 This Bayesian statistical method calculates log-likelihood scores of 

the selected ensemble corresponding to a set of experimental data and thus can be used to 

refine a structural ensemble of disordered states.33 Often these approaches have relied on a 

somewhat arbitrary formulation of the underlying structural ensemble before optimization, 

such as use of the TraDES conformer generator.49
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In addition to structural characterization, protein dynamics is fundamental in understanding 

function of both ordered and disordered states of proteins50, and NMR techniques have been 

used to investigate dynamics of proteins through measurement of spin relaxation 

properties.51 Heteronuclear spin relaxation studies typically measure internuclear bond 

vector dynamics (1H-15N) by measuring 15N longitudinal 

R1

and transverse 

R2

relaxation rates along with the heteronuclear 1H-15N NOE, potentially augmented by other 

relaxation experiments focused on 15N, 13C or 2H nuclei. These relaxation data can also be 

expressed in terms of spectral density functions and are often translated into model free 

Lipari-Szabo order parameters 

(

S2

values).51–52 The magnitude of 

S2

values can vary from 0 to 1, corresponding to completely isotropic large amplitude internal 

motions or complete rigidity, respectively. The model free formalism assumes that the 

timescales of internal motion and overall rotation are very different53 and provide a 

reasonable expectation for folded states but not for disordered proteins. Thus, most NMR 

relaxation studies of disordered proteins use raw rates or spectral density function 

mapping.52, 54–57

While protein dynamics can potentially be of great importance for an accurate description of 

disordered protein conformational ensembles, there has been little effort to include dynamics 

data in computational tools for creating and/or refining disordered state ensembles. 

Molecular simulations such as molecular dynamics (MD) or Monte Carlo (MC) methods can 

elucidate information on protein motions.37, 58–60 Molecular simulations such as molecular 

dynamics (MD) or Monte Carlo (MC) methods can elucidate information on protein 

motions37, 58–60, however fixed charge force fields have been shown to be unreliable for 

IDPs and better polarizable force fields are costly10. Coarse-grained elastic network models 

(ENMs), on the other hand, offer simple and computationally efficient alternatives to MD 

or MC simulations for sampling the intrinsic motions accessible to a protein, and have been 

widely used to study the intrinsic dynamics of folded systems from small globular proteins 

to large biomolecular assemblies.61–72 The underlying principal is that dynamic properties 

of globular proteins are determined mainly by the protein topology, that can be captured as a 

collection of harmonic springs between native contacts, such that the most important global 

motions are captured.73–75 It has been shown that the normal modes generated through ENM 

models can accurately predict the crystallographic B-factors as well as NMR dynamics data 

for folded proteins.56, 61 However, to the best of our knowledge, ENMs have not been used 

to explore the intrinsic dynamics of disordered proteins.

In this work, we introduce a framework for using an ENM 

and subsequent normal mode displacements for the creation and 

optimized selection of a disordered protein ensemble consistent with 
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R2

rates and 

S2

values for the unfolded state of the N-terminal SH3 domain of the Drosophila drk 

protein (drkN SH3).57, 76 We show that dynamic ensembles created to satisfy the 

R2

relaxation or 

S2

order parameter restraints better agree with more commonly 

collected experimental solution NMR and SAXS data relative 

to statically generated ensembles. Furthermore, we observe that 

R2

rates combined with NOEs alone can yield ensembles with the smallest RMSD with respect 

to all experimental data types for the unfolded state of the drkN SH3 domain. We conclude 

that incorporation of dynamic information in defining starting pools of conformers for 

disordered protein structure calculations is valuable for computational approaches to best 

represent the disordered protein ensemble.

METHODS

Structural ensembles of the unfolded states of the drkN SH3 domain.

