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A B S T R A C T   

In this paper, we have developed a methodology to estimate the spatiotemporal distribution of radiation air dose 
rates around the Fukushima Daiichi Nuclear Power Plant (FDNPP). In our exploratory data analysis, we found 
that (1) the temporal evolution of dose rates is composed of a log-linear decay trend and fluctuations of air dose 
rates that are spatially correlated among adjacent monitoring posts; and (2) the slope of the log-linear envi-
ronmental decay trend can be represented as a function of the apparent initial dose rates, coordinate position, 
land-use type, and soil type. From these observations, we first estimated the log-linear decay trend at each 
location based on these predictors, using the random forest method. We then developed a modified Kalman filter 
coupled with a Gaussian process model to estimate the dose-rate time series at a given location and time. We 
applied this method to the Fukushima evacuation zone (as of March 2017), which included 17 monitoring post 
locations (with monitoring datasets collected between 2014 and 2018) and generated a time series of dose-rate 
maps. Our results show that this approach allows us to produce accurate spatial and temporal predictions of 
radiation dose-rate maps using limited spatiotemporal measurements.   

1. Introduction 

In March 2011, the accident at the Fukushima Daiichi Nuclear Power 
Plant (FDNPP) resulted in the release of radioactive contaminants to the 
atmosphere and their deposition in the environment, mostly within the 
80 km radius. Radiocesium (134Cs and 137Cs) is considered the main 
nuclide contributing to the exposure dose in this area (IAEA, 2015; Saito 
et al., 2015). Multiple agencies have conducted a number of radiation 
measurements and monitoring campaigns in this region since the acci-
dent (e.g., NRA, 2021; Saito and Onda, 2015; 2019; Andoh et al., 2018), 
which resulted in a large volume of well-archived radiation air-dose-rate 
data (JAEA, 2021; Seki et al., 2021). These datasets have been analyzed 
extensively for the purpose of (1) confirming the continuing reduction of 
contaminant and hazard levels, (2) providing exposure evaluation for 
the public’s return to the evacuation zone, and (3) accumulating the 
basic datasets for scientific knowledge and future preparation. 

In recent years, Wainwright et al. (2017) have developed a data 

integration method that can integrate multiscale datasets from different 
types and scales of measurements (airborne, car, and walk surveys), and, 
from these integrated datasets, generate integrated dose-rate maps. This 
is based on the Bayesian hierarchical model for combining different 
datasets and geostatistics for including spatial correlations to constrain 
the estimation. The integrated dose-rate maps have been able to quan-
tify the temporal changes in air dose rates at the regional scale around 
the FDNPP, and thereby aid in predicting the spatial distribution of air 
dose rates in the future (Wainwright et al., 2019). Based on the inte-
grated maps, Sun et al. (2020) have recently proposed an optimization 
approach for long-term monitoring, selecting a subset of monitoring 
posts that can capture the spatial heterogeneity of the dose rates more 
effectively with a reduced number of points. 

In parallel, a data-driven environmental decay model has been 
developed to predict the decay of radiation air dose rates in the envi-
ronment (Kinase et al., 2014, 2017; Wainwright et al., 2019). Kinase 
et al. (2017) built a prediction model characterized by ecological 
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half-lives of radiocesium for different land-use types which are param-
eters in the double exponential formula, and predicted future distribu-
tion maps of ambient dose equivalent rates. They also found that dose 
rates in urban areas were decreasing faster than in cropland or natural 
forest areas. In parallel, Sanada et al. (2019) evaluated the ecological 
half-lives of dose-rate reduction in the double exponential formula, 
based on airborne radiation monitoring. In addition, Andoh et al. (2020) 
modified the double exponential formula of ecological half-life and 
developed a two-group model to represent the acceleration of the 
decrease in the air dose rates observed in the evacuation order area. 

There are still challenges in describing the spatially heterogeneous 
environmental decay over the region. Even though the general tendency 
toward diminution of air dose rates has been evaluated in the 80 km 
zone, their trend was found to vary significantly, depending on the 
location within each land-use type (Saito et al., 2019a, 2019b; Andoh 
et al., 2018). Although these data-driven models mentioned above can 
predict the decay trend of the average dose rates within the same 
land-use category, the detailed spatial-temporal variations have not 
been considered in previous studies. 