To evaluate the suitability of 

R2

data and 

S2

values for selecting a disordered ensemble, we consider the unfolded state of the drkN 

SH3 domain.57, 76 The drkN SH3 domain has been extensively studied by the Forman-Kay 

and Gradinaru groups, yielding a wide variety of structural and dynamic experimental data 

types.33, 76–77 The domain exists in approximately 1:1 equilibrium between folded and 

unfolded states under typical buffer conditions54, and the NMR data were acquired under 

conditions of the 50:50 mixture with slow exchange on the NMR timescale so that data for 

the unfolded state could be extracted separate from data for the folded state. NOE data were 

carefully analyzed to avoid transfer NOEs occurring due to exchange between folded and 

unfolded states during the mixing time.57, 76

We use three initial structural ensemble pools previously investigated with the X-EISD 

method.33 (i) The RANDOM pool is a collection of 100,000 structures including 1000 

folded structures and 999,000 increasingly unfolded structures. The RANDOM pool is not 

optimized with respect to the experimental data. (ii) The ENSEMBLE pool is optimized 

with respect to the available NMR and SAXS experimental data and contains 1700 

structures.24 (iii) The MIXED pool combines the ENSEMBLE pool structures and 

optimized RANDOM pool structures. There are underlying structural differences in the 

RANDOM, ENSEMBLE, and MIXED pools, such as the percentage of the secondary 

structure for each residue (local structure) and global characteristics as measured by the 

radius of gyration 
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(

Rg

).33

Anisotropic Network Model.

We use the Anisotropic Network Model (ANM) introduced by Bahar and co-workers78, 

implemented in the Prody software program79, to define the three lowest normal modes 

of each conformation of the original ENSEMBLE, RANDOM, and MIXED static pools. 

Since the frequencies of the normal modes are directly proportional to the energy required 

for the movement, high frequency modes describe local motions and low frequency modes 

represent collective conformational changes. Many studies have shown that the lowest three 

frequency normal modes often agree with experimentally observed functional motions for 

folded proteins.68, 80 Figure 1 shows a schematic of one of the conformers within the 

disordered ensembles modeled as an ANM and its three lowest frequency normal modes.

In ANM, the network nodes are the positions of the 

α
-carbons, and uniform elastic springs with force constants 

k
connect the nodes located within a cutoff distance of 

Rc

. The generalized form of the entire network potential of the ANM is given by:81

v = k
2 ∑

i < j
rij − rij

o 2
(1)

where 

rij

is the distance between atoms 

i
and 

j
and 

rij
o

is the distance between the atoms in the reference structure. The normal mode analysis using 

the ANM requires the diagonalization of the following generalized eigenvalue problem:

HU = λT U wℎere U = u1, u2, …, uN (2)

where 

H
is the Hessian matrix of the partial second derivatives of the potential energy, 

T
the kinetic energy matrix, 

U

Naullage et al. Page 5

J Phys Chem B. Author manuscript; available in PMC 2023 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are the normal modes, and 

λ
is a diagonal matrix with the 

λk

eigenvalues associated to the kth normal mode 

uk

. A detailed description of the derivation of the Hessian matrix and the normal modes can be 

found elsewhere.78, 81 In this study we model the unfolded state of the drkN SH3 domain 

using an ANM model that has a force constant of 

k = 1
kcal mol−1 and a cutoff of 

Rc = 15 Å
.

Normal Mode Displacements.

We also further extend the ANM ensembles to generate alternate conformations along the 

normal mode displacement vectors. Procedurally we used the Prody software to extend 

normal modes calculated for the 

Cα
model into an all-atom model. The extend-Model function in the Prody software79 takes part 

of the normal modes for 

Cα
atoms and extends it to create all other atoms in the same residue. Then we use these all-

atom models to generate an ensemble of randomly sampled conformations along the three 

lowest frequency normal modes. Then we use the all-atom model and normal mode 

displacements to generate alternate conformations along the three lowest frequency normal 

modes. For a given normal mode, 

ui

, and their eigenvalues, 

λi

, new conformations are sampled using the relationship in Eq. 3, where 

R0

is the active coordinate set of atoms and 

r1
kr2

k…rm
k

are normally distributed random numbers generated for conformation 

j
.

Rk = R0 + s ∑
i = 1

m
ri

jλi
−0.5ui (3)

We use this procedure to create the 

R2
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-dynamic and 

S2

-dynamic pools as our putative starting ensembles which we compare to the original “static” 

ensemble pools.

Sub-ensemble selection using 
R2

rates and 

S2

values.

Within the ENSEMBLE program47, the 

R2

restraint is defined as the correlation of 

R2

values with the number of contacts of the amide group.24, 47 We use this structural definition 

as a dynamic proxy of the transverse 

R2

relaxation rate to select sub-ensembles of structures from the original ENSEMBLE, 

RANDOM, and MIXED pools. We also chose to generate sub-ensembles selected using 

S2

order parameters since they are conceptually easy to compare to dynamic modes that are 

computationally sampled. To select a sub-ensemble of structures that agrees with the 

S2

values, we first compute the normalized mean square fluctuations (MSFs) of the lowest three 

frequency modes for each protein structure using an anisotropic network model (see below). 

Then, we select individual protein structures whose MSFs agree well with the 

S2

order parameters.82 The underlying hypothesis is that the higher the 

S2

values for a given segment, the lower its calculated MSFs should be. To measure the 

agreement between MSFs and 

S2

, we calculate Pearson correlation coefficients for six different residue ranges as provided in 

Supplementary Figure S1. The 

R2

rate and 

S2

order parameter sub-ensemble structure pools selected via these procedures are seen to have 

very similar profiles (Figure 2a and 2b). Therefore, we consider both 

R2

and 

S2

measurements in the creation of new dynamical ensembles for disordered states.

Naullage et al. Page 7

J Phys Chem B. Author manuscript; available in PMC 2023 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Back-calculations and scoring of disordered ensembles using the X-EISD algorithm.

The validity of the disordered conformational ensembles refined and expanded using 

R2

and 

S2

criteria and the degree to which they can represent the structural information available from 

experimental data is measured using X-EISD.33 The X-EISD framework uses a maximum 

likelihood estimator formalism to assign a log likelihood score of a simulated ensemble 

matching an input set of experimental data. The procedure accounts for the uncertainties in 

both back-calculation and experiment by optimizing over the set of “nuisance parameters” 

that are treated as Gaussian random variables. X-EISD can be applied to multiple data types 

simultaneously to generate an aggregated probabilistic score of the form as in Eq. (4).

log p(X, ξ ∣ D, I) = log p(X ∣ I) + ∑j = 1

M log p dj ∣ X, ξj, I p ξj ∣ I + C (4)

Moreover, the X-EISD framework can provide a probabilistic score of an ensemble 

in a Markov Chain Monte Carlo (MCMC) optimization as given in eq. (5).33 

In this work, we use a simple direct maximization and perform 1000 exchange 

attempts to replace one conformation with another from the total pool of 

N = 100
starting structures where an exchange is accepted only when the new ensemble has a higher 

probabilistic X-EISD score than the previous. We perform optimization by using either a 

single experimental type or multiple experimental types at a given time.

acc(i j) = X − EISDj > X − EISDi (5)

The back-calculations for the different experimental types are done as follows: the Karplus 

equation is used to back-calculate the J scalar couplings (JCs) as reported previously33; 

chemical shift (CS) calculations are performed using SHIFTX2 calculator;83 residual dipolar 

couplings (RDCs) are computed using the local RDC back-calculator from the Forman-Kay 

group;35 the hydrodynamic radius 

(

Rh

) is calculated using the program HYDROPRO;84 and NOE, PRE and smFRET calculations 

are done using in-house codes as described previously.33 Finally, we calculate the properties 

of the optimized ensemble such as the 

Rg

distribution using the Prody implementation,79 and secondary structure content using the 

implementation of the DSSP algorithm85 within the AmberTools program cpptraj.86

RESULTS

While methods to develop ensembles composed of independent “static” conformational 

snapshots have proven very useful to the disordered protein structural community, 
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approaches for building meaningful ensembles consistent with all experimental data, 

including those that are time-dependent (e.g., NOEs, relaxation rates), require further 

attention. Hence the purpose of this study is to evaluate the sub-ensembles created via 

R2

and 

S2

selections and the degree to which they can represent the structural information available 

from all available experimental data for the drk SH3 domain.