The goal of this study is to develop a spatiotemporal data-integration 
method for creating an integrated radiation air-dose-rate map over 
space and time. The method is based on the Gaussian process model 
(GPM), which takes advantage of spatial auto-correlation and covari-
ance models to predict variables in unobserved locations. In order to 
incorporate the spatial-temporal correlation information of the dose- 
rate field within the temporal information, we combined GPM and the 
modified Kalman filter to estimate the spatial-temporal dose-rate time- 
series at a given time and space. 

The Gaussian process model (GPM) is a method of interpolation or 
prediction, and an extension of geostatistics, assuming random variables 
with a multivariate normal distribution. By defining the covariance 
matrix for representing spatial correlations, the GPM can describe the 
structure of these input variables (such as spatial structure). GPM has a 
growing popularity in various research fields, particularly in a 

geospatial context. For example, Paredes et al. (2021) developed 
Gaussian process regression models for accurate range and direction 
estimation of unmanned aerial vehicles. Rong et al. (2019) developed a 
data-driven nonparametric Bayesian model based on a Gaussian process 
to describe the lateral motion uncertainty of ship trajectory. For radia-
tion monitoring, Sun et al. (2020) used GPM to interpolate the radiation 
dose rates and to select monitoring locations to capture the spatial 
variability across the region. 

The Kalman filter (Kalman, 1960) algorithm estimates unknown 
variables given measurements observed over time. It has been a widely 
applied concept within many fields, such as time-series analysis in data 
processing, navigation, and the control of vehicles and spacecraft. 
Schmidt et al. (2018) presented a Kalman filter-based framework to 
establish a real-time in situ monitoring system for groundwater 
contamination, based on in situ measurable water quality variables, such 
as specific conductance (SC) and pH. 

In our study, we modified the original Kalman filter to accommodate 
the spatial auto-correlation representing the natural fluctuations and 
noise. We used this filter to predict the temporal evolution of dose rates 
for pixels with a real-time monitoring device (to describe the evolution 
more precisely) or with only a segment of historical data (to fill the gap 
between segments), and then we applied GPM to interpolate the dose 
rates for pixels without observations at each time point. This process was 
repeated for each time point, enabling the construction of a spatial- 
temporal dose-rate distribution. We demonstrate our approach using 
the dose-rate datasets from the evacuation zone (as of March 2017). 

2. Data description 

In this paper, we consider the domain (Fig. 1) corresponding to the 
integrated dose-rate map of 2014 provided by Wainwright et al. (2017). 
The size of each grid is 50 m × 50 m, the UTM position of the origin is 
(460101, 4120001). The dashed box with dimension of 8550 m ×
18750 m is the study area, which contains 17 monitoring posts col-
lecting between July 1st, 2017 and Nov 22nd, 2017. We use a section of 
the time series that has continuous measurements, without snow. 

In addition, since the monitoring-post datasets are limited in space, 
we used the car-survey data (Database for Radioactive Substance 
Monitoring Data, 2022) from the Tokyo Electric Power Company 
(TEPCO) to quantify the spatial variability of environmental decay, as 
well as the correlation between decay rates and initial dose rates. In the 
car-survey data set, there are 9626 locations, with 13 time-points for 
each location, starting from March 18, 2014, and ending on April 3, 
2018 (see Table S1 in supplementary material for details). The location 
information of all the car-survey data points can be found in the Results 
& discussion section (section 4.1). The datasets of soil information, 
elevation, land-use in the Fukushima region were published by JAEA, 
and were downloaded from the previous version of Database for 
Radioactive Substance Monitoring Data (Database for Radioactive 
Substance Monitoring Data, 2022; Table S2 in supplementary material). 