Our first approach uses the correlations between 

R2

rates and NH contacts or 

S2

values and the low frequency modes of the ANM to create sub-ensembles of each of the 

original static ENSEMBLE, RANDOM, and MIXED pools; the resulting sub-ensembles are 

then optimized across all the experimental data types using the X-EISD optimization to 

create the 

R2

-select and 

S2

-select pools. Supplementary Table S1 reports the X-EISD scores as well as the root mean 

square deviations (RMSD) with respect to all 8 experimental data types. The 

R2

and 

S2

filtering step and subsequent X-EISD optimization improves chemical shifts, SAXS, and 

Rh

values with little degradation in the JC, RDC, and smFRET experimental data types for the 

ENSEMBLE and MIXED pools. However, 

R2

filtering significantly decreases agreement with the JC, NOE and PRE values for the 

RANDOM pool, which we attribute to diminishment of compact structures relative to the 

original unfiltered structural ensemble.

Importantly, improved ensembles are realized when we expand the 

R2

and 

S2

filtering selections by introducing dynamical motions of their conformations using the 

normal mode displacements from the ANM model, and then optimizing these dynamically 

expanded ensembles with all the experimental data using the X-EISD procedure. As seen in 

Figure 3, the resulting 

R2

-dynamic and the 

S2
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-dynamic ensembles have even better RMSD values against all independent experimental 

data types compared to the 

R2

-select and the 

S2

-select ensembles. This we take as our final dynamical model approach to improve 

experimental agreement for the unfolded state of the drkN SH3 domain.

Table 1 quantifies the overall improvement in X-EISD scores and RMSD when comparing 

the optimized 

R2

-dynamic and 

S2

-dynamic pools against the original and static ENSEMBLE, MIXED, and RANDOM 

structural ensembles. For the ENSEMBLE pool, the 

R2

-dynamic ensemble performs better for nearly all the experimental properties compared to 

the original static ENSEMBLE pool. Improvements in RMSD can be seen in local data 

types such as chemical shifts, J-couplings, and RDCs, long-range distance restraints such as 

NOEs and PREs, as well as measurements of global shape information such as 

Rh

, with essentially equivalent performance for smFRET and SAXS. Similar improvement 

with respect to experimental data types can also be seen for the MIXED 

R2

-dynamic ensemble, although our approach is not as consistent if the underlying pool is 

highly non-optimal such as the RANDOM 

R2

-dynamic pool. It has been previously shown that the RANDOM ensemble does not have 

sufficient conformers to represent the drkN SH3 domain unfolded state and is outside the 

uncertainties for local experimental data types such as J-couplings and chemical shifts.33 

Hence the dynamical expansion can’t overcome the original deficiencies of the static 

RANDOM ensemble.

Similar to the 

R2

-dynamic ensembles, the 

S2

-dynamic pools also have improved X-EISD scores and RMSD values with respect to the 8 

data types, but quantitatively the 

R2

relaxation rates seem to yield more consistent results than the 

S2

order parameter. A T-test with a 95% confidence interval and a comparison of distribution of 

values indicate that the two dynamical selection methods are in fact statistically different 

from each other (Supplementary Table S1). The origin of this difference in the two 
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dynamical measures could arise from a number of sources: (i) the 

R2

rates are distinct from 

S2

values, which include 

R1

rates and NOE contributions, as well as assumptions about separation of motional 

timescales; (ii) the approach for selection is different, comparing the correlation between 

R2

rates and numbers of HN contacts vs. the correlation between 

S2

values and normalized mean square fluctuations of the lowest three frequency modes using 

ANM; and (iii) the selection method is on a per-residue basis for 

R2

rates vs. on a segmental basis for 

S2

values (see Supplementary Figure S2). Summarizing, we find that using dynamic 

information from 

R2

relaxation data, and to a lesser extent 

S2

values, as a prior to select a sub-ensemble improves the agreement with experiment for the 

unfolded state of the drkN SH3 domain.