3. Methods 

3.1. Environmental decay characterization 

In this study, we used the single component decay model with 
effective half-life in similar ways as Kinase et al. (2014) for describing 
the environmental decay after March 18th, 2014. Although other papers 
used the two-component models with ecological half-lives excluding 
physical decay (Kinase et al., 2017; Sanada et al., 2019; Andoh et al., 
2018), the decay can be represented by effective half-life based on the 
log-linear trends after the dose rate reduction according to the 134Cs 
contribution is reduced (134Cs has a much shorter half-life of 2.06 years 
compared to 137Cs of 30.2 years). For a single-component exponential 
decay model, the time series have a linear trend under the logarithm 
scale, and the slope of this linear trend corresponds to the decay rates, 

Fig. 1. Diagram of the Study Area. The background is the integrated-dose-rate 
map of 2014. The color indicates the dose-rate level under logarithm scale 
based on 10, in log10 μSv/hr. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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while the intercept of the trend corresponds to the apparent initial dose 
rates at t = 0 (i.e., March 11th, 2011), extrapolated from the time after 
which the single-component exponential decay is defined (i.e., March 
18th, 2014). For convenience, we use the terms “slope” and “intercept” 
in this study, which have the same meaning as “decay rates” and the 
“initial dose rates”, respectively. 

We used the random forest method to estimate the slope at unob-
served locations. Random Forest is a machine learning method for 
classification or regression that operates by constructing a large number 
of decision trees from bootstrapped subsampled data at training time 
and outputting the mode of the classes (classification) or mean/average 
prediction (regression) of the individual trees (Tin Kam, 1995). The 
random forest method works well with correlated predictors similar to 
ridge regressions (Hastie et al., 2001). We used cross-validation to 
choose the hyper-parameters. 

We investigated the relationship between the slope and intercept, 
including the background radiation. We decomposed the dose rates into 
an exponential part and a background part, as shown in Eq. (1): 

xt = log
(
x0e− λeff t + h

)
(1)  

where xt is the log-dose rate at time t, x0 is the apparent initial dose rate, 
λeff is the effective decay rate, and h is the natural background. The 
absolute value of the slope in the logarithm scale is computed as Eq. (2): 
⃒
⃒
⃒
⃒
d
dt

xt

⃒
⃒
⃒
⃒=

λeff x0e− λeff t

x0e− λeff t + h
= λeff

1
1 + eλeff th/x0

≈

{
λeff , eλeff t h

/
x0 ≈ 0. (a)

0, eλeff t h
/

x0≫1. (b)
(2) 

Specifically, when the dose-rate level is much higher than the 
background, the influence of the natural background can be ignored, 
and the slope represents the effective decay rate, as shown in Case (a) of 
Eq. (2); when the dose rate is not high enough, the existence of the 
background will pull the slope toward zero, as shown in Case (b) of Eq. 
(2). 

3.2. Spatiotemporal estimation 

Our study domain was discretized into the same grid (with grid size 
50 m × 50 m) as the integrated map. As mentioned in Section 3.1, we 
assume that the dose-rate time-series for pixels under logarithm scale 
can be modeled by a linear trend plus a fluctuation term. At time t, the 
dose-rate vector for n pixels can be defined as Xt = {xt,1, .., xt,n}: 

Xt =u t + b + εt (3)  

where Xt is the n-element vector representing dose rates under the 
logarithm scale, u is a n-element vector that indicates the spatially 
variable slope, b is the n-element intercept vector, and εt is the n-element 
vector representing the fluctuation term from the trend. We assume that 
εt is normally distributed and independent between different time steps, 
but they are spatially correlated among different pixels at the same time 
step: 

cov(εt, εs)=

{
Σt, when t = s

0, otherwise (4)  

where t and s are time step indices, Σt is a n × n matrix indicating that 
the fluctuation parts are spatially correlated. 

3.2.1. Time-series estimation 
All the pixels can be classified into three categories: (I) pixels where 

we have real-time monitoring posts that can provide continuous dose 
rates; (II) pixels where only some segments of historical data are avail-
able, such the locations where monitoring posts are removed; and (III) 
pixels without any measurements except the interpolated value from the 
integrated map. These categories are shown in Fig. 2a. We use n1, n2, n3 
to denote the number of pixels in each category, and use vector Zt (with 
kt elements) to represent the observation vector at time step t. In this 
study, we selected monitoring-post data from JAEA as the observation 
vector Zt to illustrate our method. The dose rates for the Category I pixels 
do not need to be estimated, because they were defined by the real-time 
monitoring posts. A general spatial-temporal prediction can be decom-
posed into two steps to estimate the dose rates for the Category II and 
Category III pixels: 

3.2.1.1. Step One: Estimate the air dose rates in the Category II pixels for 
one time step. We define a dose-rate vector for the pixels in Categories I 
and II at time step t as Xt = (x1,t , x2,t ,⋯, x(n1+n2), t)