Lincoff et al. have shown previously that certain NMR data types, such as J-couplings or 

NOEs, are very valuable in refining a structural ensemble since optimization of these single 

data types can help improve the other experimental data types such as SAXS or PREs.33 

Figure 4 provides the single optimizations with one data type (the diagonal entries) and its 

influence on the RMSDs of unoptimized data types (off-diagonal entries) compared with the 

unoptimized scores for all experimental data types in the last row for the 

R2

-dynamic structural ensembles. While the single optimizations of a given experimental data 

type using the 

R2

-dynamic ensemble improve RMSD errors of all the other experimental data types with few 

exceptions, the most dramatic improvement is the direct optimization of NOEs that improves 

the RMSD significantly for JC, PRE, RDC and smFRET for the MIXED 

R2

-dynamic ensemble (Figure 4c). Corresponding plots are shown using the 

S2

-derived ensembles in Supplementary Figure S3.

It is insightful to analyze the resulting refined 

R2

-dynamic ensemble from the perspective of structural signatures such as the radius of 
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gyration 

(

Rg

) (Figure 5). We find that the change in 

Rg

between the original and the 

R2

-dynamic pools is minimal for the ENSEMBLE structural ensemble, but that is not 

surprising since it had already been optimized by the same experimental data types as 

previously reported.33 By contrast the MIXED 

R2

-dynamic ensemble has shifted to having more expanded conformers as evident in the 

Rg

distribution. For the RANDOM and MIXED pools, the refinement based on 

R2

relaxation rates decreases the collapsed peak at ~12 

Å
in the 

Rg

distribution, corresponding to the folded state conformers of the drkN SH3 domain and 

increases the importance of more extended conformations. Similar conclusions are reached 

for the 

S2

-dynamic ensembles as reported in the Supplementary Figure S2. This suggests that the 

selection and expansion based on dynamic properties enhances relevant structural properties 

within these disordered ensembles.

DISCUSSION AND CONCLUSIONS

In this study, we presented a computational method that uses NMR 

R2

relaxation data, or 

S2

order parameters in conjunction with an anisotropic network model, to define an underlying 

ensemble of conformations for a disordered protein that is more suitable for optimization 

against a range of experimental data that measure local, long range as well as global shape 

restraint information. Furthermore, we show that by using an anisotropic network model 

to generate alternate conformations along the normal modes, one can further improve the 

agreement of the selected ensemble with experiment.

It is understood that the 

S2

value representing the internal dynamics of a protein derived from 

the Lipari-Szabo model free approach is not well formulated for the 

motions of an IDP or an unfolded protein.53, 82 This is because the 
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S2

value is based on the assumption that the correlation function that describes the 

dynamics of the amide bond vector can be written as a product of two exponentially 

decaying correlation functions: the overall tumbling motion of the protein molecule 

and the internal motion of the bond vector. The use of a single correlation time 

to characterize the overall tumbling is inappropriate for disordered proteins, in 

general, including the unfolded state of the drkN SH3 domain.82 Hence the use of 

S2

order parameters for disordered proteins is not rigorous due to this lack of separation of 

motional timescales, and we would also conclude that it was not as fully effective as the 

R2

relaxation rate, even with a crude structural estimate based on structural contacts.