T, where xi,t is the 
dose rate for pixel i at time step t and (n1 +n2) equals the total number of 
pixels in Categories I and II here. We define the (n1 +n2) × (n1 +n2)

covariance matrix of Xt as Pt . The decay model of Eq. (3) can be 
rewritten as 

Xt+1 =Xt + u + wt (5)  

where u is a vector of (n1 +n2) elements, representing the slopes of the 
linear trend of all the pixels in Categories I and II. u can be fitted from the 
historical data. wt is defined as 

wt = εt − εt+1 + u (6) 

The (n1 +n2) × (n1 +n2) covariance matrix between ws and wt is 
defined as Qt, 

Qt = cov(ws,wt)=

⎧
⎨

⎩

2Σt, if  t = s
− Σt, if |t − s| = 1

0, otherwise
(7)  

where matrix Σt is the covariance of the noise ε among different pixels 
with dimension (n1 +n2) × (n1 +n2) at time step t. 

For every time step, we will have kt-elements measurement/obser-
vation vector Zt, 

Zt =HtXt + mt (8)  

Fig. 2. (a) Pixel’s categories and prediction methods for each category; (b) Diagram of modified Kalman filter to predict Category II pixels.  
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where 

cov(mt,ms)=

{
Rt if t = s

0, otherwise (9) 

Rt is the covariance matrix of additive measurement noise with 
dimension of kt × kt. Ht is the kt × (n1 +n2) observation matrix, deter-
mined by the data model (i.e., how each type of measurement, airborne, 
car, and monitoring post, was represented by the dose rates of all pixels 
and integrated within our method), and mt is the additive measurement 
noise (kt elements vector) whose covariance is Rt. 

In order to estimate the system state determined by Eqs. (5)–(9), we 
developed a modified Kalman filter that consists of iterations of two 
steps: a prediction step and an update step, as shown in Fig. 2b. The 
prediction step gives the predicted values in the next time step based on 
the temporal evolution, while the update step integrates this prediction 
and data values. (A detailed derivation can be found in the supple-
mentary material S3; only the result is presented here.)  

(a) Prediction step: 

The prediction step computes the system status at time step t+ 1 
based on the predicted system status at time step t. 

X̂ t+1|t = X̂ t|t + u (10)  

P̂t+1|t = P̂t|t + Σt HT
t

(
Ht Σt HT

t + Rt
)− 1Ht Σt (11)  

where X̂t+1|t and P̂t+1|t represent the prediction of the dose-rate vector 
and covariance matrix for the time step (t+1) conditioned on the dose 
rate of the previous time step t.  

(b) Update step: 

The update step serves to refine the estimation of system status at 
time step t + 1 based on the observation of Zt+1. 

X̂t+1|t+1 = X̂t+1|t + Kt+1
[
Zt+1 − Ht+1 X̂t+1|t

]
(12)  

P̂t+1|t+1 =(I − Kt+1Ht+1)P̂t+1|t(I − Kt+1Ht+1)
T
+ Kt+1Rt+1KT

t+1 (13)  

where 

Kt+1 = P̂t+1|tHT
t+1

[
Ht P̂t+1|tHT

t+1 + Rt+1
]− 1

(14)  

is a (n1 +n2) × kt+1 matrix. The subscripts of P̂t+1|t+1, X̂t+1|t+1 mean the 
prediction of P, X at time step t + 1 conditioned on Zt+1. 

3.2.1.2. Step Two: Predict dose-rate time-series for the Category III pixels 
for the same time step as Step One. We added subscript ‘3’ for each var-
iable in Eq. (5) for Category III pixels: 

X3,t =u3 t + b3 + ε3, t (15)  

where u3 t + b3 serves as the linear trend of the dose-rate time-series and 
ε3,t consists of the fluctuation part. Here, the dimension of X3,t, u3, b3 and 
ε3,t are n3. 

In order to predict the dose-rate times for the Category III pixels that 
have no historical data, the following components are required: (1) the 
initial values (dose rates at t = 0, which is b in Eq. (15)), (2) the slope of 
the linear trend (u in Eq. (15)), and (3) the fluctuation part (εt in Eq. 
(15)). This prediction step consists of three sub-steps to compute the 
three components:  

(1) The apparent initial values of the time series can be selected from 
the integrated-dose-rate map of 2014 developed by Wainwright 
et al. (2017, 2019).  