Our previous work in developing the X-EISD method considered the full uncertainty in 

the experimental and back-calculation errors to enable meaningful comparisons between 

ensembles and their optimization. From that work, we show that J-couplings and 

NOEs can be highly useful data types that can simultaneously improve other data 

types such as smFRET, SAXS, and chemical shifts. However, it also matters that the 

underlying pool have meaningful conformers, and here we emphasize that the transverse 

R2

relaxation rate is another useful measurement that can aid in selection of conformers 

to facilitate ensemble optimization. This contributes to the important goal of defining 

disordered state ensembles in order to better understand the relationships between the 

experimental data types that are most useful for characterizing IDP and unfolded protein 

conformational landscapes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The dynamical description of the unfolded state of the drkN SH3 domain using an 
anisotropic network model.
Three lowest frequency normal modes for a single structure out of the disordered ensemble 

where green arrows, blue arrows, and black arrows represent the direction and amplitudes of 

the three lowest frequency motional modes, super-imposed on a schematic representation of 

the protein backbone in the unfolded state.
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Figure 2. 
R2
and 
S2

profiles for the unfolded state of the drkN SH3 domain.
(a) 15N 

R2

relaxation rates and (b) 

S2

order parameters as a function of residue number.54, 82 Units in (a) are in 1/sec.
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Figure 3. The change in RMSD error of the eight experimental data types (x-axis) for the 
R2
and 
S2

-selected ensembles (red-bar) vs the 
R2
- and 
S2

-dynamic ensembles (blue-bar).
The panels (a-c) show the results for 

R2

and panels (d-f) show the results for 

S2

for the ENSEMBLE, RANDOM, and MIXED pool optimizations using X-EISD. 

There are negligible errors according to the Bayesian model for SAXS, 

Rh

and smFRET. RMSD units are different for each experimental data type and are found in 

Table 1.
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Figure 4. RMSD errors by optimizing the X-EISD score with a single experimental data type for 
R2
-dynamic ensembles derived from (a) ENSEMBLE, (b) RANDOM, and (c) MIXED pools.
The values are averages over 1000 ensembles of 100 structures each, and the numbers in 

parenthesis are standard deviations. The last row refers to the unoptimized 

R2

-dynamic pool of structures. Units are different for each experimental data type and are 

found in Table 1.
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Figure 5. Radius of gyration distributions of the original (red) and 
R2
-dynamic (blue) ensembles for the unfolded state of drkN SH3 domain.
Shown for the (a) ENSEMBLE, (b) RANDOM, and (c) MIXED pools.
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Table 1:
Evaluation of the optimized R2-dynamic and 

S2

-dynamic ensembles and original ensembles for ENSEMBLE, RANDOM, and MIXED 
pools with 8 experimental data types.

We report both the X-EISD score, and the root mean square deviations (RMSD) with experiments. The results 

shown here are optimized with all experimental data types. The experimental and back calculations errors for 

CSs 

(

σexp = 0.03 − 0.3
ppm; 

σq = 0.3 − 0.5
ppm (hydrogen), 1.2–1.4 ppm (carbon)); JCs 

(

σexp = 0.5
; 

σq,A = 0.14
, 

σq,B = 0.03
,

σq,C = 0.08
); RDCs 

(

σexp = 1.0
; 

σq = 0.9
); NOEs 

(

σexp = 4.0 − 5.0Å
; 

σq = 0.0001
); PREs 

(

σexp = 1.25 − 3.625Å
; 

σq = 0.0001
); smFRET <E> 

(

σexp = 0.02
; 

σq = 0.007
); 
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Rℎ

(

σexp = 0.3
; 

σq = 0.8
); SAXS 

(

σexp = 0.0008 − 0.002
, 

σq = 0.0006
).