(2) The slope of the linear trend can be predicated using the random 
forest method with the initial values, land-use type, soil type 
(Table S2), Easting/Northing position (in the UTM system) as 
predictor variables.  

(3) Fluctuations around the trends can be predicted by the dose rates 
conditioned on the Category I pixels and the predicted values for 
the Category II pixels at the same time step, using the Gaussian 
process model (GPM). GPM assumes that the dose-rate values at 
unmeasured locations follow a multivariate normal distribution, 
and the unobserved variables can be predicted by conditioning 
distribution on the observed variables. 

Specifically, similar to Eq. (15), where we used the n3-element vector 
ε3,t to denote the fluctuation vector for the pixels from Category III at 
time step t, we use the (n1 + n2)-element vector ε1, t to denote the 
fluctuation vector for the pixels from Categories I and II at the same time 
step. Then the best prediction of ε3,t conditioning on ε1,t is: 

ε3,t|1 = μ3 + Σ31Σ− 1
11

(
ε1,t − μ1

)
(16)  

Σ3|1 =Σ33 − Σ31Σ− 1
11 Σ13 (17) 

In the above, ε1,t is a (n1 + n2)-element vector, ε3,t|1 is a n3-element 
vector, μ1, μ3 are prior mean vectors, which are 0 here, and covariance 

matrix was defined as cov
((

ε1,t
ε3,t

)

,

(
ε1,t
ε3,t

))

=

(
Σ11 Σ13
Σ31 Σ33

)

. The 

dimension of Σ33 is n3 × n3, the dimension of Σ11 is (n1 + n2)× (n1 + n2), 
and the dimension of Σ3|1 is n3 × n3. 

By repeating the use of the modified Kalman filter (Eq. (10)-(14)) and 
GPM (Eq. (16) and (17)), the time series for all the pixels (Category II, 
Category III) can be reconstructed. Alternatively, we can repeat Step 
One for all the time steps and then repeat Step Two for all the time steps. 

Fig. 3. (a) Plot of the slope as a function of the 
intercept; (b) the two groups in the physical co-
ordinates; (c) the evacuation zone map. In (a), Group 
1 (red points): data points that are off the linear trend 
of Slope ~ Intercept; Group 2(green points): data 
points which maintain a linear trend between slop 
and intercept. The location map of each group in (a) 
is shown in (b), and the black solid curve in (b) has 
the same zone boundaries as (c). (For interpretation 
of the references to color in this figure legend, the 
reader is referred to the Web version of this article.)   
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4. Results & discussion 

4.1. Spatial heterogeneity of environmental decay 

Based on the car-survey data, we first explored the relationship be-
tween the slope (i.e., effective decay rates) and the intercept (i.e., the 

apparent initial dose rates) in Fig. 3a. We have found the bifurcation or 
the two groups in this relationship. We then plotted the map of these 
data points and found that these two groups largely correspond to the 
different spatial zones (Fig. 3b): (1) the difficult-to-return (or high-risk) 
zone, and (2) the ready-to-return zone, and limited-to-return zone 
(Fig. 3c). The difficult-to-return zones have low effective decay rates (i. 
e., slower reduction), even though the initial dose rates are high. This 
finding is possibly a result of human activities within the ready-to-return 
zones that mobilized the soil particles and radiocesium, accelerating the 
decay. In addition, the difficult-to-return zone is dominated by forests 
(83% of the area), where the environmental decay is reported to be 
slower (Kinase et al., 2014; Andoh et al., 2018; Saito et al., 2019a). 

The Random Forest regression result is presented in Fig. 4, with the 
predictive performance of R2 equal to 0.93, when we applied the 
regression model to the testing dataset that was not a part of the fitting 
process. The random forest method also provides a parameter- 
importance ranking in the regression model, shown in Fig. 5. We 
found that the apparent initial dose rate is the most influential factor in 
determining the decay rates (i.e., the slope). Minor contributions are 
detected from land-use type, spatial coordinates, and soil. 

4.2. Spatiotemporal estimation results 

4.2.1. Category II pixels estimation result 
We selected representative pixels one for the high dose-rate region 

(pixel 103547) and the other for the low dose-rate region (pixel 103570) 
to evaluate our method. These two locations are from the testing set (not 
included in the estimation). The time-series prediction for the two 
Category II pixels is shown in Fig. 6. The Pearson correlation coefficient 
R is 0.91 in Fig. 6a, while the Pearson correlation coefficient R is 0.25 in 
Fig. 6b. Most of the measurements in Fig. 6b still fall into the confidence 
interval. The predicted dose rates capture the fluctuation part in addi-
tion to the log-linear decay trend of dose-rate time-series. In general, the 
locations with the higher initial dose rate have smaller uncertainty 
(Fig. 6a), while the ones with the lower initial dose rate have larger 
uncertainty (Fig. 6b). After looking into the locations of these pixels, we 
found that the uncertainty is mostly determined by the distance to the 
closest conditioning pixel. 

4.2.2. Category III pixels estimation result 
The dose-rate time-series at the Category III pixels are predicted by 

combining the environmental decay rates (i.e., slope) from the Random 
Forest and the spatiotemporal fluctuations predicted by GPM (Fig. 7). 
We test the performance by excluding the data at the two locations 
(chose to represent low-dose rates and high-dose-rates pixels) during the 
estimation process as the testing data. Similar to the estimation of the 
Category II pixels, the Pearson correlation coefficient is higher for the 
location with the high initial dose rate (Fig. 7b) than the one with the 

Fig. 4. Slope prediction using Random Forest vs observed value on testing data 
set. In the Random Forest process, indicators are intercept, land-use type, 
Easting/Northing position and soil type. Data are from TEPCO car-survey 
dataset since 2014-01-01. 

Fig. 5. Feature importance as given by Random Forest. The intercept is the 
term we used in this study equivalent to initial dose rates; the x_loc, y_loc are 
the Easting/Northing position in the UTM coordinate system; landuse_3 is land- 
use type 3, which stands for forest; and landuse_2 means cropland; Kuroboku 
soil is a soil type. 

Fig. 6. Comparison of Category II pixels, (a) for pixel 103547; (b) for pixel 103570. In the plots, the red line is for the measured values, the blue dashed line for the 
predicted values, and the grey band for the 95% confidence interval, some measurements lie beyond the 95% confidence interval due to randomness. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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low initial dose rate (Fig. 7a). In Fig. 7b, the fluctuation is well captured, 
such as the lower dose rates around Days 1200 and 1250. 

Fig. 8 provides the predicted spatiotemporal evolution of the dose 
rates, which is the change from the apparent initial dose rate on the first 
day of this time-series (1156th day after the accident) to 10 days, 30 
days, 80 days, and 120 days. The color of each pixel represents the 

change in dose rates in the log scale, which is heterogeneous across the 
space. The blue/violet region expands from Fig. 8a–d as the dose rates 
decrease across the region; this trend is more obvious in the northwest 
direction, which is assumed to be the high-dose-rate zone. This obser-
vation agrees with the conclusion that we draw from Fig. 7—that higher 
dose rates will decrease at higher rates. In the southwest region, the dose 

Fig. 7. Prediction vs true value for Category III: (a) for pixel 103570 (representing the low-dose-rate pixels); (b) for pixel 103547 (representing the high-dose-rate 
pixels). In the plots, red line: Measurements; blue dashed line: Prediction; grey band: 95% confidence interval. The measurement lines were excluded in the esti-
mation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Predicted dose-rate change for the study area in the log-scale: (a) to (d) the dose rate decrease from the 1156th day to the 1166th,1186th,1236th, and 1276th 
days after the accident. In the color bar, negative values indicate a decrease. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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rates initially increase slightly representing by the red color (Fig. 8a), 
which is also shown in the data time-series plots between 1156th and 
1166th day in Fig. 7. This increase is considered to be the natural fluc-
tuation component, which could be attributed to soil moisture, cosmic 
rays or the deposition of radon decay daughters during precipitation 
(Bogena et al., 2015; Barbosa et al., 2018; Mercier et al., 2009). 