Experimental data type R2
-Dynamic Pool

S2

-Dynamic Pool
Original Pool

X-EISD Score RMSD X-EISD Score RMSD X-EISD Score RMSD

ENSEMBLE

CS (ppm) 117.5 (0.4) 0.3 (0.005) 117.9 (0.3) 0.34 (0.004) 110.1 (0.4) 0.51 (0)

JC (Hz) 43.68 (0.41) 0.16 (0.008) 41.2 (0.4) 0.21 (0.007) 43.3 (0.5) 0.18 (0.01)

RDC (Hz) −47.8 (0.003) 0.04 (0.005) −50.1 (0.2) 0.54 (0.02) −50.4 (0.2) 0.56 (0.03)

NOE 
(
Å
)

534.8 (0.4) 2.6 (0.03) 533.7 (0.4) 2.7 (0.03) 532.2 (0.5) 2.8 (0.03)

PRE 
(
Å
)

460.4 (2.1) 0.86 (0.06) 443.6 (1.0) 1.42 (0.03) 453.9 (1.7) 1.02 (0.11)

smFRET <E> 6.91 (0.05) 0.006 (0.003) 6.95 (0.03) 0.004 (0.002) 7.0 (0) 0 (0)

Rh 
(
Å
)

−0.42 (0) 0 −0.57 (0.02) 0.47 (0.03) −0.8 (0) 0.71 (0.04)

SAXS (Intensity) 458.3 (0.2) 0.001 (0) 458.0 (0.2) 0.001 (0) 457.9 (0.2) 0.001 (0)

RANDOM

CS (ppm) 118.3 (0.03) 0.33 (0.002) 109.59 (0.66) 0.47 (0.006) 103.6 (0.7) 0.55 (0.01)

JC (Hz) −47.6 (1.7) 0.78 (0.006) −34.39 (3.03) 0.73 (0.01) −25.7 (2.4) 0.7 (0.01)

RDC (Hz) −48.4 (0.02) 0.2 (0.007) 52.2 (0.02) 0.2 (0.007) −55.4 (0.6) 0.98 (0.04)

NOE 
(
Å
)

506.0 (1.2) 4.3 (0.05) 526.03 (1.77) 3.20 (0.10) 528.5 (1.5) 3.06 (0.10)

PRE 
(
Å
)

261.1 (4.0) 3.4 (0.03) 429.53 (5.61) 1.69 (0.11) 450.0 (4.4) 1.24 (0.12)

smFRET <E> 3.9 (0.7) 0.05 (0.006) 6.84 (0.15) 0.009 (0.006) 6.9 (0.1) 0.01 (0)
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Experimental data type R2
-Dynamic Pool

S2

-Dynamic Pool
Original Pool

X-EISD Score RMSD X-EISD Score RMSD X-EISD Score RMSD

Rh 
(
Å
)

−0.42 (0.1) 0 −0.47 (0.1) 0 −0.4 (0) 0.14 (0.10)

SAXS (Intensity) 452.4 (0.9) 0.003 (0) 455.03 (0.81) 0.002 (0) 456.3 (0.4) 0.002 (0)

MIXED

CS (ppm) 118.6 (0.45) 0.34 (0.006) 119.6 (0.3) 0.32 (0.005) 115.5 (0.5) 0.49 (0.01)

JC (Hz) 41.2 (0.60) 0.21 (0.01) 39.59 (0.66) 0.23 (0.01) 41.4 (0.7) 0.21 (0.01)

RDC (Hz) −51.17 (0.35) 0.64 (0.03) −51.16 (0.3) 0.62 (0.03) −50.7 (0.3) 0.60 (0.03)

NOE 
(
Å
)

535.8 (0.66) 2.6 (0.04) 533.02 (0.53) 2.81 (0.04) 539.4 (0.7) 2.28 (0.07)

PRE 
(
Å
)

459.7 (2.3) 0.89 (0.06) 446.4 (1.8) 1.33 (0.03) 458.4 (4.3) 0.92 (0.11)

smFRET <E> 6.9 (0.08) 0.007 (0.004) 6.9 (0.05) 0.005 (0.004) 6.9 (0) 0.01 (0)

Rh 
(
Å
)

0.54 (0.05) 0.41 (0.09) −0.46 (0.02) 0.21 (0.08) −0.7 (0) 0.69 (0.05)

SAXS (Intensity) 457.5 (0.33) 0.002 (0) 457.9 (0.2) 0.001 (0) 458.0 (0.2) 0.001 (0)
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