5. Conclusions 

In this work, we investigated the heterogeneity of environmental air- 
dose-rate decay near Fukushima area based on the random forest 
method, and developed a methodology by which to estimate the spatial- 
temporal distribution of the dose rates, using a combination of algo-
rithms based on the Gaussian process models and the modified Kalman 
filter. We found that a dose-rate time-series can be modeled as a linear 
decay trend with random fluctuations around the trend, that the linear 
trend is primarily dependent on the initial dose rate (after 2014), and 
that the fluctuation of radiation dose rates is spatially correlated among 
adjacent monitoring posts. We then estimated the environmental decay 
rate (i.e., the slope of log-linear trend), using the random forest method 
as a function of the initial dose rate, land-use type, spatial coordinates, 
and soil as predictors. In addition, we then demonstrated that the 
modified Kalman filter can be applied to the dose-rate prediction/inte-
gration of the pixels with a partial or fully historical data set (Category II 
pixels), and the fluctuations of the time series from the linear trend at the 
Category III pixels can be predicted using the Gaussian process model. In 
summary, our method can successfully estimate air dose rates continu-
ously over time at a given location without monitoring posts. This 
methodology can be used as a general methodology for improving the 
existing optimization method (Sun et al., 2020), as well as for dose-rate 
exposure evaluation. 
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Paredes, J.A., Álvarez, F.J., Hansard, M., Rajab, K.Z., 2021. A Gaussian process model for 
UAV localization using millimetre wave radar. Expert Syst. Appl., 115563 https:// 
doi.org/10.1016/j.eswa.2021.115563. 

Rong, H., Teixeira, A.P., Soares, C.G., 2019. Ship trajectory uncertainty prediction based 
on a Gaussian process model. Ocean Eng. 182, 499–511. https://doi.org/10.1016/j. 
oceaneng.2019.04.024. 

Saito, K., Onda, Y., 2015. Outline of the national mapping projects implemented after the 
Fukushima accident. J. Environ. Radioact. 139, 240–249. https://doi.org/10.1016/j. 
jenvrad.2014.10.009. 

Saito, K., Tanihata, I., Fujiwara, M., Saito, T., Shimoura, S., Otsuka, T., Onda, Y., 
Hoshi, M., Ikeuchi, Y., Takahashi, F., Kinouchi, N., Saegusa, J., Seki, A., 
Takemiya, H., Shibata, T., 2015. Detailed deposition density maps constructed by 
large-scale soil sampling for gamma-ray emitting radioactive nuclides from the 
Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 139, 
308–319. https://doi.org/10.1016/j.jenvrad.2014.02.014. 

Saito, K., Mikami, S., Andoh, M., Matsuda, N., Kinase, S., Tsuda, S., et al., 2019a. 
Summary of temporal changes in air dose rates and radionuclide deposition densities 
in the 80 km zone over five years after the Fukushima Nuclear Power Plant accident. 
J. Environ. Radioact. 210, 105878 https://doi.org/10.1016/j.jenvrad.2018.12.020. 

Saito, K., Mikami, S., Andoh, M., Matsuda, N., Kinase, S., Tsuda, S., et al., 2019b. 
Temporal change in radiological environments on land after the Fukushima Daiichi 
nuclear power plant accident. Journal of Radiation Protection and Research 44 (4), 
128–148. https://doi.org/10.14407/jrpr.2019.44.4.128. 

Sanada, Y., Urabe, Y., Sasaki, M., Ochi, K., Torii, T., 2019. Evaluation of ecological half- 
life of dose rate based on airborne radiation monitoring following the Fukushima 
Dai-ichi nuclear power plant accident. J. Environ. Radioact. 210, 105816 https:// 
doi.org/10.1016/j.jenvrad.2018.07.016. 

Schmidt, F., Wainwright, H.M., Faybishenko, B., Denham, M., Eddy-Dilek, C., 2018. In 
situ monitoring of groundwater contamination using the Kalman filter. Environ. Sci. 
Technol. 52 (13), 7418–7425. https://pubs.acs.org/doi/abs/10.1021/acs.est. 
8b00017. 

Seki, A., Saito, K., Takemiya, H., 2021. Current status of the environmental monitoring 
database on the accident at Fukushima Daiichi nuclear power plant. J. Radiol. Prot. 
41, S89–S98. https://doi.org/10.1088/1361-6498/abfbc1, 2021.  

Sun, D., Wainwright, H.M., Oroza, C.A., Seki, A., Mikami, S., Takemiya, H., Saito, K., 
2020. Optimizing long-term monitoring of radiation air-dose rates after the 
Fukushima Daiichi nuclear power plant. J. Environ. Radioact. 220, 106281 https:// 
doi.org/10.1016/j.jenvrad.2020.106281. 

Wainwright, H.M., Seki, A., Chen, J., Saito, K., 2017. A multiscale Bayesian data 
integration approach for mapping air dose rates around the Fukushima Daiichi 
Nuclear Power Plant. J. Environ. Radioact. 167, 62–69. https://doi.org/10.1016/j. 
jenvrad.2016.11.033. 

Wainwright, H.M., Seki, A., Mikami, S., Saito, K., 2019. Characterizing regional-scale 
temporal evolution of air dose rates after the Fukushima Daiichi Nuclear Power Plant 
accident. J. Environ. Radioact. 210, 105808 https://doi.org/10.1016/j. 
jenvrad.2018.09.006. 

D. Sun et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.jenvrad.2022.106946
https://doi.org/10.1016/j.jenvrad.2022.106946
https://doi.org/10.1016/j.jenvrad.2018.07.009
https://doi.org/10.1080/00223131.2020.1789008
https://doi.org/10.1080/00223131.2020.1789008
https://doi.org/10.1016/j.jenvrad.2018.09.022
https://doi.org/10.1016/j.jenvrad.2018.09.022
https://doi.org/10.1002/wat2.1097
https://emdb.jaea.go.jp/emdb_old/en/
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
http://refhub.elsevier.com/S0265-931X(22)00137-0/sref7
http://refhub.elsevier.com/S0265-931X(22)00137-0/sref7
http://refhub.elsevier.com/S0265-931X(22)00137-0/sref7
http://refhub.elsevier.com/S0265-931X(22)00137-0/sref7
http://refhub.elsevier.com/S0265-931X(22)00137-0/sref8
http://refhub.elsevier.com/S0265-931X(22)00137-0/sref8
https://doi.org/10.1115/1.3662552
https://doi.org/10.1093/rpd/ncu014
https://doi.org/10.1080/00223131.2017.1365659
https://doi.org/10.1080/00223131.2017.1365659
https://doi.org/10.1016/j.jenvrad.2009.03.002
https://radioactivity.nsr.go.jp/en/contents/16000/15099/24/274_20210401.pdf
https://doi.org/10.1016/j.eswa.2021.115563
https://doi.org/10.1016/j.eswa.2021.115563
https://doi.org/10.1016/j.oceaneng.2019.04.024
https://doi.org/10.1016/j.oceaneng.2019.04.024
https://doi.org/10.1016/j.jenvrad.2014.10.009
https://doi.org/10.1016/j.jenvrad.2014.10.009
https://doi.org/10.1016/j.jenvrad.2014.02.014
https://doi.org/10.1016/j.jenvrad.2018.12.020
https://doi.org/10.14407/jrpr.2019.44.4.128
https://doi.org/10.1016/j.jenvrad.2018.07.016
https://doi.org/10.1016/j.jenvrad.2018.07.016
https://pubs.acs.org/doi/abs/10.1021/acs.est.8b00017
https://pubs.acs.org/doi/abs/10.1021/acs.est.8b00017
https://doi.org/10.1088/1361-6498/abfbc1
https://doi.org/10.1016/j.jenvrad.2020.106281
https://doi.org/10.1016/j.jenvrad.2020.106281
https://doi.org/10.1016/j.jenvrad.2016.11.033
https://doi.org/10.1016/j.jenvrad.2016.11.033
https://doi.org/10.1016/j.jenvrad.2018.09.006
https://doi.org/10.1016/j.jenvrad.2018.09.006

	Spatial and temporal prediction of radiation dose rates near Fukushima Daiichi Nuclear Power Plant
	1 Introduction
	2 Data description
	3 Methods
	3.1 Environmental decay characterization
	3.2 Spatiotemporal estimation
	3.2.1 Time-series estimation
	3.2.1.1 Step One: Estimate the air dose rates in the Category II pixels for one time step
	3.2.1.2 Step Two: Predict dose-rate time-series for the Category III pixels for the same time step as Step One



	4 Results & discussion
	4.1 Spatial heterogeneity of environmental decay
	4.2 Spatiotemporal estimation results
	4.2.1 Category II pixels estimation result
	4.2.2 Category III pixels estimation result


	5 Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References




